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Resumo

A procura pela eficiência como necessidade de rentabilizar recursos traduz-se numa

aplicação de conhecimentos em várias áreas-chave da sociedade, entre elas e sendo

foco deste trabalho, a Industría.

Ao analisar a gestão de recursos, de uma macro prespectiva, como acontece na Indus-

tría, deparamo-nos com um cenário de produção massificada em que o desperdício de

matérias-primas e uma ineficaz utilização dos recursos de transformação nas linhas

de montagem se traduzem em ineficiência acentuada, nos tempos de preparação para

produção (ramp-up time) e produção; assim como no desperdicio de matérias-primas

e gastos elevados com os meios de produção.

Com base nesta premissa, o objectivo deste trabalho será culminar num componente

de software que, em colaboração com vários actores integrantes num sistema de mon-

itorização/atuação sobre linhas de produção industrial, seja capaz de integrar módulos

de análise de dados em tempo de execução. O resultado será a manutenção e auto-

reparação das máquinas transformadoras na linha de produção, a redução do tempo

de reconfiguração das linhas de montagem, e a recalibração automática de parâmetros

de produção, resultando numa maior eficiência de recursos e tempos de produção.

Por último, resta frisar que este trabalho foi realizado no âmbito de dois projectos

Europeus, I-RAMP3 [1] e SelSus [2]. Em colaboração com vários parceiros industriais

e cientificos, os grupos de trabalho destes projetos apresentam uma maturação de

conhecimento que foi essencial para a realização deste trabalho.
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Abstract

Demand for resource efficiency compliant with urging environmental regulations repre-

sents nowadays a general concern in many key fields of society. One of those main

fields it is industry, where manufacturing processes occur at large scale, requiring strict

control to fulfill business requirements, such as demand and cost targets.

Analyzing the resource management, from a macro perspective, as happens in In-

dustry, we face a scenario of mass production in which the waste of raw-materials

and efficient management of the manufacturing resources results in a sharpened ineffi-

ciency, implying significant costs with production means and production ramp-up-time.

Based in the previous statement, this work aims to create a software component that, in

collaboration with several actors, members of the same system monitoring/controlling

the production lines, is capable of integrating data analysis software modules in runtime.

The result, will be the smart maintenance of the production machines, reduction of the

ramp-up-time and the automatic calibration of production parameters; culminating in an

enhanced efficiency of resources and production times.

For last, this work was realized under the scope of two European projects, I-RAMP3 [1]

and SelSus [2] co-founded by the European Comission Seventh Framework Programme.

In colaboration with cientific and industrial partners, the working groups of these projects

presented a matured knowledge that was essential to this work realization.

Keywords: Industry, Smart Factories, Monitoring, Analysis, Smart Reconfiguration,

Services.
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Chapter 1

Introduction

The decreasing price in automation leverages the adoption of advanced machinery as

a way to increase efficiency and satisfy constant demands for competitiveness of man-

ufacturing processes. Machines can perform tasks that are hazardous or impossible

for humans; their production is consistent in terms of quality and volume resulting in a

reduced pipeline. The easiness of automation introduction in factories is due to the fact

that tasks at the production line are mechanical and the environment is well defined,

the physical area where the production line is contained forms an aggregate of several

machines performing multiple tasks at multiple rates in a coordinated way.

In order to achieve the required control over the production process, those aggregates

of machines must be managed based on their own working feedback or taking part

of the recent growing trend in pervasive and ubiquitous computing systems such as

Wireless Sensor Networks (WSN). They make analysis of large quantities of raw data

generated during the machines activity and by deploying sensors over the production

line or using the machines own sensors, it is possible to collect the data that can be

used to improve the production process efficiency. The management of the production

process requires a substantial effort once multiple variables can introduce a strong

influence on the process, making the production process parameterization inefficient

and subject to unexpected influences. These influences can be a partial or total failure

from a machine responsible for some part of the production. Unexpected fluctuations on

the volume of the production required by the factories customers or a sudden decrease

in the quality of the product being made can lead to abruptly schedule another type of

12



CHAPTER 1. INTRODUCTION 13

product to be done.

Referring to the previous defined physical area we will employ the widespread term

Shop Floor, as we will adopt the term M2M to represent communication from machine

to machine, instead of peer-to-peer communication.

1.1 Problem

In industry field, production lines require permanent monitoring, data generated by mon-

itoring sensing devices is used to verify malfunctions and increase factory production

efficiency. Typically, the generated data is not treated in ways to obtain information with

the highest level of intelligence; this means that, produced data floods the systems with

redundant information. The raw data must be afterwards analyzed to obtain highest

levels of information quality. For each task being executed on the production line arises

the need of different data reduction methods, these are used for extracting information

with an higher degree of intelligence, and data validation methods to ensure information

quality.

The process of develop and integrate different algorithms of data reduction and valida-

tion, for further analyses, requires changes in the monitoring system at runtime. This

process represents a non-trivial problem to solve. Implementing algorithms for these

analysis is a task assignable to the factory programmers and personal who are typically

aware of the system functionality. Furthermore, systems themselves are not capable

of on-the-fly integration of pieces of code produced on demand. This means that the

system must be modular, allowing for fast deployment of new software modules, with

facility in removing, testing and changing the active ones.

In the industrial context, the diversity of devices present in production lines Shop Floor,

is a relevant concerning problem. Complex machines in the Shop Floor, like welding

machines, have embedded sensors for monitoring its own work. These embedded

capabilities must be employed in the same way that sensing devices sensors are.

In addition, the system must assure flexibility that comprises all the heterogeneity of

hardware present at the lower levels of the system architecture. This requirement

allows for cross check validation between different devices, statistical analyses of the

data being produced independent of the specific device being collected and aditional



CHAPTER 1. INTRODUCTION 14

flexibility taking in account the transient Shop Floor composition of resources.

The aforementioned processes occur normally at the design phase of a production

process schema. Latter integration of data analysis modules, comprising a specific

service of a device, typically is not possible to occur on the fly. This limitation costs

much effectiveness of time to the Shop Floor planning, and so, its a gap that we will

try to fill, resorting to services virtualization and dynamic software modules wiring. All

the present devices in the network, must be seen from a horizontal perspective to the

system responsible for managing them; sensors or machines, provides services that

needs to be abstracted and represented in a similar way. Targeting specific device

services to feed reduction and validation modules typically is hard to achieve. This

feature is accomplished by matching between the services from a device interface

representation, with the software modules consuming them, that way, the analysis

modules can use required device services to process their output. That flexibility must

ensure to that, at a post design phase all the logic can be reconfigured; if we have

a aggregation model being feed with a set of device services, we can manipulate that

same set, by adding or removing new elements. Those elements could be models too,

so we can have analysis models consuming and providing from each other.

The work orientation, attending to the focus, must follow a Service Oriented Software

Architecture and Computing strategy. In the following pages, the focus will regard WSN

technologies in terms of communication strategies, displacement of devices involved

in the architecture and other known limitation considerations. To better understand

the generality of the architectures, regarding sensing devices systems, we will further

expose concepts of sensing devices discovery and integration, target our objectives

and show an overall system architecture schematic.

1.2 Contribution to the problem

Structure of the system, as typically on WSN structures, involve three main compo-

nents, (1) the sensing devices in a low displacement level of the physical architecture,

gathering data measures of physical measurable properties from the environment sur-

rounding them; (2) a gateway, that provides interface to the last component, covering a

certain area of devices; (3) the server, that treats and collects data from one or various

gateways and provides advanced methods of information management and flow. In
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this work we will define respectively the typical gateway as SmartNode and server as

SmartComponent. Those two pre-defined entities will represent the generic WSN’s

components, but regarding the functionalities that we will further objectify, they acquire

a smart behaviour due to their functionalities.

Our contribution will mainly focus on the SmartComponent, as that component is present

at a higher level, such in physical way, as in logic way. The contribution will attain a

logistic of manufacturing production logic. As result, this work should enable different

kinds of production processes, to be deployed in concurrency, allowing human or logic

supervisors at any given circumstance to change the models and in that way contribute

to increase efficiency.

Beyond the scope of the problems that the SmarComponent proposes to solve, there’s

a set of considerations, that from an holistic point of view must be considered for each

intervening contributor, for a whole final solution involving all the tiers of hardware and

software that have an active role. These considerations, mainly information and control,

formed also part of the present work study, as the SmartComponent has an active

central role in the final architecture it will be firstly introduced in the following chapter.

1.3 Outline

The remaining of this thesis is organized as follows:

Chapter 2 Introduces the context and challenges of WSN in industry, the two projects

where this work is involved and presents similar works.

Chapter 3 Focus this work within the main components of an Industrial monitoring

system, interactions between components, communication strategies and logistic of

services.

Chapter 4 Considerations to the design approach of the architecture and technologies

used are exposed.

Chapter 5 Details about the architecture components and main functionalities are ex-

plained.

Chapter 6 Results are validated against an hypothesis based in a real application

scenario.
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Chapter 7 Conclusions regarding results over requirements and future work are pre-

sented.



Chapter 2

State of the art

Our study of considerations for achieve a workable system, has started first by getting a

more suitable understanding of how a reconfigurable manufacturing system is expected

to operate, so then we could align that expected operational behavior context with the

projects guidelines in which this work is evolved. After we cementing that knowledge

based strongly in the work context, we will introduce IWSN design and challenges

considerations, ending up with the study of works evolving WSN, those done in the

same and different contexts so we can extract best practices from both and give a

complete state of the art.

2.1 Architecture Context

This work fits in the scope of two European projects, IRAMP3 [1] and SelSus [2];

both profit from the use of sensors to monitor the factory Shop Floor, the information

gathered by those monitoring sensors in the device tier is sent up-link to the service

tier where the Smart Component align horizontally all devices as abstract services and

provides means to use them. There are essentially two kinds of services, (1) device

services and (2) complex services.

First ones (1), represent device’s virtual abstractions, in other words they encapsulate

devices heterogeneity in a way that makes them homogeneous, they provide raw data

(the physical properties they are able to measure), in the case of the machines with

self-processing capacity they must allow to use machine functionalities, as example,

17



CHAPTER 2. STATE OF THE ART 18

a welder machine capable of auto-parameterization of welding temperature, must an-

nounce that feature and the respective abstraction must allow to use it.

Second ones (2), represent instances residing in the SmartComponent. Those in-

stances are created by the planning tier agents and are supported by the data anal-

yses modules in terms of validation and aggregation (also prevents database and

network floods of information). They should be created in any phase, pre, post or during

operation of the system, to form logical groups of services that provide them input and

capable of producing to other complex services to consume them.

At the planning tier, machine learning models will be consuming the aforementioned

services that, by their side, are capable of predicting failures from the machines and

devices accelerating the ramp-up time for the deployment of new products, bringing

a whole set of benefits to the manufacturing process. In both projects, the general

architecture of the system’s is composed of the four main tiers represented in the

image below 2.1. Cloud tier represents the recent concept of Sensor Cloud. Every

services and information provided by a factory are exposed at this level, which is an

aggregation of multiple intra enterprise systems, arising from this set of systems an

enterprise factory management feature.
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Figure 2.1: Physical Architecture Monitoring Production Line.

2.2 Reconfigurable Manufacturing Systems

Market’s globalization brings together product variety and volume needs, turning in-

feasible old production paradigms. [3] The previous concern arises a new concept of

manufacturing systems: the Reconfigurable Manufacturing Systems (RMS). The man-

ufacturing environment, whose two identified influent variables are, product demand

and variety; have great impact on those systems, creating new requirements that new

production strategies must consider, adapting to environment influence:

• Fast product deployment, for early introduction in the market.

• Product versatility, demands for fast configuration and deployment of system ser-

vices.

• Market constraints cause the volume of production to fluctuate.

• Decrease product price, implies to reduce costs in production.
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Manufacturing activities are composed of three main stages, ordered as Design, Man-

ufacturing and Assembly. Optimizing those stages requires control resources, which

must be present to monitor the generated flow of control information. To better achieve

efficiency in Lead-Time (defined as the time that takes to finish a customer production

order), a directly related strategy to the proposed work is the reduction of the sys-

tem ramp-up time. Increasing product variants can be achieved through an effective

utilization of the assembly resources, which couples with the aforementioned projects

goals. Fluctuation of product demand affects the production platform; this sensibility

to the fluctuation can be mitigated preventing failures of the hardware evolved in pro-

duction process, with constant analyses of efficiency metrics, that couples with the

self-awareness and self-healing goals 2.4.

2.3 I-RAMP3

Production system demands 2.2 are the I-RAMP3 project focus, that stands for Intelli-

gent Reconfigurable Machines for Smart Plug&Produce Production. Under the Seventh

Framework Programme of the European Commission, this project involve synergies

from both academic and industrial partners; with the aim to give a step forward in the

smart manufacturing systems.

The efforts of this project working group, focus in the converting manufacturing equip-

ment into smart encapsulated and virtualized devices; referring in the scope of the

project as NETDEVs (NETwork-enabled DEVices), turning the manufacturing system

components aggregate into a multi-agent system capable of inter-device negotiation

and production processes optimization. These capabilities will enable important fea-

tures to the manufacturers, who will have means to an improved diagnosis, Shop

Floor analysis and smart decisions like scheduled and unscheduled maintenance of

the equipment, supported by the own monitoring system feedback. Pointing the main

goals of the project, reduction of the production costs, maximum production efficiency -

through a fast ramp-up phase - and adoption of the plug&produce concept.

Sensors have not a significant role in the production process, their impact is mostly

reflected in decisions they help to take about the specific machine they are monitoring,

typically based in the related machine production life-cycle and safety mechanisms.

This project aims to give a significant role to the sensors, they must evolve to reach
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a sensor oriented approach, enabling process optimization, production automation

and more complex decisions over the machinery itself. As example of an advantage

in the ramp-up process, we have the parameterization of a machine like a metrology

system. That process takes a considerable amount of time to do, that kind of systems

use light to detect imperfections on parts, like a car hood; slight changes in light can

lead to false positives, so the machine must be configured to operate in certain ambient

condition boundaries. Moreover, the process is done manually, with a certain number

of parameterization iterations to achieve the quality requirements. With the feedback

of the sensors coupled to the metrology system and a consequent data analysis, an

automatic calibration can be performed, mitigating the manual parameterization effort.

Another crucial challenge to overtake is the difficulty in detect a machine wear-out or

drift. This project working group associated industrial partners pointed this problem as

a major difficulty in Industry; the correlation between virtual sensors groups associated

within a machine process, should produce high reliable information, which combined

with machine learning and pattern recognition technics must be capable of detect such

unexpected changes in a deterministic way.

Enabling the previously stated functionalities requires - from a implementation perspec-

tive - two principal challenges to overcome, (1) well-structured and defined way of

communication and understanding between the devices; (2) a smart gateway that allow

for integration of different devices, from different vendors and different communication

standards of communication (ZigBee, Bluetooth, IR and other types of RF ). Moreover,

every device must have multicast communication ability, so every device in the Shop

Floor will be aware of the every other devices.

In this project, the communication protocol used is UPnP [4], that protocol allows for a

device multicast annunciation to every other devices, has notification capabilities and

provide means for annunciation of services, respective actions and variables. As this

is just a communication mean, to each device extract meaning from the exchanged

information, the project defines an ontology based in widespread communication format

XML, that definition is the Device Integration Language (DIL). Finally, a smart gateway

it’s used to device integration, the project consortium adopted the Plug Things [5]

component from the Freedom Grow partner. That gateway abstracts the concerns

about communication protocols that devices use, it creates virtual representations of
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the devices associated to them, which communicate and announce each other via DIL

and UPnP. DIL implements four types that are used in four different purposes between

NETDEV’s, NETDEV self-description (NSD), describes the device physical and logical

characteristic; task description document (TDD), used to submit specific tasks to a

NETDEV, after the analyses of the correspondent NSD; quality result document (QRD),

describes the result of a task after it’s execution; task fulfilment document (TFD), ac-

knowledge to task submissions and annunciation of the device actual state.

2.4 SelSus

Self Sustaining Manufacturing Systems, is the concept beyond this project whose aim

is, once again, explore the concept of smart factories. A special focus on the efficiency

concern over resources of production, machines and raw materials will prevail in this

project. The machinery is composed of sensible parts that are susceptible to degrada-

tion due to high operation speeds, which typically those machines accomplish during

the production stages. Due to the previous stated, maintenance in the machinery is a

crucial concern to prevent failures and extend its lifetime. Those tasks have regular peri-

ods to be executed, based on the time a specific machine is in production and measured

since the last maintenance operation performed on that machine, nevertheless, the

deterioration of a machine is not linear and unpredicted maintenance operations must

be done to avoid a total machine failure. If a machine failures completely, that failure will

cause a production process in which that machine is involved to stop. Consequently,

mortgaging production time and raw materials that could suffer permanent damage

causing waste; in a more extreme case a machine could suffer irreversible damage. All

these stated conditions cause a huge negative impact in efficiency of production and

economy of the business.

Considering the previous problem as motivation, the vision of SelSus is to maximize the

machinery performance and lifetime, recurring to a continuous monitoring of production

parameters and physical properties associated to the machines being monitored. Mon-

itoring of the machine production process will allow to create patterns of the machine

efficiency, thus, the system will make the machine to be self-aware of its own condition.

That way if a machine its in a faulty state, timely repair can be done, an unforeseen

maintenance can be scheduled with an associated prognosis based on the machine
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fault story, as result, accelerating the repair process and avoiding irreversible changes

drastically improving the resilience and long term sustainability.

In embedded intelligent systems capable of data capture, the physical link between

the collecting devices and the components responsible for receive their data vary. In

this project according to the data availability optimal requirements (e.g. Ethernet, RF,

GPRS, optical). The aggregate of complex network of sensors which performs the

monitoring must be service oriented (SOA), allowing for a smooth integration within

the sensor cloud. This last new concept - that is a requisite in this project as well –

will provide real time data sources of information at the factory inter-enterprise level.

Expected possible partial breakdowns of the network could occur as the number of

deployed devices and the associated degree of intelligence increases; once more, the

necessity of the virtualized sensors to form groups representing a specific monitoring

service of a machine it’s a requisite. In addition, every device in the network should

be capable of communicate and understand other devices, requiring well-defined on-

tology and a communication protocol that allows for discovery, subscription and service

invocation. These inter-device synergies will enforce the confidence and intelligence

of the decisions being made about the possible errors and irregularities detected at

the machines, also eliminating false positives. The intelligence of the decisions will

be also product of a collaboration between self-learning modular models of degradation

and deterioration analysis, tied together with the components of the network that will ab-

stract each service that represents a machine and its respective association of sensors.

Those components from a physical perspective will reside in the Smart Components,

where this work effort will focus, regarding the project context and taking in account all

the previously exposed project characteristics. As a last detail, the technical specifica-

tions of this project are not exposed, as they are in decision process discussion from

the project consortium. This works aims to give contribute with the study of available

and suitable technologies as with the reported results we attain to achieve.

2.5 Challenges of WSN in Industry

This section aim is to expose the challenges that typically are not addressed in the

WSN general area that regard industrial process automation.

Smart manufacturing systems are the new concept within industrial manufacturing mar-
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ket [6], those systems must evolve to adopt intelligent and low cost sustainability paradigms,

this opens a gap for introduction of WSN’s in industry, as this technology has a wide

range of applications with known benefits, such low-cost, self-organization, rapid de-

ployment, flexibility and the possibility of embed those micro-controllers in the ma-

chinery. Cable cost regarding capital is a preponderant factor (despite the factor that

maintenance is arguably considered of lower cost in IWSN), such is mobility, scalability

and flexibility of possibilities deploying and rearranging the mesh of devices monitoring.

As wireless sensor devices are usually small sized, that property enables to measure

properties from machines, such as rotating arms and other complex forms of machine

operation where the wired devices could not be introduced, resulting in a vastly range

of variables that can be measured (eg. image processing, vibration, chock), enriching

the information used for analysis and control, consequently an increase in production

processes efficiency. A boost in resilience to failures is also introduced with IWSN, since

the radio communication allows for one or multi hope, dynamic M2M communication,

we can expect that links from information source to information control will be available

with a major probability. However the environmental conditions of a factory, such as

corrosive ambience due to chemical processes and high density of machinery and

electronic components could represent a harsh environment for a correct function of

all RF connections.

Discrete manufacturing, products are result of discrete steps, sub-assembly results

in parts that are assembled together (Automotive, medical, electronics). That kind of

production strategy requires to palletize the sub-products at high speeds to further

proceed to the main assembly of parts, the discrete steps are the main responsible

reason why real-time needs are so important, to achieve a high speed of production

with the desired quality the control over the process must be strictly accurate. Close

control loops are usually used in those cases to control the machinery performing the

high rate tasks, those are the cases most sensitive to delay, regarding yet interlock

mechanisms, that can be used to start and stop the machine activity and to introduce

safety control to avoid damage. [7]

Exists a concern with the communication strategies comprising all the layers of the OSI

abstract stack model (ISO/IEC 7498-1), physical layer that use radio to communicate

regarding WSN has several adopted standards such as ZigBee (IEEE 802.15.4) has



CHAPTER 2. STATE OF THE ART 25

been designed to respect mostly energetic economy issues, that turns to be not suitable

for real time automation needs and consequent impact that previous consideration has

on synchronization issues. Because of these new standards such WirelessHART [8]

and ISA 100.11a has emerged, with specialized design considerations both in physical

and medium access layers. What we can infer about the previous statements, from

the experience with industrial partners, is that this issue is not trivial to solve since

the devices used to monitor the physical environmental and process properties are

chosen based on what is necessary to measure and not regarding the system func-

tional requirements. Based on the previous assessment we could experience some

communication issues that can be reflected in the case we have services requiring high

rates of data transfers.

In respect to the availability the network must be resilient to data errors, such being

caused due to a device malfunction or communication issues. In the first case, the

statistical analysis of data and establishment of minimum and maximum value thresh-

olds must be adopted to mitigate false positives and false negatives in devices. In the

second case, a protocol of communication with reasonable fault tolerance and error

detection must be pondered, bad interpretations of data can result in unnecessary

system down-times, that represent relevant economy costs in mass production systems.

A last consideration, despite the fact that all devices are in the same or in different

networks, logically they must be grouped by the production process in what they are

involved, this way, a fault in a network ramification does not necessarily affect the state

of a concrete production process.

A lack of support to actuators in terms of standards is actually a concerning problem,

as aforementioned the gateways must grant the integration of different kinds of de-

vices, this includes the integration of complex machines and actuators. A protocol that

addresses this issue should allow a control both payload characteristics in up-link for

information of monitoring and down-link for information of control.

2.6 Studied Works

Several approaches to IWSN design were studied in the context of the present work, a

distinct approach between our work and all the presented works is the degree of com-

plexity used in the gateway communicating with the devices. Giving more intelligence
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to that component, our aim is to concern less about the devices being used and the

necessity of flash them with firmware that implements specific functions. That property

takes complexity from the devices and adds it to the gateway, while in other approaches

a major concern with devices is taken in account.

Firstly, some virtualization strategies are discussed in this work, motes, devices, special

services and actors in general are virtualized in upper tiers, then, they are wrapped in

bundles. A bundle 4.3.1.1 is a Java JAR file that contains a MANIFEST file, declaring

all the dependencies and capabilities of the compiled piece of bytecode contained

inside it. This bundles could require communication with specific actors, they could to,

register itselfs into service discovery and provide self interfaces to generic or specific

functions. [9]

Exists a trend to create a application stack based on device capacity in terms of hard-

ware. The capacity of a sensor node to process XML arise as a weakness that must be

solved in a clever way. Author’s present [10] a new proprietary protocol to communicate

directly between the sensor nodes and the upper level in the stack. While other entities

can run existing technologies. Several ways of compression of XML are presented,

this allow to reduce network traffic and processing overhead. A concern with generic

APIs for services is exposed, all sensors presented same API methods, providing a

unique name to distinguish them. For actuators the API must be specific, most of

all expose different functions with different input parameters to take in account. For

sensors should be taken in account the access to change parameters like the threshold

of the measures, since we want to remove complexity from the services in our work it

should be parametrized in the sensor description. The gateway, referred in this exposed

work as "bridge", serves as a translator between upper and bottom devices on the

network tiers. The core of this node rely on modules, this modules responsibility is to

grant the virtualization of sensors and services to enable translation. In our work we

present an additional feature, based in the OSGi model as well, this provides the ability

to start and stop software components for eg. data fusion analysis, without the need

to reboot the device, enabling dynamic introduction of new functionalities without break

connections.

In this approach the architecture comprises a single event bus between the gateway and

the WSN. This event bus (at the gateway), has three proxy components, responsible for
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reconfigurations, a proxy responsible for adding or removing software components, the

event proxy add/remove/subscribe, publish and receive. And a third network proxy,

responsible for device handling, adding, removing or sending data. It allows to lifecycle

management of components and provide means to interconnect masters, that are the

components running the core backend of the system. Components are divided in micro

and macro components. Some component models for constrained network environ-

ments and respective comparison in memory terms to retain are:

• OpenCOM

Consume significant memory 104KB in the most basic implementation for the

features that offers. Use of RPC binding.

• RUNES

Allows to implement different binding types, implementations just assure RPC.

The memory footprint is about 20KB.

• OSGi

Its possible to manage life cycle of the components, a secure execution environ-

ment its granted as run time configuration. The smallest implementation has a

footprint of about 80KB.

Communication between the gateways used the implementation of Jini [11], event

based service oriented architecture, that leverages on RMI over TCP/IP methods, it has

a memory footprint of about 1MB. This framework was tested in just one type of mote

the SunSPOT, that has a considerable amount of hardware capacity 180MHz micro

controller, 512KB RAM, compared to a TMote Sky 10kB RAM 48kB flash and 8MHz

micro controller. The core of LooCI has a footprint of 20.8 KB, with extra weight added

for each macro and micro components of 686 and 587 bytes respectively. Opting for a

cheapest gateway, with more constrained resources this might to cause an excessive

overhead.

A concerning problem, it’s the use of exactly same services (mean, from the same

device) by different models, at a different sampling rate, the one that uses at a higher

rate, should provide data to the other one, avoiding to reuse calls and cause network

unnecessary traffic. [12]
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The possibility of get streams of data is a concern addressed here, the payload size

in number of bytes must accomplish all sensors data. Three different sensing device

personalities are described, in the basic form of personality, the motes that sense raw

data can act in master or slave mode. In slave mode, they act like an expansion of

the middleware, communication is done via bus technology. In master mode they are

actors of the network, using the radio to transmit the sensed values. The behaviour

of the system, regarding low power consumption, is controlled by the motes, if the

measurement levels exceed a certain threshold, is triggered a powerful profile. In

this profile network capability is increased to support image stream and computing

processing of data. Beyond the traditional radio technologies this project uses a wired

industrial bus, namely I2C bus, ensuring that way faster communication. [13]

This work started to display each network actor providing services, those communicat-

ing through binary XML format. For real-time needs SOAP is reported as insufficient.

Here is made a distinction between internal and external services. Internal, being

the services provided by nodes, appearing as services to them respective gateway;

external, as services provided by the gateway with more complexity. Its included a

component needed to handle all registry tasks, registry of networks, management tasks

and node events. This is a backend support to the server, so then, it can locate all

external services in all sub-networks handled by the several gateways. [14]



Chapter 3

Work focus

Given the motivation behind the European Industry effort to give a step forward in

the smart factories approach, this chapter purpose is to focus the presented work,

regarding the projects needs, a match of those needs with the work concerning points

will be provided, as a result, we expect to provide a more profound vision over every

requirement and solution coupling.

Figure 3.1: Communication General States.

29
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SmartComponent, as seen from a general WSN architecture perspective, is the com-

ponent where the information converges to be processed, covering several gateways

(Smart Nodes), from that perspective it acts like a backend server. Previous figure 3.1,

give an insight from where this component will operate, a direct connection with the

devices is out of scope of this work, we take the device annunciation to the network

for granted, that concern is part of the SmartNode component set of functions 3.1.

The above presented sequence diagram 3.1 provides a brief illustration of the usual

steps that occur since a new device is introduced in the network and detected by the

SmartNode, until is registered and available to the SmarComponent. The interactions

between the two above mentioned components will be the priority in regard to the

communication concerns of this work, so as the exposure of the inner SmartComponent

logic management functionalities to the network. This last concern will provide means

to other complex components, like factory planning components, to have control over

the exposed services and have means to configure and reconfigure the logic of pro-

duction, through the SmartComponent exposed functions. As the system will mostly

interact with the SmartNode, a detailed description of its operation mode is given next,

complementing the SmartComponent description.

3.1 SmartNode

Typically the device responsible for data synchronization and data acquisition performs

a crucial role in WSNs. A smart connotation, is used to describe this component

because of the functionalities addressed to it, to articulate the component properly,

in the architecture, the next exposed challenges that must be overcome.

• Integration of heterogeneous devices.

• Retransmission of data between devices and the upper tiers.

• Handle communication from upper tiers to device, as well, from device to device.

The logic needed to ensure cooperation between the upper and lower layers of the

whole monitoring system resides in this device, in a logic perspective it is divided in

three layers, application, middleware and network. The network layer responsibility is

to handle protocols, these, capable of assure communication for one side, with devices

at the Shop Floor, in the other, with the SmartComponent. In order to support the



CHAPTER 3. WORK FOCUS 31

different kinds of physical links, the network layer must handle interfaces for different

types of RF, Optical and Cable standards. The chosen devices, must vary either due

to the needed data availability in regard to transfer rates. The network layer logic must

assure synchronization among all the available physical interfaces, it is a complex task

due to the distinct nature of the different physical connection characteristics.

A strategy must be reflected and developed to ensure the translation between complex

and simple actors involved in the Shop Floor. The aforementioned inter-device ne-

gotiation property, requires all the present actors to have communication abilities that

allow them to interact. Virtually, the complex and simple devices communicate directly

from service to service, but at the lower level, who physically ensures the communi-

cation is the SmartNode. The level of abstraction needed to the upper layers, charge

this unit with responsibility to handle the system heterogeneity. Middleware layer, in

the SmartNode device perspective, is where resides the logic that abstracts from the

application layer all the specific network tasks and complexity, providing a generic

interface to application the layer and a consequent abstraction of the heterogeneity.

Services representation and management, interfaces for parameter establishment and

data gathering are requirements of application layer logic. Those previous referred

functionalities would be exposed through the protocol chosen to make the connection

with the SmartComponent, the communication characteristics between that two de-

vices, physical and logical will be based on the TCP/IP transport over 802.11 wireless

standard, as that devices does not need special physic characteristics to communicate

and that way we can choose a reliable standardized protocol concerning just with the

services.

The plug of a new device, is a typical scenario illustrated in a basic perspective by the

figure above, involving actors from the three tiers of the architecture, thus, also involving

communication between these devices, announcement and management of services

(respectively in SmartNode and SmartComponent), and data acquisition requests. Re-

lating this illustration 3.2 with the state diagram presented above 3.1, as the two motes

(embedded micro-controller and sensors that forms sensing device) are detected by

the SmartNode, the smart node asks for them description file, regarding the I-RAMP3

ontology, a NSD file B. The motes and the associated description are registered within

the SmartNode and the device is announced to the SmartComponent. The middleware
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of the SmartComponent, during the data acquisition match each data packet received

from a device, to the correspondent sensor type. Then the application layer shares with

SmartComponent the service type keys, sends to that component a packet, that has

in the payload the DEVICE_ID, SERVICE_TYPE and DATA fields. The responsibility

is then delegated to the SmartComponent, to match the data with the correspondent

service virtualization. On that level, instead of a mote represents a virtual service, a

sensor wired to that mote, represents a virtual service associated to a device. This

way, the flexibility to use sensor capabilities is enriched and a virtualized sensor can be

easily binded and used by another services.

Figure 3.2: Exposure of devices to the network
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3.2 SmartComponent

The specific focus of the present work fits entirely in this component, we will summarize

the component functionalities regarding the projects requirements, RMS previously

exposed functionalities 2.2 and other concerns that in a typical WSN application are

compliant with the upper level component.

In a WSN approach, the analogue component to a backend general server is the

SmartComponent, the work developed in this project is based on that component,

regarding the required functionalities that comprises mostly the manipulation of the

data collected from the mesh of sensors. Beyond that logic of data management, the

objective is to put in this component, responsibility of simple data-analyses functions

(what in general approaches happens recurring to devices or gateways processing

capabilities), as complex analyses functions. To make the analyses of data at this level,

requires algorithms that will perform such analyses, to be present at the time some

external entity wants to instantiate such a service, those pieces of software must be

easily created and deployed within our application. Considering the data analyses and

service management the component must have two registry’s:

• Services Registry

Complex machines, sensing devices and other SmartComponent entities will be

announced, registered, maintained and discovered through this registry. Firstly

the focus will be in the sensing devices sensors, each one representing a sensor

abstracted by a service. The following steps will be the utilization of complex

machines functionalities (such as control an engine speed) and collaboration

between SmartComponents. In this last case the services will represent the

devices itselves and expose their functionalities through the adoption of a suitable

API.

• Complex Services Modules Registry

A complex service represents an instance of a specially purposed built piece of

software, beyond data analyses and regarding a RMS 2.2 role in the production

process management, a complex service can represent control or configuration

service. Complex services are built purposed pieces of code or modules, for
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later control over individual working cells at the Shop Floor. This component

must allow to dynamic (on-the-fly), integration of that software components, these,

will be kept in the registry of components to match every specific scenario of

application. Once instantiated a complex service, the instance will be kept in

the same registry, associated to the module that represents the factory for that

specific service instance.

The different algorithms of data reduction and validation could be implemented extend-

ing the system API, local to the application and distributed or centralized repositories

of code must be considered, so the deployment of that modules can be facilitated.

Through a web interface of the system, they could be latter instantiated and reconfig-

ured, to consume the different device services or to be consumed by other complex

services. The figures 3.3 3.6 explains in a generic way that process. The devices

present at the device level, are annunciated trough the SmartNode, the Surface Grinder

and Shearing machines are complex device services. In this case they are consuming

the associated sensor services data to fed their own service application purpose, the

two services representing the machines are, for its turn, associated to the Door Shape

service. This last complex process was instantiated by an external actor that has

previously submitted, the illustrated example of the Door Shape requirements to the

instantiation. This implies SmartComponent to expose methods to allow for the service

management and to implement a structured ontology that allows to extract the meaning

of the process requirements.

The concept of Sensor Cloud emerge at this level, all the components of the Smart-

Component system, whether they are physical devices or logic components of data

processing, may appear as similar and horizontal services. These must be exported

to the network in a way that allows represent them into the Sensor Cloud. That cloud

application, should be able to subscribe the exposed complex services, when adopting

a protocol to the communication between the architecture tiers, a publish/subscribe

mechanism must be considered.

A generalized protocol, as seen in studied works is the UPnP; usage of this protocol

provides means for transparent communication between heterogeneous systems, being

those systems, actors present at the Shop Floor. Each device can implement a template

of a UPnP description file, that allow for describing the functionalities they met. Regard-
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Figure 3.3: Description of Production Services

ing this purpose, each service provided by our system could be represented through

UPnP device, visible to all the Shop Floor network. To a most detailed description of

the device and its services, DIL language must be considered, and a generic method

present in all the network exposed services to get de NSD description of that service B.

The UPnP template file together with the DIL implementation, provides transparency

for those services being consumed by other systems, even machines, becoming this

major importance feature in the system solved.

3.3 Devices Communication and Integration

Communication between Sensing Devices and Smart Nodes happened in a low phys-

ical level of the overall system, a scenario in which several Sensing Devices would be

deployed; we must expect problems in access coordination, volume of data transac-
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tions, few computation capacities from Sensing Nodes to process messages incoming

and outcoming.

3.3.1 Communication inlvolving complex machines and SmartCompo-

nent

Machines at the Shop Floor contains its own communication means, physical inter-

faces, communication protocols and application protocols. Requiring from the gateway

between them and the SmartComponent a flexible network layer, allowing for integra-

tion of new communication modules, that ahead, will allow a translation to a protocol

that turns transparent the communication between all devices in the network. A study

of the suitable protocols that allows for an abstraction of devices and at the same time

a representation of their services, with the possibility of manage these in a cohesive

way, will be of the major interest in this work. Reached that goal, costs of time and

money, required for reprogramming the gateway network layer, can be avoided by a

simple integration of communication modules trough the client interface at management

level of the factory. Consequently, a translation to a single protocol that regards some

SmartComponent considerations will traduce in plug&produce facilities.

3.3.2 Communication strategies

Communication language and strategies, are the two most concerning problems re-

garding to achieve reliability in the industrial context between M2M. Communication

strategies, because of Sensing Devices heterogeneity, must implement different solu-

tions in some of the OSI model layers. In the network layer, is not usual to employ

traditional Internet IP protocol, because of devices low capabilities, this layer is most of

the times 6LowPAN or NoIP using proprietary communication protocols.

3.3.2.1 CoAP

CoAP protocol assure a low effort in achieving communication, the binary translation

from HTTP functions turns this approach a lightweight request interpretation form by

Sensing Devices. The inclusion of CoAP library in sensors modules, allows for ease en-
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capsulation of data and request handling in the two devices. Still requiring modifications

in Sensing Devices. Data can also be encapsulated in Sensing Devices proprietary

messages protocol, this way, the decoding messages process, will become more cost

effective. However, will require specific interfaces design to each type of mote, turning

this approach unfeasible.

Related Works

Discussion of results obtained using CoAP protocol to enable M2M communication for

supervision monitoring of environmental conditions. [15]

Using implementation of libcoap (C implementation library of CoAP protocol), to enable

CoAP over UDP in Contiki and TinyOS embedded operating systems. This specific

application requires communication between the gateway and the server trough cellular

communication. CoAP client and server implementation deployments must run in WSN

nodes and the gateway. To achieve communication between backend server and the

gateway, three strategies can be employed:

• Proprietary M2M protocol of cellular networks.

• IP application protocols, gateway can act as a proxy. CoAP frame header enables

description of the message type, the optional headers are:

• Confirmable (CON) messages always carry a request or response and require an

Acknowledgment (ACK).

• Non-Confirmable (NON) messages are used for streaming communication and

sampling messages that do not require an ACK (e.g. subscriptions of reading a

sensor at a required rate of sampling).

• Acknowledgment (ACK) messages acknowledge CON messages and must carry

a response or a null payload.

• Reset (RST) messages are sent in case a CON message is not received properly

or some context is missing.

Porting libcoap to Contiki and TinyOS operating systems process is demonstrated, low

effort required for adaptation (TinyOS contains the implementation of CoAP protocol,

coap blip), some optimizations were implemented in order to fulfill memory constrains
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requirements of stack and flash memory. Mapping resources requires a pointer from

CoAP to the correspondent resource interface. The packet size limit that IEEE 802.15.4

standard defines is only 127 bytes. IP based application protocols that enable commu-

nication between heterogeneous machines, such as HTTP, SOAP and REST demand

optimizations to shrink messages so they can serve the purpose.

Metrics reported used in the evaluation tests:

• Response time : Time taken from sending the HTTP GET respectively the CoAP

Request from the client until the connection is closed.

• Total number of bytes transmitted : Total number of bytes transmitted within the

above mentioned response time.

• Overhead of the Header : This shows a separation of bytes in each layer.

The unique access method close to CoAP results in the two first measures was HTTP

over UDP.

• Response Time:

CoAP: 1.029 (sec)

HTTP over UDP: 1.104 (sec)

• Total number of bytes transmitted:

CoAP: 107 (Bytes)

HTTP over UDP: 132 (Bytes)

Standard of IETF to CoAP and REST architecture deployment in constrained networks

called CoRE (Constrained RESTful Environments working group) [16].

3.3.2.2 Zeroconf

Aiming home automation, objectives of this work are to obtain a seamless wrapper

(driver), for all the sensor devices, discovery of services provided by sensors and

implementation of UDP/TCP sockets to interact with the application level. Support to

interaction of services, offering synergies across different technologies. [17]
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The middleware produced is based in four main model components:

• Service Factory Listens the network for new devices and services and creates the

virtual instances as representations of the services available at that domain.

• Virtual sensor Instance that virtualizes the physical sensing device, uses proper

native communication protocol, to forward messages in the two directions, achiev-

ing the required flexibility for heterogeneous sensing devices integration.

• Virtual Service Represents each service provided by each device, this module

Auto-registers the service in the DNSSD and listens for requests to this service

creating a protocol adapter to application level.

• Protocol Adapter Provides generic interface to seamless interact with the different

devices, it can provide several standardized protocols.

This protocol provides automation of three core network services:

• Name resolution

• IP addressing

• Service discovery

In a traditional Zeroconf deployment, each network device maintains its own list of

available services through the network, the DNSSD. Here the gateway is responsible

for handle this list; keep track of devices and services they provide.

The flexibility of this work may provide some concepts important to our work. The

capability of use multiple protocols to communicate with application are important to

relay on the service personality. Zeroconf seems to be less complex than UPnP ap-

proaches, providing the same important core services. The sensor wrapper, that in

this work needs intervention from the programmers could be eliminated, employs OSGi

technology to provide easy deployment of native sensor protocols.

The evaluation was made contemplating just one type of device, the SunSPOT platform

microcontroller and no metrics or other concrete results were showed. It’s referred

that the middleware is lightweight but no arguments were presented to support that

conclusion. Zeroconf protocol is under standardization process, IETF and RFC formed

working groups working on these standards, which makes of this protocol a solution to
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consider in our implementation.

3.3.2.3 RestFull

In a strictly REST architectural style implementation, services must be stateless to

handle the several parallel calls at the wide network. Applying this philosophy to WSN,

the lightweight approach compared with SOAP style is a valuable advantage. While

in SOAP messages must be transmitted in a SOAP envelope, in REST messages are

XML or JSON conversions of data. We can take advantage of this factor to allow for

periodic sampling subscription and streaming of data without overcharge the network

channel. Resources (abstractions of services), are represented by URI’s. REST uses

the HTML verbs GET, POST, PUT and DELETE to manipulate the resources, those

four operations are sufficient to manipulate the required common actions in WSN’s.

Following illustration conceives the general idea behind.

The following table illustrates the utilization of REST calls to interact with services

provided by different components. I this case, invocations to the SmartNode, allowing

to obtain information about the devices underlying the component.

Figure 3.4: RESTfull calls.

Abstract the numerous proprietary protocols needed to be handled by programmers.

Provide service management and coupling in a dynamic way. A middleware hiding the

multiplicity of service discovery and communication protocols is built according to this

model. Tools and techniques are necessary to hide the heterogeneity of the service

protocol. This work relies on home automation project, enabling media streaming over

the house, following house owners and matching streaming to them behavior.

The solution is built on top of OSGi, Java Reflection is employed to match proprietary
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protocols with a set of mapped proprietary protocols and generate the appropriate

driver. It is said that, bytecode generation of the drivers is a better approach generate

code at run time. [18]

UPnP is used for service discovery, and registry. Closed to this a ontology for de-

scribing services requirements and description is employed. This strict ontology allows

for services requirements to being matched trough a sorting algorithm that binds the

appropriate service to the required conditions. Solving the protocol heterogeneity we

would face an interface fragmentation. The idiosyncrasies between devices cause a

fragmentation that sensor driver at the top layer must handle.

As seen in previous works, service adaptation consists in providing means to semanti-

cally similar services to be accessed by service consumers through an adaptive generic

interface. This interface can be a proxy or a virtual adapter. This can be done in two

main steps, service matching following a service adapter generation. Here its employed

Java reflection to generate the appropriate adapter, and the match is done by means of

an ontological mapping of definitions.

Building smart automation trough IEEE 802.15.4 devices trough 6LowPAN addressing

and RESTful based service management. [19]

URI’s represent the resources access. The available services are categorized as fol-

lows:

- / - The root collection of sensors

- /temperature/* - Collection of all sensors providing temperature in the domain

JSON is used to represent serialized data because of the lightweight compared to

XML. For reliability of data, HTTP is stacked over TCP, is argued that persistent TCP

connections can achieve a significant reduce of overhead. A JSON formatting library is

employed to overcome manual typing errors and performance enhancement. Whenever

a data stream subscription is required UDP is used to transport data. The memory

footprint of the compiled application deployment needs a flash capacity of 43 Kb. In

those, only 2 Kb are correspondent to the RESTful API. The difference time response of

a TCP established and closed connection is significant, the first registering an average

response time of about 180ms and the second over 260ms for a 94 Bytes packet.
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Applying REST to constrained devices architectures, is reasonable to maintain several

rendered components and service information, this approach can save a great compu-

tation effort in a rebinding caused by a change required by a ranking match of services.

This approach is very reliable in terms of performance such memory amount needed

and response times. The 6LowPan stack is a inflexible approach to our work, but with

an appropriate flexible stack, the rest of the technology would be a good approach.

Technologies mDNS or Bounjour, could be useful to send multicast service requests

between Smart Nodes. Java reflection, generation of code after matching a service

method, by name, arguments an output. Code can also be generated through bytecode,

better approach for runtime deployment.

3.3.2.4 SOAP

In architectures purely SOAP based, sensors register themselves within the gateway,

gateway requests the WSDL file and maps it to sensor device ID (eg: sensor IP),

representing the UDDI entity. Clients then query gateway for UDDI available services,

and trough SOAP messages can connect efficiently the individual nodes services.

SOAP message envelop transact data in XML format; typically the proprietary frames

structure payload is small so it’s necessary to fragment the SOAP message requiring

the transmission of more packets. Without a more profound investigation we can easily

affirm that for real time needs of communication SOAP is an inefficient solution. We

could implement more logic to outline this problem, but will result in more complexity to

the gateway. A descriptive diagram of the SOAP architectures applied to WSN overall

solutions is illustrated next.

Access from IP based networks to WSN enabled by Device Profile for Web Services

(DPWS) was explored in Home and Industrial context. The advantages of using 6Low-

PAN are detailed in this work, the possibility of have an link local address for unicast

and yet an IPv6 interface, coded associating the coordinator ID to the link local allowing

for direct communication with other devices under different coordinators. [20]

6LowPAN provides 4 frames, those could be very useful for protocol implementations

since defined standardized frames are divided into:
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Figure 3.5: SOAP WSN architecture.

• Data frame (raw data)

• Beacon frame (annunciation)

• MAC command frame

• Acknowledgement

Heterogeneity of devices prevents the use of 6LowPAN, the Shop Floor industrial line

machines used for production are a heavy factor for the need of a solution that embraces

proprietary protocols. No tests in this presented work were made, industrial context can

be eventually a challenge in terms of performance requirements.

3.3.2.5 RPC

Remote Procedure Call based solutions can achieve some key requirements this work

aims to fulfill. In RPC are included RMI and SOAP solutions, but we opt to specify

them apart because of the numerous works deployed using those two approaches. In

RPC, client just needs to know the interface description of server methods; the commu-
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nication agreement is conceived based on methods description files and a stub in both

sides. Depending on the problem approach, different data marshaling technologies

could be employed, over different transport and application protocols.

3.4 Management and reconfiguration of services

In a logic perspective, two types of devices represent services, machines and sensing

devices, they must met at the same level of abstraction, since we could couple simple

services (those provided by basic sensing devices) and complex services (provided by

complex machines). This coupling results in integration of new data processing models,

feeding them with specific input requirements, results in valuable information, that will

be of the highest importance for the Shop Floor planning. The richest the information

provided by the data analysis modules, the most efficient the plans to industrial lines,

these becoming more cost effective. The services of the devices connected through

the gateway, need to appear to our component in a horizontal perspective, allowing for

a flexible management. Management can be achieved recurring to a ontology, that

is applicable to all the architecture actors, so they can extract valuable knowledge

from each others services output. The implementation of a richest ontology model

that regard the previous purpose, represents a contribution to the final solution that is

of our best interest. The image below ilutrates the horizontal perspective of complex

and sensor services. The acronym VSIG stands for virtual sensor information group,

it denotes an aggregate of virtual services, that can be managed to feed a complex

consumer service. The arrow in the image denotes an rearrangement of the services

logic, the service 1 was eliminated, service 2 was reconfigurated and the service 3 was

instantiated and the respective VSIG of providers associated.
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Figure 3.6: Reconfiguration of Production Services

3.5 Contribution to other works

For grant specific monitoring requirements over the machines, properties like accu-

racy and percentage of area of that machine that is covered by a sensor are relevant

configuration indicators when post designing a production process. Regarding this

necessity, a parallel work, developed in the I-RAMP3 project, was integrated within the

SmartComponent. The integration was a helpful process that highlighted design needs

of the architecture to future acomodation of other components. Coverage, connectivity

and requirements of a IWSN are the directions of focus of that work. It functionalities

make it possible to act in the configuration and control phases of an RMS, specifically,

revealing to be a relevant help in the planning phase of a IWSN. Interacting with the

services present in the registry of the SmartComponent, its possible to calculate if

a the number of devices present of a specific type (eg. Temperature), with a given

coverage radius is enough to cover the area where the machine to monitor is present.

This software component abstracts an algorithm that is in its core, this algorithm is

capable of solving the proposed problems of area coverage, allowing to introduce and

treat obstacles in the area. This way, in real time our work provides information to

process the results that latter will serve the purpose of network configuration at the

Shop Floor [21].
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Methodology

Considering the premises that constitute the work objective, the effort applied in attain

a solution will be divided in two main effort topics, interaction between network actors

(low level) and logic services management (high level). A first approach step taken, was

the study of existing works in the sensor integration topic (as presented in the second

chapter). Perceiving the communication strategies adopted to solve heterogeneity in

device integration, was a significant contribution to perceive communication between

all the entities in a transparent way, as main limitations and concerns. As second

step, we adopt the Service Oriented Architecture methodology strategy, to target the

necessity of a flexible logistic of services, in a way that we can create, reconfigure

and deploy services with a high degree of flexibility. The third and last step, was the

study of technologies suitable to the problem, regarding the previous two steps acquired

considerations and mostly, the adopted technologies and methodologies by the projects

working groups.

4.1 Service Oriented Architecture

A software application that implements the Service Oriented Architecture (SOA) paradigm

is typically designed for web or corporations, those represents large and distributed

applications composed of services that all together constitute the set of the application

functionalities. Services represent single pieces of code that abstract its core logic,

providing a specific set of functionalities and implementing an interface that exposes

to other services the meta-information they need to invoke and understand each other.

46
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The framework of a SOA application is formed by the components that orchestrates the

services, that core of components ensures the services interact to meet the application

goals. Services must be loosely-coupled, services can be easily replaced, coming and

going in an unpredicted way, they just need to know how to operate under its own inter-

face, having no dependencies with external services. As SOA was not originally created

for application in our work context, we will expose next some related approaches in the

same context, that addresses the SOA concept to IWSN applications. The goal of the

following SOA guidelines for a IWSN is to achieve a cooperative, adaptive, scalable and

data mining capable, network distributed application.

The two concepts, (IWSN and SOA), have compelling incoherencies, a IWSN must

have a deterministic behavior; the service discovery component, a fundamental com-

ponent of a SOA application, is generally not deterministic. Regarding determinism,

the application must issue warnings in the absence of any required service, if a specific

service does not exist, the application must delegate a service of the same type. A ser-

vice of the same type, regarding sensors, means that if a consuming service searches

for, eg. a temperature service, with a specific accuracy or from a specific device. If

that service does not exist, the application should couple other existing temperature

service with similar properties to the one that will consume. Part of the orchestration

components of a SOA is service registry. In the studied approaches the registry

must be aware of the available services provided by devices, in our case, beyond that

task, registry must be aware of the instantiated complex services (eg. validation and

aggregation).

One challenging aspect addressing WSN to a SOA is the absence of reusable tech-

nologies, tools, components and proper standards. In every works studied to compile

a SOA approach to this work, different technologies where employed, the challenges

faced in every work have slight differences due to the components and the authors

raise this necessity of a necessity of standards. [12]. Designing a monitoring system

using a SOA architecture approach, oriented to the industry, was previously done by the

project SOCRADES [22], one of the resulting publications of that project consortium

has highlighted the main challenges in design such an architecture, regarding good

practices of software engineering, we will expose next those practices. The first two

considerations are based in the sensor nodes, both hardware and software, in this
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concrete case, design software to the devices must consider to have low footprint, low

overhead and cares about power consumption. As the SOCRADES project use the

same type of devices with different sensors coupled, this approach implies the industrial

companies to buy specific hardware and does not allow for integration of different types

or devices and complex machines. Regarding differences in hardware (vendors and

models) choice, due to different industrial partners involvement and integration of the

existing hardware in the Shop Floor our aim is to grant flexibility so we will not address

that concern.

One of the fundamental key aspects in SOA applied to WSAN is the need of capability

to easily handle the system heterogeneity. It allow a smart, flexible management in

adding or removing devices, actors and make services interoperable. Exposed as a

requirement, this is a crucial feature to enable the device interoperation, communication

among all the tiers of the architecture, this way creating synergies between all the actors

enforcing the confidence on data and better diagnosis, prognosis and self-awareness.

Considering the device level of the system, is raised the importance of suitable device

encapsulation, that property is essential to grant a collaboration of all the devices.

As we are virtualizing devices to announce them to the upper layers of the system,

a virtualization corresponds to a service, which is in turn, the encapsulation of a device

(ie. a NETDEV ), is this abstraction in the I-RAMP3 project2.3. The way a service

exposes its own properties and functions - that must be generic to all the services

- makes the abstraction more or less suitable regarding the application needs. The

service properties must be filled with the corresponding device specific properties, a

device has analogue and digital inputs, this connectors allow to wire different kind of

sensors measuring different properties. With a considerable focus on sensors (types of

sensors, units of measure and accuracy), each sensor must be considered a different

service, so when it comes to the device describe himself, it must further than publish

its own characteristics, announce the coupled sensors, respective units of measure

and accuracy of measurement. To fulfil this need, DIL language will have a significant

role, as the NSD description document describes all the associated sensors and its

properties B. The NSD document can be flashed within the device, using a specific

method to be invoked and return the NSD. In the case the device has not enough

processing capacity to do that task, we assume the SmartNode will interpret those
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capabilities and produce a respective NSD document.

Applications dealing with constrained devices, scalable and dense networks must be

based on asynchronous rather than synchronous processing. An request to a device

must be a case of special necessity (eg. request a snapshot measure of a sensor),

if the application is continuously polling data from sensors rather than triggering event

handlers when the sensor sends data, it will flood the network with packets flowing up

and down link.

As previous inferred in the projects context, validation, aggregation, control and configu-

ration software components must be accommodated by the SmartComponent architec-

ture. This work focus is the architecture, however, we will focus also in the integration of

validation and aggregation modules, this way we will better prepare the architecture for

later integration of other software components, such as configuration and control ones.

A considerable difficulty in make a system sufficiently generic to accommodate different

application modules was reported also during the study of similar works. Relying in the

studied works, dealing with this dynamic of application modules was succeeded using

the OSGi technology, capable of runtime integration of software components it reveals

as the chosen technology to develop this work.

4.2 Service Oriented Computing

The SOC concept presents a methodology that aims modular software components,

heterogeneous and autonomous between them, resulting in a software architecture

oriented to service. A service provides a higher degree of abstraction, thus turning to

be the best option for large scale applications.

Figure 4.1: SOC three main components.

Rather than focus on the standardized approach of web services, our aim is to de-

velop an modular architecture for a service based application, where the three main

components will prevail with an emphasis in computer science approach following the
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elements of the correspondent engineering methodology. SOC considerations focus

on four levels of abstraction depending on the architecture cross levels, those concerns

are based on the services within the application (inside SmartComponent) and aspects

regarding interactions across enterprises (between actors, NetDev abstractions). For

each one we will retain below those of most interest.

Figure 4.2: SOC levels in industry context.
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• Intraenterprise Level

Interoperation between actors at the Shop Floor represent this level of abstrac-

tion, concerns at this level are the protocols being used to ensure communica-

tion and utilization of defined accurate declarative information models so we can

reconcile interacting components. To meet a requirement such as integration of

a new application, the utilization of intercommunication standards is imperative,

rather than that, it must expose interfaces that relate new application data models

and guarantee transactional properties regarding the intra-enterprise properties

of the organization they represent. In an operational and industrial context we

can assign this level to the RMS concept, as the agents in this scenario are in the

factory Shop Floor, our aim is to make them collaborate in order to reconfigure

their behavior, so they must communicate and understand each other in order

to exchange services. Requirement for protocols to communicate through the

different component abstractions, in our case UPnP will provide the means to

communicate and create the synergies between the Shop Floor actors, each actor

encapsulated by a similar NetDev service. A data model format to extract mean-

ing from the communication will be achieved by using the DIL schemas, a defined

ontology adopted in the I-RAMP3 project, based in XML. The encapsulation in

NetDev abstractions and the use of a predefined language will allow for the focus

of SOC in this level, communication in a uniform and transparent way and easy

exposure and uncover of application modules inside the factory.

• Interenterprise Level

Supposing that more than a party must be involved in the design of the application,

this level of abstraction cares that inter-enterprise level of considerations, those

at this level are a certain degree of fault tolerance and a policy for rescheduling

transactions and rewiring inter-enterprise software components. In this work case

those considerations are beyond of the scope of the objectives to be met, but

regarding the SelSus project, a Sensor Cloud would be present that aims to

exchange service functionalities and data across large organizations, UPnP and

DIL schemas will enable a easy integration of the SmartComponent services

in the cloud, consequently supporting the Sensor Cloud purpose and further

enabling to use ERP (Enterprise Resource Planning) that are systems whose
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aim is to control core business process through large organizations; they are

used to exchange data among departments so production planning, inventory

and economic activities.

• Infraestructure Level

A strong analogy to the infrastructure level are the Grid Services, these services

must be unware of the infrastructure that is supporting them, infrastructure com-

ponents come and go in a unpredictable way and that behavior raise an interest

in modular interfaces based on services. Another key concept emphasized at

this level is that of utility computing, a SOC architecture must be configured

dynamically and on-the-fly. Service instances must embrace that dynamical be-

havior, allowing to create and bound instances as needed. Resources identified

in the image above as part of the infrastructure, are all of those evolved in the

production and monitoring process, machines, sensing devices and gateways.

Resources can abruptly leave the network or be idle as they can be included,

regarding a aforementioned plug&produce way. The architecture must expect

and treat sudden changes in the infrastructure, in a way that regards the loosely

coupled connection to the hardware resources and other services depend on the

resources such is the case of sensor services instances.

• Software Component Abstraction Level

Creating new software components for the considered architecture is a tak that fits

this level of consideration, a clear interface semantic for services as for the com-

ponents should be exposed. The task of developing new software components

using that interfaces result in an easily customization of the software. New types

of machines and sensors as new software requirements for data analysis will

arise, relying on the previous statement, development of new software modules

to embrace new hardware characteristics and data analysis techniques should

be a concerning feature. As we could observe in the image, at this level we will

focus on RMS systems concept, the system must provide new means to enrich

the logistic of the production management logic, what can result in new software

modules or modification of the existing ones.
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4.3 Physical architecture

4.3.1 Technologies

Regarding the aforementioned objectives of the architecture, the heterogeneity of de-

vices and previous studied works, Java is the chosen language. Java is a OO cross

platform programming language, the compilation of Java code results in bytecode,

that runs on the JVM (Java Virtual Machine),the component that turns Java to be

hardware independent. This language targets all the requirements since the adopted

communication protocol (UPnP) and system service modular capabilities (provided by

OSGi specification) are achieved by the respective specification groups.

4.3.1.1 OSGi

Stands for Open Service Gateway Initiative [23], the original focus of this specification

was the deployment of dynamic modular service gateways, the wide range of applica-

tions that a modular system can provide, later, makes this specification to evolve and

integrate projects as the IDE’s Eclipse and NetBeans or the Red Hat Application Server

JBoss.

Dynamic integration and management of components occurs through a lifecycle, the

OSGi components, bundles, run on the used OSGi framework, the framework acts as

a broker between the JVM and the bundles. This framework manages the bundles

lifecycle and dependencies, this means that a required bundle to deploy on the frame-

work must embed or have present as other bundles all its dependencies, this process

is formally known has the wiring of components.

Once a bundle is deployed it passes to the INSTALLED phase, in this phase the frame-

work wires to the bundle the required dependencies, once this process is completed it

assumes the RESOLVED state, in this state the bundle can be started, if all the process

goes well it reaches the ACTIVE state, being running on this last phase. It can then

be stopped, backing again to the RESOLVED state, also in this state, automatically if

one of the bundle dependencies was suddenly uninstalled, the bundle retreats to the

INSTALLED state. Finally it can be uninstalled and remain in this correspondent state

until is started again.
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Figure 4.3: OSGi bundles lifeycle.

4.3.1.2 Apache Felix OSGi Framework

Felix framework [24] was chosen because of its extensive documentation, also including

a UPnP specification implementation, officially integrated and developed by the Apache

Felix project. In this work the used version of the OSGi core used by the Felix framework

was the version 4.3. The framework provides other utility bundles that was of consider-

able importance for accelerating the development and for later use such administration

utilities. The Felix GoGo shell, is an utility command interpreter bundle that allows for

administration of the framework locally and remotely. Bundles are maintained in reposi-

tories, we can have several local and remote repositories, the Bundlerepository bundle,

is another utility that comes with the framework, this utility allow for the framework to

inspect local and remote bundles, it can be used combined with own developments

for an application integrated bundle administration. This administration facility allows

to configure connections to remote bundle repositories, this feature will be of major

utility, once the architecture is deployed in a factory, when the framework is instructed

to install, for example, new aggregation and validation bundles it can download those

components from a central factory repository through the FTP protocol. To understand
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the framework functionalities and interiorize the special considerations in developing

OSGi applications, we have based in the book [25].

4.3.1.3 iPOJO

Being this work a modular architecture oriented to services, management logic of those

services must be added to system to handle some Service Oriented Paradigm con-

siderations. Achieve service dynamism in traditional SOA approaches, namely, in web

service systems, is not a well adopted concept in implementation strategy. “Indeed

linking business and operation process stands to profoundly change the way application

software supports business activities”. [26]

SOC approaches require enough flexibility to support dynamic coupling of service

providers and consumers, thereby, the widespread concept of loosely coupling of ser-

vices. iPOJO is a component of software, OSGi compliant, that is available and strongly

integrated with the Apache Felix OSGi, it acts like a framework that covers SOC paradigm

requirements to achieve dynamical service oriented components. Making use of this

component allows to focus just in the business logic and functionality of the system

components; leaving the SOC requirements and other non-functional mechanisms to

the iPOJO to manage. This way the components of the system remain like “simple old

java objects”, (POJO).

Figure 4.4: iPOJO containers and interactions.
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For each component a container (like a sandbox), is created and the POJO represen-

tation of the component is embedded inside that container, it then manages service

dependencies, publication and discovery. The container, through a iPOJO compliant

XML METADATA file, creates handlers in the container to manage the POJO require-

ments; that file provides the service specification, properties, parameters and config-

uration management properties. For last, this dynamical SOC mechanism, manages

the lifecycle of the instance; the POJO instance has two possible states, valid, all the

component requirements are satisfied, so that, instanced is validated and can be used;

invalid, some requirements are not satisfied and the correspondent POJO instance

is not binded, it cannot be used. This two states are mapped respectively to start

and stop callback methods, that starts or stops the execution of the system module.

The iPOJO has assumed a crucial role in this work, because the incorporation of new

system bundles, or same bundles with newer versions can be automatically managed,

the architecture can be aware of components dynamic integration, therefore, performing

automatically the instantiation, binding and consuming of new components, all of this

without increasing the logic complexity of the overall system.

4.3.1.4 UPnP

As a stack of protocols, UPnP offers a set of advantages that regards a lot of the

necessities exposed through the document. The necessity of interconnect devices,

which can share services with the minimum effort from the users to do configurations

has been the principal motivation behind this architecture protocol. The architecture

was introduced by Microsoft with a "connected home" aim, currently is maintained by

the UPnP Forum [4] and companies such as Intel have made a great effort to develop

tools that we will use as helpful testers during the work. This protocol is independent

from the physical platform, supports zero configuration in lack of DNS servers and pro-

motes device connectivity allowing devices to discover each one services, subscription

of events and control over devices. Devices, Control Points and services are the focus

of this protocol in terms of functionality purposes.

An UPnP Device is analogous to a server, it can embed other logicUPnP Devices and

expose services to be invoked as well as variables that can be subscribed and queried.
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UPnP Control Points are analogous to clients, they can search for UPnP Devices in

network of their interest, subscribe to a specific device events and invoke services

exposed by devices. A same physical device can contain both UPnP Devices and

Control Points.

Base of the protocol are the following technologies: TCP/IP, HTTP, HTTP over UDP and

XML. Both, devices and control points use HTTPMU for UDP multicast messages and

HTTPU for UDP unicast messages. Those messages allow to control points to send M-

SEARCH messages to discover devices in the network .From the device perspective,

are used NOTIFY messages to announce its presence in the network. The Simple

Service Discovery Protocol (SSDP) uses unicast messages for devices and control

points to discover each ones available services and underlying service actions. The

same protocol is in charge of notify device alterations ssdp:update messages, advertise

devices leaving the network using the ssdp:byebye advertisement and ensure a device

still connected through the ssdp:update message.

Once the Actions provided by a UPnPService are discovered, control messages to that

actions can be invoked through the Simple Object Access Protocol (SOAP), using the

Universal Resource Identifier (URI) of a service the header SOAPACTION of a control

message specifies the UPnP Service and the target UPnP Action in that service. SOAP

defines the SOAP envelope, a xml schema that defines the structure of the message

content, in the UPnP case the envelope schema defines input and output arguments

as a field for the response to an action.

Eventing in UPnP is a major feature, a service can be subscribed, automatically evented

variables associated to that service will notify the devices that has registered them-

selves interest in receive the notifications, this feature will be of remarkable importance

in sensor eventing of data. The protocol responsible for handle this feature is the

General Event Notification Architecture (GENA), the messages use HTTP as well and

UPnP defined templates to define the XML structure of the messages. Three methods

are provided to handle the process, SUBSCRIBE, UNSUBSCRIBE and NOTIFY, a

CALLBACK introduced HTTP Header is used to notify the listeners, every subscription

have an identifier and a duration time, after that time the device subscribing must renew

its subscription.
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4.3.2 Felix UPnP Basedriver

Acting as a bridge between the framework and the network, this driver [27] allow to

import and export UPnP devices. The Exporter module registers objects implementing

the UPnPDevice interface in the framework changes in that device will be reported to

the framework, the importer module, that is listening in the framework for that changes

(ServiceEvents), will consequently export that events to the network. Events coming

from the network to the exported device will follow the oposite logic path, they are noti-

fied to the framework and the correspondent UPnPDevice listening for service events,

will be matched through its unique ServiceProperties and notified of external actions.

The imported module of the driver acts in the same way, a ControlPoint announces

its interest in receive ServiceEvents from objects UPnPDevice, the distinction from the

devices being exported is patent in a service property that indicates that the device is

imported.

Figure 4.5: Felix UPnP basedriver overview
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Implementation

5.1 Contex

Project industrial partner’s most challenging task is the dynamical integration of pro-

duction strategies, data treatment, analyses and validation services. This challenge

strictly fits the OSGi dynamic modularity of services, these case particular strategies

can be then targeted to the system bundles. Following the system service template

bundles, developers could easily, build, deploy, instantiate and dynamically manage

those instances into the system.

5.2 Components

The wired set of components that figures in the figure 5.1, forms the final application,

not all the components are represented, for a simplicity purpose. The components

in the figure have the main responsibility of drive the architecture to its final purpose,

management, reconfiguration and logistic of services. All the components implement

interfaces defined in the SmartComponent API, the design of the final solution started

by defining the whole components interface, the Top Down approach allowed for a

clearer vision of the functionality and relation between the components. As OSGi

bundles, every component provide a service, that service is ready to be consumed

as soon every dependencies it has are resolved by the framework. If a service leaves,

all consumers depending on that service must be notified and proper actions must be

taken. That dependency management of the interactions between the components

59
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requires coding to model that volatile behavior, iPOJO plays a preponderant role man-

aging that boilerplate management, providing callback methods for when a service is

(un)registered. Proper actions can then be taken, ensuring that the application has a

much more controlled and stable behavior managing that dynamic.

Figure 5.1: Architecture Components Diagram.

The next sections will provide an introspection of every deployed component, trying

to give a deeper explanation of structural modelling and causal behavior. Additional

details such as UPnP functionalities and DIL language implementation will be exposed

and explained to give better understanding of the effort involved to deploy the final

application.
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5.2.1 DIL integration

Whereas that the language used in the I-RAMP3 project was DIL and that language

was target of scrutiny by the project consortium we assume that it has a solid and

well defined structure that can be applied to our work. Furthermore, the context of

application of the language is the inter-negotiation of services applied the Industry, that

basis, also allow to put the language under the scope of the SelSus project.

The JAXB tool for allows for class model generation against a .xsd schema file and

it was used to obtain a model class of the four DIL types. That approach made us

choose the JAXB library to make the modules implement all the DIL related operations.

One of the main efforts to integrate the language within the application, due to the

dynamic nature of OSGi, was the use of the JAXB library, that has a static context.

The framework was unable to resolve the dependencies of the library because it wasn’t

exposed as a bundle, the solution was to pack the library within each bundle that was

using it and make that bundle export the library packages and import them. After that,

we included the .xsd files and the class model of each type in a respective package,

we packed that content within each bundle and finally the application was able to

(un)marshal strings of XML against each DIL type being able to validate them. We

will in the next sub chapters describe the language for each sub-type in more detail.

5.2.1.1 NSD

Tasks of NETDEV device are exposed to other devices through the NSD document,

this document also defines the other three documents format (QRD, TFD, TDD), for that

reason the documents will not be exposed. For the underlying architecture compoents

that will be exported to the network, the correspondent NSD documents are available

in the apendix section B.

5.2.2 SmartComponent API

As a central reference to the architecture, service, must define relevant properties and

implement functions over that properties. As the most abstract definition, SmartCom-

ponentService, have four main properties:
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• Name

The name of the service of type String, is a friendly name that can represent the

specific name of a complex service (eg. MinMaxDetection), or some property

specific of the device representing it (eg. manufacturer, model).

• Type

Type, in case of a sensor, represents a set of well defined physical properties

that will be measured in the Shop Floor, in case of a complex service it could be

Aggregation, Validation, Configuration or Control.

• Version

A version associated to the service in the form of X.X.X, where X is an integer

form 0 to 1. Version can be related to a physical in case of a device or a version

of an algorithm in case of complex services.

• UID

Unique Service Identifier (UID), of type Integer, for efficiency purpose in terms

of indexation and search operations. Ahead we will show how we recurring to

the uniqueness of prime numbers have implemented a strategy to retrieve that

property for each service and grant uniqueness.

A complex service have providers and consumers, consequently we defined operations

to add and remove them from a service. The used type to maintain the references

to the associated services of a service was ArrayList. As previously stated in the SOA

considerations, the application must regard a asynchronous processing, waiting for data

from sensors to arrive, this constrain lead us to design an intermediate object between

the two services data transfers, the ServiceNode as illustrated in the figure 5.9. The

service node has a thread safe queue, when a service providing data dispatch a result

to his consumers, actually is putting the data in the queue of a ServiceNode that is

connected to the real service consumer. A service can operate in two ways:

• Accumulation Cycles Based

In this mode, a number of cycles is defined in the service, this number represents

how many elements must have each provider before the data gathering is made.
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To the consuming service know when he can pick the data, a number of active

service providers is maintained, when a ServiceNode reaches the number of de-

sired accumulated elements it informs the service consumer that is ready for being

collected. When the total number of active ServiceNodes equals the number of

nodes ready to be collected, the consumer service iterates the list of providers

and picks the data from every one. Next the consumer resets the number of

ready to being collected, processes the result and notify the result to every service

consumer in the respective consumer list. For stability, when a service has an

expected problem and stops sending data (eg. a device leaves the network or

has a communication error), it changes its state to IDLE and consequently every

associated ServiceNodes notifies the service that is consuming from its own of the

new state, finally the number of active providers at the consumer is decremented

by one.

• Frequency Based

Based in the Java TimerTask, a complex service can run at a scheduled rate,

given in milliseconds. Every time the service reaches the time to run the timer

task run() method is fired, the data from the providers is collected, the result

processed and the consumers are notified of the result. In this case, if a node its

not active, data is not collected. What we observed in this case is that the number

of collected samples for each provider is different, that difference must be handled

when processing the result.

Relying on the three main components of a SOC 4.2 application and SOA architec-

ture, a service provider is the component that provides services to be consumed,

that component must register the services within the registry. The provider of the

SmartComponent architecture is the component that scans the services available in

the network, we will provide more details on the deployed component ahead. The

architecture API reflects just the registry component and the consumer component.

Lets think in the case a provider wants to register device services in the architecture,

the provider must match each device property to the SensorService, in case of a

sensor; to the MachineService in case of a machine. As the registry of devices, the

component implementing DeviceManager interface, exposes himself as a service in

the OSGi framework, and the provider knows the methods exposed by the API, it just
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Figure 5.2: SmartComponent API Class Diagram.

needs to wire to the implementing DeviceManager component and use its methods.

This type of interaction allows to deploy into the framework different services providers,

for different protocols, we have deployed and developed a UPnP component, but in

future developments, a Industrial protocol such Modbus could be used.

Dealing with two kinds of services requires, in this case, requires two registries to be

present, the previous exposed is based in device services, a registry to reflect complex

service needs was deployed to fill the requirements. The component implementing

the ComplexServiceManager interface is the responsible to keep track of the complex

services, those are instantiated within the architecture factory components and man-

aged by their respective consumers. In this concrete case, the term consumer, does

not have the same meaning as when we are referring to a complex service consuming

another complex service. A complex service is exposed in the network, external entities
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can subscribe, reconfigure and dispose that service. External entities are external

consumers, they interact with the complex services through their representations in

the network, a representation is reflected by the API SmartComponentServiceListner

interface.

Every complex services registered in the implementing ComplexServiceManager com-

ponent, are consequently exported to the network through all modules implementing

the SmartComponentServiceExporter interface. ComplexServiceManager also keeps

track of every exported modules registered within OSGi framework, making all export

the complex services registered. Regarding the projects, we deployed a module that

exports complex services as UPnP devices, again, other Industrial protocols could be

implemented and used to export services.

Figure 5.3: Sensor and Machine Implementation Components.

Machine and device services have different characteristics, we tried to cover that dif-

ferences designing different interfaces for both, the different functionalities could be

observed in the class diagram of the API. During the implementation we have not oppor-

tunity to test within machines, they generally have calibration and control functionalities.

Sensors could have as well, but are not so complex, this exposed reflection tries to

justify why we developed the concrete implementations of sensor and machine service

classes as independent modules figure 5.3. As different hardware characteristics on

the hardware could require new functionalities we defined a mutable abstract class

implementing the sensor and machines services API. Defining abstract functions that
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are likely to change, depending on scenario of application in terms of hardware.

All the exposed design strategies in terms of interfaces aims to explore the modular

nature of the OSGi to make our architecture truly modular. In terms of application

regarding different projects, the flexibility that make possible new component wiring and

adoption of protocols, will be a valuable feature covering a larger range of requirements.

5.2.2.1 Genetic Service Identification Algorithm

Manage large sets of any type of objects, requires indexation to each element of the set.

Search and retrieve a service in a registry, will be as costly as the number of services in

the registry set increases. Our first impetus to map the services with a unique identifier

was the use of Universally Unique Identifiers (UUID), Java provides a library to generate

that identifiers. In this explored work [28], a genetic identification of services is used,

the used approach make use of simple Integer types to identify services, granting

uniqueness relying on the prime numbers uniqueness. As happens in the genetics

field, a gene has unique properties, that just will be reflected in its descendants. In the

referenced work, a set hierarchy of sensor services was mapped recurring to a genetic

unique identifier generation algorithm. The three necessary properties are, a list of n (n

based on the expected number of services) pre computed prime numbers, a sequence

number that identifies the order in which a service was inserted in any hierarchy leaf as

a new leaf and the parent leaf uid. As the comparison of Integer types is more efficient

than UUID comparison, we decided to adopt that approach with a slightly change to

embrace the SensorNode strategy.

A mathematical explanation of the process is detailed below, the Gene is the UID of the

service, the sequence number is the number of order in which the service is created

(denoted in the expression below by "i") and the prime number is the prime of the pre

computed list of index "i". We added an additional part to encode the descendants

of a service, the ServiceNodes from where the service consumes other services. For

a proof of uniqueness we developed a script in Python that show that as for service

encoding as for the nodes encoding in a pre-computed list of 10000 primes every

number was unique.
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S → SmartComponentService

X → Set of SmartComponentServices

P → Set of prime numbers

gS → Gene of SmartComponentService

gSi = Si ∈ X · Pi · i : {1 < i ≤ |X|}

Sn→ SensorNode

gSn → Gene of ServiceNode

XSi → Set of Si predecessor ServicerNodes

gSni = Sni ∈ XSi · Pi · i : {1 < i ≤ |XSi |}

Applying this strategy we expect to obtain more efficiency in search and management

of services, another advantage, for a given node, if we divide its UID by its sequence

number and by its prime number, we can deduce easily the parent of that node.

5.2.3 SmartComponent Device Management

This bundle keeps track of the device services, registered within it, by the applications

modules that scans device services in the network. The class DeviceManagerServices

exposes in the OSGi framework this component logic as a service. Automatically, all

bundles interested in register device services can use that class interface to register the

services, by that time already converted in SmartComponentService objects.

The iPOJO file image below, denotes the properties identify this component within the

framework, a bundle declaring an import dependency in this service, when deployed

in the framework will be automatically injected with DeviceManagerServices singleton

instance that exposes the logic of this service to other bundles. The DeviceManager

class handles the registration and un-registration of services as search and retrieval
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Figure 5.4: DeviceManager Class Diagram.

methods for those. Once a service instance is registered, the WaitingDelegations

class, that keeps delegation tasks that have no match in the registry, verifies if the new

service properties are coincident with the required in the task, and puts the new service

as provider of the service waiting for the delegation. A delegation task is an object

that contains the reference to a IDLE state ServiceNode, that for its turn, contains

reference to a consumer complex service that regists its interest in consume a service

of a determined type (eg. an aggregation service wants to consume from a specific

Temperature service). The complex service interest is submitted to the DeviceDele-

gation class, that searches in the registry for a compatible service, if that compatible

service does not exist, then, the delegation task is inserted in the WaintingDelegation

class. A DelegationTask is literally a task in the logic perspective as it is consumed by

a thread, and that tasks are maintained in a thread safe queue at the DeviceDelegation

class instance. When a component providing device services leave the framerwork,

the iPOJO start() and stop() callback methods allow for before the bundle leaves, it

unregister all its provided services from the registry.
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Figure 5.5: iPOJO DeviceManager metadata file.

5.2.4 SmartComponent UPnP Control Point

SmartComponent, will announce all the sensing devices as UPnP devices, encapsu-

lated as NETDEVs. From this operation scenario, this component has emerged, repre-

senting a UPnP Control Point that will scan the network for all devices of UPnP Device

Type : urn:schemas-upnp-org:device:NETDEV. More specifically, the Felix UPnP

Basedriver is the component that interacts with the devices, when it finds a device, fires

a OSGi ServiceEvent, as the RootDeviceListener class registers within the framework

interest in receive UPnPDevice events, receives the event and if the device is of the

type refereed previously proceeds the execution of the logic exposed in the sequence

diagram 5.2.4. Three other omited cases in the diagram could happen, device does not

export the UPnP Service Type : urn:upnp-org:serviceId:NetdevService, that device

is discarded; validation of the NSD document against the schema is not valid, device

is discarded; a specific device and the associated sensor already exists in the registry,

device is discarded and a warning message is logged because this can represent a

potential problem of hardware.
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Figure 5.6: SmartComponent ControlPoint Class Diagram.
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Figure 5.7: Sequence diagram service subscription.
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5.2.5 SmartComponent Service Manager

Figure 5.8: ServiceManager Class Diagram.

ServiceManagerServices class exposes services to framework, beyond that, Service-

Factory and ServiceExporter modules of the architecture must register within this com-

ponent. Complex services management is handled in this component, as registry

and reconfiguration operations, ServiceManager class handles the registry operations,

keeping track, removing and retrieving all the registered complex services. A reconfig-

uration of a service is categorized in two main operations:

• Service wiring operations

To a service, providers and consumers can be assigned or removed. When

required to do such an operation of reconfiguration, network representation of

a concrete service use the ServiceReconfiguration class to notify that required

changes. Those can be the assignment or removal of a device service or a

complex service, in case of a complex service the match to the required instance

is done at the ServiceManager class; in case of a device service DeviceMan-

agerServices are used. For a better understanding of this reconfiguration, im-

age 5.9 could provide a better understandable of how the reconfiguration process

wires together different services, using ServiceNodes as intermediate connectors,

removing from the service itself the complexity of managing the active connections
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and reconfiguration of new ones.

• Service update operations

Specific algorithm implementations of aggregation and validation services are

kept in that respective factories. When a newer algorithm version is deployed

into the framework, the correspondent factory announces to the ServiceManager

class that new service version. If the new model version is newer that the pre-

vious, and service instances exists of the previous versions, a instance from

the newer version module is created through the correspondent factory. That

instance is passed to the ServiceUpdate class that schedules a correspondent

ExchangeTask. Scheduled tasks have reference to the older and newer instances,

the objective is in runtime exchange of service versions, without the need to

disconnect that service representation of the network, this way, not breaking

connections to other external entities consuming the services through their net-

work representations. The UPnPDevice exported can maintain the established

connections with external actors, while this, the complex service performing the

tasks is exchanged for annother of the same type, same name, but different logic

as it is a newer version.

Once a complex service is registered in the ServiceManager, that instance is an-

nounced to all the ServiceExporter modules registered. Different protocols could be

implemented by the exporter components, this design approach regards future require-

ments off different protocols to be used, thus, enhancing the architecture flexibility to

adapt to different application environments. We developed SmartComponent UPn-

PExporter component that currently exports the complex services as UPnPDevices,

encapsulated by a NETDEV entity.
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Figure 5.9: Service Wiring Structure.

5.2.5.1 UPnP exposed funcionalities

Figure 5.10: ServiceManagement UPnP Device.

Operations over this component are accessible through a UPnPDevice in the network.

As we can observe in the figure 5.10 above, two UPnP Services are exposed, the

urn:schemas-upnp-org:service:NetDevService:1 perform exactly the same functions as

the exposed urn:schemas-upnp-org:service:servicecontroller:1. They are announced
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in the NSD document and can be invoked submitting a valid TDD to this device that

will reply with QRD to a correct invocation and with a TFD document otherwise. The

actions in the urn:schemas-upnp-org:service:servicecontroller:1 service will produce

the following:

• DisposeService(int complex-uid, string ActionResult)

For the input argument, complex-uid, the correspondent complex service with the

same UID will be disposed and correspondent UPnPDevice network represen-

tation in the network will disappear. An opposite action such InstantiateCom-

plexService() is not present in this UPnPService since the factories that produce

instances export that functionality and provide information about correspondent

modules that they can instantiate.

• ListAvailableServices(string sensor-services, string complex-services)

The two seen arguments are output arguments and this invocation produce a list

off all the active instances of sensor and complex services running at the time of

invocation.
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5.2.6 SmartComponent UPnP Exporter

For each registered complex service and ServiceFactory, exists the need to a corre-

spondent network representation, that is done by this component. Using its Bundle-

Context the UPnPDeviceManager class regists in into the framework each service

and factory correspondent UPnPDevice representations. The underlying logic of the

representations is occulted for simplicity purposes, actions exposed by that devices will

be explained ahead. UPnPDevices that represent complex services implements the

SmartComponentServiceListner interface, this way, the complex service does not need

to be aware of what kind of object is representing them, this interface has methods

for result notification of the services, alterations in terms of providers and consumers

and a rewiring method in the case the service is updated. In this case a thread safe

lock mechanism is used for prevent calls from the network representation to the service

behind while the change is being performed. Factory devices are managed by the

same class, the registered factories itself are managed by the UPnPFactoryManager,

that make each factory being exported or removed from the network, as the bundles

representing the factories come and leave the framework.

Figure 5.11: SmartComponent UPnP Exporter Class Diagram.

Metadata file for this component to be anounced in the framework is exposed above.
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Figure 5.12: iPOJO metadata file SmartComponentUPnPExporter.

5.2.7 SmartComponent Service Factories

Service factory components aggregate all the modules that will produce complex ser-

vices by type. As before said, a type can be Aggregation, Validation, Configuration and

Control. Our developments have focused in Aggregation and Validation, however, the

architecture design adopts ways to create and deploy the other two, or newer factory

types. A factory is a component that will aggregate all models of its type, a model

in the framework perspective is a bundle that will be deployed in the framework. As

the determined factory type produces instances of the available bundles of that type, it

must know the bundles that encapsulate models of the same scope. To do this we have

recured to the WhiteBoard Inversion of Control pattern, the bundle must declare in its

own manifest.xml file the type it represents, the factory in its turn, must declare itself as

iPOJO Extender and declare callback methods for treat the bundles arriving or leaving

the framework, this process is patent in the figure 5.14, the metadata.xml iPOJO file for

the aggregation factory.
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Figure 5.13: iPOJO ServiceFactory metadata file.

The following flow diagram details the process involved in recognise a bundle extension

type and association to the correspondent extender (factory):

1 - The aggregation bundle is deployed, activated and started within the framework.

2 - The framework triggers a bundle STARTED event, registered as a listener the iPOJO

Extender catches the event.

3 - The iPOJO Extender inspects the bundle manifest file headers, consequently pro-

cesses its components.

4 - The iPOJO Extender registers the aggregation specific module service in the frame-

work.

5 - Next, the framework triggers a service REGISTERED event of that bundle, listening

that event is the AggregationFactory Whiteboard Extender.

6 - The AggregationFactory inspects the classes of the service and verify that it extends

the AggregationService class.

7 - The AggregationFactory informs the ServiceManager of the new module and it will

proceed to a verification in the active services registry.
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Figure 5.14: Extender Witheboard Pattern.

5.2.7.1 UPnP exposed funcionalities

As UPnPDevices the factories expose to other actors the following functionalities, the

image below ilustrates the UPnPDevice, the example given is for the AggregationFac-

tory :

• InstantiateServiceAccumulationCycles(string ServiceID, string Accumulation-

Cycles, string sensor-type, string sensor-uid, complex-type, complex-uid,

string ActionResult)

This action creates a new complex service, the first argument specifies the name

and version of the model to instantiate (eg: Mean:1.1.0); second argument spec-

ifies the size of the data set that will be collected from each provider; third ar-

gument specifies the types and numbers of each type of services that will be

consumed for the service (eg: TemperatureService:2,LuminosityService:4); fourth

argument specifies specific sensor services that will be consumed by its UIDs;

fifth argument specifies the types and numbers of each type of complex services
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to consume (eg: Mean:1.1.0:2,SimpleSum:1.2.0:4); sixth argument indicates the

specific complex services that will be consumed by its UIDs; last argument is the

output argument that returns the result of the instantiation. It indicates the lack of

specific service if that service does not exist and that a indicated ServiceID does

not exist if the factory does not provide such module.

• InstantiateServiceFrequencyData(string ServiceID, string GatheringFrequency,

string sensor-type, string sensor-uid, complex-type, complex-uid, string Ac-

tionResult)

Only one difference exists between this and the previous action, the parameter

GatheringFrequency indicates in milliseconds the interval in with the data from

providers will be collected.

• ListAvailableServices(string OperationResult)

OperationResult is an output argument that in this action will indicate the modules

that this factory can instantiate.

Figure 5.15: ServiceFactory UPnP Device.

5.2.8 Data Aggregation and Validation Services

Implementation of aggregation and validation complex services was designed with flex-

ibility to adapt the way the data from services being consumed is handled. The classes

responsible for handle that management are the ValidationService and Aggregation-
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Services abstract classes, in the first case, when analysing data from the providers, a

validation of the data is being done, that requires to get more detailed information from

the providers. In case of detecting an anomaly, the result of a validation service must

indicate the service, or the services, that have malfunctions with detailed information

than allow to identify the source. In the second case, we have developed simple mean

and sum methods, in that case the data is simply aggregated and do not require specific

information, consequently the ValidationService abstract class does not have a complex

logic as the ValidationService.

Figure 5.16: ConcreteComplexServices Class Diagram.

The concrete implementation of a service is illustrated by the classes SomeAlgorithm as

figures in the class diagram figure 5.16. Overriding the correspondent service abstract

classes, the concrete classes must implement the method processingAlgorithm(), the

input arguments of that method are omitted because of the stated before, the input

will vary according to the necessity of more complex logic, as happens in the val-

idation services. This approach allow to adapt the implementation to new required

functionalities as the granularity of components allows to deploy more complex imple-

mentations of underlying components as needed. When the result of an algorithm

is processed the concrete implementation class must invoque the callback method

algorithmResultReady(result), at the Super Class to trigger other methods that will

notify the network representations of that service implementing the interface Smart-

ComponentComplexServiceListener.
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Packaging those models as bundles, as they are extensions of their respective Ser-

vicefactory types, requires to declare in the manifest.xml file of the bundle, that they

are extensions. This way when deployed in the framewrok the WhiteBoead pattern will

recognise those bundles as extensions of a factory and deliver the notifications that

will match them their correspondent listeners, this property is ilustrated in the pom.xml

(project object model) file of an aggregation bundle 5.17.

Figure 5.17: iPOJO ComplexService POM file.

5.2.8.1 UPnP exposed funcionalities

SmartComponentComplexService send periodical results, an external entity that is

interested in subscribe the results, must subsribe the UPnPService urn.schemas-upnp-

org:service:AggregationService:1, this service provides an UPnPEventedVariable that

can be susbsribed and is actualized by the underlying complex service sequential re-

sults. The UPnP protocol allows for an easy subscription of events relying in the GENA

protocol. In case of NETDEVs communication, the subscription of the correspondent

figuring service, will subscribe the QRD variable, this variable is also evented and sends

the service result embedded in that document.

• AddConsumer(int complex-uid, string ActionResult)
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For the input argument complex-uid, the correspondent complex service with

matching UID will be associated as a consumer of the service that represents

the action. The result of the operation, in case of success or failure comes in the

ActionResult variable.

• AddProvider(int complex-uid, int sensor-uid, string ActionResult)

For the input argument complex-uid, the correspondent complex service with

matching UID will be associated as a provider of the service that represents the

action. The result of the operation, in case of success or failure comes in the

ActionResult variable.

• GetLastResult(string Result, string ActionResult)

The two figured variable are outputs, the Result variable is the evented variable

that handles each new result of the underlying complex service. This action will

retrieve the last result of that variable.

• GetSnapshotResult(string Result, string ActionResult)

In case an instance value of the service is needed, this action must be called,

data from the wired ServiceNodes will be picked, and an instant result will be

processed and retrieved in the evented Result variable. If some error occurs that

error will be notifyed in the ActionResult variable.

• ListProviders( string ActionResult)

All services providing that to the correspondent service from where this method

is called are listed, separated as device services and complex services.

• RemoveProvider(int complex-uid, int sensor-uid, string ActionResult)

For a matching device or complex service, if that service is being consumed by

the service associated to the action, that correspondent provider will be removed.
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Figure 5.18: Complex Service Exported Device.



Chapter 6

Case Study

6.1 Introduction

The context of the hypothesis is based in one of the projects Industrial partners, pro-

viding a realistic context of application to the case study, due to confidentially questions

we will not reveal the specific partner.

Assembling engines is the main activity of one factory that belongs to that partner.

One of the sub-tasks is the sealing of parts that are assembled together to avoid

oil leaks. The oil leaks are prevented by applying a sealant in the contact surface

of the two parts, a special sealant is used in the factory. The application process

requires metrics from a crucial set of the surrounding environment conditions, which

must be gathered under strict parameters. Below are the conditions that must be

monitored during the process, with detailed explanation of the process. Humidity in the

air, temperature in the zone of application, pressure in the process of join engine parts

and optical sensors to verify if the surface of contact has imperfections. The sealant

is applied by a complex machine, a Robotic Arm, the optic sensor will be installed

in the tip of the arm. During the application of the product, imperfections are detected,

preventing the defective part to continue through the production stages before the defect

is corrected. Near the robotic arms other types of sensors will be placed; temperature

and humidity sensors, monitoring the surrounding environment where the process is

occurring. That conditions can affect the drying time and the hardness of the sealant,

drastically reducing its lifetime. The pressure sensor is coupled to the arm, its function

85
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is to measure the pressure between the contact surfaces of the parts. Ensuring that the

sealant is uniformly distributed over the contact surface, requires that a correct level of

pressure is applied.

Another complex machine that needs to be monitored in this scenario, it is known as

NC-Axis and its function is to do the transportation of parts between sections of assem-

bly. These machines are subjected to stress when loading excessive weight, causing

the premature degradation of its mechanical components, such as motors, gears and

the premature change of belts that are used to coordinate the machine shafts. Due

to nonlinear weight transportation, the duration of the belts tend to be unpredictable,

leading to cases in which the belts break, and consequently, the machine needs to

be stopped, interrupting a whole sub-section of the production process. Vibration and

pressure sensors need to be installed in these machines, these will allow to predict

the degradation of the parts. Knowing the approximate or the total number of times

a machine has been loaded in overweight, preventive maintenance can be performed

avoiding major consequences.

Regarding the above exposed situations we will form and present a hypotheses that will

be the base to validate our expected results.

6.2 Hypothesis

Our formulated hypothesis will focus on the previous scenario of application, we will

predict a system behaviour for each one specific production contexts:

• Component

A component is to be intended as a single production equipment, regarding the

previous sub-section we will analyze two components, the Robotic Arm and the

NC-Axis. Our assumptions are that for single components the system will respond

with a normal behavior, to the analyses of 4 sensors in arm case and 2 sensors

in the case of the second machine. By normal behavior, we refer to characteristics

that makes possible to use of the system under real time needs, frequencies of

operation in the second’s domain. The set of sensors that monitor each machine,

will be respectively connected to a mote and each mote placed near each ma-

chine. In this case, the analyses will be performed by the developed MinMax
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module. A validation service that fires warnings for measures that exceeds min

and max thresholds for each specific type of service.

• Equipment

Combinations of two components forms equipments, an equipment is a single

station or sub-process of a Supply Chain. When a robotic arm finishes the process

of applying the sealant, the engine is transported in the NC-Axis to other sub-

process of production, the combination of these two sub-tasks forms a main

task. This previous process forms another hypothesis, 6 sensors (4 in RTV

arm’s and 2 inNC-Axis), must be analyzed to control the main production task

efficiency. Again, we will use the MinMax module for anomaly detection over each

equipment. For storage efficiency and other possible necessities, we will deploy

modules MeanAggregation and DummySum. The first one does a simple mean of

the given sensors input and the second produces a sum of all the inputs. A service

for each sensor service type will be instantiated, aggregating all the sensors in the

network of the same type, in the same virtual sensor group. Comportment of the

system is expected to be normal, for aggregation services, an output frequency

of 4 seconds will be required. In validation service a frequency of frequency of 5

seconds will be used.

• Supply Chain

Equipments, performing a same task over a specific physical area in the factory,

resulting in output, that feed another main task, form a Supply Chain. Focusing

in the concrete case of the partner, a Supply Chain of several previously ex-

posed equipments have generally between 10 - 100 sensors. Regarding the

previous interval, a maximum number of sensors, represents the presence of

16 equipments in a Supply Chain. To validate this situation, we will scale the

previous hypothesis solution, for each iteration over the number of equipment’s,

adding a new validation service and aggregating the additional sensors that will

be present. We expect an increase in the time that takes to detect the sensors

exposed in the network, a problem of the protocol itself, due to the considerable

volume of packets flowing in the network. Excessive packets are originated by

advertisement, subscription and control messages that are used by the UPnP
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protocol. Regarding the architecture itself, we will base in the normal behaviour of

aggregation and validation services as proof that a possible exponential growth in

detection of sensors, is due to the protocol. If locally the services are detectable,

and remotely they are not visible, we will be facing network and protocol issues,

rather than architecture issues. We will compare the detection against the remote

machine using the UPnP Device Spy Tool, a control point designed by Intel to test

UPnP Devices.

• Shop Floor

Regarding the Shop Floor of a factory, several Supply Chains are deployed all

over the area of production. Regarding the Industrial partner case, we will point a

minimum number of sensors, based in the mentioned number at one single Supply

Chain. In a Shop Floor, a minimum of one and a maximum of six Supply Chains

are present, this gives us a test interval of 100 - 600 sensors in all the area of pro-

duction. Once again, one of the expected problems is the device detection delay.

Response time will be the proof used to validate the architecture normal function

against protocol problems. In this case a range of 16 - 96 complex services

will be instantiated and its response times and expected behaviors evaluated.

Due to the high number of devices in the network, we expect at some point, an

exponential growth of the times that takes to detect devices and invoke actions.

A tool that simulates UPnP NETDEV device instances in the network will be used,

that tool creates the required number of devices with different service types. It allows to

define the mean and variance of each service, this way, creating purposeful failures that

must be detected by validation services. The sampling rate of each simulated sensor

will be of 1 second. The types used will be the previous stated types of sensors,

that simulation tool will be running in a different machine than the SmartComponent

architecture, present in the same network. The DeviceSpy tool will be used in the local

and remote machines to measure times of response.

In the image below, an illustration of how the system works regarding the case study

is presented. The sensors from the Robotic RTV Arm are exposed to the network as

UPnP Devices. The SmartComponent UPnP Control Point 5.2.4 scans the sensors

and converts them into OSGi UPnP Device instances, next, the SmartComponent
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Device Management 5.2.3 converts the previous instances in SmartComponent Device

Services. For each complex service created, exists a correspondent representation as

an UPnP Device in the network, as soon as an instantiation of a complex service is

performed a representation in the network is reflected, the component responsible for

export the devices is the SmartComponent UPnP Exporter 5.2.6. The idea of this image

is to conceptually give an idea of how the information flow, since its measured, until is

processed and turned into high level information to be consumed again for superior

entities or actors.

Figure 6.1: Case Study System Operation
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6.3 Hypothesis Validation

Response time of invokation actions , aggregates the time that takes a M2M communi-

cation. In this case, is the time that takes to, process a request within the architecture,

summed with the time that takes, messages of request and response to be delivered.

To validate the hypothesis, this metric will be used with three previosuly explained func-

tions of the architecture 5.2.8.1, GetLastResult() , GetSnapshot() and ListProviders()

actions.

At scale of component, no problems where faced, validation and aggregation services

sampling rates correct. Invocation of functions, as seen in the graphic below, was

completed in milliseconds with success.

Figure 6.2: Robotic ARM Sensors Analysis Graph

As the validation of the Shop Floor and Supply Chain cases is based in iterations

of validation of a single Equipment, the tests were aggregated in the same graphs.

The next three graphs show the times of response and number of services involved in

the whole test process. Graphs are separated by functions for validation purposes.

The GetSnapshot() action, internally to the architecture, involve a dequeue to ev-

eryServiceNode provider. Next, the data previously gathered, are processed and the

output is sent to the remote invoker. Regarding the previous statement, in comparison

with the other two functions, the internally processing effort is major, since the other two



CHAPTER 6. CASE STUDY 91

just had to send data that is in memory. It was to be expected, higher response times to

the GetSnapshot() function, compared to the other two functions, in case of internal to

architecture malfunctions. As we can observe, all functions reply with similar response

times. We can conclude, the delay is due to the network, the computation time within

our application is not relevant to the response times.

Figure 6.3: ListProviders() Action Results Graph

Figure 6.4: GetLastResult() Action Results Graph

First fluctuations in the time that takes to detect devices, as formulated in hypothesis,

has been detected when the number o sensors being exported by the remote machine
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Figure 6.5: GetSnapshot() Action Results Graph

has reached 54. Corresponding to a number of 9 Equipments being monitored. Until

this number was reached, no anomalies were detected, validating the hypothesis of

monitoring a Supply Chain contitued of 8 Equipments in real time.

From 9 Equipments, to the maximum handled of 24, the times of device detection vary

between, 4 (min) in the first case and 27 (min) in the last case. However, as the

device services appear in the remote machine, they were subscribed with success. The

sampling rates, even in the last case, were maintained in 4 sec for aggregation and 5

sec for validation services. To enforce the previous statement, as we can observe in

the graphs, response times of the actions were linear, with the architecture promptly

replying to the requests. We conclude that the flooding of messages circulating in the

network, were the main cause for the delay in devices detection. In the architecture, the

control point, unlike in the DeviceSpy tool, the delay in sensor detection has become

clear when the number of Equipments reached 20.

Exchanging messages, has become totally unfeasible when the number of exported

Equipments has reached 32. Devices in both machines were detected and data sub-

scriptions in both sides were done. In the remote machine, the values received by the

complex services were 0, meaning that queues were empty. The component Smart-

Component Logger has reported java.net.SocketException: Connection reset throwed

by the Felix UPnP Driver component. Meaning the HTTP Socket was not capable of
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handle all the active connections. For a well-functioning proof of the architecture, the

local DeviceSpy tool was able of discover and invoke the architecture services.

Analyzing the last two test iterations, we observe an exponential behavior. Relating

that observation with the excessive consumption of resources, we can conclude that

computation effort and the number of exported devices are directly related. The sub-

set of protocols that composes the UPnP stack, requires regular message exchange,

notification, update and event between M2M. Application HTTP Sockets, must handle

a considerable amount of transactions and asynchronous messages, this leads to a

substantial effort by the CPU to dispatch and acknowledge all the communications.

Regarding to this, we can conclude that UPnP cannot scale in terms of communication

to one single machine. The number of devices being exported - representing complex

services in the architecture context – constitutes a problem. As we are not dealing with

the communication directly, Felix UPnP Driver is the bridge between the architecture

and the framework, this could represent additional overhead. The driver uses the

CyberDomo library for Java, a possible solution could be to develop an architecture

control point that uses the library directly. This way, we eliminate the necessity to recur

to the framework as an intermediate tier and, possibly, achieve a better efficiency in

communication issues.

Concluding, the reported results allow to validate, for real time needs, in all aspects

(discovering and sampling frequency), the monitoring of 48 sensors. Exporting at

that time, 20 complex services (8 validation and 12 aggregation). In the case study

perspective, a Supply Chain of 8 Equipment’s could be monitored and controlled by

our application. If the time that takes to detect devices is not a concern, this architecture

was able to monitor and control 20 Equipments, with a required frequency sampling,

only with slightly increased of the times in method invocation. Action response times

has only passed the milliseconds threshold when handling 24 Equipments.

As the response times in 6.3 6.4 6.5 displayed a linear response time, until the number

of 20 Equipments was reached, we suspected from hardware limitations and decided

to develop a second test. The second test involved three machines, one containing

the SmartComponent and the other two running the simulator. The machines running

the simulator were exporting a total of 30 Equipments, one test iteration after the

communication in the first test become unfeasible was done. The results observed
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are displayed in the graph above.

Figure 6.6: Second test action results.

The results observed, showed that the behavior is closely related with the hardware

running the SmartComponent. The response times showed that, less than half of the

average of the previous response times was achieved in this test. The exponential

behavior that was previously observed, was due to the capacity of the hardware to

handle large numbers of parallel connections, reinforcing a linear behavior from our

architecture against the driver and hardware problems.

Regarding our architecture, the two tests have proven a correct function of the system.

As we can see in the following section graphs, the memory consumption of the system

is linear. Response to action invocation is linear and independent from the number of

sensors being monitored 6.3 6.4 6.5. The number of complex services being exported

and the number of sensors being subscribed, depends on the hardware as the network

as well, as the cost of hardware is in constant decrease, we conclude the solution is

feasible and covers all requirements of the application scenario.

In a concrete application scenario, regarding the first test, the system could be de-

ployed, monitoring until 120 sensors in an efficiently way. If the hardware characteristic

of the machine running the architecture are superior, the limit of 144 sensors can be

exceeded, has showed in 6.6. Based in the first test hardware characteristics 6.4, a

whole Supply Chain can be efficiently monitored, allowing for analysis, reconfiguration

and deployment of complex service modules. Using our solution, in the case stated
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in 6.2, 6 machines running the SmartComponent architecture, covers all the Shop

Floor area. With all the area being analyzed, the Smart Factory concept is achieved,

smart decisions over the production lifecycle are taken, culminating in an economic and

resource enhanced efficiency.

6.4 Scalability

Action response times, have only passed the milliseconds threshold when handling

24 Equipments for the fist test. Introduce most capable hardware is a possibility for

achieve scalability and adapt to the application scenario needs. Regarding to the

previous possibility, we prove the architecture has resiliency to scalability issues. The

next graphs, show how instances and the memory consumed by the JVM have evolved

during the first test.

Although the exportation of every complex services were no possible in the last test

iteration of first test, we instantiated successfully in the local machine the required

number of 44 complex services for analyses of 32 Equipments.

In the first test we achieved a number of 512 instantiated Service Nodes being used by

44 complex services. Taking in account other resources being consumed by the driver

and the Felix Framework itself, we conclude that the evolution of memory consumption

can be considered linear. The amount of resource consumption in the last test of 355

Kilobytes is very acceptable regarding the effort in maintain the mentioned number

of ServiceNodes and considering the number of complex service instances. In the
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first test the local machine has 4 GBytes of RAM, if the network were capable of

handling more devices we could scale the application. The hardware characteristis of

the two machines used in the test are: for the local machine, Intel Core i5 2.27Ghz first

generation CPU with 4GBytes of RAM; for the remote machine, Intel Core i5 2.6Ghz

third generation CPU with 8GBytes of RAM and the hosting operating systems were

Windows 7 in the local machine and Windows 8 in the remote. In the two last test

iterations, the simulation tool was consuming 98% - 100% of CPU and 5GBytes of

RAM. Local machine, in the same iterations was consuming 60% of CPU resources

with irregular spontaneous pikes of 90% of CPU. In the second test, the local machine

hosting the SmartComponent, has the same specifications of the other two remote

machines running the simulation tool. All machines have Intel Core i7 2.4Ghz third gen-

eration CPUs with 16GBytes of RAM and the hosting operating system was Windows

8.
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Conclusion

The capability of obtain reliable and intelligent information, derived from the sensors

data, was a major requirement of this work. Attached to previous requirement, with

considerable importance, the capability of produce new models of analysis with a rel-

ative easiness , deploy them into the system and remove active ones on demand. In

addiction, an active complex service has connection with external actors, the service

is a network representation of an model instance. The capability of switch the corre-

spondent instance in runtime, without breaking the connection to the external actor,

eliminates the need of reconfigure the system whenever a newer model or version of a

model is introduced in the system and exists the necessity of use that model. To make

the system capable of interact with other systems and components, it must be capable

of implement an adopted ontology, this way, it can manipulate and be manipulated

by external entities. To expose the system functionalities, a protocol that is capable

of announce the system capabilities, as turn the communication transparent to external

agents, must be implemented. To handle the interactions previously refered, the system

must deal with a considerable level of abstraction. In a technical perspective, this means

the system must be capable of virtualize its services and treat external components as

virtualizations as well.

Virtualization to a network of complex services exported by the application was suc-

cessfully achieved recurring to UPnP. Previously pointed as a major concern 3.1, ex-

tract meaning from communication, was overcome through the implementation of DIL

language.Due to the previous achievements, all services managed by the architecture,

97
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become transparent and horizontal to external agents. Those agents can explore

the functionalities of the complex services in a uniform way, using the UPnPService

type and the inner functionalities to each service, declared in the respective NSD

documents. The developed functionalities of the architecture and its complex services,

allow inter device communication, consequently, fostering synergies with other actors,

eg, personnel at the Shop Floor using portable monitoring stations. The functional-

ities exposed by the UPnP services to the network 5.10 5.15, allows for a flexible

reconfiguration of the complex services and VSIG formation; that way, was overcome

the consideration pointed at 3.4, allowing for an smart logistic of the services logic.

Data acquisition, event or frequency based 2.6, was successfully accomplished, due

to the possibility of subscribe UPnP State Variables. Collaboration between Smart-

Component nodes is guaranteed. The encapsulation of the complex services as well

defined NetDev services 5.2.4, allows for both nodes identify the complex services

and perform cross check validation of data. This previous characteristic, allow for a

cloud infrastructure to subscribe and manage the services being exported, well filling

an important need stated the project 2.4. A configuration service, was integrated in

the architecture, validating the modularity needs 3.5. This previous characteristic,

allow for a sensor cloud infrastructure to subscribe and manage the services being

exported by the archtecture, this way, filling an important need of the SelSus project 2.4.

A configuration service, was integrated in the architecture, validating the modularity

needs 3.5. On the fly integration of data analyses modules was achieved, reinforc-

ing the modularity nature of the architecture, allowing mitigate the cost time effective

needs of programing and deploying new software components over the equipment’s in

the production line. Finally, the architecture was validated against a real case based

scenario of application. Summing up, we conclude that a significant contribution in

terms of literature and application of technologies was done, resulting in a step forward

regarding Smart Factories to become a reality.
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7.1 Future work

Based on the results achieved and on the insights gained during this work, the following

list of possible lines of work have been identified:

• Increase of the available set of actions that can be performed over a complex

service.

Rather than just pull output from services, implement capabilities like, eg. intro-

duce real time data from another device to be processed.

• Study and implementation of new types of analysis modules, increasing the num-

ber of complex analysis services that can be performed by the system.

Use Neuronal or Bayesian networks to enrich the prediction capabilities of the

system.

• Develop a proprietary UPnP driver component, it will create a direct control over

the devices being exported and imported.

The result will be an increase in the number of connections a single machine can

handle.

• Create and export an architecture Logger Component as UPnP device.

Subscribing that device, will allow for treatment of notifications related with the

architecture (eg. Alert of a sensor service requested for consuming, that does not

exists).

• Increase the registry search specifications.

When assigning a provider to a consumer or instantiating a service (eg. Select a

temperature service with a specific accuracy of measurement).

With pervasive computing increase, the IoT has about to become a reality. Fiware [29],

is a platform that aims to cement its position in the available range of solutions that

wants to bring IoT close to end customers and enterprises. This open set of speci-

fications, ends with a structure that allows for a strongly coupled interaction between

service providers and service consumers, all benefiting from the interactions. In the

Industrial context, this platform allows for a factory to expose its services (eg. monitoring
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systems and sensors) to the developers that want to produce and test new solutions.

An API grants the cost-effective development of new services. The virtualized company

infrastructures, are available to be used as concrete test cases to the developers trough

a cloud [30] of “well-defined Service End Points”.

Integrate this platform API is part of our future work, we will benefit from this integration

as we can progress in the developments, supported by concrete cases of application.

Moreover, Fiware is part of the Seventh Framework Programme as well, together with

the projects partners, we will help to foment the competitiveness in the European

Industry.
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Abbreviations

M2M Machine to Machine

IoT Internet of Things

UPnP Universal Plug & Play

WSN Wireless Sensor Networks

IWSN Industrial Wireless Sensor Networks

SOA Service Oriented Architecture

SOC Service Oriented Computing

OO Object Oriented

POJO Plain Old Java Object

RF Radio Frequency

OSI Open Systems Interconnection Model

XML Xtensible Markup Language

WSDL Web Service Description Language

UDDI Universal Description Discovery and Integration

VSIG Virtual Sensor Information Group

JAR Java ARchive
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NETDEV NETwork-enabled DEVice

NSD NetDev Self Description

TDD Task Description Document

QRD Quality Result Document

TFD Task Fulfilment Document



Appendix B

Components NSD

1 <?xml version=" 1.0 " ?>

2

3 < d e s c r i p t i o n >

4 <name> S e r v i c e C o n t r o l l e r < / name>

5 <model>1.0< / model>

6 <manufacturer>Luis< / manufacturer>

7 < s e r i a l >3001−50−22−3000< / s e r i a l >

8 < b u i l t >2014−01−30T09:00:00< / b u i l t >

9 < phys i ca lP rope r t i e s / >

10 < / d e s c r i p t i o n >

11

12 < !−− The task range conta ins a l i s t o f task d e f i n i t i o n s , which can be

executed

13 by t h i s netdev −−>

14 <taskRange>

15 < t a s k D e f i n i t i o n name=" DisposeService " sntd=" / task / netdev / l o g i c a l /

se rv i ce / c o n t r o l l e r / d ispose_serv ice ">

16 < d a t a D e f i n i t i o n s >

17 < !−− I npu t −−>

18 < d a t a D e f i n i t i o n i d =" ServiceUID ">

19 <metaData name=" datatype "> i n t e g e r < / metaData>

20 <metaData name=" minValue ">1< / metaData>

21 <metaData name=" maxValue ">99999999999< / metaData>

22 <metaData name=" u n i t "> i n t e g e r < / metaData>

23 < / d a t a D e f i n i t i o n >

24 < !−− Output −−>

104



APPENDIX B. COMPONENTS NSD 105

25 < d a t a D e f i n i t i o n i d =" Ac t ionResu l t ">

26 <metaData name=" datatype "> s t r i n g < / metaData>

27 <metaData name=" u n i t "> s t r i n g < / metaData>

28 < / d a t a D e f i n i t i o n >

29 < / d a t a D e f i n i t i o n s >

30 <tddSchema>

31 <goals>

32 <goal d a t a D e f i n i t i o n R e f = " ServiceUID " / >

33 < / goals>

34 < / tddSchema>

35 <qrdSchema>

36 < r e s u l t d a t a D e f i n i t i o n R e f = " Ac t ionResu l t " / >

37 < / qrdSchema>

38 < / t a s k D e f i n i t i o n >

39 < t a s k D e f i n i t i o n name=" L i s t Se rv i ces " sntd=" / task / netdev / l o g i c a l /

se rv i ce / c o n t r o l l e r / l i s t _ s e r v i c e s ">

40 < d a t a D e f i n i t i o n s >

41 < !−− Output −−>

42 < d a t a D e f i n i t i o n i d =" SensorServices ">

43 <metaData name=" datatype "> s t r i n g < / metaData>

44 <metaData name=" u n i t "> json< / metaData>

45 < / d a t a D e f i n i t i o n >

46 < d a t a D e f i n i t i o n i d =" ComplexServices ">

47 <metaData name=" datatype "> s t r i n g < / metaData>

48 <metaData name=" u n i t "> json< / metaData>

49 < / d a t a D e f i n i t i o n >

50 < / d a t a D e f i n i t i o n s >

51 <tddSchema>

52 <goals / >

53 < / tddSchema>

54 <qrdSchema>

55 < r e s u l t d a t a D e f i n i t i o n R e f = " SensorServices " / >

56 < r e s u l t d a t a D e f i n i t i o n R e f = " ComplexServices " / >

57 < / qrdSchema>

58 < / t a s k D e f i n i t i o n >

59 < / taskRange>

60 < l o c a l i z a t i o n s / >

61 < / nsd>

ServiceController NSD Document
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1 <?xml version=" 1.0 " ?>

2

3 < d e s c r i p t i o n >

4 <name>Serv iceFactory< / name>

5 <model>1.0< / model>

6 <manufacturer>Luis< / manufacturer>

7 < s e r i a l >3001−50−22−3000< / s e r i a l >

8 < b u i l t >2014−01−30T09:00:00< / b u i l t >

9 < phys i ca lP rope r t i e s / >

10 < / d e s c r i p t i o n >

11

12 <taskRange>

13 < t a s k D e f i n i t i o n name=" Ins tan t ia teServ iceFrequencyData " sntd=" / task /

netdev / l o g i c a l / se rv i ce / f a c t o r y / Ins tan t ia teServ iceFrequencyData ">

14 < d a t a D e f i n i t i o n s >

15 < !−− I npu t −−>

16 < d a t a D e f i n i t i o n i d =" Serv iceID ">

17 <metaData name=" datatype "> s t r i n g < / metaData>

18 <metaData name=" u n i t "> s t r i n g < / metaData>

19 < / d a t a D e f i n i t i o n >

20 < d a t a D e f i n i t i o n i d =" ServiceFrequency ">

21 <metaData name=" datatype "> i n t e g e r < / metaData>

22 <metaData name=" minValue ">500< / metaData>

23 <metaData name=" maxValue ">100000< / metaData>

24 <metaData name=" u n i t ">mi l l i senconds< / metaData>

25 < / d a t a D e f i n i t i o n >

26 < d a t a D e f i n i t i o n i d =" SensorType ">

27 <metaData name=" datatype "> s t r i n g < / metaData>

28 <metaData name=" u n i t ">ar ray< / metaData>

29 < / d a t a D e f i n i t i o n >

30 < d a t a D e f i n i t i o n i d =" SensorModel ">

31 <metaData name=" datatype "> s t r i n g < / metaData>

32 <metaData name=" u n i t ">ar ray< / metaData>

33 < / d a t a D e f i n i t i o n >

34 < d a t a D e f i n i t i o n i d =" SensorUID ">

35 <metaData name=" datatype "> i n t e g e r < / metaData>

36 <metaData name=" u n i t ">ar ray< / metaData>

37 < / d a t a D e f i n i t i o n >

38 < d a t a D e f i n i t i o n i d =" ComplexType ">
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39 <metaData name=" datatype "> s t r i n g < / metaData>

40 <metaData name=" u n i t ">ar ray< / metaData>

41 < / d a t a D e f i n i t i o n >

42 < d a t a D e f i n i t i o n i d =" ComplexUID ">

43 <metaData name=" datatype "> s t r i n g < / metaData>

44 <metaData name=" u n i t ">ar ray< / metaData>

45 < / d a t a D e f i n i t i o n >

46

47 < !−− Output −−>

48 < d a t a D e f i n i t i o n i d =" Ac t ionResu l t ">

49 <metaData name=" datatype "> s t r i n g < / metaData>

50 <metaData name=" u n i t "> s t r i n g < / metaData>

51 < / d a t a D e f i n i t i o n >

52 < / d a t a D e f i n i t i o n s >

53

54 <tddSchema>

55 <goals>

56 <goal d a t a D e f i n i t i o n R e f = " Serv iceID " / >

57 <goal d a t a D e f i n i t i o n R e f = " ServiceFrequency " / >

58 < / goals>

59 <boundaryCondi t ions>

60 <boundaryCondi t ion d a t a D e f i n i t i o n R e f = " SensorType " / >

61 <boundaryCondi t ion d a t a D e f i n i t i o n R e f = " SensorModel " / >

62 <boundaryCondi t ion d a t a D e f i n i t i o n R e f = " SensorUID " / >

63 <boundaryCondi t ion d a t a D e f i n i t i o n R e f = " ComplexType " / >

64 <boundaryCondi t ion d a t a D e f i n i t i o n R e f = " ComplexUID " / >

65 < / boundaryCondi t ions>

66 < / tddSchema>

67 <qrdSchema>

68 < r e s u l t d a t a D e f i n i t i o n R e f = " Ac t ionResu l t " / >

69 < / qrdSchema>

70 < / t a s k D e f i n i t i o n >

71 < t a s k D e f i n i t i o n name=" Ins tan t ia teServ iceAccumula t ionCyc les " sntd=" /

task / netdev / l o g i c a l / se rv i ce / f a c t o r y /

Ins tan t ia teServ iceAccumula t ionCyc les ">

72 < d a t a D e f i n i t i o n s >

73 < !−− I npu t −−>

74 < d a t a D e f i n i t i o n i d =" Serv iceID ">

75 <metaData name=" datatype "> s t r i n g < / metaData>

76 <metaData name=" u n i t "> s t r i n g < / metaData>
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77 < / d a t a D e f i n i t i o n >

78 < d a t a D e f i n i t i o n i d =" Accumulat ionCycles ">

79 <metaData name=" datatype "> i n t e g e r < / metaData>

80 <metaData name=" minValue ">1< / metaData>

81 <metaData name=" maxValue ">100000< / metaData>

82 <metaData name=" u n i t ">mi l l i senconds< / metaData>

83 < / d a t a D e f i n i t i o n >

84 < d a t a D e f i n i t i o n i d =" SensorType ">

85 <metaData name=" datatype "> s t r i n g < / metaData>

86 <metaData name=" u n i t ">ar ray< / metaData>

87 < / d a t a D e f i n i t i o n >

88 < d a t a D e f i n i t i o n i d =" SensorModel ">

89 <metaData name=" datatype "> s t r i n g < / metaData>

90 <metaData name=" u n i t ">ar ray< / metaData>

91 < / d a t a D e f i n i t i o n >

92 < d a t a D e f i n i t i o n i d =" SensorUID ">

93 <metaData name=" datatype "> i n t e g e r < / metaData>

94 <metaData name=" u n i t ">ar ray< / metaData>

95 < / d a t a D e f i n i t i o n >

96 < d a t a D e f i n i t i o n i d =" ComplexType ">

97 <metaData name=" datatype "> s t r i n g < / metaData>

98 <metaData name=" u n i t ">ar ray< / metaData>

99 < / d a t a D e f i n i t i o n >

100 < d a t a D e f i n i t i o n i d =" ComplexUID ">

101 <metaData name=" datatype "> s t r i n g < / metaData>

102 <metaData name=" u n i t ">ar ray< / metaData>

103 < / d a t a D e f i n i t i o n >

104 < !−− Output −−>

105 < d a t a D e f i n i t i o n i d =" SensorServices ">

106 <metaData name=" datatype "> s t r i n g < / metaData>

107 <metaData name=" u n i t "> json< / metaData>

108 < / d a t a D e f i n i t i o n >

109 < d a t a D e f i n i t i o n i d =" Ac t ionResu l t ">

110 <metaData name=" datatype "> s t r i n g < / metaData>

111 <metaData name=" u n i t "> s t r i n g < / metaData>

112 < / d a t a D e f i n i t i o n >

113 < / d a t a D e f i n i t i o n s >

114

115 <tddSchema>

116 <goals>
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117 <goal d a t a D e f i n i t i o n R e f = " Serv iceID " / >

118 <goal d a t a D e f i n i t i o n R e f = " Accumulat ionCycles " / >

119 < / goals>

120 <boundaryCondi t ions>

121 <boundaryCondi t ion d a t a D e f i n i t i o n R e f = " SensorType " / >

122 <boundaryCondi t ion d a t a D e f i n i t i o n R e f = " SensorModel " / >

123 <boundaryCondi t ion d a t a D e f i n i t i o n R e f = " SensorUID " / >

124 <boundaryCondi t ion d a t a D e f i n i t i o n R e f = " ComplexType " / >

125 <boundaryCondi t ion d a t a D e f i n i t i o n R e f = " ComplexUID " / >

126 < / boundaryCondi t ions>

127 < / tddSchema>

128

129 <qrdSchema>

130 < r e s u l t d a t a D e f i n i t i o n R e f = " Ac t ionResu l t " / >

131 < / qrdSchema>

132 < t a s k D e f i n i t i o n name=" L i s t A v a i l a b l e S e r v i c e s " sntd=" / task / netdev /

l o g i c a l / se rv i ce / f a c t o r y / L i s t A v a i l a b l e S e r v i c e s ">

133 < d a t a D e f i n i t i o n s >

134

135 < !−− Output −−>

136 < d a t a D e f i n i t i o n i d =" SensorServices ">

137 <metaData name=" datatype "> s t r i n g < / metaData>

138 <metaData name=" u n i t "> json< / metaData>

139 < / d a t a D e f i n i t i o n >

140 < d a t a D e f i n i t i o n i d =" Ac t ionResu l t ">

141 <metaData name=" datatype "> s t r i n g < / metaData>

142 <metaData name=" u n i t "> s t r i n g < / metaData>

143 < / d a t a D e f i n i t i o n >

144 < / d a t a D e f i n i t i o n s >

145

146 <tddSchema>

147 <goals>

148 <goal d a t a D e f i n i t i o n R e f = " Serv iceID " / >

149 <goal d a t a D e f i n i t i o n R e f = " Accumulat ionCycles " / >

150 < / goals>

151 < / tddSchema>

152

153 <qrdSchema>

154 < r e s u l t d a t a D e f i n i t i o n R e f = " Ac t ionResu l t " / >

155 < / qrdSchema>
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156 < / t a s k D e f i n i t i o n >

157 < / taskRange>

158 < l o c a l i z a t i o n s / >

159

160 < / nsd>

ServiceFactory NSD Document

1 <?xml version=" 1.0 " ?>

2

3 < d e s c r i p t i o n >

4 <name>SmartComponentService< / name>

5 <model>1.0< / model>

6 <manufacturer>Luis< / manufacturer>

7 < s e r i a l >3001−50−22−3000< / s e r i a l >

8 < b u i l t >2014−01−30T09:00:00< / b u i l t >

9 < phys i ca lP rope r t i e s / >

10 < / d e s c r i p t i o n >

11

12 <taskRange>

13 < t a s k D e f i n i t i o n name=" AddConsumer " sntd=" / task / netdev / l o g i c a l / se rv i ce

/ smartcomponent_service / add_consumer ">

14 < !−− I npu t −−>

15 < d a t a D e f i n i t i o n i d =" ComplexUID ">

16 <metaData name=" datatype "> i n t e g e r < / metaData>

17 <metaData name=" minValue ">1< / metaData>

18 <metaData name=" maxValue ">9999999999999< / metaData>

19 <metaData name=" u n i t "> i n t e g e r < / metaData>

20 < / d a t a D e f i n i t i o n >

21 < !−− Output −−>

22 < d a t a D e f i n i t i o n i d =" Ac t ionResu l t ">

23 <metaData name=" datatype "> s t r i n g < / metaData>

24 <metaData name=" u n i t "> s t r i n g < / metaData>

25 < / d a t a D e f i n i t i o n >

26 < / d a t a D e f i n i t i o n s >

27

28 <tddSchema>

29 <goals>

30 <goal d a t a D e f i n i t i o n R e f = " ComplexUID " / >

31 < / goals>

32 <boundaryCondi t ions / >
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33 < / tddSchema>

34

35 <qrdSchema>

36 < r e s u l t d a t a D e f i n i t i o n R e f = " Ac t ionResu l t " / >

37 < / qrdSchema>

38 < / t a s k D e f i n i t i o n >

39

40 < t a s k D e f i n i t i o n name=" AddProvider " sntd=" / task / netdev / l o g i c a l / se rv i ce

/ smartcomponent_service / add_provider ">

41 < !−− I npu t −−>

42 < d a t a D e f i n i t i o n i d =" ComplexUID ">

43 <metaData name=" datatype "> i n t e g e r < / metaData>

44 <metaData name=" minValue ">1< / metaData>

45 <metaData name=" maxValue ">9999999999999< / metaData>

46 <metaData name=" u n i t "> i n t e g e r < / metaData>

47 < / d a t a D e f i n i t i o n >

48 < d a t a D e f i n i t i o n i d =" SensorUID ">

49 <metaData name=" datatype "> i n t e g e r < / metaData>

50 <metaData name=" minValue ">1< / metaData>

51 <metaData name=" maxValue ">9999999999999< / metaData>

52 <metaData name=" u n i t "> i n t e g e r < / metaData>

53 < / d a t a D e f i n i t i o n >

54 < !−− Output −−>

55 < d a t a D e f i n i t i o n i d =" Ac t ionResu l t ">

56 <metaData name=" datatype "> s t r i n g < / metaData>

57 <metaData name=" u n i t "> s t r i n g < / metaData>

58 < / d a t a D e f i n i t i o n >

59 < / d a t a D e f i n i t i o n s >

60

61

62 <tddSchema>

63 <goals>

64 <goal d a t a D e f i n i t i o n R e f = " ComplexUID " / >

65 <goal d a t a D e f i n i t i o n R e f = " SensorUID " / >

66 < / goals>

67 <boundaryCondi t ions / >

68 < / tddSchema>

69

70 <qrdSchema>

71 < r e s u l t d a t a D e f i n i t i o n R e f = " Ac t ionResu l t " / >
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72 < / qrdSchema>

73

74 < t a s k D e f i n i t i o n name=" GetLastResul t " sntd=" / task / netdev / l o g i c a l /

se rv i ce / smartcomponent_service / g e t _ l a s t _ r e s u l t >

75

76 <!−− Output −−>

77 < d a t a D e f i n i t i o n i d =" Ac t ionResu l t ">

78 <metaData name=" datatype "> s t r i n g </ metaData>

79 <metaData name=" u n i t "> s t r i n g </ metaData>

80 </ d a t a D e f i n i t i o n >

81 </ d a t a D e f i n i t i o n s >

82

83 <tddSchema>

84 <goals / >

85 <boundaryCondi t ions / >

86 </ tddSchema>

87

88 <qrdSchema>

89 < r e s u l t d a t a D e f i n i t i o n R e f = " Ac t ionResu l t " / >

90 </qrdSchema>

91

92 </ t a s k D e f i n i t i o n >

93 < t a s k D e f i n i t i o n name=" GetSnapshot " sntd=" / task / netdev / l o g i c a l / se rv i ce

/ smartcomponent_service / get_snapshot>

94 < !−− Output −−>

95 < d a t a D e f i n i t i o n i d =" Ac t ionResu l t ">

96 <metaData name=" datatype "> s t r i n g < / metaData>

97 <metaData name=" u n i t "> s t r i n g < / metaData>

98 < / d a t a D e f i n i t i o n >

99 < / d a t a D e f i n i t i o n s >

100

101 <tddSchema>

102 <goals / >

103 <boundaryCondi t ions / >

104 < / tddSchema>

105

106 <qrdSchema>

107 < r e s u l t d a t a D e f i n i t i o n R e f = " Ac t ionResu l t " / >

108 < / qrdSchema>

109
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110 < / t a s k D e f i n i t i o n >

111 < t a s k D e f i n i t i o n name=" L i s t P r o v i d e r s " sntd=" / task / netdev / l o g i c a l /

se rv i ce / smartcomponent_service / l i s t _ p r o v i d e r s >

112 <!−− Output −−>

113 < d a t a D e f i n i t i o n i d =" Ac t ionResu l t ">

114 <metaData name=" datatype "> s t r i n g </ metaData>

115 <metaData name=" u n i t "> s t r i n g </ metaData>

116 </ d a t a D e f i n i t i o n >

117 </ d a t a D e f i n i t i o n s >

118

119 <tddSchema>

120 <goals / >

121 <boundaryCondi t ions / >

122 </ tddSchema>

123

124 <qrdSchema>

125 < r e s u l t d a t a D e f i n i t i o n R e f = " Ac t ionResu l t " / >

126 </qrdSchema>

127

128 </ t a s k D e f i n i t i o n >

129 < t a s k D e f i n i t i o n name=" RemoveProvider " sntd=" / task / netdev / l o g i c a l /

se rv i ce / smartcomponent_service / remove_provider>

130 < !−− I npu t −−>

131 < d a t a D e f i n i t i o n i d =" ComplexUID ">

132 <metaData name=" datatype "> i n t e g e r < / metaData>

133 <metaData name=" minValue ">1< / metaData>

134 <metaData name=" maxValue ">9999999999999< / metaData>

135 <metaData name=" u n i t "> i n t e g e r < / metaData>

136 < / d a t a D e f i n i t i o n >

137 < d a t a D e f i n i t i o n i d =" SensorUID ">

138 <metaData name=" datatype "> i n t e g e r < / metaData>

139 <metaData name=" minValue ">1< / metaData>

140 <metaData name=" maxValue ">9999999999999< / metaData>

141 <metaData name=" u n i t "> i n t e g e r < / metaData>

142 < / d a t a D e f i n i t i o n >

143 < !−− Output −−>

144 < d a t a D e f i n i t i o n i d =" Ac t ionResu l t ">

145 <metaData name=" datatype "> s t r i n g < / metaData>

146 <metaData name=" u n i t "> s t r i n g < / metaData>

147 < / d a t a D e f i n i t i o n >
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148 < / d a t a D e f i n i t i o n s >

149

150 <tddSchema>

151 <goals>

152 <goal d a t a D e f i n i t i o n R e f = " ComplexUID " / >

153 <goal d a t a D e f i n i t i o n R e f = " SensorUID " / >

154 < / goals>

155 < / tddSchema>

156

157 <qrdSchema>

158 < r e s u l t d a t a D e f i n i t i o n R e f = " Ac t ionResu l t " / >

159 < / qrdSchema>

160

161 < / t a s k D e f i n i t i o n >

162 < / taskRange>

163 < l o c a l i z a t i o n s / >

164 < / nsd>

ComplexService NSD Document
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