

OPEN-R SDK
 OPEN-R Internet Protocol Version4

115-01
© 2004 by Sony Corporation

 OPEN-R Internet Protocol Version4 1

Notes on This Document

Notes on Using This Document

! The contents provided by this document (PDF files) are intended only for

supplying informaion.

! The contents provided by this document (PDF files) are subject to change

without notice.

! We are not responsible for errors or omissions in technical or editorial aspects

concerning the contents described in this document. We also are not responsible
for technical measures, correspondence, execution according to this document,
as well as for the results occurred by them such as inevitable, indirect or
incidental damages.

Notes on Copyright

! Sony Corporation is the copyright holder of this document.

! No information in this document may be duplicated, reproduced or modified. It
is also prohibited to publish the contents of this document on the Internet
Website or other public media without the express written permission of Sony
Corporation.

About Trademarks

! Aperios and OPEN-R are trademarks or registered trademarks of Sony
Corporation.

! UNIX is a registered trademark of The Open Group in the United States and/or
other countries.

! Adobe Acrobat and Adobe Reader are registered trademarks of Adobe Systems
Incorporated.

! Other system names, product names, service names and firm names contained

in this document are generally trademarks or registered trademarks of respective
makers.

OPEN-R Internet Protocol Version4 2

Index

About this book.. 4

Part1 IPv4 Programmer’s Guide ..5

1 Introduction to the IPv4 protocol stack... 5
1.1 Protocols in the IPv4 protocol stack ..5
1.2 The IPv4 protocol stack ...6
1.3 How your object communicates with the protocol stack6

Creating new endpoints ..8
Creating shared memory buffers ..9
Requesting network services..11

2 TCP guide ... 12
2.1 TCP ...12

TCP network operations ...12
TCP endpoint life cycle ...12

2.2 Creating a TCP endpoint ...13
2.3 Establishing a connection (client side) ..14
2.4 Listening for connection requests (server side)14
2.5 Sending data ...15
2.6 Receiving data...16
2.7 Closing a connection ...16

Active close ..16
Passive close..17
Abort ...17

2.8 TCP echo client example...17

3 UDP guide... 22
3.1 Introduction to UDP on OPEN-R ...22

UDP network operations...22
UDP endpoint life cycle...22

3.2 Creating a UDP endpoint...23
3.3 Binding an endpoint...24
3.4 Setting foreign connection parameters (Optional)24
3.5 Sending data ...25
3.6 Receiving data...26
3.7 Closing an endpoint...26
3.8 UDP echo server example...27

4 DNS guide... 31
4.1 Introduction to DNS ...31

DNS network operations...31
DNS endpoint life cycle...32

4.2 Creating a DNS endpoint ..32
4.3 Setting and getting an object’s DNS servers ...33
4.4 Setting and getting an object’s default domain name33
4.5 Getting a host entry ...34

Getting an entry by domain name...35
Getting an entry by IP address ...35

4.6 Getting a host’s IP address ...36
4.7 Getting a host’s domain name alias ..36
4.8 Closing an endpoint...37
4.9 DNS client example...37

5 IP Guide .. 41
5.1 Introduction to IP ...41

IP network operations ...41
IP endpoint life cycle...41

 OPEN-R Internet Protocol Version4 3

5.2 Creating an IP endpoint...42
5.3 Binding an endpoint...42
5.4 Sending data ...43
5.5 Receiving data...45
5.6 Closing an endpoint...45
5.7 IP ping example...46

Part2 IPv4 Reference ...50

6 ANT environment reference ... 50
antEnvCreateEndpointMsg ...50

antEnvCreateEndpointMsg::antEnvCreateEndpointMsg()....................51
antEnvCreateSharedBufferMsg...52

antEnvCreateSharedBufferMsg::antEnvCreateSharedBufferMsg()52
antSharedBuffer ..53

antSharedBuffer::Map() ..53
antSharedBuffer::UnMap()..53
antSharedBuffer::GetAddress() ..54
antSharedBuffer::GetSize() ..54

7 TCP reference ... 55
TCP errors...55
TCPEndpointBaseMsg ..56
TCPEndpointConnectMsg...57
TCPEndpointListenMsg...58
TCPEndpointSendMsg..59
TCPEndpointReceiveMsg ...60
TCPEndpointCloseMsg ...61

8 UDP reference... 62
UDP errors ..62
UDPEndpointBaseMsg..64
UDPEndpointBindMsg...65
UDPEndpointConnectMsg ..66
UDPEndpointSendMsg ...67
UDPEndpointReceiveMsg...69
UDPEndpointCloseMsg...70

9 DNS reference... 71
DNS errors ..71
DNSEndpointBaseMsg..72
DNSEndpointSetServerAddressesMsg ...73
DNSEndpointGetServerAddressesMsg...74
DNSEndpointSetDefaultDomainNameMsg ...75
DNSEndpointGetDefaultDomainNameMsg...76
DNSEndpointGetHostByNameMsg ...77
DNSEndpointGetHostByAddrMsg ...78
DNSEndpointGetAddressMsg...79
DNSEndpointGetAliasMsg ..80
DNSEndpointCloseMsg...81

10 IP reference ... 82
IP errors ..82
IP packet types..83
IPEndpointBaseMsg..84
IPEndpointBindMsg...85
IPEndpointSendMsg..86
IPEndpointReceiveMsg ...87
IPEndpointCloseMsg...88

Glossary ... 89

OPEN-R Internet Protocol Version4 4

About this book
This book describes the Internet Protocol version 4 (IPv4) implemented on OPEN-R
working on OPEN-R1.1.3. This release of IPv4 includes four network protocols:
TCP, UDP, IP and the client side of DHCP.

This book has two parts:

! IPv4 Programmer’s Guide – An introduction to networking on OPEN-R and to

the IPv4 protocol stack. Detailed instructions are given for how OPEN-R
objects can use the TCP, UDP, DNS, and IP services in the stack.

! IPv4 Reference – Detailed descriptions of all classes, messages, errors, and

operations that you will encounter when writing OPEN-R objects that
communicate with the IPv4 protocol stack.

OPEN-R objects are described as “objects” in this manual. In case a remote side is
not an OPEN-R host(e.g. UNIX), it is more appropriate to call it a process instead of
object, but we use “object” as a generic term in this manual.

 OPEN-R Internet Protocol Version4 5

Part1 IPv4 Programmer’s Guide

1 Introduction to the IPv4 protocol stack

This chapter describes the protocols in the current version of the IPv4 protocol stack,
introduces this implementation of that IPStack on OPEN-R, and explains how
objects communicate with the stack.

1.1 Protocols in the IPv4 protocol stack

The Internet Protocol (IP) is a protocol for sending data between hosts on the
Internet. IP version 4 (IPv4) is currently the most widely used version of this
protocol, and is the version available on OPEN-R. The IPv4 protocol stack on
OPEN-R includes several protocols that supplement the basic IP protocol.

This release of the IPv4 protocol stack contains the following protocols:

! IP (Internet Protocol) – The base protocol, responsible for delivering datagrams

over the Internet. This is a packet-oriented, connectionless protocol, offering
unreliable transfer of IP datagrams.

! TCP (Transmission Control Protocol) – Runs on top of the IP protocol. It
provides objects with a connection-oriented, reliable, byte stream service.

! UDP (User Datagram Protocol) – Runs on top of the IP protocol. It provides
objects with an unreliable datagram delivery service.

! DNS (Domain Name System) – A service for mapping domain names to IP
addresses and vice-versa.

! DHCP (Dynamic Host Configuration Protocol) – A service for allocating
reusable network addresses and additional configuration options.

OPEN-R Internet Protocol Version4 6

1.2 The IPv4 protocol stack

On OPEN-R, the IPv4 protocol stack is implemented using the OPEN-R Networking
Toolkit (ANT). The stack exists at runtime in the IPStack, which also includes the
ANT runtime environment. The IPStack is an OPEN-R system layer object.

 IPv4 stack
 object object

ANT network
 environment device

 drivers

Physical
 network

Figure 1 The IPStack provides networking services on OPEN-R.

The IPStack communicates through message passing with objects and with device
drivers.

1.3 How your object communicates with the protocol stack

Objects can use the network services offered by the IPv4 protocol stack. Objects
communicate with the protocol stack through normal message passing, by sending
special messages to and receiving special messages from the IPStack.

The first thing that an object must do is ask the IPStack to create an endpoint. An
endpoint is a special ANT construct that is located at the top of the protocol stack
and is responsible for communication between the object and the stack. Typically, an
object requires one endpoint per network connection. For example, an object that
needs to send data through a TCP connection and a UDP connection would require
two endpoints. So would an object with two TCP connections. Instructions on how
to create new endpoints are described later.

 OPEN-R Internet Protocol Version4 7

 object

 Message passing

 IPv4 stack
 object

TCP endpoint UDP endpoint

 IPv4
 protocol stack

Figure 2 Objects send requests for network services to endpoints in the IPStack.
These endpoints provide access to the IPv4 protocol stack.

In addition to its endpoints, an object must also create one or more shared memory
buffers. Shared memory buffers are required for exchanging data between objects
and the IPv4 protocol stack. Objects and the protocol stack do not necessarily share
the same address space, so they cannot exchange pointers to the data being
transferred. Shared memory buffers, implemented by the antSharedBuffer structure,
map a common memory area into the address space of both objects. Instructions on
how to create shared memory buffers are described later.

All messages sent to the IPStack are inherited from the antEnvMsg structure. This
structure provides the basic message handling constructs such as Send() and Call().
Each service offered by a protocol has a specific inherited message type: for
example, a request to send data by TCP is made with a TCPEndPointSendMsg, and
a request to bind a UDP connection is made with a UDPEndPointBindMsg.

OPEN-R Internet Protocol Version4 8

Creating new endpoints

To create a new endpoint for any protocol in the IP stack, your object sends an
antEnvCreateEndpointMsg to the IPStack. In the antEnvCreateEndpointMsg, your
object specifies which protocol the endpoint is required to implement, and how
much memory should be allocated to the endpoint’s SDU pool. The IPStack creates
a new endpoint for the specified protocol and replies to the
antEnvCreateEndpointMsg. The ModuleRef parameter in this message now stores a
reference to the new endpoint.

Example
In this example, an object creates a new TCP endpoint. This process is exactly the
same for other protocols in the IPStack, except the object would specify a different
type of endpoint. See the $IPv4_ROOT/Examples/TCP directory for the complete
TCP example.

To begin, the object creates a message that requests a new TCP endpoint:

antEnvCreateEndpointMsg createMsg(
 EndpointType_TCP,
 4 * PACKETSIZE
);

The following endpoint types are available:

! EndpointType_TCP
! EndpointType_UDP
! EndpointType_DNS
! EndpointType_IP

Notice that the object requests an SDU pool that is four times greater than the packet
size (4 * PACKETSIZE). An SDU pool is an internal ANT construct that stores data
in the protocol stack. As a guideline, always create an SDU pool that is slightly
larger than the largest packet that you expect to send. For example, 8-KB packets
would require an SDU pool of approximately 10 KB.

The object now sends the message to the IPStack:

createMsg.Call(
 IPStackRef,
 sizeof(antEnvCreateEndpointMsg)
);

The Call() method is inherited from antEnvMsg. It specifies an antStackRef to the
IPStack (IPStackRef), and the size of the message. The Call() method sends the
message synchronously, which means that the object will continue only when it
receives a reply.

When the object receives a reply, it gets a reference to the new endpoint:

endpoint = createMsg.moduleRef;

This reference enables the object to communicate with the new endpoint. For the
TCP protocol, the object can send messages that request services such as connecting,
listening, sending, receiving, and closing. Other protocols may offer different
services.

 OPEN-R Internet Protocol Version4 9

Creating shared memory buffers

Shared memory buffers are implemented by the antSharedBuffer structure. They
map a shared memory area to the address spaces of your object and the protocol
stack. When your object exchanges data with the protocol stack, the data is
identified by a pointer to the shared buffer and an offset in the buffer.
antSharedBuffer automatically converts this offset to a location in the object’s
address space, as shown in Figure 3.

Application memory Shared memory Protocol stack memory
address space buffer address space

 Pointer = x Pointer = x Address = z

 Address = y Pointer = x

Figure 3 Shared memory buffers map memory areas to the address spaces of
objects and the protocol stack, enabling them to exchange pointers to data.

Your object can create a single shared buffer, or it can create several buffers for
specific operations such as send and receive.
Shared buffers are allocated and deallocated by the OPEN-R shared memory
management routines. These routines can take a long time to execute, so you should
create and delete shared buffers only when necessary. Try to reuse existing buffers
whenever possible. Typically, you would create a send buffer and a receive buffer
for every new endpoint, and then reuse these buffers for all subsequent send and
receive operations on that endpoint.

There are also some restrictions on the size of shared buffers. Normally, the size that
you request will be rounded up to the nearest multiple of the page size on OPEN-R.
The page size of OPEN-R in memory protection mode is 4096 bytes. Therefore,
using this mode, if you request a 7000-byte shared buffer, the buffer will be 8192
bytes (4096*2).

You can use shared buffers in many ways, but the needs of your particular object
will help you to decide which approach to follow.

To create a shared buffer, your object sends an antEnvCreateSharedBufferMsg to the
IPStack, specifying the size of the buffer. The IPStack creates the shared buffer and
replies to the antEnvCreateSharedBufferMsg. The buffer parameter in this message
now stores a reference to the new antSharedBuffer. Your object then maps the buffer
to its address space, by invoking the antSharedBuffer::Map() method.

OPEN-R Internet Protocol Version4 10

For descriptions of antEnvCreateSharedBufferMsg and antSharedBuffer, see the
“ANT environment reference”.

Example
In this example, a TCP client object creates two shared buffers: one for data being
sent, and one for data being received.
To begin, the object creates a message that requests a new shared buffer:

antEnvCreateSharedBufferMsg bufferMsg(PACKETSIZE);

The specified buffer size is the same as the packet size, because the object will
exchange data with the protocol stack only one packet at a time. As a general
guideline, a shared memory buffer should be able to hold the largest packet that will
be sent or received by the object.

The object now sends the message to the IPStack:

bufferMsg.Call(
 IPStackRef,
 sizeof(antEnvCreateSharedBufferMsg)
);

The Call() method is inherited from antEnvMsg. It specifies an antStackRef to the
IPStack (IPStackRef), and the size of the message. The Call() method sends the
message synchronously, which means the object will continue only when it receives
a reply.

When the object receives a reply, it gets a reference to the new shared buffer and
defines it as a send buffer:

sendBuffer = bufferMsg.buffer;

Finally, the object maps the shared buffer to its address space:

sendBuffer.Map()

To create a receive buffer, the object repeats the above process by once again
sending the antEnvCreateSharedBufferMsg to the IPStack:

bufferMsg.Call(
 IPStackRef,
 sizeof(antEnvCreateSharedBufferMsg)
);

receiveBuffer = bufferMsg.buffer;
receiveBuffer.Map()

When the object sends data to the protocol stack, it sends a pointer to the data inside
the send buffer. When it receives data from the protocol stack, it will receive a
pointer to data in the receive buffer. The antSharedBuffer structure automatically
converts these pointers to locations in the address space of the object or protocol
stack.

 OPEN-R Internet Protocol Version4 11

Requesting network services

To request a service from a protocol in the IP protocol stack, an object creates a
message and sends it to the appropriate endpoint in the IPStack. The message type
identifies which service is required, and the message contents include the
information needed to perform the service (such as IP addresses, port numbers,
pointers to data in shared buffers, and so on).

Each protocol offers a unique set of messages that have been inherited from
antEnvMsg. For descriptions of these messages, see the TCP, UDP, DNS, and IP
sections of the IPv4 Reference.

Example
In this example, an object opens a TCP connection to another host.
To begin, it creates a message that requests the connection:

TCPEndpointConnectMsg connectMsg(
 endpoint,
 0,
 0,
 "193.74.243.95",
 7
);

The first parameter, endpoint, identifies the TCP endpoint to which the message will
be sent. The next two parameters, both 0, will return the local IP address and port
number when the connection is established. The last two parameters specify the IP
address and port number of the host to which the connection should be established.

The object now sends the message to the TCP endpoint in the IPStack:

connectMsg.Call(
 IPStackRef,
 sizeof(TCPEndpointConnectMsg)
);

The Call() method is inherited from antEnvMsg. It specifies an antStackRef to the
IPStack (IPStackRef), and the size of the message. The Call() method sends the
message synchronously, which means the object will continue only when it receives
a reply.

OPEN-R Internet Protocol Version4 12

2 TCP guide

This chapter introduces the TCP protocol on OPEN-R, and explains how your object
can use the TCP services offered by the IPv4 protocol stack.

2.1 TCP

TCP (Transmission Control Protocol) runs on top of the IP layer in the IPv4 protocol
stack. TCP provides objects with a reliable, byte stream service. TCP is a
connection-oriented protocol, so the sending and receiving objects need to establish
a connection before any data transfer can take place.

TCP network operations

On OPEN-R, the IPv4 protocol stack offers the following TCP operations to objects:

! Connect – Open a TCP connection to an object on another host.

! Listen – Start listening for connection requests. This operation is typically

performed by server objects instead of a connect operation. Server objects
normally accept incoming TCP connections from client objects.

! Send – Send data over an open connection.

! Receive – Receive data from an open connection.

! Close – Close a TCP connection.

Your object performs these operations by sending special messages to a TCP
endpoint in the IPStack. These messages are inherited from
TCPEndpointBaseMessage, which is itself inherited from antEnvMsg. For
descriptions of these messages, see “Chapter7 TCP reference.”

For an overview of how objects create endpoints and request network services, see
“1.3 How your object communicates with the protocol stack.”

TCP endpoint life cycle

Figure 4 shows the state transitions of a TCP endpoint during its life cycle. These
transitions illustrate the possible sequence of events and operations in a TCP
connection. The message types shown in Figure 4 are described fully in the IPv4
Reference.

Your object requires one endpoint for each open network connection. You cannot
request a new connection if a connection has already been established—your object
must create a new endpoint first.

An endpoint can perform only one similar operation at a time. For example, if you
send a TCPEndpointListenMsg to an endpoint that is already listening, the endpoint
will return a TCP_CONNECTION_BUSY or TCP_OPERATION_INVALID error.
However, it is possible to perform a send and receive operation at the same time.

 OPEN-R Internet Protocol Version4 13

2.2 Creating a TCP endpoint

Before your object can open a TCP connection, it must create a new TCP endpoint.
Your object requires a new endpoint for each TCP connection that it opens. The
process for creating an endpoint is the same for each protocol in the IPStack, and is
described in detail in “How your object communicates with the protocol stack.”

See the /$IPv4_ROOT/Examples/TCP directory for a full working TCP example.

Client or Server Object: antEnvCreateEndpointMsg.send

 NEW

Client Object: Server Object:
TCPEndpointConnectMsg.Send TCPEndpointListenMsg.Send

CONNECTING LISTENING

 Endpoint: Endpoint:
TCPEndpointConnectMsg.Reply TCPEndpointListenMsg.Reply
 (After a connection request)

 Possible operation in Active state
 ACTIVE TCPEndpointSendMsg
 TCPEndpointReceiveMsg
 TCPEndpointCloseMsg

Client Object:
TCPEndpointCloseMsg.Send TCP on other side of connection:
 Sends disconnect indication

 CLOSING_PASSIVE
 any.Reply(error)
 TCP on other

 side of connection:
 TCPEndpointCloseMsg.Send ABORTING

WAITCLOSEIND WAITCLOSEMSG

 Endpoint: Endpoint:
TCPEndpointCloseMsg.Reply TCPEndpointCloseMsg.Reply

 CLOSED

 Figure 4 The state transitions of a TCP endpoint

OPEN-R Internet Protocol Version4 14

2.3 Establishing a connection (client side)

When a client object needs to establish a TCP connection with a server, it sends a
TCPEndpointConnectMsg to its endpoint in the IPStack. Table 1 shows the
parameters in this message.

Table 1 Parameters in TCPEndpointConnectMsg
__
Parameter Description

IPAddresslAddress (out) Returns the local IP address, when the connection has
 been established.

PortlPort (out) Returns an ephemeral port number assigned to the

client object, when the connection has been established.

IPAddressfAddress (in) The IP address of the host that you need to connect to.

PortfPort (in) The port number of the object that you need to connect

to.
__

When a connection is established, the TCP endpoint returns the fully specified IP
addresses and port numbers. The objects on the two hosts can now send and receive
data over the connection.

2.4 Listening for connection requests (server side)

A server object accepts connection requests from client objects. This means that the
server object must listen for requests, and establish a connection only when it
receives a request. Normally, it will accept requests only for connections to a
specific port number. For example, an FTP server accepts connections only on the
FTP port, equal to 21.

For a server object to handle multiple clients concurrently, it must perform more
than one listen operation. Each listen operation waits for connection requests on the
same port number. The server object requires a separate endpoint for each listen
operation.

To start listening for connection requests, your server object sends a
TCPEndpointListenMsg to its endpoint in the IPStack. Table 2 shows the parameters
in this message.

 OPEN-R Internet Protocol Version4 15

Table 2 Parameters in TCPEndpointListenMsg

Parameter Description

IPAddresslAddress (out) Returns the local IP address when a connection has
 been established.

PortlPort (in) The port number for which you will accept connection

requests. If you will accept requests for any port, specify a
value of IP_PORT_ANY.

IPAddressfAddress (out) Returns the IP address of the host that requested the

connection.

PortfPort (out) Returns the port number of the object that requested

the connection.
__

When a connection request is received, the TCP endpoint establishes the connection
and returns the fully specified IP addresses and port numbers.

2.5 Sending data

To send data over an open TCP connection, your object sends a
TCPEndpointSendMsg to its endpoint in the IPStack. Table 3 shows the parameters
in this message.

Table 3 Parameters in TCPEndpointSendMsg
__
Parameter Description

buffer (in) Pointer to the data being sent.

The data must be stored in a shared memory buffer defined by the
antSharedBuffer structure.

size (in) The size, in bytes, of the data being sent.
__

The TCP endpoint replies to this message when the data has been processed by the
IP stack and the buffer can be reused.

OPEN-R Internet Protocol Version4 16

2.6 Receiving data

To receive data from an open TCP connection, your object sends a
TCPEndpointReceiveMsg to its TCP endpoint in the IPStack. Table 4 shows the
parameters in this message.

Table 4 Parameters in TCPEndpointReceiveMsg
__
Parameter Description

buffer (in) Pointer to a memory area where the incoming data should be

written. This area must be in a shared memory buffer defined by
the antSharedBuffer structure.

sizeMin (in/out) Specifies the minimum number of bytes to receive. When
the receive operation has completed and the endpoint has replied to
the object, this parameter returns the actual number of bytes that
were received.

sizeMax (in/out) Specifies the maximum number of bytes to receive. When

the receive operation has completed and the endpoint has replied to
the object, this parameter returns the actual number of bytes that
were received.

__

The TCP endpoint replies to this message when the data has been copied into the
receive buffer. Note that when all data in the transmission has been received and the
TCP connection is closed, the last receive request may hold a smaller number of
bytes than what is specified in sizeMin.

2.7 Closing a connection

A TCP connection can be closed three different ways:

! Active close – The close request is sent directly by your object.

! Passive close – The close request is sent by the object on the other side of the

connection.

! Abort – An error occurs, which closes the connection unexpectedly.

The following sections provide details on each of these methods of closing a
connection.

Active close

An active close occurs when your object initiates the closing of the TCP connection.
To perform an active close, your object sends a TCPEndpointCloseMsg to its
endpoint in the IPStack.

When your object performs an active close, it can no longer send or receive data.
The object on the other side of the connection will receive the rest of the
transmission, and then it will receive an indication that the connection has been
closed. From the perspective of the other object, a passive close has occurred.

 OPEN-R Internet Protocol Version4 17

Passive close

A passive close occurs when the object on the other side of the network closes the
TCP connection (by performing an active close). After your object has received the
entire data transmission, a TCP_CONNECTION_CLOSED error will occur. Your
object must then complete the passive close by sending a TCPEndpointCloseMsg to
its endpoint in the IPStack.

Abort

An abort occurs when something unexpected happens to the TCP connection. For
example:

! The connection has been lost and it times out.

! A connection request takes too much time and is aborted by the requesting

object.

! A normal active or passive close takes too much time and is aborted by one of
the objects.

! An object decides to abort the connection.

An abort purges all data from the shared buffers and immediately closes the
connection.

To abort a connection, your object sends a TCPEndpointCloseMsg to its endpoint in
the IPStack. This message has one parameter, a boolean called abort. If TRUE, the
TCP connection is aborted, instead of being shut down in an orderly fashion.

2.8 TCP echo client example

This section provides an example of a TCP echo client program, which illustrates
how to use the TCP messages.

The TCP echo client establishes a connection to a TCP echo server, transfers some
data, and closes the connection when it receives its data back from the server.

In this example, it should be possible to send and receive data at the same time.
Therefore, the asynchronous version of antEnvMsg method is used in certain cases.
This means that the number of entrypoints and the stubs to process these messages
must be defined. See “Entry point definition” for numbering the entry points.

Variable definitions

__

#include <ant.h>
#include <EndpointTypes.h>
#include <TCPEndpointMsg.h>

The entrypoints:
enum
{
 Entry_Initialize = 0,
 Entry_ReceiveCont = 1,
 Entry_SendCont = 2,
 Echo_NumEntries = 3
};
OPEN-R OID and antStackRef are necessary for the message
passing:
OID myOID;

OPEN-R Internet Protocol Version4 18

antStackRef IPStackRef;

Predefined values used by the client:
#define ECHOSERVER_IP "168.1.2.3"
#define ECHOSERVER_PORT 7

#define PACKETSIZE 1024
#define ECHOSIZE PACKETSIZE * 100
#define POOLSIZE 4096

The shared buffers used to transfer data:
antSharedBuffer sendBuffer;
byte* sendData;
antSharedBuffer receiveBuffer;
byte* receiveData;

The TCP connection:
antModuleRef connection;
uint32 bytesSent;
uint32 bytesReceived;
__

Entry point definition

Entry points are defined for the following processes.

! Object initialization

! Send request has been processed

! Receive request has been completed

The following description is needed for stub.cfg. See “Extra entry, 2.3 Stub in
Programmer’s Guide” for the details of the definition of entry points.
__

Extra: Initialize()
Extra: ReceiveCont()
Extra: SendCont()

Executing a stubgen2 command generates xxxStub.cc where the following are
described.
__
 :
GEN_ENTRY(_Initializestub, _Initialize);
GEN_ENTRY(_ReceiveContstub, _ReceiveCont);
GEN_ENTRY(_SendContstub, _SendCont);

ObjectEntry ObjectEntryTable[]= {
 :
 {Extra_Entry[0], (Entry)_Initializestub},
 {Extra_Entry[1], (Entry)_ReceiveCont},
 {Extra_Entry[2], (Entry)_SendCont},
 {UNIDEF, (Entry)_ENTRY_UNDEF}
};
__

The number of Entry points is determined by the order of the elements in
ObjectEntryTable[].

 OPEN-R Internet Protocol Version4 19

Initialize the object

This function is invoked when the client object starts up. It performs the following
operations:

! Create the shared buffers

! Create the TCP endpoint

! Connect to the TCP echo server

__

void Initialize(void)
{
Get some OIDs for the OPEN-R message passing:
 WhoAmI(&myOID);
 IPStackRef = antStackRef("IPStack");
Initialize counters:
 bytesSent = 0;
 bytesReceived = 0;

Allocate a shared buffer for receiving data:
 antEnvCreateSharedBufferMsg receiveBufferMsg(PACKETSIZE);
 receiveBufferMsg.Call(
 IPStackRef,
 sizeof(antEnvCreateSharedBufferMsg)
);

 if (ANT_SUCCESS != receiveBufferMsg.error)
 {
 EXIT();
 }
 receiveBuffer = receiveBufferMsg.buffer;
 receiveBuffer.Map();

Store the base address of the receive buffer:
 receiveData = (byte*)receiveBuffer.GetAddress();
Do the same steps to get the send buffer:
 sendData = (byte*)sendBuffer.GetAddress();
Create a TCP connection:
 antEnvCreateEndpointMsg createMsg(EndpointType_TCP,
POOLSIZE);
 createMsg.Call(
 IPStackRef,
 sizeof(antEnvCreateEndpointMsg)
);

 if (ANT_SUCCESS != createMsg.error)
 {
 EXIT();
 }
 connection = createMsg.moduleRef;
Connect to the echo server:
 TCPEndpointConnectMsg connectMsg(
 connection,
 IP_ADDR_ANY,
 IP_PORT_ANY,
 ECHOSERVER_IP,
 ECHOSERVER_PORT
);
 connectMsg.Call(
 IPStackRef,
 sizeof(TCPEndpointConnectMsg)
);
 if (TCP_SUCCESS != connectMsg.error)
 {

OPEN-R Internet Protocol Version4 20

 EXIT()
 }
The connection is now established. To get information about
the connection, you examine connectMsg.lAddress,
connectMsg.lPort, connectMsg.fAddress, and connectMsg.fPort.
Start sending and receiving data:
 DoSend();
 DoReceive();
 EXIT();
}
__

Close the TCP connection

This function destroys the shared buffers and closes the connection.
__

void Close()
{
 receiveBuffer.UnMap();
 antEnvDestroySharedBufferMsg
receiveBufferMsg(receiveBuffer);
 receiveBufferMsg.Call(
 IPStackRef,
 sizeof(antEnvDestroySharedBufferMsg)
);
Do same for the send buffer:
 ...
Then close the connection:
 TCPEndpointCloseMsg closeMsg(connection);
 closeMsg.Call(
 IPStackRef,
 sizeof(TCPEndpointCloseMsg)
);
}
__

Receive data

These functions receive data until enough data has arrived. Then the TCP connection
is closed. Two functions are used, to introduce asynchronisity.

DoReceive() tries to receive between 1 and PACKETSIZE bytes.
__

void DoReceive()
{
 TCPEndpointReceiveMsg receiveMsg(
 connection,
 receiveData,
 1,
 PACKETSIZE
);
 receiveMsg.Send(
 IPStackRef,
 myOID,
 Entry_ReceiveCont,
 sizeof(TCPEndpointReceiveMsg)
);
}
__

ReceiveCont() is invoked when a receive request has been completed. If all sent data
has been received, the TCP connection is closed—otherwise, a new receive request
is posted.

 OPEN-R Internet Protocol Version4 21

__

void ReceiveCont(ANTENVMSG _msg)
{
 TCPEndpointReceiveMsg* msg;
 msg = (TCPEndpointReceiveMsg*)antEnvMsg::Receive(_msg);

 if (TCP_SUCCESS == msg->error)
 {
 bytesReceived += msg->sizeMin;
 if (bytesReceived < ECHOSIZE)
 {
 DoReceive();
 } else {
 Close();
 }
 }
 else
 {
 Close();
 }
 EXIT();
}
__

Send data

These functions send data to the echo server. Two functions are used, to introduce
asynchronisity.
DoSend() sends PACKETSIZE bytes to the echo server.

void DoSend()
{
 TCPEndpointSendMsg sendMsg(
 connection,
 sendData, PACKETSIZE
);
 sendMsg.Send(
 IPStackRef,
 myOID, Entry_SendCont,
 sizeof(TCPEndpointSendMsg)
);
}
SendCont() is invoked when the send buffer has been processed
by the IP stack and can be reused by the object. If more data
needs to be sent, it will post another send request.
void SendCont(ANTENVMSG _msg)
{
 TCPEndpointSendMsg* msg;
 msg = (TCPEndpointSendMsg*)antEnvMsg::Receive(_msg);
 if (TCP_SUCCESS == msg->error)
 {
 bytesSent += msg->size;
 if (bytesSent < ECHOSIZE)
 {
 DoSend();
 }
 }
 else
 {
 Close();
 }
 EXIT();
}
__

OPEN-R Internet Protocol Version4 22

3 UDP guide

This chapter introduces the UDP protocol on OPEN-R, and explains how your
object can use the UDP services offered by the IPv4 protocol stack.

3.1 Introduction to UDP on OPEN-R

UDP (User Datagram Protocol) is a protocol that runs on top of the IP layer in the
IPv4 protocol stack. It forwards packets of data, or datagrams, to the IP layer, which
delivers the packets over the network. UDP offers objects a connectionless,
unreliable datagram delivery service. Connectionless means that the sending and
receiving hosts do not establish a connection.

UDP is used by object-layer protocols such as TFTP, DNS, NFS, and so on.

UDP network operations

On OPEN-R, the IPv4 protocol stack offers the following UDP operations to
objects:

! Bind – Set the local connection parameters, which identify the object as a

destination for UDP packets. After a bind operation, the object will receive
packets only if their destination address is the same as the IP address and port
number specified by the bind parameters.

! Connect – An optional operation in which the object sets the foreign connection
parameters. Packets will be exchanged only with the host identified by IP
address and port number in the connection parameters.

! Send – Send data.

! Receive – Receive data.

! Close – Clear the bind and connect parameters, and stop sending and receiving
data.

Your object performs these operations by sending special messages to a UDP
endpoint in the IPStack. These messages are inherited from
UDPEndpointBaseMessage, which is itself inherited from antEnvMsg. For
descriptions of these messages, see “Chapter 8 UDP reference.”

For an overview of how objects create endpoints and request network services, see
“1.3 How your object communicates with the protocol stack.”

UDP endpoint life cycle

Figure 5 shows the state transitions of a UDP endpoint during its life cycle. The
message types shown in Figure 5 are described fully in “Part2 IPv4 Reference.”

Your object requires one endpoint for each UDP connection, and an endpoint can
perform only one similar operation at a time. For example, if you send a
UDPEndpointSendMsg to an endpoint that is already sending data, the endpoint will
return an UDP_CONNECTION_BUSY error. However, you can send a receive
message to this endpoint.

 OPEN-R Internet Protocol Version4 23

3.2 Creating a UDP endpoint

Before your object can send or receive data by UDP, it must create a new UDP
endpoint. Your object requires a new endpoint for each UDP connection that it opens.
The process for creating an endpoint is the same for each protocol in the IPStack,
and is described in detail in “How your object communicates with the protocol
stack.”

Object:
 antEnvCreateEndpointMsg.Send

 NEW

 Object:

 ndpointBindMsg.Send

 BINDING

 Endpoint: Object:
 dpointCloseMsg.Send UDPEndpointConnectMsg.Send

 ACTIVE CONNECTING

 Endpoint:

 Object: UDPEndpoinConnectMsg.reply
 dpointCloseMsg.Send

 CLOSING
 Possible operation in Active state

 Endpoint: UDPEndpointBindMsg
 dpointCloseMsg.Reply UDPEndpointConnectMsg

 UDPEndpointSendMsg
 CLOSED UDPEndpointReceiveMsg
 UDPEndpointCloseMsg

Figure 5 The state transitions of a UDP endpoint.

OPEN-R Internet Protocol Version4 24

3.3 Binding an endpoint

An object must bind an endpoint, after the endpoint has been created. Binding is the
process of setting the local connection parameters, which identifies the port to be
used by the endpoint when sending UDP packets.

To bind an endpoint, your object sends a UDPEndpointBindMsg to the endpoint in
the IPStack. Table 5 shows the parameters in this message.

Table 5 Parameters in UDPEndpointBindMsg.
__
Parameter Description

address (in/out) A valid IP address on the local host.

If you specify IP_ADDR_ANY, the object will receive packets sent
to any IP address on the local host. This is useful for multihomed
hosts, which have several interfaces with different addresses. If the
host is not multihomed, the local IP address is returned.

On a multihomed host, IP_ADDR_ANY will be updated to a
specific IP address if the object performs a connect operation (after
binding the endpoint.

port (in/out) The port number of the object.

If you specify IP_PORT_ANY, an ephemeral port number is
assigned to the object and returned when the endpoint has been
bound. This port number will be greater than or equal to 1024.

__

After an endpoint is bound, the object can send and receive data. Every packet sent
by the object must specify a destination IP address and port number, unless the
object performs a connect operation first. In a connect operation, the object specifies
a destination for all of the packets that it sends. See “3.4 Setting foreign connection
parameters (Optional)” for more information.

3.4 Setting foreign connection parameters (Optional)

After binding an endpoint, an object can perform a connect operation. This operation
specifies a destination IP address and port number for every packet sent by the
object on that endpoint. Once connected, the object no longer needs to specify a
destination when it sends a packet.

To perform a connect operation, your object sends a UDPEndpointConnectMsg to
its endpoint in the IPStack. Table 5 shows the parameters in this message.

Table 6 Parameters in UDPEndpointConnectMsg.
__
Parameter Description

address (in) Specifies the IP address of the host to which all packets should

be sent.

port (in) Specifies the port number of the object to which all packets

should be sent.
__

 OPEN-R Internet Protocol Version4 25

3.5 Sending data

To send data by UDP, your object sends a UDPEndpointSendMsg to its endpoint in
the IPStack. If the endpoint is bound but not connected, this message must specify a
destination IP address and port number. If the endpoint is connected, this
information is not required. Table 7 shows the parameters in the
UDPEndpointSendMsg message.

Table 7 Parameters in UDPEndpointSendMsg.
__
Parameter Description

address (in) The IP address of the host to which the data should be sent.

If your object has performed a connect operation, this parameter is
ignored. The IP address specified in the UDPEndpointConnectMsg
is used instead.

port (in) The port number of the object to which the data should be
 sent.

If your object has performed a connect operation, this parameter is
ignored. The port number specified in the
UDPEndpointConnectMsg is used instead.

buffer (in) A pointer to the data being sent.

This data must be stored in a shared memory buffer, defined by the
antSharedBuffer structure.

size (in) The size of the data being sent, in bytes.
__

The UDP endpoint replies to this message when the data has been removed from the
shared buffer and sent.

OPEN-R Internet Protocol Version4 26

3.6 Receiving data

To receive data by UDP, your object sends a UDPEndpointReceiveMsg to its UDP
endpoint in the IPStack. Table 8 shows the parameters in this message.

Table 8 Parameters in UDPEndpointReceiveMsg.
__

Parameter Description

address (out) The IP address of the host that sent the data.

port (out) The port number of the object that sent the data.

buffer (in) Pointer to the buffer where incoming data should be stored.

This data must be stored in a shared memory buffer, defined by the
antSharedBuffer structure.

size (in/out) Specifies the maximum number of bytes to receive. When
the receive operation has completed and the endpoint has replied to
the object, this parameter returns the actual number of bytes that
were received.

If the received packet is larger than the specified size, the extra data
is deleted.

__

The UDP endpoint replies to this message when the data has been copied into the
shared buffer.

3.7 Closing an endpoint

To close a UDP endpoint, your object sends a UDPEndpointCloseMsg to the
endpoint in the IPStack. This message has no parameters. After sending this message,
the object can no longer send or receive data. The endpoint will reply when the
connection has been fully closed.

 OPEN-R Internet Protocol Version4 27

3.8 UDP echo server example

This example of a UDP echo server illustrates how to use the UDP messages. A
more complete version of this example can be found in the Examples directory of
your IPv4 distribution.

The UDP echo server opens a UDP connection and binds it to the echo port (7). All
data received on this connection is sent back.
See “Entry point definition” for numbering the entry points.

Variable definitions

#include <ant.h>
#include <EndpointTypes.h>
#include <UDPEndpointMsg.h>

enum
{
 Entry_Initialize = 0,
 Entry_ReceiveCont = 1,
 Entry_SendCont = 2,
 NumEntries = 3
};
OPEN-R OID and antStackRef are necessary for the message
passing:

OID myOID;
antStackRef IPStackRef;

Maximum UDP packet size:
#define PACKETSIZE 65536

The UDP connection:
antModuleRef connection;

Send/receive buffer:
antSharedBuffer dataBuffer;
byte* data;
__

Entry point definition

The following description is needed for stub.cfg. See “2.5.1 in Programmer’s
Guide” for the details of entry points.
__

Extra: Initialize()
Extra: ReceiveCont()
Extra: SendCont()

Executing a stubgen2 command generates xxxStub.cc where the following are
described.
__
 :
GEN_ENTRY(_Initializestub, _Initialize);
GEN_ENTRY(_ReceiveContstub, _ReceiveCont);
GEN_ENTRY(_SendContstub, _SendCont);

ObjectEntry ObjectEntryTable[]= {
 :
 {Extra_Entry[0], (Entry)_Initializestub},
 {Extra_Entry[1], (Entry)_ReceiveCont},

OPEN-R Internet Protocol Version4 28

 {Extra_Entry[2], (Entry)_SendCont},
 {UNIDEF, (Entry)_ENTRY_UNDEF}
};
__

The number of Entry points is determined by the order of the elements in
ObjectEntryTable[].

Initialize the object

This function is invoked when the client object starts up. It performs the following
operations:

! Create a shared buffer for send/receive operations
! Create a UDP endpoint
! Bind the endpoint to the echo port (7)

void Initialize(void)
{
Get some OIDs for OPEN-R message passing:
 WhoAmI(&myOID);
 IPStackRef = antStackRef(“IPStack”);

Allocate a shared buffer for sending/receiving:

 antEnvCreateSharedBufferMsg bufferMsg(PACKETSIZE);
 bufferMsg.Call(
 IPStackRef,
 sizeof(antEnvCreateSharedBufferMsg)
);
 if (ANT_SUCCESS != bufferMsg.error)
 {
 EXIT();
 }
 dataBuffer = bufferMsg.buffer;
 dataBuffer.Map();

Store the base address of the buffer:
 data = (byte*)dataBuffer.GetAddress();

Create a UDP connection:

antEnvCreateEndpointMsg createMsg(EndpointType_UDP,
PACKETSIZE);
 createMsg.Call(
 IPStackRef,
 sizeof(antEnvCreateEndpointMsg)
);
 if (ANT_SUCCESS != createMsg.error)
 {
 EXIT();
 }

 connection = createMsg.moduleRef;

Bind to the echo port:

 UDPEndpointBindMsg bindMsg(connection, IP_ADDR_ANY, 7);
 bindMsg.Call(
 IPStackRef,
 sizeof(antEnvCreateEndpointMsg)
);

 if (UDP_SUCCESS != bindMsg.error)
 {

 OPEN-R Internet Protocol Version4 29

 EXIT();
 }
Start receiving:
 DoReceive();
 EXIT();
}
__

Echo data

These functions receive a UDP datagram together with the IP address and port of the
sender, and then send the data back.

DoReceive() posts a receive request for a packet containing up to PACKETSIZE
bytes.
__

void DoReceive()
{
 UDPEndpointReceiveMsg receiveMsg(
 connection,
 dataBuffer, PACKETSIZE
);
 receiveMsg.Send(
 IPStackRef,
 myOID, Entry_ReceiveCont,
 sizeof(UDPEndpointReceiveMsg)
);
 EXIT();
}

ReceiveCont() is invoked when a UDP datagram has been received.
The function sends the datagram back to the sender of the data.

void ReceiveCont(void* _msg)
{
 UDPEndpointReceiveMsg* receiveMsg;
 receiveMsg =
 (UDPEndpointReceiveMsg*)antEnvMsg::Receive(_msg);

 if (UDP_SUCCESS == receiveMsg->error)
 {
 UDPEndpointSendMsg sendMsg(
 connection,
 receiveMsg->address,
 receiveMsg->port,
 receiveMsg->buffer,
 receiveMsg->size
);
Back to sender:

 sendMsg.Send(
 IPStackRef,
 myOID, Entry_SendCont,
 sizeof(UDPEndpointSendMsg)
);

 }
 else
 {
 Close();
 }
 EXIT();
}
__
SendCont() is invoked when the data has been processed by the IP stack and the

OPEN-R Internet Protocol Version4 30

buffer can be re-used. It posts a new receive request.
__

void SendCont(ANTENVMSG _msg)
{
 UDPEndpointSendMsg* sendMsg;
 sendMsg =(UDPEndpointSendMsg*)antEnvMsg::Receive(_msg);

 if (UDP_SUCCESS == sendMsg->error)
 {
 DoReceive();
 }

 else
 {
 Close();
 }
 EXIT();
}
__

Close the UDP connection

The Close() function:

! Unmaps and destroys the shared buffer

! Closes the UDP connection
__

void Close()
{
 dataBuffer.UnMap();
 antEnvDestroySharedBufferMsg bufferMsg(dataBuffer);
 bufferMsg.Call(
 IPStackOID,
 sizeof(antEnvDestroySharedBufferMsg)
);

 UDPEndpointCloseMsg closeMsg(connection);
 closeMsg.Call(
 IPStackOID,
 sizeof(UDPEndpointCloseMsg)
);
}
__

 OPEN-R Internet Protocol Version4 31

4 DNS guide

This chapter introduces the DNS-client support on OPEN-R, and explains how your
object can use the DNS-client services offered by the IPv4 protocol stack.

4.1 Introduction to DNS

DNS (Domain Name System) is a protocol that runs on top of UDP in the IPv4
protocol stack. It offers services for setting, getting, and translating Internet domain
names and IP addresses.

For example, if an object wants to send a file using FTP to a host with a domain
name of ftpserver.yourdomain.com, the object program must know the IP address of
that host. To determine this address, your program sends a request to DNS, which
replies that ftpserver.yourdomain.com has an IP address of 192.168.1.200. With this
information, your object program can open an FTP connection and begin sending the
file to ftpserver.yourdomain.com.

DNS network operations

On OPEN-R, the IPv4 protocol stack offers the following DNS operations to
objects:

Set and get a host’s DNS servers – Set or get the IP addresses of all DNS servers
used by a host. Note that all objects share the DNS server’s definition. Therefore,
when one object changes the DNS server’s definition, all other objects will
automatically use that definition.

! Set and get an object’s default domain name – Set or get the default domain

name of the host.

! Get a complete host entry by domain name or IP address – Get the full list of IP
addresses and domain name aliases for a specified host.

! Get a host’s IP address – Get any valid IP address for a host, when the host has
multiple addresses.

! Get a host’s domain name alias – Get any valid alias for a host’s domain name,
when the domain name has multiple aliases.

! Close – Close an object’s DNS endpoint.

Your object performs these operations by sending special messages to a DNS
endpoint in the IPStack. These messages are inherited from
DNSEndpointBaseMessage, which is itself inherited from antEnvMsg. For
descriptions of these messages, see “DNS reference.”

For an overview of how objects create endpoints and request network services, see
“1.3 How your object communicates with the protocol stack.”

OPEN-R Internet Protocol Version4 32

DNS endpoint life cycle

Figure 6 shows the state transitions of a DNS endpoint during its life cycle. The
message types shown in Figure 6 are described fully in the IPv4 Reference.

Object

 antEnvCreateEndpointMsg.Send

 NEW

 ACTIVE

 Object:
DNSEndpointCloseMsg.Send

 Posible operation in Active state

DNSEndpointSetServerAddressesMsg
 DNSEndpointGetServerAddressesMsg
 CLOSING DNSEndpointSetDefaultDomainNameMsg

 DNSEndpointGetDefaultDomainNameMsg
 DNSEndpointGetHostbyNameMsg

 Endpoint: DNSEndpointGetHostbyAddrMsg
 DNSEndpointCloseMsg.Reply DNSEndpointGetAddressMsg

 DNSEndpointGetAliasMsg
CLOSED

 Figure 6 The state transitions of a DNS endpoint

Your object requires one endpoint for each DNS connection, and an endpoint can
perform only one operation at a time. For example, if you send a
DNSEndpointSetServerAddressesMsg to an endpoint that is already performing that
operation, the endpoint will return a DNS_CONNECTION_BUSY error.

4.2 Creating a DNS endpoint

Before your object can send or receive data by DNS, it must create a new DNS
endpoint. The process for creating an endpoint is the same for each protocol in the
IPStack, and is described in detail in “How your object communicates with the
protocol stack.”

If possible, try to open only one DNS endpoint and reuse it throughout the object’s
lifespan for all DNS operations and queries. Close the endpoint only when no more
DNS queries are expected. Note that it is possible to create multiple DNS endpoints,
if your object requires it.

 OPEN-R Internet Protocol Version4 33

4.3 Setting and getting an object’s DNS servers

When an object is first initialized, it should register a list of all DNS servers that it
will use for resolving domain names and IP addresses. After this list is registered,
queries will be sent to the listed servers in the order they appear in the list.

Setting DNS server IP addresses

To register a list of DNS server IP addresses, your object sends a
DNSEndpointSetServerAddressesMsg to its endpoint in the IPStack.
Table 9 shows the parameters in DNSEndpointSetServerAddressesMsg.

Table 9 Parameters in DNSEndpointSetServerAddressesMsg
__
Parameter Description

nscount (in) The number of IP addresses to register.

addrList[MAXNS] (in) The list of IP addresses to register.
__

Getting DNS server IP addresses

To get a list of the DNS servers registered for your host, the object sends a
DNSEndpointGetServerAddressesMsg to its endpoint in the IPStack.

Table 9 shows the parameters in DNSEndpointGetServerAddressesMsg.

Table 10 Parameters in DNSEndpointGetServerAddressesMsg
__
Parameter Description

nscount (out) The number of registered IP addresses.

addrList[MAXNS] (out) The list of IP addresses.
__

4.4 Setting and getting an object’s default domain name

When an object is first initialized, it should register its default domain name. After
this domain name is registered, the name will automatically be added to all host
names that are not fully specified.

Setting the default domain name

To set its default domain name, your object sends a
DNSEndpointSetDefaultDomainNameMsg to its endpoint in the IPStack.
DNSEndpointSetDefaultDomainNameMsg has one parameter, which specifies the
domain name: name[MAXDNAME]. The domain name must be null-terminated.

Getting the default domain name

To get its default domain name, your object sends a
DNSEndpointGetDefaultDomainNameMsg to its endpoint in the IPStack.
DNSEndpointSetDefaultDomainNameMsg has one parameter, which specifies the
domain name: name[MAXDNAME]. The domain name is null-terminated.

OPEN-R Internet Protocol Version4 34

4.5 Getting a host entry

When you want to determine the IP address, domain name, or domain name aliases
of a host on the Internet, your object must get an entry for the host from one of its
DNS servers. A host entry typically contains a list of all IP addresses and domain
name aliases for the host, as shown in Figure 7.

On OPEN-R, when your object requests a host entry from the DNS protocol, the
entry will contain only:

! The address of the DNS server that returned the host entry.

! The first IP address in the list (the official address), and a count of the total

number of IP addresses for the host.

! The first domain name in the list (the official domain name), and a count of the
total number of domain name aliases for the host.

If you want to get a different IP address or one of the domain name aliases, you must
request them specifically. For details, see “Getting a host’s IP address” and “Getting
a host’s domain name alias,” later in this chapter.

Example of a
Host entry
 IP address of the DNS server that sent the host
 entry.
123.45.67.89

123.56.78.2 List of registered IP address for the host.
123.56.78.2 The first address is the official address.
123.67.89.2
123.78.90.2
 List of domain name aliases for the host.
foo.mydomain.com The first name is the official domain name.
bar.mydomain.com
zot.mydomain.com

 Figure 7 An example of a typical host entry

 OPEN-R Internet Protocol Version4 35

Getting an entry by domain name

To get a host entry when you know only the domain name or a domain name alias of
the host, your object sends a DNSEndpointGetHostByNameMsg to its endpoint in
the IPStack.

Table 9 shows the parameters in DNSEndpointGetHostByNameMsg.

Table 11 Parameters in DNSEndpointGetHostByNameMsg
__
Parameter Description

name[MAXDNAME] (in/out) The domain name of the host for which you want

 to get an entry. The domain name must be null-terminated.

If you specify a domain name alias, this parameter will
return the official domain name of the host.

server_address (out) The IP address of the DNS server that sent the host

entry.

host_address (out) The IP address of the host.

If the host has more than one IP address, this parameter
returns the first IP address.

n_address (out) The number of IP addresses for the host.

n_alias (out) The number of domain name aliases for the host.
__

Getting an entry by IP address

To get a host entry when you know only the IP address of the host, your object sends
a DNSEndpointGetHostByAddrMsg to its endpoint in the IPStack.

Table 9 shows the parameters in DNSEndpointGetHostByAddrMsg.

Table 12 Parameters in DNSEndpointGetHostByAddrMsg.
__
Parameter Description

host_address (in/out) The IP address of the host.

This parameter returns the first IP address of the host, even
if you specify a different IP address in the original message.

server_address (out) The IP address of the DNS server that sent the host
entry.

name[MAXDNAME] (out) The official domain name of the host. The domain

name is null-terminated.

n_address (out) The number of IP addresses for the host.

n_alias (out) The number of domain name aliases for the host.
__

OPEN-R Internet Protocol Version4 36

4.6 Getting a host’s IP address

If you want to get only the first registered IP address of a host, see “Getting a host
entry” earlier in this chapter. If you want to get any other IP addresses registered to
the host, you perform an additional operation, described in this section.

To get one of a host’s additional IP addresses, your object sends a
DNSEndpointGetAddressMsg to its endpoint in the IPStack.

Notes
Before you perform this operation, you must have already received the host entry,
as described in “Getting a host entry”.

Table 13 shows the parameters in DNSEndpointGetAddressMsg.

Table 13 Parameters in DNSEndpointGetAddressMsg.
__
Parameter Description

index (in) The index of the IP address that you want to get.

This index must be less than the value of n_address, returned when
the host entry was received earlier. A value of 0 returns the first IP
address in the host entry list.

address (out) The IP address at location index in the host entry.
__

4.7 Getting a host’s domain name alias

If you want to get only the official domain name of a host, see “Getting a host entry”
earlier in this chapter. If you want to get any of the host’s domain name aliases, you
perform an additional operation, described in this section.

To get one of a host’s domain name aliases, your object sends a
DNSEndpointGetAliasMsg to its endpoint in the IPStack.

Notes
Before you perform this operation, you must have already received the host entry,
as described in “4.5 Getting a host entry”.

Table 9 shows the parameters in DNSEndpointGetAliasMsg.

Table 14 Parameters in DNSEndpointGetAliasMsg.
__
Parameter Description

index (in) The index of the domain name alias that you want to

get. This index must be less than the value of n_alias,
returned when the host entry was received earlier. A value
of 0 returns the official domain name of the host.

name[MAXDNAME] (out) The domain name alias at location index in the host
 entry.

__

 OPEN-R Internet Protocol Version4 37

4.8 Closing an endpoint

To close a DNS endpoint, your object sends a DNSEndpointCloseMsg to the
endpoint in the IPStack. This message has no parameters. After sending this message,
the object can no longer send or receive data.

4.9 DNS client example

This DNS client example illustrates how to use the DNS messages. A complete
version of this program can be found in your IPv4 distribution.

The DNS client opens an endpoint to the DNS service in the IP stack, and uses it to
look up some names and IP addresses.

Variable definitions

__

#include <ant.h>
#include <EndpointTypes.h>
#include <DNSEndpointMsg.h>

OPEN-R message-passing-related information:
OID myOID;
antStackRef IPStackRef;

The endpoint used to access DNS:
antModuleRef endpoint;

Replace these with local DNS and host values:
#define DNS_SERVER1 “IP of primary DNS server”
#define DNS_SERVER2 “IP of secondary DNS server”
#define DNS_DOMAIN “local domain name”

#define HOSTNAME1 “www.yahoo.com”
#define HOSTNAME2 “name of local host”

#define HOSTIP1 “IP address of local machine”
__

Entry point definition

The following description is needed for stub.cfg. See “Extra entry, 2.3 Stub in
Programmer’s Guide” for the details of the definition of entry points.
__

Extra: Initialize()
__

OPEN-R Internet Protocol Version4 38

Initialize the object

This function is invoked when the object starts up.
__

void Initialize ()
{
 WhoAmI(&myOID);
 IPStackRef = antStackRef(“IPStack”);

 Open();
 SetServers();

 GetHostByName(HOSTNAME1);
 GetHostByName(HOSTNAME2);
 GetHostByAddress(HOSTIP1);

 Close();
 EXIT();
}

Open and close endpoint

Open() creates a DNS endpoint, which is needed to communicate with the DNS
service in the IP stack.
__

void Open()
{
 antEnvCreateEndpointMsg createMsg(EndpointType_DNS,
16*1024);
 createMsg.Call(IPStackRef, sizeof(antEnvCreateEndpointMsg));

 if (ANT_SUCCESS != createMsg.error)
 {
 EXIT();
 }

 endpoint = createMsg.moduleRef;
}
__

Close() cleans up the DNS endpoint.
__

void Close()
{
 DNSEndpointCloseMsg closeMsg(endpoint);
 closeMsg.Call(IPStackRef, sizeof(DNSEndpointCloseMsg));

}
__

 OPEN-R Internet Protocol Version4 39

Set up the DNS functionality

The SetServers() function:

! Sets the DNS primary and secondary servers

! Sets the local domain name

__

void SetServers()
{
 IPAddress addrList[2];

 addrList[0] = DNS_SERVER1;
 addrList[1] = DNS_SERVER2;

 DNSEndpointSetServerAddressesMsg
 setServerMsg(endpoint, 2, addrList);

 setServerMsg.Call(
 IPStackRef,
 sizeof(DNSEndpointSetServerAddressesMsg)
);

 if (DNS_SUCCESS != setServerMsg.error)
 {
 EXIT();
 }

 DNSEndpointSetDefaultDomainNameMsg
 setDomainMsg(endpoint, DNS_DOMAIN);
 setDomainMsg.Call(
 IPStackRef,
 sizeof(DNSEndpointSetDefaultDomainNameMsg)
);

 if (DNS_SUCCESS != setDomainMsg.error)
 {
 EXIT();
 }
}
__

GetHostByName() and GetHostByAddress()

void GetHostByName(char* name)
{
 DNSEndpointGetHostByNameMsg getHostMsg(endpoint, name);
 getHostMsg.Call(
 IPStackRef,
 sizeof(DNSEndpointGetHostByNameMsg)
);

 if (DNS_SUCCESS == getHostMsg.error)
 {
 cout << name << “ -> “ << getHostMsg.host_address << endl;
 }
 else
 {
 cout << “Could not resolve “ << name << endl;
 }
}
void GetHostByAddress(IPAddress address)

OPEN-R Internet Protocol Version4 40

{
 DNSEndpointGetHostByAddrMsg getHostMsg(endpoint, address);
 getHostMsg.Call(
 IPStackRef,
 sizeof(DNSEndpointGetHostByAddrMsg)
);

 if (DNS_SUCCESS == getHostMsg.error)
 {
 cout << address << “ -> “ << getHostMsg.name << endl;
 }
 else
 {
 cout << “Could not resolve “ << address << endl;
 }
}
__

 OPEN-R Internet Protocol Version4 41

5 IP Guide

This chapter introduces the IP protocol on OPEN-R, and explains how your object
can use the IP services offered by the IPv4 protocol stack.

5.1 Introduction to IP

In the IPv4 protocol stack, the Internet Protocol (IP) layer is responsible for
transmitting packets over the network. Typically, OPEN-R objects do not
communicate directly with IP. Instead, they open connections with layers on top of
IP, such as TCP or UDP. However, some objects may need to use the IP layer
directly. For example, if you want to add new protocols without programming in the
IPStack, you can write the protocols as OPEN-R objects that communicate directly
with the IP layer.

IP network operations

On OPEN-R, the IPv4 protocol stack offers the following IP operations to objects:

! Bind – Bind the IP endpoint to a particular protocol. All packets sent and

received by an object over this endpoint will be identified as originating from
the specified protocol.

! Send – Send data.

! Receive – Receive data.

! Close – Stop sending and receiving data, and delete the endpoint.

Your object performs these operations by sending special messages to an IP endpoint
in the IPStack. These messages are inherited from IPEndpointBaseMessage, which
is itself inherited from antEnvMsg. For descriptions of these messages, see
“Chapter10 IP reference.”

For an overview of how objects create endpoints and request network services, see
“1.3 How your object communicates with the protocol stack.”

IP endpoint life cycle

Figure 8 shows the state transitions of an IP endpoint during its life cycle. The
message types shown in Figure 8 are described fully in the IPv4 Reference.

Your object requires one endpoint for each IP connection, and an endpoint can
perform only one similar operation at a time. For example, if you send an
IPEndpointSendMsg to an endpoint that is already sending data, the endpoint will
return a IP_CONNECTION_BUSY error. However, it is possible to send an
IPEndpointReceiveMsg to this endpoint.

OPEN-R Internet Protocol Version4 42

Object:

 antEndCreateEndpointmsg.Send

 NEW

Object:
 IPEndpointBindMsg.Send

 BINDING

Endpoint:
IPEndpointBindMsg.Reply

 ACTIVE Possible operation in Active state

Endpoint: IPEndpointSendMsg
IPEndpointCloseMsg.Send IPEndpointReceiveMsg

 IPEndpointCloseMsg

 CLOSING

Endpoint:
IPEndpointCloseMsg.Reply

 CLOSED

Figure 8 The state transitions of an IP endpoint.

5.2 Creating an IP endpoint

Before your object can send or receive data by IP, it must create a new IP endpoint.
The process for creating an endpoint is the same for each protocol in the IPStack,
and is described in detail in “1.3 How your object communicates with the protocol
stack.”

5.3 Binding an endpoint

An object must bind an endpoint to a particular protocol, after the endpoint has been
created. All packets sent and received by the object over this endpoint will be
identified as originating from the specified protocol.

To bind an endpoint, your object sends an IPEndpointBindMsg to the endpoint in
the IPStack. This message has one parameter, called protocol, which specifies the
protocol to bind to the endpoint. Each protocol is identified by an integer with a
value less than 256.

Notes
It is not possible to bind an endpoint to the TCP or UDP protocols unless the
endpoint has already been bound to the protocol stack. If attempted, the error
IP_INVALID_PROTOCOL will be returned.

However, it is possible to bind an endpoint to ICMP. ICMP will process all
packets that it recognizes, as usual, but will forward all unidentified packets to the
endpoint that you have bound.

 OPEN-R Internet Protocol Version4 43

5.4 Sending data

To send data by IP, your object sends an IPEndpointSendMsg to its endpoint in the
IPStack. Table 15 shows the parameters in the UDPEndpointSendMsg message.

Table 15 Parameters in IPEndpointSendMsg
__
Parameter Description

type (in) The type of packet being sent.

Normal IP packets are of type IP_DATA. Other types exist for
ICMP packets.

buffer (in) Pointer to the packet being sent.

This packet must be stored in a shared memory buffer, defined by
the antSharedBuffer structure.

size (in) The size of the packet being sent, in bytes.
__

The IP endpoint replies to this message when the data has been removed from the
shared buffer and sent.

When sending raw IP packets, you have to fill in the complete IP packet. The IP
header is shown in Figure 9. A C++ class, IPHeader, is defined in the IPProtocol.h
file. Use the IPHeader to fill in the raw IP packet. The class will take care of all
endian-related issues.

It is mandatory to fill in the following fields

! 8-bit protocol field [IPHeader::ip_pSet(byte _val)]

! 32-bit source IP address [IPHeader::ip_srcSet(uint32 _val)]

! 32-bit destination IP address [IPHeader::ip_dstSet(uint32 _val)]

The following fields are optional. When set to zero, they are considered unspecified
and will be overwritten by the stack:

! 16-bit total length (in bytes) [IPHeader::ip_lenSet(uint16 _val)]

! 4-bit header length [IPHeader::ip_hlSet(byte_val)]

! 8-bit type of service [IPHeader::ip_tosSet(byte _val)]

! 8-bit time to live [IPHeader::ip_ttlSet(byte _val)]

The time to live field is overwritten by the stack only when the IP packet is not a
broadcast packet.

OPEN-R Internet Protocol Version4 44

 Bit 0 Bit 15 Bit 31

4-bit 4-bit header 8-bit type 16-bit total length(bytes)
version length of service (TOS)

 16-bit identification 3-bit 13-bit fragment offset
 flags

 8-bit time to live 8-bit protocol 16-bit header checksum 20 bytes
 (TTL)

 32-bit source IP address

 32-bit destination IP address

 options (If any)

 data

Figure 9 Contents of the IP header

The following fields should not be set, because they are always overwritten by the IP
stack:

! 4-bit version

! 13-bit fragment offset

! 16-bit identification

! 16-bit header checksum

Also see “5.7 IP-ping example” at the end of this chapter, for an example of how to
use the IPHeader class.

 OPEN-R Internet Protocol Version4 45

5.5 Receiving data

To receive data by IP, your object sends an IPEndpointReceiveMsg to its endpoint in
the IPStack. Table 16 shows the parameters in this message.

Table 16 Parameters in IPEndpointReceiveMsg
__
Parameter Description

type (out) The type of packet received.

Normal IP packets are of type IP_DATA. Other types exist for
ICMP packets.

buffer (in) Pointer to an area where the packet being received should be
stored.

This area must be in a shared memory buffer, defined by the
antSharedBuffer structure.

size (in/out) Specifies the maximum number of bytes to receive. When
the receive operation has completed and the endpoint has replied to
the object, this parameter returns the actual number of bytes that
were received.

If the packet being received is too big for the shared buffer, only
part of the packet will be stored in the buffer. The error
IP_PACKETSIZE error will be returned.

__

The IP endpoint replies to this message when the data has been copied into the
shared buffer.

5.6 Closing an endpoint

To close an IP endpoint, your object sends an IPEndpointCloseMsg to the endpoint
in the IPStack. This message has no parameters. After sending this message, the
object can no longer send or receive data. The endpoint will reply when the
connection has been fully closed.

OPEN-R Internet Protocol Version4 46

5.7 IP ping example

This IP ping example illustrates how to use the IP messages.
The IP ping program sends an ICMP packet to a host on the network and waits for a
reply.

Variable definitions

#include <ant.h>
#include <EndpointTypes.h>
#include <IPEndpointMsg.h>

#include <IPProtocol.h>
#include <ICMPProtocol.h>
#include <endian.h>
Message-passing-related information:

OID myOID;
antStackRef IPStackRef;
IP endpoint:

antModuleRef connection;

Buffer used to send packet:
antSharedBuffer dataBuffer;
byte* data;

Destination for ping packet:
#define HOSTIP “192.168.1.2”
__

Entry point definition

The following description is needed for stub.cfg. See “Extra entry, 2.3 Stub in
Programmer’s Guide” for the details of the definition of entry points.

Extra : Initialize()
__

Initialize the object

This function is invoked when the object starts up.
__

void Initialize()
{
 WhoAmI(&myOID);
 IPStackRef = antStackRef(“IPStack”);

 Open();
 Ping(HOSTIP);
 Close();

 EXIT();
}
__

 OPEN-R Internet Protocol Version4 47

Open endpoint

The Open() function:
! Creates a shared buffer for sending and receiving ICMP packets

! Creates an IP endpoint

! Binds this endpoint to the ICMP protocol

__

void Open()
{
Allocate a shared buffer:
 antEnvCreateSharedBufferMsg bufferMsg(1024);
 bufferMsg.Call(
 IPStackRef,
 sizeof(antEnvCreateSharedBufferMsg)
);

 if (ANT_SUCCESS != bufferMsg.error)
 {
 EXIT();
 }

 dataBuffer = bufferMsg.buffer;
 dataBuffer.Map();

Store the base address of the buffer:
 data = (byte*)dataBuffer.GetAddress();

Create an IP endpoint:
 antEnvCreateEndpointMsg createMsg(EndpointType_IP, 4096);
 createMsg.Call(
 IPStackOID,
 sizeof(antEnvCreateEndpointMsg)
);

 if (ANT_SUCCESS != createMsg.error)
 {
 EXIT();
 }

 connection = createMsg.moduleRef;

Bind to the ICMP protocol:
 IPEndpointBindMsg bindMsg(connection, IPPROTO_ICMP);
 bindMsg.Call(
 IPStackRef,
 sizeof(IPEndpointBindMsg)
);

 if (IP_SUCCESS != bindMsg.error)
 {
 EXIT();
 }
}

OPEN-R Internet Protocol Version4 48

Close

The Close() function:
! Unmaps and destroys the shared buffer

! Destroys the IP endpoint
__

void Close()
{

Destroy the shared buffer:
 dataBuffer.UnMap();
 antEnvDestroySharedBufferMsg bufferMsg(dataBuffer);
 bufferMsg.Call(
 IPStackRef,
 sizeof(antEnvDestroySharedBufferMsg)
);

Close the endpoint:
 IPEndpointCloseMsg closeMsg(connection);
 closeMsg.Call(
 IPStackRef,
 sizeof(IPEndpointCloseMsg)
);
}
__

Ping

Ping() sends and receives the actual ICMP_ECHO packet.
It first creates a raw IP/ICMP packet in the shared buffer, which is then put on the
network by the IP stack. After this, Ping() waits for an ICMP_ECHOREPLY packet
to be received.
__

void Ping(char* host)
{
 IPAddress dest(host);
Pointers to packet headers:
 IPHeader* ipheader = (IPHeader*)data;
 ICMPEcho* icmpecho = (ICMPEcho*)(data+sizeof(IPHeader));

 cout << “Pinging “ << dest << endl;

Fill IP header:
 ipheader->ip_srcSet(IP_ADDR_ANY);
 ipheader->ip_dstSet(dest);
 ipheader->ip_tosSet(0);
 ipheader->ip_ttlSet(IPDEFTTL);
 ipheader->ip_pSet(IPPROTO_ICMP);
 ipheader->ip_offSet(0);

Fill ICMP header:
 icmpecho->icmp_typeSet(ICMP_TYPE_ECHO);
 icmpecho->icmp_cksumSet(0);
 icmpecho->icmp_idSet(0xaf);
 icmpecho->icmp_seqSet(1);

Calculate ICMP checksum:
 uint32 cksum = 0;
 int size16 = sizeof(ICMPEcho) / sizeof(uint16);
 for (int index = 0; index < size16; index++)
 {
 cksum += ((uint16*)icmpecho)[index];
 }

 OPEN-R Internet Protocol Version4 49

 while (cksum > 0xffff)
 {
 cksum = (cksum & 0xffff) + (cksum >> 16);
 }

 icmpecho->icmp_cksumSet(htons(~(cksum & 0xffff)));

Send the packet to IP:
 IPEndpointSendMsg sendMsg(
 connection,
 IP_DATA,
 data,
 sizeof(IPHeader) + sizeof(ICMPEcho)
);
 sendMsg.Call(
 IPStackRef,
 sizeof(IPEndpointSendMsg)
);

Wait for an answer:
 IPEndpointReceiveMsg receiveMsg(
 connection,
 data, 1024
);
 receiveMsg.Call(
 IPStackRef,
 sizeof(IPEndpointReceiveMsg)
);

Check packet:
 if (ICMP_TYPE_ECHOREPLY == icmpecho->icmp_typeGet())
 {
 cout << IPAddress(ipheader->ip_srcGet()) << “ is alive” <<
endl;
 }
}
__

OPEN-R Internet Protocol Version4 50

Part2 IPv4 Reference
6 ANT environment reference

This chapter describes the structures and methods that you require when sending
requests for endpoints and shared buffers to the ANT environment.

antEnvCreateEndpointMsg
__

struct antEnvCreateEndpointMsg: public antEnvMsg
{
public:

antError error;
int32 protocol;
int32 poolSize;
antModuleRef moduleRef;

public:

// constructors
antEnvCreateEndpointMsg(): antEnvMsg() {};
antEnvCreateEndpointMsg(int32 _protocol,

int32 _poolSize = 0);

// reply

antError Reply(antError _error);
};
__

Description
Defines the message that requests a new endpoint.

When an object requires a new endpoint, it creates an
antEnvCreateEndpointMsg that specifies what protocol the endpoint is needed
for and what size of SDU pool should be created for the endpoint.

Parameters
error (out) Returns an error that describes the result of the request.

protocol (in) The type of endpoint to create, which corresponds to the available
 protocols

EndpointType_TCP
EndpointType_UDP
EndpointType_TFTP
EndpointType_DNS
EndpointType_POP3
EndpointType_SMTP
EndpointType_IP
EndpointType_MIBII
EndpointType_MIB_ETHERNET

poolSize (in) The size of the SDU pool to create for the new endpoint.

An SDU pool is an internal ANT construct that stores data in the
protocol stack.
As a guideline, always create an SDU pool that is slightly larger than
the largest packet that you expect to send. For example, 8-KB packets
would require an SDU pool of approximately 10 KB.

moduleRef (out) A reference to the new endpoint.

 OPEN-R Internet Protocol Version4 51

antEnvCreateEndpointMsg::antEnvCreateEndpointMsg()

Constructor
__

antEnvCreateEndpointMsg(

int32 _protocol,
int32 _poolSize = 0

);
__

Description
Creates an instance of antEnvCreateEndpointMsg.

When the message has been created, it must be sent to the ANT environment.
When the object receives a reply, the moduleRef parameter of
antEnvCreateEndpointMsg contains a reference to the new endpoint.

Parameters
_protocol (in) The type of endpoint to create, which corresponds to the available
 protocols

EndpointType_TCP
EndpointType_UDP
EndpointType_TFTP
EndpointType_DNS
EndpointType_POP3
EndpointType_SMTP
EndpointType_IP
EndpointType_MIBII
EndpointType_MIB_ETHERNET

_poolSize (in) The size of the SDU pool to create for the new endpoint.

OPEN-R Internet Protocol Version4 52

antEnvCreateSharedBufferMsg

Structure
__

struct antEnvCreateSharedBufferMsg: public antEnvMsg
{
public:

antError error;
uint32 size;
antSharedBuffer buffer;

};
__

Description
Defines the message that requests a shared memory buffer.

When an object requires a new shared memory buffer, it creates an
antEnvCreateSharedBufferMsg that specifies the size of the buffer.

Parameters
error (out) Returns an error that describes the result of the request.

size (in) The size of the shared buffer, in bytes.

buffer (out) A reference to the new buffer, after it has been created.

antEnvCreateSharedBufferMsg::antEnvCreateSharedBufferMsg()

Constructor
__

antEnvCreateSharedBufferMsg(uint32 _size);
__

Description
Creates an instance of antEnvCreateSharedBufferMsg.

When the message has been created, it must be sent to the ANT environment.
When the object receives a reply, the buffer parameter of the
antEnvCreateSharedBufferMsg structure returns a reference to the new buffer.

Parameters
size (in) The size of the shared buffer, in bytes.

 OPEN-R Internet Protocol Version4 53

antSharedBuffer

Member

class antSharedBuffer
{
public:

antError Map();
antError UnMap();
void* GetAddress();
uint32 GetSize();

};
__

Description
Defines the shared memory buffers used to exchange data between OPEN-R applications
and the ANT environment.

A shared memory buffer maps a common memory area into the address spaces
of an object and the ANT environment. When the object exchanges
data with the ANT environment, the data is identified by a pointer into this
shared buffer. antSharedBuffer can convert this pointer between the application
and the ANT environment address spaces.

To create a shared buffer, an object sends an
antEnvCreateSharedBufferMsg to the ANT environment, specifying the size
of the buffer.

antSharedBuffer::Map()

Member

antError Map();

Description
Maps a shared memory buffer to the address space of an object.
This operation is required before the object can exchange data with the
ANT environment.

Return codes
ANT_SUCCESS Success
ANT_FAIL Failure

antSharedBuffer::UnMap()

Member

antError UnMap();

Description
Removes a shared memory buffer from an object’s address space.
This operation is required before the shared buffer can be destroyed.

Returned value
ANT_SUCCESS Success
ANT_FAIL Failure

OPEN-R Internet Protocol Version4 54

antSharedBuffer::GetAddress()

Member
__

void* GetAddress();
__

Description
Gets the base address of a shared memory buffer.
Before performing this operation, the object must have mapped the buffer
to its address space (see antSharedBuffer::Map()).

Returned value
0 Success

antSharedBuffer::GetSize()

Member
__

uint32 GetSize();
__

Description
Gets the size of a shared memory buffer, in bytes.

Before performing this operation, the object must have mapped the buffer
to its address space (see antSharedBuffer::Map()).

 OPEN-R Internet Protocol Version4 55

7 TCP reference

This chapter describes the TCP messages that an object sends to the IPstack to
request TCP services. All messages are inherited from TCPEndpointBaseMsg.

TCP errors

Table 17 describes the errors that can be returned by any of the messages in this
chapter. The possible error values are defined in the TCPEndpointError enumerated
type.

When your object requests a network operation and receives a reply from the TCP
endpoint, it should examine the request’s error field (for example,
TCPEndpointListenMsg.error).

Table 17 TCPEndpointError
__
Error Value Description

TCP_BUFFER_INVALID The address and size parameters provided in a

TCPEndpointSendMsg or
TCPEndpointReceiveMsg do not fall within a
shared buffer.

TCP_CONNECTION_BUSY The connection is busy and the requested

operation cannot be completed. The TCP endpoint
to which you sent the message may already be
processing another request.

TCP_CONNECTION_CLOSED The connection has been closed.

TCP_CONNECTION_RESET The connection has been aborted.

TCP_CONNECTION_TIMEOUT

The connection timed out, and has been closed.

TCP_FAIL The operation failed (no more information is
available).

TCP_HOST_UNREACHABLE The IP stack was unable to find a route to the

destination address.

TCP_MESSAGE_TOO_LONG An intermediate router was unable to process a

TCP/IP packet because it was too big.

TCP_NETWORK_UNREACHABLE

The IP stack was unable to find a route to the
network containing the destination address.

TCP_OPERATION_INVALID The requested operation is not allowed in the
current state of the endpoint.

TCP_OPERATION_UNKNOWN

The requested operation was not recognized by
the TCP endpoint.

TCP_PORT_UNREACHABLE There is nobody listening on the destination port

specified for the connection.

OPEN-R Internet Protocol Version4 56

TCP_PROTOCOL_UNREACHABLE
The destination host is not running a TCP
implementation.

TCP_SUCCESS Operation succeeded.

TCP_TIME_EXCEEDED An IP reassembly queue timed out.

TCP_TTL_EXCEEDED The destination host is more than TTL hops from

the source.
__

TCPEndpointBaseMsg

Definition
__

struct TCPEndpointBaseMsg: public antEnvMsg
{
public:
 TCPEndpointError error;

public:
 TCPEndpointBaseMsg() : error(TCP_FAIL), antEnvMsg() {};
 TCPEndpointBaseMsg(
 antModuleRef& _module,
 TCPEndpointOperation _operation
);
};
__

Description
Specify which endpoint in the IPv4 protocol stack should receive a request for a
TCP service, and which OPEN-R object should receive the reply for the request.

Requests for specific network services are sent in messages inherited from
TCPEndpointBaseMsg, and are described later in this chapter.

Parameters
module (in) The target endpoint.

operation (in) The operation requested by the sending object.

error (out) See “TCP error” for a description of the possible TCP error
 codes.

Returned value
See “TCP error” for a description of the possible TCP error codes.

See also
TCPEndpointConnectMsg, TCPEndpointListenMsg,
TCPEndpointSendMsg, TCPEndpointReceiveMsg, TCPEndpointCloseMsg

 OPEN-R Internet Protocol Version4 57

TCPEndpointConnectMsg

Definition
__

struct TCPEndpointConnectMsg: public TCPEndpointBaseMsg
{
public:
 IPAddress lAddress;
 Port lPort;
 IPAddress fAddress;
 Port fPort;

public:
 TCPEndpointConnectMsg() : TCPEndpointBaseMsg() {};
 TCPEndpointConnectMsg(
 antModuleRef& module,
 IPAddress lAddress, Port lPort,
 IPAddress fAddress, Port fPort
);
};
__

Description
Open a TCP connection to another host.

TCPEndpointConnectMsg is normally sent by client objects. The TCP endpoint
replies to this message when the connection has been fully established. The reply
holds the fully specified local and foreign addresses and port numbers.

TCPEndpointConnectMsg is inherited from TCPEndpointBaseMsg.

Parameters
module Destination module reference

lAddress (out) Returns the local IP address, when the connection has been
 established.

lPort (out) Returns an ephemeral port number assigned to the client
 object, when the connection has been established.

fAddress (in) The IP address of the computer that you need to
 connect to.

fPort (in) The port number of the object that you need to
 connect to.

Returned value
See “TCP error” for a description of the possible TCP error codes.

See also
TCPEndpointBaseMsg

OPEN-R Internet Protocol Version4 58

TCPEndpointListenMsg

Definition
__

struct TCPEndpointListenMsg: public TCPEndpointBaseMsg
{
public:
 IPAddress lAddress;
 Port lPort;
 IPAddress fAddress;
 Port fPort;

public:
 TCPEndpointListenMsg() : TCPEndpointBaseMsg() {};
 TCPEndpointListenMsg(
 antModuleRef& _module,
 IPAddress lAddress,
 Port lPort,
 IPAddress fAddress = 0,
 Port fPort = 0
);
};
__

Description
Start listening for connection requests.

TCPEndpointListenMsg is normally sent by server objects. The TCP endpoint
replies to this message when the connection has been fully established. The reply
holds the fully specified local and foreign addresses and port numbers.

It is possible for a server object to perform more than one listen operation with all
accepting connection requests made to the same port number. The object requires a
separate endpoint for each listen operation.

TCPEndpointListenMsg is inherited from TCPEndpointBaseMsg.

Parameters
module Destination module reference

lAddress (out) Returns the local IP address, when a connection has been
 established.

lPort (in) The port number that you will accept connection requests.
 If you will accept requests for any port, specify a value of
 IP_PORT_ANY.

fAddress (out) Returns the IP address of the computer that requested the
 connection.

fPort (out) Returns the port number of the object that requested the
 connection
.
Returned value
See “TCP error” for a description of the possible TCP error codes.

See also
TCPEndpointBaseMsg

 OPEN-R Internet Protocol Version4 59

TCPEndpointSendMsg

Constructor
__

struct TCPEndpointSendMsg: public TCPEndpointBaseMsg
{
public:
 byte* buffer;
 int size;
public:
 TCPEndpointSendMsg() : TCPEndpointBaseMsg() {};
 TCPEndpointSendMsg(
 antModuleRef& module,
 byte* buffer,
 int size
);
};
__

Description
Send data over an open TCP connection.

Any data that your object sends to the protocol stack must be stored in a shared
memory buffer, defined by the antSharedBuffer structure.

The TCP endpoint replies to this message when the data is copied from the shared
buffer to the IP stack internal memory buffers.

TCPEndpointSendMsg is inherited from TCPEndpointBaseMsg.

Parameters
module Destination module reference

buffer (in) The shared buffer where the data being sent is stored.

size (in) The size of the data being sent, in bytes.

Returned value
See “TCP error” for a description of the possible TCP error codes.

See also
TCPEndpointBaseMsg, TCPEndpointConnectMsg, antSharedBuffer

OPEN-R Internet Protocol Version4 60

TCPEndpointReceiveMsg

Constructor
__

struct TCPEndpointReceiveMsg: public TCPEndpointBaseMsg
{
public:
 byte* buffer;
 int sizeMin;
 int sizeMax;

public:
 TCPEndpointReceiveMsg() : TCPEndpointBaseMsg() {};
 TCPEndpointReceiveMsg(
 antModuleRef& _module,
 byte* buffer,
 int sizeMin,
 int sizeMax
);
};
__

Description
Receive data from an open TCP connection.

Any data that your object receives from the protocol stack is stored in a shared
memory buffer, defined by the antSharedBuffer structure.

The TCP endpoint replies to this message when the data has been copied into the
shared buffer. When all data in the transmission has been received and the TCP
connection is closed, the last receive request may hold a smaller number of bytes
than what is specified in sizeMin.

TCPEndpointReceiveMsg is inherited from TCPEndpointBaseMsg.

Parameters
module Destination module reference

buffer (in) The shared buffer where the data being received should be
 stored.

sizeMin (in/out) Specifies the minimum number of bytes to receive. When

the receive operation has completed and the endpoint has replied to
the object, this parameter returns the actual number of bytes that
were received.

sizeMax (in/out) Specifies the maximum number of bytes to receive. When

the receive operation has completed and the endpoint has replied to
the object, this parameter returns the actual number of bytes that
were received.

Returned value
See “TCP error“for a description of the possible TCP error codes.

See also
TCPEndpointBaseMsg, TCPEndpointConnectMsg, antSharedBuffer

 OPEN-R Internet Protocol Version4 61

TCPEndpointCloseMsg

Constructor

struct TCPEndpointCloseMsg: public TCPEndpointBaseMsg
{
public:
 boolean abort;

public:
 TCPEndpointCloseMsg() : TCPEndpointBaseMsg() {};
 TCPEndpointCloseMsg(
 antModuleRef& module,
 boolean abort = FALSE
);
};

Description
Close a TCP connection.
A TCP connection can be closed three different ways:

! Active close – The close request is sent directly by your object. The object on

the other side of the connection will receive the rest of the transmission, then
will receive an error to indicate that you have closed the connection. From the
perspective of the other object, a passive close has occurred.

! Passive close – The close request is sent by the object on the other side of the

connection. After your object has received the entire data transmission, a
TCP_CONNECTION_CLOSED error will occur. Your object must then
complete the passive close by sending a TCPEndpointCloseMsg to its endpoint
in the ANT environment.

! Abort – An error occurs, which closes the connection unexpectedly. An abort

purges all data from the shared buffers and immediately closes the connection.

The TCP endpoint replies to this message when the connection has been fully closed.

TCPEndpointCloseMsg is inherited from TCPEndpointBaseMsg.

Parameters
module Destination module reference

abort (in) If TRUE, the TCP connection is aborted, instead of being shut

down in an orderly fashion.

Returned value
See “TCP error” for a description of the possible TCP error codes.

See also
TCPEndpointBaseMsg

OPEN-R Internet Protocol Version4 62

8 UDP reference

This chapter describes the UDP messages that an object sends to the IPstack, to
request UDP services. All messages are inherited from UDPEndpointBaseMsg.

UDP errors

Table 18 describes the errors that can be returned by any of the messages in this
chapter. The possible error values are defined in the UDPEndpointError enumerated
type.

When your object requests a network operation and receives a reply from its UDP
endpoint, it should examine the request’s error field (for example,
UDPEndpointConnectMsg.error).

Table 18 UDPEndpointError
__
Error Value Description

UDP_ADDRESSERROR The IP address/port number combination that you

specified is not valid.

UDP_ADDRESSINUSE The IP address/port number combination that you

specified is already used by another connection.

UDP_BUFFER_INVALID The address and size parameters provided in a

TCPEndpointSendMsg or
TCPEndpointReceiveMsg do not fall within a
shared buffer.

UDP_CONNECTION_BUSY The connection is busy and the requested

operation cannot be completed. The UDP
endpoint to which you sent the message may
already be processing another request.

UDP_CONNECTION_CLOSED The endpoint has been closed.

UDP_FAIL The operation failed (no more information is

available).

UDP_HOST_UNREACHABLE The IP stack was unable to find a route to the

destination address.

UDP_MESSAGE_TOO_LONG An intermediate router was unable to process a

TCP/IP packet because it was too big.

UDP_NETWORK_UNREACHABLE

The IP stack was unable to find a route to the
network containing the destination address.

UDP_OPERATION_INVALID The requested operation is not allowed in the
current state of the endpoint.

UDP_OPERATION_UNKNOWN

The requested operation was not recognized by
the UDP endpoint.

UDP_PORT_UNREACHABLE There is nobody listening on the destination port
specified for the connection.

 OPEN-R Internet Protocol Version4 63

UDP_PROTOCOL_UNREACHABLE
The destination host is not running
a UDP implementation.

UDP_SUCCESS Operation succeeded.

UDP_TIME_EXCEEDED An IP reassembly queue timed out.

UDP_TTL_EXCEEDED The destination host is more than TTL hops from

the source.
__

OPEN-R Internet Protocol Version4 64

UDPEndpointBaseMsg

Definition
__

struct UDPEndpointBaseMsg: public antEnvMsg
{
 public:
 UDPEndpointError error;

 public:
 UDPEndpointBaseMsg() : error(UDP_FAIL), antEnvMsg() {};
 UDPEndpointBaseMsg(
 antModuleRef& module,
 UDPEndpointOperation operation
);
};
__

Description
Specify which endpoint in the IPv4 protocol stack should receive a request for a
UDP service, and which OPEN-R object should receive the reply for the request.

Requests for specific network services are sent in messages inherited from
UDPEndpointBaseMsg, and are described later in this chapter.

Parameters
error (out)UDPEndpointError returned by the endpoint. See Table 18 for
 the list of errors.

module (in)The target endpoint.

operation (in)The operation requested by the sending object.

Returned value
See “UDP error” for a description of the possible UDP error codes.

See also
UDPEndpointBindMsg, UDPEndpointConnectMsg, UDPEndpointSendMsg,
UDPEndpointReceiveMsg, UDPEndpointCloseMsg

 OPEN-R Internet Protocol Version4 65

UDPEndpointBindMsg

Definition
__

struct UDPEndpointBindMsg: public UDPEndpointBaseMsg
{
public:
 IPAddress address;
 Port port;

public:
 UDPEndpointBindMsg() : UDPEndpointBaseMsg() {};
 UDPEndpointBindMsg(
 antModuleRef& module,
 IPAddress address,
 Port port
);
};

Description
Set the local connection parameters, which identify the object as a destination for
UDP packets.

After a bind operation, the object receives packets if the destination address and port
are the same as the IP address and port number specified by the bind parameters.
When sending data, every packet must specify a destination IP address and port
number, unless the object performs a connect operation first. In a connect operation,
the object specifies a destination for all packets that it sends. See
UDPEndpointConnectMsg for more information.

UDPEndpointBindMsg is inherited from UDPEndpointBaseMsg.

Parameters
module Destination module reference

address (in/out) A valid IP address on the local host.

If you specify IP_ADDR_ANY, the object will receive packets sent
to any IP address on the local host. This is useful for multihomed
hosts, which could have several interfaces with different addresses.
If the host is not multihomed, the local IP address is returned.
On a multihomed host, IP_ADDR_ANY is updated to a specific IP
address if the object performs a connect operation after binding.

port (in/out) The port number of the object.

If you specify IP_PORT_ANY, an ephemeral port number is
assigned to the object and returned when the endpoint has been
bound. This port number will be greater than or equal to 1024.

Returned value
See “UDP error” for a description of the possible UDP error codes.

See also
UDPEndpointBaseMsg, UDPEndpointConnectMsg

OPEN-R Internet Protocol Version4 66

UDPEndpointConnectMsg

Definition
__

struct UDPEndpointConnectMsg: public UDPEndpointBaseMsg
{
public:
 IPAddress address;
 Port port;

public:
 UDPEndpointConnectMsg() : UDPEndpointBaseMsg() {};
 UDPEndpointConnectMsg(
 antModuleRef& module,
 IPAddress address,
 Port port
);
};
__

Description
Specify a destination IP address and port number for every packet sent by the object.

This operation must be performed after sending a UDPEndpointBindMsg. Once
connected, an object no longer needs to specify a destination when it sends a packet.

UDPEndpointConnectMsg is inherited from UDPEndpointBaseMsg.

Parameters
module Destination module reference

address (in) Specifies the IP address of the computer to which all packets
 should be sent.

port (in) Specifies the port number of the object to which all packets

should be sent.

Returned value
See “UDP error” for a description of the possible UDP error codes.

See also
UDPEndpointBaseMsg, UDPEndpointBindMsg

 OPEN-R Internet Protocol Version4 67

UDPEndpointSendMsg

Definition
__

struct UDPEndpointSendMsg: public UDPEndpointBaseMsg
{
public:
 IPAddress address;
 Port port;
 byte* buffer;
 int size;

public:
 UDPEndpointSendMsg() : UDPEndpointBaseMsg() {};
 UDPEndpointSendMsg(
 antModuleRef& module,
 byte* buffer,
 int size
);

 UDPEndpointSendMsg(
 antModuleRef& module,
 IPAddress address,
 Port port,
 byte* buffer,
 int size
);
};
__

Description
Send data through a UDP endpoint.

Any data that your object sends to the protocol stack must be stored in a shared
memory buffer, defined by the antSharedBuffer structure.

The UDP endpoint replies to this message when the data has been copied from the
shared buffer into the IPStack internal memory buffers.
UDPEndpointSendMsg is inherited from UDPEndpointBaseMsg.

Notes
If the endpoint is bound but not connected, this message must specify a
destination IP address and port number. If the endpoint has been connected by a
UDPEndpointConnectMsg, this information is not required.

Parameters
module Destination module reference

address (in) The IP address of the computer to which the data should be sent.

If your object has performed a connect operation, this parameter is
ignored. The IP address specified in the UDPEndpointConnectMsg
is used instead.

port (in) The port number of the object to which the data should be sent.

If your object has performed a connect operation, this parameter is
ignored. The port number specified in the
UDPEndpointConnectMsg is used instead.

buffer (in) Location (in a shared buffer) where the data being sent is
 stored.

size (in) The size of the data being sent, in bytes.

OPEN-R Internet Protocol Version4 68

Returned value
See “UDP error” for a description of the possible UDP error codes.

See also
UDPEndpointBaseMsg, UDPEndpointConnectMsg, antSharedBuffer

 OPEN-R Internet Protocol Version4 69

UDPEndpointReceiveMsg

Definition
__

struct UDPEndpointReceiveMsg: public UDPEndpointBaseMsg
{
public:
 IPAddress address;
 Port port;
 byte* buffer;
 int size;
public:
 UDPEndpointReceiveMsg() : UDPEndpointBaseMsg() {};
 UDPEndpointReceiveMsg(
 antModuleRef& module,
 byte* buffer,
 int size
);
};
__

Description
Receive data from a UDP endpoint.

Any data that your object receives from the protocol stack is stored in a shared
memory buffer, defined by the antSharedBuffer structure.

The UDP endpoint replies to this message when the data has been copied into the
shared buffer. When the receive operation has completed, the size parameter returns
the actual number of bytes that were received. If the received packet is larger than
the specified size, the extra data is deleted.

UDPEndpointReceiveMsg is inherited from UDPEndpointBaseMsg.

Parameters
module Destination module reference

buffer (in) The location (in a shared buffer) where the data being received

should be stored.

size (in/out) Specifies the maximum number of bytes to receive. When

the receive operation has completed, this parameter returns the
actual number of bytes received. If the received packet is larger
than size, the extra data is deleted.

address (out) IP address from where the received data originated

port (out) port from which the received data originated

Returned value
See “UDP error” for a description of the possible UDP error codes.

See also
UDPEndpointBaseMsg, UDPEndpointConnectMsg, antSharedBuffer

OPEN-R Internet Protocol Version4 70

UDPEndpointCloseMsg

Definition
__

struct UDPEndpointCloseMsg: public UDPEndpointBaseMsg
{
public:
 UDPEndpointCloseMsg() : UDPEndpointBaseMsg() {};
 UDPEndpointCloseMsg(antModuleRef& module);
};
__

Description
Close a UDP endpoint.

After sending this message, the object can no longer send or receive data. The
endpoint will reply when the connection has been fully closed.

UDPEndpointCloseMsg is inherited from UDPEndpointBaseMsg.

Parameters
module Destination module reference

Returned value
See “UDP error” for a description of the possible UDP error codes.

See also
UDPEndpointBaseMsg

 OPEN-R Internet Protocol Version4 71

9 DNS reference

This chapter describes the DNS messages that an object sends to the IPStack to
request DNS services. All messages are inherited from DNSEndpointBaseMsg.

DNS errors
Table 19 describes the errors that can be returned by any of the messages in this
chapter. The possible error values are defined in the DNSEndpointError enumerated
type.

When your object requests a network operation and receives a reply from its DNS
endpoint, it should examine the request’s error field (for example,
DNSEndpointSetServerAddressesMsg.error).

Table 19 DNSEndpointError
__
Error value Description

DNS_BUFFER_INVALID Invalid use of a shared buffer.

DNS_CONNECTION_BUSY The connection is busy and the requested

operation cannot be completed. The DNS
endpoint to which you sent the message may
already be processing another request.

DNS_CONNECTION_CLOSED The connection has been closed.

DNS_FAIL The operation failed (no more information is

available).

DNS_HOST_NOT_FOUND No bind information could be found for the

provided host name.

DNS_INDEX_INVALID The specified index does not exist.

DNS_NO_DATA No data record exists for the requested type.

DNS_NO_RECOVERY A non-recoverable error occurred.

DNS_OPERATION_INVALID The requested operation is not allowed in the

current state.

DNS_OPERATION_UNKNOWN

The requested operation was not recognized by
the DNS endpoint.

DNS_SUCCESS Operation succeeded.

DNS_TRY_AGAIN The requested host was not found, or the server

request failed.

OPEN-R Internet Protocol Version4 72

DNSEndpointBaseMsg

Definition
__

struct DNSEndpointBaseMsg: public antEnvMsg
 DNSEndpointError error;
};
__

Description
Defines the base message for all DNS network operation requests.

Requests for specific network services are sent in messages inherited from
DNSEndpointBaseMsg, and are described later in this chapter.

Parameters
error (out) Returns the result of the operation.

See also
DNSEndpointSetServerAddressesMsg,
DNSEndpointGetServerAddressesMsg,
DNSEndpointSetDefaultDomainNameMsg,
DNSEndpointGetDefaultDomainNameMsg,
DNSEndpointGetHostByNameMsg, DNSEndpointGetHostByAddrMsg,
DNSEndpointGetAddressMsg, DNSEndpointGetAliasMsg,
DNSEndpointCloseMsg

 OPEN-R Internet Protocol Version4 73

DNSEndpointSetServerAddressesMsg

Definition
__

DNSEndpointSetServerAddressesMsg(
 int nscount,
 IPAddress addrList[MAXNS]
);
__

Description
Register a list of DNS servers that the object will use for resolving domain names
and IP addresses.

The list identifies the DNS servers by their IP addresses. After this list is registered,
queries will be sent to the servers in the order they appear in the list.

DNSEndpointSetServerAddressesMsg is inherited from DNSEndpointBaseMsg.

Parameters
nscount (in) The number of IP addresses to register.

addrList[MAXNS] (in) The list of IP addresses to register.

Returned value
See “DNS error” for a description of the possible DNS error codes.

See also
DNSEndpointBaseMsg, DNSEndpointGetServerAddressesMsg,
antSharedBuffer

OPEN-R Internet Protocol Version4 74

DNSEndpointGetServerAddressesMsg

Definition

DNSEndpointGetServerAddressesMsg(
 int nscount,
 IPAddress addrList [MAXNS]
);
__

Description
Get a list of the DNS servers used by the object for resolving domain names and IP
addresses.

The list identifies the DNS servers by their IP addresses. The addresses must have
been set previously by DNSEndpointSetServerAddressesMsg.

DNSEndpointGetServerAddressesMsg is inherited from DNSEndpointBaseMsg.

Parameters
nscount (out) The number of registered IP addresses.

addrList[MAXNS] (out) The list of IP addresses.

Returned value
See “DNS error” for a description of the possible DNS error codes.

See also
DNSEndpointBaseMsg, DNSEndpointSetServerAddressesMsg,
antSharedBuffer

 OPEN-R Internet Protocol Version4 75

DNSEndpointSetDefaultDomainNameMsg

Definition
__

DNSEndpointSetDefaultDomainNameMsg(
 char name[MAXDNAME]
);
__

Description
Sets the default domain name for an object.

After the default domain name is registered, the name will automatically be added to
all host names that are not fully qualified.

DNSEndpointSetDefaultDomainNameMsg is inherited from DNSEndpointBaseMsg.

Parameters
name[MAXDNAME] (in) The default domain name. This name must be null-

terminated.

Returned value
See “DNS error” for a description of the possible DNS error codes.

See also
DNSEndpointBaseMsg, DNSEndpointGetDefaultDomainNameMsg,
antSharedBuffer

OPEN-R Internet Protocol Version4 76

DNSEndpointGetDefaultDomainNameMsg

Definition
__

DNSEndpointGetDefaultDomainNameMsg(
 char name[MAXDNAME]
);
__

Description
Gets the default domain name for an object.

The domain name must have been set previously by
DNSEndpointSetDefaultDomainNameMsg.

DNSEndpointGetDefaultDomainNameMsg is inherited from
DNSEndpointBaseMsg.

Parameters
name[MAXDNAME] (out) The default domain name. This name is null-

terminated.

Returned value
See “DNS error” for a description of the possible DNS error codes.

See also
DNSEndpointBaseMsg, DNSEndpointSetDefaultDomainNameMsg,
antSharedBuffer

 OPEN-R Internet Protocol Version4 77

DNSEndpointGetHostByNameMsg

Definition
__

DNSEndpointGetHostByNameMsg(
 char name[MAXDNAME],
 IPAddress server_address,
 IPAddress host_address,
 int n_address,
 int n_alias
);

Description
Get a list of IP addresses and domain name aliases for the host specified by domain
name.
This list, called a host entry, will contain:

! The address of the DNS server that returned the host entry.

! The first IP address in the list (the official address), and a count of the total

number of IP addresses for the host.

! The first domain name in the list (the official domain name), and a count of the
total number of domain name aliases for the host.

If you want to get a different IP address or one of the domain name aliases, you must
request them specifically. For details, see DNSEndpointGetAddressMsg and
DNSEndpointGetAliasMsg.

DNSEndpointGetHostByNameMsg is inherited from DNSEndpointBaseMsg.

Parameters
name[MAXDNAME] (in/out) The domain name of the host for which you want

to get an entry. The domain name must be null-terminated.
If you specify a domain name alias, this parameter will
return the official domain name of the host.

server_address (out) The IP address of the DNS server that sent the host

entry.

host_address (out) The IP address of the host.

If the host has more than one IP address, this parameter
returns the first IP address.

n_address (out) The number of IP addresses for the host.

n_alias (out) The number of domain name aliases for the host.

Returned value
See “DNS error” for a description of the possible DNS error codes.

See also
DNSEndpointBaseMsg, DNSEndpointGetHostByAddrMsg,
DNSEndpointGetAddressMsg, DNSEndpointGetAliasMsg,
antSharedBuffer

OPEN-R Internet Protocol Version4 78

DNSEndpointGetHostByAddrMsg

Definition
__

DNSEndpointGetHostByAddrMsg(
 IPAddress host_address,
 IPAddress server_address,
 char name[MAXDNAME],
 int n_address,
 int n_alias
);
__

Description
Get a list of IP addresses and domain name aliases for the host specified by IP
address.

This list, called a host entry, will contain:

! The address of the DNS server that returned the host entry.

! The first IP address in the list (the official address), and a count of the total

number of IP addresses for the host.

! The first domain name in the list (the official domain name), and a count of the
total number of domain name aliases for the host.

If you want to get a different IP address or one of the domain name aliases, you must
request them specifically. For details, see DNSEndpointGetAddressMsg and
DNSEndpointGetAliasMsg.

DNSEndpointGetHostByAddrMsg is inherited from DNSEndpointBaseMsg.

Parameters
host_address (in/out) The IP address of the host. This parameter returns

the first IP address of the host, even if you specify a
different IP address in the original message.

server_address (out) The IP address of the DNS server that sent the host

entry.

name[MAXDNAME] (out) The official domain name of the host. The domain

name is null-terminated.

n_address (out) The number of IP addresses for the host.

n_alias (out) The number of domain name aliases for the host.

Returned value
See “DNS error” for a description of the possible DNS error codes.

See also
DNSEndpointBaseMsg, DNSEndpointGetHostByNameMsg,
DNSEndpointGetAddressMsg, DNSEndpointGetAliasMsg,
antSharedBuffer

 OPEN-R Internet Protocol Version4 79

DNSEndpointGetAddressMsg

Definition
__

DNSEndpointGetAddressMsg(
 int index,
 IPAddress address
);
__

Description
Get a registered IP address for the specified host.

Notes
Before you perform this operation, you must have already received the host entry.
For details, see DNSEndpointGetHostByNameMsg or
DNSEndpointGetHostByAddrMsg.

DNSEndpointGetAddressMsg is inherited from DNSEndpointBaseMsg.

Parameters
index (in) The index of the IP address that you want to get.

This index must be less than the value of n_address, returned in
DNSEndpointGetHostByNameMsg or
DNSEndpointGetHostByAddrMsg when the host entry was
received earlier. A value of 0 returns the first IP address in the host
entry list.

address (out) The IP address at location index in the host entry.

Returned value
See “DNS error” for a description of the possible DNS error codes.

See also
DNSEndpointBaseMsg, DNSEndpointGetHostByNameMsg,
DNSEndpointGetHostByAddrMsg, DNSEndpointGetAliasMsg,
antSharedBuffer

OPEN-R Internet Protocol Version4 80

DNSEndpointGetAliasMsg

Definition
__

DNSEndpointGetAliasMsg(
 int index,
 char name[MAXDNAME]
);
__

Description
Get a domain name alias for the specified host.

Notes
Before you perform this operation, you must have already received the host entry.
For details, see DNSEndpointGetHostByNameMsg or
DNSEndpointGetHostByAddrMsg.

DNSEndpointGetAliasMsg is inherited from DNSEndpointBaseMsg.

Parameters
index (in) The index of the domain name alias that you want to

get.

This index must be less than the value of n_alias, returned
in DNSEndpointGetHostByNameMsg or
DNSEndpointGetHostByAddrMsg when the host entry
was received earlier. A value of 0 returns the official
domain name of the host.

name[MAXDNAME] (out) The domain name alias at location index in the host

entry.

Returned value
See “DNS error” for a description of the possible DNS error codes.

See also
DNSEndpointBaseMsg, DNSEndpointGetHostByNameMsg,
DNSEndpointGetHostByAddrMsg, DNSEndpointGetAddressMsg,
antSharedBuffer

 OPEN-R Internet Protocol Version4 81

DNSEndpointCloseMsg

Definition
__

DNSEndpointCloseMsg();
__

Description
Close a DNS endpoint.

After sending this message, the object can no longer send or receive data. The
endpoint will reply when the connection has been fully closed.
DNSEndpointCloseMsg is inherited from DNSEndpointBaseMsg.

Returned value
See “DNS error” for a description of the possible DNS error codes.

See also
DNSEndpointBaseMsg

OPEN-R Internet Protocol Version4 82

10 IP reference

This chapter describes the IP messages that an object sends to the IPStack to request
network services. All messages are inherited from IPEndpointBaseMsg.

IP errors

Table 20 describes the errors that can be returned by any of the messages in this
chapter. The possible error values are defined in the IPEndpointError enumerated
type.

When your object requests a network operation and receives a reply from its IP
endpoint, it should examine the request’s error field (for example,
IPEndpointBindMsg.error).

Table 20 IPEndpointError
__
Error value Description

IP_BUFFER_INVALID Invalid use of a shared buffer.

IP_CONNECTION_BUSY The connection is busy and the requested

operation cannot be completed. The IP endpoint
to which you sent the message may already be
processing another request.

IP_CONNECTION_CLOSED The connection has been closed.

IP_FAIL The operation failed (no more information is

 available).

IP_INVALID_PROTOCOL The specified protocol identifier is not valid.

IP_OPERATION_INVALID The requested operation is not allowed in the

 current state.

IP_OPERATION_UNKNOWN The requested operation was not recognized by
the IP endpoint.

IP_PACKETSIZE The specified packet size is incorrect.

IP_SUCCESS Operation succeeded.
__

 OPEN-R Internet Protocol Version4 83

IP packet types

A number of different packets can be sent and received by an IP endpoint, as
described in Table 21.

Notes
Normal IP packets are type IP_DATA. The other types are for ICMP packets.

Table 21 IP packet types
__
Packet type Description

IP_DATA Normal IP data.

IP_HOST_UNREACHABLE (ICMP packet) The host cannot be reached.

IP_MESSAGE_TOO_LONG (ICMP packet) The message was too long or

could not be fragmented somewhere during the
transmission.

IP_NETWORK_UNREACHABLE

(ICMP packet) The network cannot be reached.

IP_PORT_UNREACHABLE (ICMP packet) The requested port could not be
reached.

IP_PROTOCOL_UNREACHABLE

(ICMP packet) The requested protocol is not
available on the target host.

IP_TIME_EXCEEDED (ICMP packet) Packet reassembly timed out.

IP_TTL_EXCEEDED (ICMP packet) TTL of packet has expired during transit.
__

OPEN-R Internet Protocol Version4 84

IPEndpointBaseMsg

Member
__

IPEndpointBaseMsg(
IPEndpointError error
);
__

Description
Defines the base message for all IP network operation requests.

Requests for specific network services are sent in messages inherited from
IPEndpointBaseMsg, and are described later in this chapter.

Parameters
error (out) Returns the result of the operation.

Returned value
See “IP error“ for a description of the possible IP error codes.

See also
IPEndpointBindMsg, IPEndpointSendMsg, IPEndpointReceiveMsg,
IPEndpointCloseMsg

 OPEN-R Internet Protocol Version4 85

IPEndpointBindMsg

Member
__

IPEndpointBindMsg(
 Protocol protocol
);
__

Description
Bind an endpoint to a particular protocol.

All packets sent and received by the object over this endpoint will be identified as
originating from the specified protocol.

The endpoint will reply to this message when the protocol has been bound and IP
packets can be sent and received.

IPEndpointBindMsg is inherited from IPEndpointBaseMsg.

Notes
It is not possible to bind an endpoint to the TCP or UDP protocols, which have
already been bound in the protocol stack. If attempted, the error
IP_INVALID_PROTOCOL will be returned.

However, it is possible to bind an endpoint to ICMP. ICMP will process all
packets that it recognizes, as usual, but will forward all unidentified packets to the
endpoint that you have bound.

Parameters
protocol (in) The protocol to bind to the endpoint. Each protocol is identified

by an integer with a value less than 256.

Returned value
See “IP error” for a description of the possible IP error codes.

See also
IPEndpointBaseMsg

OPEN-R Internet Protocol Version4 86

IPEndpointSendMsg

Member
__

IPEndpointSendMsg(
 IPPacketType type,
 byte* buffer,
 int size
);
__

Description
Send an IP packet.

Any data that your object sends to the protocol stack must be stored in a shared
memory buffer, defined by the antSharedBuffer structure. The IP endpoint replies to
this message when the data has been copied from the shared buffer into the IPStack
internal memory buffers.

IPEndpointSendMsg is inherited from IPEndpointBaseMsg.

Parameters
type (in) The type of packet being sent.

Normal IP packets are of type IP_DATA. See “Ip Packet types” for
descriptions of all available packet types.

buffer (in) The location (in a shared buffer) where the packet being sent is stored.

size (in) The size of the packet being sent, in bytes.

Returned value
See “IP error” for a description of the possible IP error codes.

See also
IPEndpointBaseMsg, antSharedBuffer

 OPEN-R Internet Protocol Version4 87

IPEndpointReceiveMsg

Member
__

UDPEndpointReceiveMsg(
 IPPacketType type,
 byte* buffer,
 int size
);
__

Description
Receive an IP packet.
Any data that your object receives from the protocol stack is stored in a shared
memory buffer, defined by the antSharedBuffer structure. The IP endpoint replies to
this message when the data has been copied into the shared buffer. The size
parameter returns the actual number of bytes received. If the received packet is too
big for the shared buffer, only part of the packet will be stored in the buffer. The
error IP_PACKETSIZE error will be returned.

IPEndpointReceiveMsg is inherited from IPEndpointBaseMsg.

Parameters
type (out) The type of packet received.

Normal IP packets are of type IP_DATA. See “IP packet types” for
descriptions of all available packet types.

buffer (in) The location (in a shared buffer) where the packet being received should

be stored.

size (in/out) Specifies the maximum number of bytes to receive. When the

receive operation has completed and the endpoint has replied to the object,
this parameter returns the actual number of bytes that were received. If the
packet being received is too big for the shared buffer, only part of the packet
will be stored in the buffer. The error IP_PACKETSIZE error will be
returned.

Returned value
See “IP error” for a description of the possible IP error codes.

See also
IPEndpointBaseMsg, antSharedBuffer

OPEN-R Internet Protocol Version4 88

IPEndpointCloseMsg

Member
__

IPEndpointCloseMsg();
__

Description
Close the IP connection.
After sending this message, the object can no longer send or receive data. The
endpoint will reply when the connection has been fully closed.

IPEndpointCloseMsg is inherited from IPEndpointBaseMsg.

Returned value
See “IP error” for a description of the possible IP error codes.

See also
IPEndpointBaseMsg

 OPEN-R Internet Protocol Version4 89

Glossary

ANT environment
The ANT environment is the object in the OPEN-R system layer that offers
networking services to objects. It communicates through normal message passing. It
communicates directly with OPEN-R device drivers that exchange data over the
physical network.

datagram
A term for packet in the UDP protocol.

Domain Name System (DNS)
A protocol that runs on top of the UDP layer in the IPv4 protocol stack. It offers
services for setting, getting, and translating Internet domain names and IP addresses.

endpoint
A construct in the ANT environment that communicates with objects. Endpoints
communicate with OPEN-R objects via message passing.

Objects have one endpoint for each open network connection. Endpoints are created
dynamically at run time when the object requires a new network connection. Objects
send requests for new endpoints to endpoint factories, which create the endpoints.

ephemeral port number
See port number.

Internet Protocol (IP)
A network protocol that is responsible for transmitting packets over the network. In
the IPv4 protocol stack, IP is the bottom layer. Typically, objects do not
communicate directly with IP. Instead, they open connections with layers on top of
IP, such as TCP or UDP. However, some objects may be able to use the IP layer
directly. For example, if you want to add new protocols without programming in the
ANT environment, you can write the protocols as objects that communicate directly
with the IP layer.

Internet Protocol version 4 (IPv4) protocol stack
A protocol stack in the ANT environment that offers the following network
protocols: TCP, UDP, DNS, and IP.

packet
A unit of data that is sent over a physical network.

port number
A number that identifies a specific software process on a host or server. Some
processes, such as FTP, are assigned permanent port numbers. These are called well-
known port numbers. Some port numbers are assigned to processes temporarily for
the duration of a network connection. These are called ephemeral port numbers.

SDU (service data unit)
The basic data container in the ANT environment. An SDU is a pointer to a series of
data cells in an SDU pool. SDUs carry the data that is being sent over the network—
called protocol data units (PDUs) in the OSI standard.

SDU pool
A memory buffer inside the ANT environment, which stores the data that is
processed by the protocol stack. The ANT environment allocates service data units
(SDUs) inside SDU pools.
shared memory buffer

OPEN-R Internet Protocol Version4 90

A structure that maps a shared memory area into the address spaces of your object
and the protocol stack. When your object exchanges data with the protocol stack, the
data is identified by a pointer to the shared buffer and an offset in the buffer.

Transmission Control Protocol (TCP)
Runs on top of the IP protocol. It provides a connection-oriented, reliable, byte
stream service.

User Datagram Protocol (UDP)
Runs on top of the IP protocol. It provides objects with an unreliable datagram
delivery service.

	main_InternetProtocolVersion4_E.pdf
	Notes on This Document
	Notes on Using This Document
	Notes on Copyright
	About Trademarks

	About this book
	Part1 IPv4 Programmer’s Guide
	1 Introduction to the IPv4 protocol stack
	1.1 Protocols in the IPv4 protocol stack
	1.2 The IPv4 protocol stack
	1.3 How your object communicates with the protocol stack
	Creating new endpoints
	Creating shared memory buffers
	Requesting network services

	2 TCP guide
	2.1 TCP
	TCP network operations
	TCP endpoint life cycle

	2.2 Creating a TCP endpoint
	2.3 Establishing a connection (client side)
	2.4 Listening for connection requests (server side)
	2.5 Sending data
	2.6 Receiving data
	2.7 Closing a connection
	Active close
	Passive close
	Abort

	2.8 TCP echo client example

	3 UDP guide
	3.1 Introduction to UDP on OPEN-R
	UDP network operations
	UDP endpoint life cycle

	3.2 Creating a UDP endpoint
	3.3 Binding an endpoint
	3.4 Setting foreign connection parameters (Optional)
	3.5 Sending data
	3.6 Receiving data
	3.7 Closing an endpoint
	3.8 UDP echo server example

	4 DNS guide
	4.1 Introduction to DNS
	DNS network operations
	DNS endpoint life cycle

	4.2 Creating a DNS endpoint
	4.3 Setting and getting an object’s DNS servers
	4.4 Setting and getting an object’s default domai
	4.5 Getting a host entry
	Getting an entry by domain name
	Getting an entry by IP address

	4.6 Getting a host’s IP address
	4.7 Getting a host’s domain name alias
	4.8 Closing an endpoint
	4.9 DNS client example

	5 IP Guide
	5.1 Introduction to IP
	IP network operations
	IP endpoint life cycle

	5.2 Creating an IP endpoint
	5.3 Binding an endpoint
	5.4 Sending data
	5.5 Receiving data
	5.6 Closing an endpoint
	5.7 IP ping example

	Part2 IPv4 Reference
	6 ANT environment reference
	antEnvCreateEndpointMsg
	antEnvCreateEndpointMsg::antEnvCreateEndpointMsg()

	antEnvCreateSharedBufferMsg
	antEnvCreateSharedBufferMsg::antEnvCreateSharedBufferMsg()

	antSharedBuffer
	antSharedBuffer::Map()
	antSharedBuffer::UnMap()
	antSharedBuffer::GetAddress()
	antSharedBuffer::GetSize()

	7 TCP reference
	TCP errors
	TCPEndpointBaseMsg
	TCPEndpointConnectMsg
	TCPEndpointListenMsg
	TCPEndpointSendMsg
	TCPEndpointReceiveMsg
	TCPEndpointCloseMsg

	8 UDP reference
	UDP errors
	UDPEndpointBaseMsg
	UDPEndpointBindMsg
	UDPEndpointConnectMsg
	UDPEndpointSendMsg
	UDPEndpointReceiveMsg
	UDPEndpointCloseMsg

	9 DNS reference
	DNS errors
	DNSEndpointBaseMsg
	DNSEndpointSetServerAddressesMsg
	DNSEndpointGetServerAddressesMsg
	DNSEndpointSetDefaultDomainNameMsg
	DNSEndpointGetDefaultDomainNameMsg
	DNSEndpointGetHostByNameMsg
	DNSEndpointGetHostByAddrMsg
	DNSEndpointGetAddressMsg
	DNSEndpointGetAliasMsg
	DNSEndpointCloseMsg

	10 IP reference
	IP errors
	IP packet types
	IPEndpointBaseMsg
	IPEndpointBindMsg
	IPEndpointSendMsg
	IPEndpointReceiveMsg
	IPEndpointCloseMsg

	Glossary

