
Testing OPEN-R Samples for SONY AIBO
ERS-7

Miguel Silva Rentes
<miguel.rentes@fe.up.pt>

LIACC - Artificial Intelligence and Computer Science Laboratory
University of Oporto, Portugal

March 22, 2005

Contents

1 Samples for ERS-7 4
1.1 BallTrackingHead7 . 4
1.2 BlinkingLED7 . 5
1.3 MovingHead7 . 5
1.4 MovingLegs7 . 5
1.5 SensorObserver7 . 5
1.6 PIDControl7 . 7
1.7 LMasterRSlave7 . 8

2 Common samples for ERS-7 and ERS-200 series 9
2.1 BattChecker . 9
2.2 Crash . 10
2.3 DNSLookUp . 11
2.4 EchoClient . 11
2.5 EchoServer . 12
2.6 ERA201D1Info . 12
2.7 HelloWorld . 12
2.8 HelloWorld-stubgen . 13
2.9 ImageCapture . 14
2.10 ImageObserver . 15
2.11 MoNet . 15
2.12 NTP . 16
2.13 ObjectComm . 16
2.14 ObjectComm-multi . 17
2.15 PowerMonitor . 17
2.16 RobotDesign . 17
2.17 SoundPlay . 18
2.18 SoundRec . 18
2.19 TinyFTPD . 19
2.20 UDPEchoServer . 19
2.21 W3AIBO . 20

2

List of Figures

1 Joints and Sensors indexes and values (part 1 of 3). 6
2 Joints and Sensors indexes and values (part 2 of 3). 7
3 Joints and Sensors indexes and values (part 3 of 3). 8
4 The PIDControl7 sample interface. 9
5 The BattChecker wireless console interface. 10
6 The BattChecker MFC window. 10
7 The Crash wireless console interface. 11
8 The DNSLookUp wireless console interface. 11
9 The EchoClient wireless console interface. 12
10 The EchoServer wireless console interface. 13
11 The ERA201D1Info wireless console interface. 13
12 The HelloWorld wireless console interface. 14
13 The ImageCapture sample. 14
14 A picture taken with ImageCapture sample. 15
15 The ImageObserver wireless console interface. 15
16 The MoNet wireless console interface. 16
17 The NTP wireless console interface. 16
18 Communication between 2 Subjects and 3 Objects. 17
19 The RobotDesign wireless console interface. 18
20 The SoundRec wireless console interface. 18
21 The TinyFTPD wireless console interface. 19
22 The UDPEchoServer wireless console interface. 20
23 Accessing a picture and all its layers with a web browser. . . 20

3

1 Samples for ERS-7

1.1 BallTrackingHead7
Let’s start with something easy and fun at the same time. Give the

following commands at the command line prompt:

1. $ cd /sample/ers7/BallTrackingHead7/BallTrackingHead7/

2. $ make

3. $ make install

4. $ cd ..

5. $ make

6. $ make install

This is pretty much the usual precedure for compiling all the necessary files to
test almost any Open-R code on Aibo. The other thing to do is to check for erros
when compiling all the necessary files. If there were no erros at compile time, all
the necessary files should be inside

/sample/ers7/BallTrackingHead7/MS/

and there should be 5 .BIN files inside

/MS/OPEN-R/MW/OBJS/

Now, all we have to do is to copy two folders to a blank SONY Open-R Memory
Stick: first, we copy the folder

/usr/local/OPEN R SDK/OPEN R/MS ERS7/BASIC/memprot/OPEN-R

and then the folder

/sample/ers7/BallTrackingHead7/MS/OPEN-R/

Once that is accomplished1, we just need to insert the memory stick in the AIBO
and boot it.

AIBO will start looking for the ball, and when it finds one, it plays a sound
file. When it looses track of the ball, it will play another sound file, different of
that used when it finds a ball, so we know what’s happening just by hearing the
sound it plays.

1NEVER delete the file MEMSTICK.IND inside the SONY Open-R memory stick, just
work with the OPEN-R folder inside the memory stick

4

1.2 BlinkingLED7
In this sample, AIBO will turn on its back and head leds (while blinking and

changing the leds colors), and move its ears.
The procedure to follow is simpler to the previous one:

1. $ cd /sample/ers7/BlinkingLED7/

2. $ make

3. $ make install

After checking that no compile erros occurred, we just have to copy the fol-
lowing two folders to a blank SONY Open-R Memory Stick:

/usr/local/OPEN R SDK/OPEN R/MS ERS7/BASIC/memprot/OPEN-R
/sample/ers7/BlinkingLED7/MS/OPEN-R/

Finally, we only have to insert the memory stick in the AIBO and boot it.

1.3 MovingHead7
In this sample, AIBO will perform the same movements as in the previous

sample while moving its head in the horizontal plane, from −93o to 93o. To put
this sample working, we just have to follow the same steps as we did in the Ball-
TrackingHead7 sample (see section 1.1).

1.4 MovingLegs7
In this sample, AIBO will do the same tricks as in the previous sample (blink-

ing its leds, moving its ears and head), and also slightly moving its legs. Again,
the procedure to follow is identical as taken in the BallTrackingHead7 sample (see
section 1.1).

1.5 SensorObserver7
Let’s now get to more serious business. In this sample, the wireless console

will show the current values of the sensors and the joints of the AIBO (see Figure
1, Figure 2 and Figure 3). If we move any joint or touch any sensor of AIBO, the
wireless console will update the joints and sensors values and display them in the
wireless console, after we press the return key (Enter key). The procedure to test
this sample is quite easy:

1. $ cd /sample/ers7/SensorObserver/SensorObserver/

2. $ make

5

Figure 1: Joints and Sensors indexes and values (part 1 of 3).

3. $ make install

4. $ cd ..

5. $ make

6. $ make install

7. Copy the folder <MS ERS7>2/WCONSOLE/memprot/OPEN-R/ and the folder
/sample/ers7/SensorObserver/MS/OPEN-R/ to a blank SONY Open-
R memory stick

8. Edit the file WLANDFLT.txt in the folder /OPEN-R/SYSTEM/CONF/ that
is on the memory stick and change it accordingly to your network environ-
ment. It should look something like this:

HOSTNAME=AIBO1
ETHER_IP=192.168.102.235
ETHER_NETMASK=255.255.255.0
IP_GATEWAY=192.168.102.37
ESSID=AIBONET
WEPENABLE=1
WEPKEY=SUPER

2from this point forward in the text, <MS ERS7> should mean
/usr/local/OPEN R SDK/OPEN-R/MS-ERS7

6

Figure 2: Joints and Sensors indexes and values (part 2 of 3).

APMODE=2
CHANNEL=3
DNS_SERVER_1=193.136.28.138
DNS_DEFDNAME=fe.up.pt
USE_DHCP=1

9. Place the memory stick in the AIBO and boot it

10. Open a wireless console3 and give the following command:

telnet 192.168.102.235 59000

to establish a connection with AIBO at the 59000 port. After a few seconds,
it should appear the values of the sensors and joints, like in Figures 1, 2 and
3.

1.6 PIDControl7
This next sample has the same procedure than the previous sample, and al-

lows us to show and test the PID (Proportional Integral Derivative) Control. In
the wireless console is shown the gains (p, i, d, and desired degree) and the index
that we want to choose for the joints in the AIBO’s legs, and as a result of that, the

3In this text, it’s used the Cygwin wireless console

7

Figure 3: Joints and Sensors indexes and values (part 3 of 3).

AIBO will create a text file containing the values necessary to put in motion the
desired movement, and will save it in a file in the folder /OPEN-R/MW/DATA/P
of the memory stick (see Figure 4).

1.7 LMasterRSlave7
See pages 13-15 of [1].

8

Figure 4: The PIDControl7 sample interface.

2 Common samples for ERS-7 and ERS-200 se-
ries

2.1 BattChecker
For this sample, we need to take a few more steps, that are explained in the

README file in this sample folder. This sample shows the level of the AIBO’s
battery using three different methods: with the help of the wireless console, a
Win32 Window, and with a MFC Windows Application with shared memory.

So, we have three different ways of getting the level of AIBO’s battery:

1. For the first one, we only need to use the wireless console. It’s very simple,
and all we have to do is to follow the instructions in the README file in
the sample folder (see Figure 5). Note: the OPEN-R folder that is necessary
to copy to a blank Sony Open-R memory stick is the folder
<MS ERS7>/WCONSOLE/nomemprot/OPEN-R/

2. For the second method, we need to follow the README instructions and
also to create the file WLANCONF.txt with the same contents as the file
WLANDFLT.txt and in the same folder as the WLANDFLT.txt, in the mem-
ory stick, and to change the local file HOSTGW.CFG where it has ”10.0.1.100”
to the AIBO’s IP address. After that, it’s just a matter of following the in-
structions in the README file. The result is a pop-up window that shows
the same information as in the previous method.

3. Finally, for the last method of viewing the battery level, all we have to do is
to change the local file HOSTGW.CFG in
/sample/common/BattChecker/RP/host/MFC/MS/OPEN-R/MW/CONF
where it has ”10.0.1.100” to the AIBO’s IP address. If everything went ok,

9

there should appear a window showing AIBO’s battery level like in Figure
6.

Figure 5: The BattChecker wireless console interface.

Figure 6: The BattChecker MFC window.

2.2 Crash
In this sample, we can see what happens to AIBO when, for some reason, it

crashes. This sample forces AIBO to crash in a variety of different situations and
contexts (division by zero, stack destroyed, jump to broken text, etc. ...). While
testing the sample, and choosing the error you want to make AIBO to commit,
we will hear a sound file indicating a crash occurred, and that AIBO will shut
down (see Figure 7). After that, we can see in /OPEN-R/EMON.LOG what was
the error and the running object that caused the crash. We can also use the script
emonLogParser (in the sample folder) to obtain more data about the crash that
occurred (see Chapter 5 of [2]).

10

Figure 7: The Crash wireless console interface.

2.3 DNSLookUp
This sample attemps to get the hostname and the IP Address of a computer

inside the network where AIBO is. The wireless console prompts for the name of
a computer in the network, and AIBO will give the complete hostname inside the
network, and the computer’s IP Address (see Figure 8). The procedure to compile
all the sample’s files is the same as in the BallTrackingHead7 sample (see section
1.1).

Figure 8: The DNSLookUp wireless console interface.

2.4 EchoClient
In this sample, AIBO is acting as an echo client and a remote computer acts

like an echo server. It’s very simple: AIBO sends a test message and the remote
computer receives it and echoes it back to AIBO. The result can be seen in Figure
9. The procedure to compile and run all the necessary files is the same as in the

11

BallTrackingHead7 sample (see section 1.1), with two exceptions: first, we need to
change the file EchoClientConfig.h to include the IP of the remote computer
that will act as an echo server (the variable to change is ECHOSERVER IP), and
second, we need to compile and execute the echo server.exe in the echo server
folder before doing telnet to AIBO.

Figure 9: The EchoClient wireless console interface.

2.5 EchoServer
In this sample, the roles switch comparing to the previous sample: the AIBO

acts like an echo server, and a remote computer acts like an echo client. The pro-
cedure for compiling and running this sample is the same as for the BallTracking-
Head7 sample (see section 1.1). The echo client.exe takes as arguments the
IP of AIBO. After that, the wireless console takes the string that we want to send
to AIBO, and after pressing the ENTER button, AIBO gets the string and echoes
back to our remote computer (see Figure 10).

2.6 ERA201D1Info
This sample shows a set of information related to AIBO’s MAC Address, Ether

Statistics, WLAN Settings, WLAN Statistics and IP Address (see Figure 11). It’s a
very simple sample to test and we just have to follow the same procedure as the
BallTrackingHead7 sample (see section 1.1).

2.7 HelloWorld
See pages 8-11 of [1].

12

Figure 10: The EchoServer wireless console interface.

Figure 11: The ERA201D1Info wireless console interface.

2.8 HelloWorld-stubgen
This samples provides the same results as in the previous sample, but it does

that in two different ways: using the StubGenerator (see section 3.2 of [2]) and
using remote processing. The procedure to follow is the same as in the BallTrack-
ingHead7 sample if we want to take advantage of the StubGenerator, and is iden-
tical to the ObjectComm sample if we want to use remote processing (see chapter
4 of [1]). Either the way we choose to run this sample, the results can be seen in
Figure 12.

13

Figure 12: The HelloWorld wireless console interface.

2.9 ImageCapture
This sample takes pictures with the AIBO’s camera and stores them as an

.BMP file in the AIBO’s /OPEN-R/MW/DATA/P/ folder (see Figure 13 and Figure
14). We can access to the folder via FTP (see TinyFTPD sample) so we don’t have
to take the memory stick out of AIBO everytime we want to see the pictures we
took. Whenever we are ready to take a new picture, we just have to touch AIBO’s
back sensors and to access the folder were AIBO stores them to see the pictures.
The procedure to follow is the same as in the BallTrackingHead7 sample (see
section 1.1)4.

Figure 13: The ImageCapture sample.

4In this sample, as AIBO boots it stands up and moves his legs a little bit before staring
at whatever you want to take a picture. So, be carefull not to put AIBO in a place where
it can fall down.

14

Figure 14: A picture taken with ImageCapture sample.

2.10 ImageObserver
This sample does something similar to the previous sample, but it shows more

data to the wireless console, like the frame number, color frequency, etc. It also
saves several layers of a picture as .BMP files, so we can see all the layers that
compund one particular picture that AIBO took. As in the previous sample, we
can access all pictures via FTP by knowing AIBO’s IP Address (see Figure 15).

Figure 15: The ImageObserver wireless console interface.

2.11 MoNet
This sample shows some movements AIBO can do by providing a number

in the wireless console interface for this sample (see Figure 16). After giving a
command for a specific action, we can observe which agents were responsible
for the action choosen, and the current status of the sample. The procedure to
compile and run the necessary files is the same as the usual, but we also need to
compile all files in the folder MoNetTest prior to compiling all files in the folder

15

MoNet5.

Figure 16: The MoNet wireless console interface.

2.12 NTP
In this sample, that stands for Network Time Protocol, AIBO attemps to syn-

chronize its internal clock time with the one in a given computer. The procedure
to test this sample is the same as in the BallTrackingHead7 sample, but is neces-
sary to change the file NTP.CFG to include the IP Address of the computer that
AIBO will connect and synchronize to (see Figure 17).

Figure 17: The NTP wireless console interface.

2.13 ObjectComm
See pages 12 and 13 of [1].

5In this sample, as AIBO boots it stretches his legs before starting the sample. So, be
carefull not to put AIBO in a place where it can fall down.

16

2.14 ObjectComm-multi
In this sample we can see again how the process of several objects commu-

nicating with themselves works, how to do this communication, and some mis-
takes one should avoid when programming a multi-object communication (see
ObjectComm-multi.pdf inside this sample folder). The procedure for this
sample is the same when compiling and running programs that require remote
processing (see chapter 4 of [1]). As an example, in Figure 18 is shown the result
of having 2 Subjects communicating with 3 Objects with several TCP connections
between them (making easy the exchange of messages). This example is in the
folder RP2 of the sample folder.

Figure 18: Communication between 2 Subjects and 3 Objects.

2.15 PowerMonitor
This samples monitores the level of AIBO’s battery with the help of the pow-

erMonitor Object. This Object is always present in every code we test on AIBO
since it’s essencial for the task of monitoring the power level of AIBO’s battery.
It’s the simplest sample and allows us to see how the power monitoring is done
in C++ code. The procedure to follow is the same as in the BallTrackingHead7
sample (see section 1.1).

2.16 RobotDesign
The RobotDesign sample shows the AIBO version that is currently being used

by the program, i.e., shows on the wireless console which AIBO is being used:
ERS-7, ERS-210 or ERS-220 (see Figure 19). The procedure to follow to test this
sample is the same as in the BallTrackingHead7 sample (see section 1.1).

17

Figure 19: The RobotDesign wireless console interface.

2.17 SoundPlay
This sample plays a sound file that is in the folder /OPEN-R/MW/DATA/P/ in

the memory stick. AIBO will select the boot sound file accordingly to its version
(in ERS-7, AIBO will play the sound file BOOT.WAV in /ERS-7/ inside the above
folder). The procedure to follow to run and test this sample is the same as in the
BallTrackingHead7 sample (see section 1.1).

2.18 SoundRec
This sample records the surrounding sounds that AIBO captures from its

environment and stores it in a .WAV file (approximately 16 seconds) inside the
/OPEN-R/MW/DATA/P/ folder in the memory stick (see Figure 20). Once the
sample is finished we can access the WAV file by getting the file directly from the
memory stick or via FTP (see TinyFTPD sample).

Figure 20: The SoundRec wireless console interface.

18

2.19 TinyFTPD
This sample allows us to get the files stored in AIBO’s memory stick via FTP

without having to shut down AIBO everytime we want to access the memory
stick files. It’s a very simple sample to test and run (the procedure is the same
as in the BallTrackingHead7 sample), and once we run the sample we can ac-
cess all AIBO’s files just like in a FTP server. A prompt asks you for a username
and a password to access AIBO (all username and passwords are stored in the
PASSWD file in /OPEN-R/MW/CONF/, so we can change it to any users and pass-
words we would like6), and after that we have a set of commands to get files, put
files, etc., that can be seen with the help command (see Figure 21). One extra
advantage is that we can use this sample with any other sample we would like,
so we don’t have to take out the memory stick from AIBO whenever we want to
test different samples. All we have to do is to include the TINYFTPD.BIN file
in /OPEN-R/MW/OBJS/ and change the file /OPEN-R/MW/CONF/OBJECT.CFG
to include the path to the TINYFTP.BIN. Once that is done, we can access the
memory stick, change the object files to test other samples (making of course,
the necessary changes in configuration files), and then give the command QUOTE
REBT to reboot AIBO with the new sample we want to test. It’s a very useful
procedure of we want to debug and test some code and don’t want to waste time
taking out and putting in the memory stick in AIBO.

Figure 21: The TinyFTPD wireless console interface.

2.20 UDPEchoServer
This sample is very similar to the EchoServer sample, except it uses UDP pro-

tocol instead of TCP for the connections between the echo server and client. AIBO
plays the role as an echo server and waits for a request to echoe a given string the
client sends (see Figure 22). The procedure to test and run this sample is the same
as in the BallTrackingHead7 sample, with a small exception: it’s necessary to com-
pile all files in the folder /sample/common/UDPEchoServer/udp echo cli-

6don’t forget to give an extra blank line in the end of this file

19

ent and to run the udp echo client with the AIBO’s IP Address as its argu-
ment.

Figure 22: The UDPEchoServer wireless console interface.

2.21 W3AIBO
This sample takes pictures in continuous way, and allows us to view them

with a web browser and to all the layers that compound a given picture. The
procedure to follow is well explained in the README file in this sample folder.
The results of this sample can be seen in Figure 23.

Figure 23: Accessing a picture and all its layers with a web browser.

20

References
[1] Sony Corporation. Open-R SDK Installation Guide. Sony Corporation, 2004.

[2] Sony Corporation. Open-R SDK Programmer’s Guide. Sony Corporation, 2004.

21

