
Heuristics and Local Search

Version 2

c©2009, 2001

José Fernando Oliveira, Maria Antónia Carravilla – FEUP

Approximate methods to solve combinatorial
optimization problems

Heuristics
Aim to efficiently generate very good solutions. They do not find the optimal
solution, or at least do not guarantee the optimality of the found solutions.

Heuristics characteristics

• “Short” running times

• Easy to implement

• Flexible

• Simple

Types of heuristics

• Constructive – Build a solution, step by step, according to a set of
rules defined before-hand.

• Improvement – Start form a feasible solution (any one) and improve it
by applying successive small changes.

• Compound – First have a constructive phase and then an
improvement phase.

These type of heuristics will be illustrated using the Traveling Salesperson
Problem.

The Traveling Salesperson Problem (TSP)

The goal is to find the shortest path for a salesperson that leaves a city, visits
n other cities and goes back to the initial city, without repeating any city.

The Traveling Salesperson Problem
Dantzig-Fulkerson-Johnson formulation

TSP formulation as a binary programming model over a graph G = (V,A),
where V is the set of vertices (cities) and A is the set of edges (direct paths
between any two cities).

Indices

i city, i ∈ {1, . . . , n}

j city, j ∈ {1, . . . , n}

Coefficients

dij cost associated to the edge between
city i and city j.

Decision variables

xij =


1 if the edge connecting i to j

belongs to the solution

0 it not

The Traveling Salesperson Problem
Dantzig-Fulkerson-Johnson formulation (cont.)

Objective function

min
n∑

i=1

n∑
j=1

dijxij

Constraints ∑n
i=1 xij = 1 ∀j∈V∑n
j=1 xij = 1 ∀i∈V∑

i,j∈S xij ≤ |S| − 1 ∀S⊂V

xij ∈ {0, 1} ∀i,j∈V,i 6=j

|S| stands for the number of vertices of subgraph S.

Note that S ≡ V is not included in S ⊂ V .

The Traveling Salesperson Problem
Dantzig-Fulkerson-Johnson formulation
Sub-cycles elimination

1

2

3

4 5

6

1

2

3

4 5

6

1

2

3

4 5

6

1

2

3

4 5

6

S = {1, 3, 4}

x13 = 1 ≤ |S| − 1 = 2

S = {4, 5, 6}

x45 + x56 + x64 = 3 � |S| − 1 = 2

1

2

3

4 5

6

1

2

3

4 5

6

S = {1, 2, 3}

x23 + x31 = 2 ≤ |S| − 1 = 2

S = {4, 5, 6}

x45 + x56 = 2 ≤ |S| − 1 = 2

etc . . .

Constructive heuristics

Build a solution, step by step, according to a set of rules defined
before-hand. These rules concern:

• the choice of the initial sub-cycle (or starting point) – initialization;

• a criterion to choose the next element to add to the solution – selection;

• the selection of the position where the new element will be inserted –
insertion.

TSP – Nearest neighbor

1. Initialization – Start with a partial tour with just one city i, randomly
chosen;

2. Selection – Let (1, . . . , k) be the current partial tour (k < n). Find city
k + 1 that is not yet in the tour and that is closer to k.

3. Insertion – Insert k + 1 at the end of the partial tour.

4. If all cities are inserted then STOP, else go back to 2.

Nearest neighbor – exemple

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32 Comprimento total do percurso: 19

Total length of the tour: 19

TSP – Nearest insertion of arbitrary city

1. Initialization – Start with a partial tour with just one city i, randomly
chosen;
find the city j for which cij (distance or cost from i to j) is minimum
and build the partial tour (i, j).

2. Selection – Given a partial tour, arbitrary select a city k that is not yet
in the partial tour.

3. Insertion – Find the edge {i, j}, belonging to the partial tour, that
minimizes cik + ckj − cij. Insert k between i and j.

4. If all cities are inserted then STOP, else go back to 2.

Nearest insertion of arbitrary city – example

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32 Comprimento total do percurso: 17

Total length of the tour: 17

TSP – Nearest insertion

1. Initialization – Start with a partial tour with just one city i, randomly
chosen;
find the city j for which cij (distance or cost from i to j) is minimum
and build the partial tour (i, j).

2. Selection – Find cities k and j (j belonging to the partial tour and k not
belonging) for which ckj is minimized.

3. Insertion – Find the edge {i, j}, belonging to the partial tour, that
minimizes cik + ckj − cij. Insert k between i and j.

4. If all cities are inserted then STOP, else go back to 2.

This heuristic as a variant named “Farthest Insertion” that replaces the
selection step by:

2. Selection – Find cities k and j (j belonging to the partial tour and k not
belonging) for which minkj{ckj} is maximized.

TSP – Cheapest insertion

1. Initialization – Start with a partial tour with just one city i, randomly
chosen.

2. Selection – Find cities k, i and j (i and j being the extremes of an edge
belonging to the partial tour and k not belonging to that tour) for
which cik + ckj − cij is minimized.

3. Insertion – Insert k between i and j.

4. If all cities are inserted then STOP, else go back to 2.

TSP – Convex hulla

1. Initialization – Start with a partial tour formed by the convex hull of all
cities.

2. Selection – For each city not yet inserted in the partial tour, find the
edge {i, j}, belonging to the partial tour, that minimizes cik + ckj − cij.
From all triplets {i, j, k} evaluated in step 2, find the triplet {i?, j?, k?}
for which ci?k?+ck?j?

ci?j?
is minimum.

3. Insertion – Insert k? between i? and j?.

4. If all cities are inserted then STOP, else go back to 2.

aConvex hull of a set A – convex shape that includes in its interior or frontier all the

elements of set A

TSP – Nearest merger

1. Initialization – Start with n partial tours formed, each one, by just one
city i.

2. Selection – Find two cities i and k (i belonging to a partial tour C and
k belonging to another partial tour C ′) for which cik is minimized.

3. Insertion – Let i, j, k and l be cities so that {i, j} ∈ C, {k, l} ∈ C ′ and
cik + cjl − cij − ckl is minimized.
Insert {i, k}} e {j, l}} and delete {i, j}} e {k, l}}.

4. If all cities are inserted then STOP, else go back to 2.

The minimum spanning tree problem

• Definitions (for non-oriented graphs):

– a tree is an acyclic connected graph;

– a graph is connected if there is a path (sequence of edges) connecting
any pair of vertices.

• Problem:

Find the tree of minimum total length (or cost) that supports all nodes
of the graph (i.e. that connects all nodes).

• Applications:

– communication networks;

– power system networks.

–

Prim’s algorithm (greedy procedure)

1. Select a node randomly and connect it to the nearest node;

2. Find the node that is nearest to a node already inserted in the tree,
among those not yet inserted, and connect those two nodes;

3. If all nodes are already inserted then STOP, else go back to 2.

greedy procedure – Example

TSP – Minimum spanning tree

1. Build the minimum spanning tree that connects all cities.

2. Make a depth-first visit to the tree.

3. Insert shortcuts (replacing sequences of 2 ou more edges by just one
edge) in the path generated by the depth-first visit, so that a tour is
generated.

Minimum spanning tree – example

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32

Comprimento total do percurso: 21

1 2

3

5 6

4

5
3

5

3
6

4

4

3

2

3

3
4 5

32

1

2

3

5

6

4

5

3

5

3

6

4

4

3

2

3

3

45

3

2

1

2

3

5

6

4

5

3

5

3

6

4

4

3

2

3

3

45

3

2

3

3

2

2

3

1

2

3

5

6

4

5

3

5

6

4

4

3

2

3

3

45

3

2

3

1

2

3

5

6

4

5

3

5

3

6

4

4

3

2

3

3

45

3

2

3

3

2

2

3

Total length of the tour: 21

Improvement heuristics

Start from any feasible solution
and improve it by successive small changes.

−→ how to gene-
rate one?

↓
(1) randomly;

(2) constructive heuristic.

In the second case we are designing a compound heuristic, in which the
improvement algorithm is the second phase of the overall compound
heuristic.

TSP – Heuristic r-opta

1. Generate an initial complete feasible tour → C0.
Make the current tour Ck = C0.

2. Remove r edges from current tour Ck, making it uncomplete → Ck
i .

3. Build all feasible solutions (complete tours) that include Ck
i (the

uncomplete tour).

4. Select the best tour among these tours → C?.

5. if length(C?) < length(Ck) then Ck = C? and go back to 2. Else
STOP.

aor r-exchange

Algorithm 2-opt

In a 2-opt algorithm, when removing 2 edges there is only one alternative
feasible solution:

Algorithm 3-opt

In a 3-opt algorithm, when removing 3 edges there are 23 − 1 alternative
feasible solutions:

Algorithm 2-opt – example

Two examples of 2 edges exchange, one leading to a solution of equal value
and other leading to a solution with a smaller value.

The algorithm
would follow form
this better solution
until some stop cri-
terion was reached
(e.g. maximum
number of exchan-
ges, number of
exchanges without
improvement, etc.)

Local search and neighborhoods

Local search is based on the oldest optimization method: trial and error.
But in a systematic way...

To systematize the search a neighborhood structure is defined and build.

The neighborhood of a given solution
is the set of feasible solutions that, so-
mehow, are alike the given solution,
i.e. com similar elements and objective
function values not very different.

S

s

V(s)

Example: In the TSP it is possible to define as a neighborhood of a given
tour all the tours that can be generated form that one by applying a 2-opt
iteration.

Local search and neighborhoods

Generic local search algorithm:

1. Generate an initial solution → s0.

2. Current solution si = s0.

3. Pick sj ∈ V (si).

4. If f(sj) < f(si), then si = sj .

5. Else, V (si) = V (si)− sj .

6. If V (si) 6= ∅, then go to 3.

7. Else, END.
Local optimal solution = si.

We say that a “movement” has happened each time a new solution is
accepted as current solution (also called “neighborhood center”) – step 4.

Local search algorithm for the TSP, based on 2-opt
movements

1. Build an initial tour.

2. Select randomly an edge from that tour.

3. Make a 2-opt movement with all the other edges of the tour and select
the best tour therefore generated.

4. If it is better than the current tour then make it the current tour and go
to 2.

5. Else, STOP. The local optimum was reached.

Different neighborhood structures originate different local search algorithms.

Local search and neighborhoods – conclusion

To devise a good neighborhood structure for a combinatorial optimization
problem and build a search method is a science and an art → noble research
work.

Bibliography

• Stephan Mertens. TSP Algorithms in Action. Animated Examples of
Heuristic Algorithms,
http://www-e.uni-magdeburg.de/mertens/TSP/index.html

• David S. Johnson, Lyle A. McGeoch (1995). The Traveling Salesman
Problem: A Case Study in Local Optimization,
http://www.research.att.com/∼dsj/papers/TSPchapter.pdf.

• Goldbarg, Marco Cesar e Luna, Henrique Pacca (2000). Otimização
Combinatória e Programação Linear, Editora CAMPUS.

• Golden, B.L. and Stewart, W.R. (1985). Empirical analysis of heuristics
in The Traveling Salesman Problem, John Wiley & Sons, Inc..

• Sousa, Jorge Pinho (1991). Apontamentos de Optimização
Combinatória.

