
Solving Combinatorial Optimization Problems: exact
techniques

• Explicit enumeration — building all the admissible solutions it is
possible to obtain the optimal solution.

• Implicit enumeration — all the admissible solutions are considered and
implicitly evaluated but are not explicitly built.

Examples: Tree serach with “Branch and Bound”; lower and upper
limits for the value of the optimal solution.

• Modeling the problems with integer programming models (decision
variables take integer values), or even binary (variables with only two
possible values: 0 or 1), and their resolution with adequate algorithms.

Note: These formulations can also be used to obtain limits for the value
of the optimal solution through relaxations.



Solving Combinatorial Optimization Problems: exact
techniques

Relaxation — If we do not consider one or more constraints of the original
problem PO, we can transform the problem in another problem that can be
simpler to solve PR. Considering that the problem is a minimization
problem, the optimal values of the objective function are related in the
following way:

f?
PR ≤ f?

PO

(with less constraints the solution can only improve or stay the same).

Linear relaxation – transform an integer problem in a problem with
continuous variables by “dropping” the constraint that the variables must be
integer (or Binary). This allows us to use the Simplex Algorithm instead of
the more complex, and far more time consuming, tree search.



“Branch and bound” method

The “branch and bound” method is based on an intelligent enumeration of
the solutions that are candidates to be to integer optimal by successively
partitioning the solution space and cutting the search tree by considering
limits that are calculated during the enumaration.



Graphical representation of the resolution of a problem
with B&B

Consider the following integer pro-
gramming problem:
Maximize:

F = 3x + 7y

subject to:

x ≤ 3.5

5x − 4y ≤ 10
4
7x + 2y ≤ 9

x , y ≥ 0 and integer

and its graphical representation:

The integer optimal solution is: x = 1
and y = 4.



Solving the linear relaxation

Problem PL0:

max F = 3x + 7y

subject to:

x ≤ 3.5

5x − 4y ≤ 10
4
7x + 2y ≤ 9

x , y ≥ 0
Optimal, non integer, solution:
x = 3.5 and y = 3.5; F = 35



Branching in x: x ≤ 3

max F = 3x + 7y

subject to:

x ≤ 3.5

5x − 4y ≤ 10
4
7x + 2y ≤ 9

x , y ≥ 0

x ≤ 3
Solution (non integer):
x = 3 and y = 3.6; F = 34.5



Branching in x: x ≥ 4

max F = 3x + 7y

subject to:

x ≤ 3.5

5x − 4y ≤ 10
4
7x + 2y ≤ 9

x , y ≥ 0

x ≥ 4
Without admissible solutions.



Branching in y: y ≤ 3

max F = 3x + 7y

subject to:

x ≤ 3.5

5x − 4y ≤ 10
4
7x + 2y ≤ 9

x , y ≥ 0

x ≤ 3

y ≤ 3

Solution (integer):
x = 3 and y = 3; F = 30
Lower limit ⇒ non-integer solutions
with an objective value F smaller than
or equal to 30 do not need to be further
explored!



Branching in y: y ≥ 4

max F = 3x + 7y

subject to:

x ≤ 3.5

5x − 4y ≤ 10
4
7x + 2y ≤ 9

x , y ≥ 0

x ≤ 3

y ≥ 4 Solution (non-integer):
x = 1.7 and y = 4; F = 33.2



Branching in x: x ≤ 1

max F = 3x + 7y

subject to:

x ≤ 3.5

5x − 4y ≤ 10
4
7x + 2y ≤ 9

x , y ≥ 0

x ≤ 3

y ≥ 4

x ≤ 1

Solution (non-integer):
x = 1 and y = 4.2; F = 32.5



Branching in x: x ≥ 2

max F = 3x + 7y

subject to:

x ≤ 3.5

5x − 4y ≤ 10
4
7x + 2y ≤ 9

x , y ≥ 0

x ≤ 3

y ≥ 4

x ≥ 2 Without feasible solutions.



Branching in y: y ≤ 4

max F = 3x + 7y

subject to:

x ≤ 3.5

5x − 4y ≤ 10
4
7x + 2y ≤ 9

x , y ≥ 0

x ≤ 3

y ≥ 4

x ≤ 1

y ≤ 4

Solution (integer):
x = 1 and y = 4; F = 31
Best integer solution obtained so far!



Branching in y: y ≥ 5

max F = 3x + 7y

subject to:

x ≤ 3.5

5x − 4y ≤ 10
4
7x + 2y ≤ 9

x , y ≥ 0

x ≤ 3

y ≥ 4

x ≤ 1

y ≥ 5

, 
, 
• -- - I h ; 4y - I O , ,-, 

/ 
/ 

,-, 
, 

/ , - - ; 4Ih-2y- 9 

, 
/ 

/ , ' , , , , • , • , 

Without admissible solutions.



“Branch-and-Bound” tree

LP_0	  
(non	  integer)	  
x	  =	  3.5	  
y	  =	  3.5 	  F	  =	  35	  

LP_01	  
(non	  integer)	  
x	  =	  3	  
y	  =	  3.6 	  F	  =	  34.5	  

LP_02	  
(no	  solu=on)	  

LP_011	  
(integer)	  
x	  =	  3	  
y	  =	  3 	  F	  =	  30	  

LP_012	  
(non	  integer)	  
x	  =	  1.7	  
y	  =	  4 	  F	  =	  33.2	  

LP_0121	  
(non	  integer)	  
x	  =	  1	  
y	  =	  4.2 	  F	  =	  32.5	  

LP_0122	  
(no	  solu=on)	  

LP_01211	  
(integer	  op=mal)	  
x	  =	  1	  
y	  =	  4 	  F	  =	  31	  

LP_01212	  
(no	  solu=on)	  

x	  <=	  3	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  x	  >=	  4	  

y	  <=	  3	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  y	  >=	  4	  

x	  <=	  1	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  x	  >=	  2	  

y	  <=	  4	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  y	  >=	  5	  



Upper and lower Bounds

• the “branch & bound” is more efficient because it is possible to cut
nodes of the search tree without exploring them, because we are sure
not to obtain better solutions than the ones we already have;

• allow us to “measure the distance”, (considering the value of the
objective function) to the optimal solution.



Bounds in a maximization problem:

• a lower limit LI is given by an
integer solution that has been
previously obtained – the opti-
mal solution F ? can never be
worse (lower) than the integer
solution that we already have;

• an upper limit LS is given by
the highest value of the objec-
tive function within all the no-
des that are not yet completely
explored (we hope to find there
an integer solution that is bet-
ter than the one we got).

Maximization Problem 

F*- LB ≤ UB - LB 

F 
 

Upper Bound – UB 
Value of the objective function for the 

most promising unexplored node 
 

Optimal integer solution F* 
(unknown)  

 
 
 

Lower bound – LB 
Best integer solution found  

(highest value of the objective 
function) 



Bounds – example

Consider a maximization problem where all the variables are integer. The
tree in figure 1 is obtained along the resolution process.

LP_1	  
(non-‐integer	  solu2on)	  

	  Z	  =	  100	  

LP_2	  
(non-‐integer	  solu2on)	  
	   	  Z	  =	  85	  

LP_6	  
(integer	  solu2on)	  

	  Z=	  70	  

LP_7	  
(non-‐integer	  solu2on)	  

	  Z	  =	  79	  

LP_8	  
(no	  solu2on)	  

LP_3	  
(non-‐integer	  solu2on)	  
	   	  Z	  =	  91	  

LP_9	  
(non-‐integer	  solu2on)	  
	   	  Z	  =	  65	  

LP_4	  
(integer	  solu2on)	  

	  Z=	  60	  

LP_5	  
(non-‐integer	  solu2on)	  

	  Z	  =	  75	  

Figura 1: “Branch-and-Bound” tree.



1. Which is now the best upper bound on the optimal (integer) solution?

2. Which is now the best lower bound on the optimal (integer) solution?

3. Which nodes have already been explored? Explain why.

4. Which nodes have not been explored yet? Explain why.

5. Do we already know the optimal solution? Explain why.

6. Which is the maximum gap if the algorithm finishes at this point?



Open questions – Branching strategies

Given a set of unexplored nodes how can we choose the next node to
explore?
Depth-first search
Select the deepest node in the
tree.

Breadth-first search
Select the unexplored node
that is highest in the tree.

Most promising node

Select the node with the best objective function. The node that can
potentially lead to the best integer solution.



Open questions

• Selection of the variable to branch on – After selecting the node to
explore, which variable should be chosen to branch on within the
variables that are not integer in the solution in the node?

Some strategies have been described in literature, but their results
depend heavily on the problem at hand.

⇓

The strategies depend on the application and on the physical meaning
of the variables.



Bibliography

• Alves, José Carlos (1989). Provas de Aptidão Cient́ıfica e Capacidade
Pedagógica. FEUP.

• Goldbarg, Marco Cesar e Luna, Henrique Pacca (2000). Otimização
Combinatória e Programação Linear, Editora CAMPUS.


