Solving Combinatorial Optimization Problems: exact
techniques

e Lixplicit enumeration — building all the admissible solutions it is

possible to obtain the optimal solution.

e Implicit enumeration — all the admissible solutions are considered and

implicitly evaluated but are not explicitly built.

Examples: Tree serach with “Branch and Bound”; lower and upper
limits for the value of the optimal solution.

e Modeling the problems with integer programming models (decision
variables take integer values), or even binary (variables with only two

possible values: 0 or 1), and their resolution with adequate algorithms.

Note: These formulations can also be used to obtain limits for the value

of the optimal solution through relazations.



Solving Combinatorial Optimization Problems: exact
techniques

Relaxation — If we do not consider one or more constraints of the original
problem PO, we can transform the problem in another problem that can be
simpler to solve PR. Considering that the problem is a minimization
problem, the optimal values of the objective function are related in the

following way:

fer < fPo
(with less constraints the solution can only improve or stay the same).

Linear relaxation — transform an integer problem in a problem with
continuous variables by “dropping” the constraint that the variables must be
integer (or Binary). This allows us to use the Simplex Algorithm instead of

the more complex, and far more time consuming, tree search.



“Branch and bound” method

The “branch and bound” method is based on an intelligent enumeration of
the solutions that are candidates to be to integer optimal by successively
partitioning the solution space and cutting the search tree by considering

limits that are calculated during the enumaration.



Graphical representation of the resolution of a problem
with B&B

and its graphical representation:
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0 and integer The integer optimal solution is: =z =1

and y = 4.



Solving the linear relaxation
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Optimal, non integer, solution:
r=35and y=3.5; F =35



Branching in z: * <3
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Solution (non integer):
x=3and y=3.6; F=34.5




Branching in z: x > 4
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Branching in y: y <3
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v,y =z 0 Solution (integer):
T < 3 r=3andy=3; F =30
y < 3 Lower limit = non-integer solutions

with an objective value F' smaller than
or equal to 30 do not need to be further

explored!



Branching in y: y >4
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Branching in z: x <1
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Branching in z: x > 2
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Branching in y: y <4
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Branching in y: y > 5
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Without admissible solutions.



“Branch-and-Bound” tree
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Upper and lower Bounds

e the “branch & bound” is more efficient because it is possible to cut
nodes of the search tree without exploring them, because we are sure

not to obtain better solutions than the ones we already have;

e allow us to “measure the distance”, (considering the value of the

objective function) to the optimal solution.



Bounds in a maximization problem:

e a lower limit L[ is given by an
integer solution that has been
previously obtained — the opti-

mal solution F'* can never be Maximization Problem

worse (lower) than the integer "
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Bounds

— example

Consider a maximization problem where all the variables are integer. The

tree in figure 1 is obtained along the resolution process.

LP 1

(non-integer solution)

Z=100
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LP 2
(non-integer solution)
Z2=85
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LP_6
(integer solution)
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LP_3
(non-integer solution)
Z2=91

LP_7

Z=70
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(integer solution)
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(non-integer solution)

Z=175
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(no solution)

Figura 1: “Branch-and-Bound” tree.

LP_9
(non-integer solution)
Z2=65




A

. Which is now the best upper bound on the optimal (integer) solution?

Which is now the best lower bound on the optimal (integer) solution?
Which nodes have already been explored?” Explain why.
Which nodes have not been explored yet? Explain why.
Do we already know the optimal solution? Explain why.

Which is the maximum gap if the algorithm finishes at this point?



Open questions — Branching strategies

Given a set of unexplored nodes how can we choose the next node to

explore?

Depth-first search

Select the deepest node in the Breadth-first search

tree. Select the unexplored node
o that is highest in the tree.
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Most promising node

Select the node with the best objective function. The node that can
potentially lead to the best integer solution.



Open questions

e Selection of the variable to branch on — After selecting the node to
explore, which variable should be chosen to branch on within the

variables that are not integer in the solution in the node?

Some strategies have been described in literature, but their results

depend heavily on the problem at hand.
Y

The strategies depend on the application and on the physical meaning

of the variables.
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