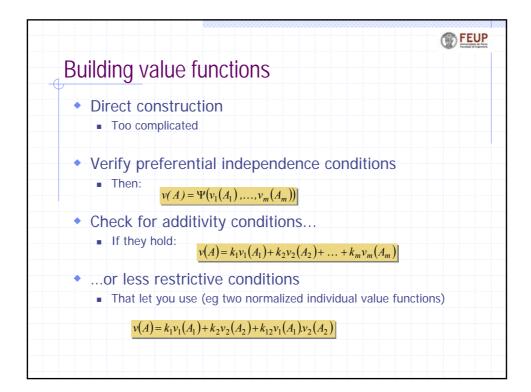
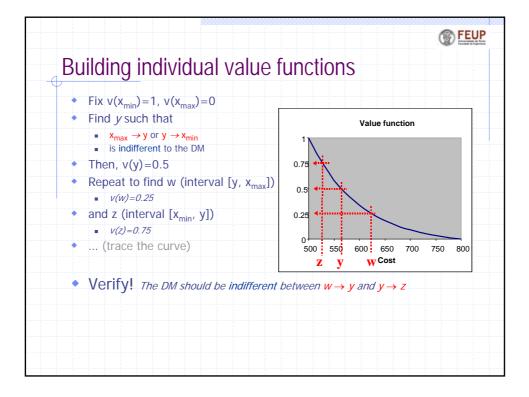
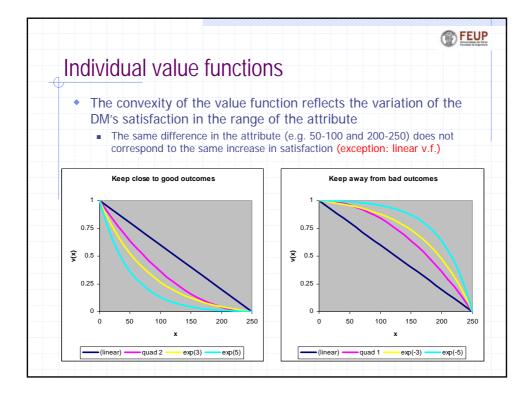
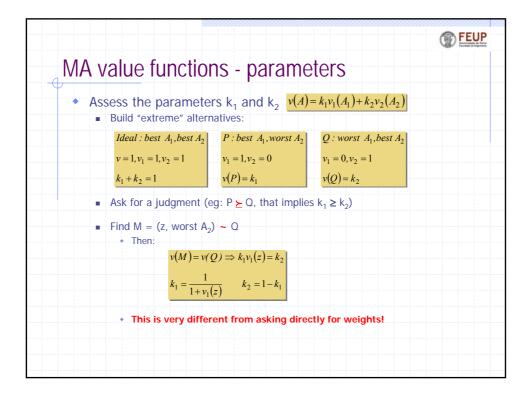
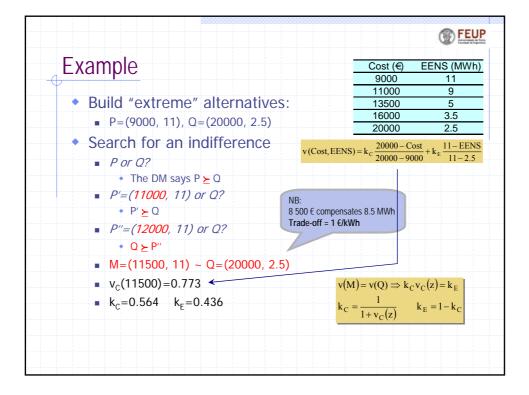

	E E
Su	mmarizing
•	Indifference curve (attribute space)
	 Set of the alternatives that are valued the same way by the Decision Maker
	The indifference curves completely describe the structure of preferences of the Decision Maker
•	Trade-off between two attributes X and Y
	 What you must lose in X to increase one unit in Y, without leaving the indifference curve (slope of the curve)
•	Weights
	 If and only if the trade-offs are constant, weights are constant

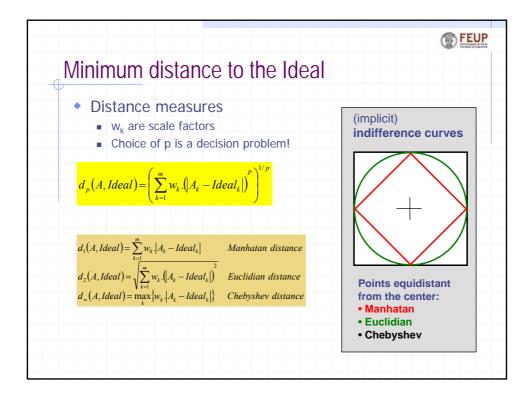

•	Ensure that the DM follows a "rational" behavior (Normative option)	•	Value functions, Utility theory, distance to the Idea
•	Give some advice based on reasonable (but not indisputable) rules	•	The French School
*	Find the preferred solution from partial decisions about decision hypothesis	•	Interactive methods



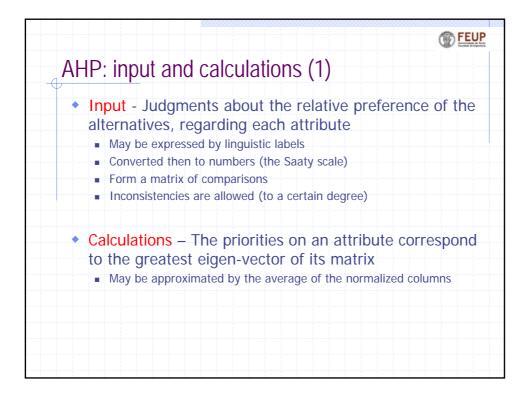


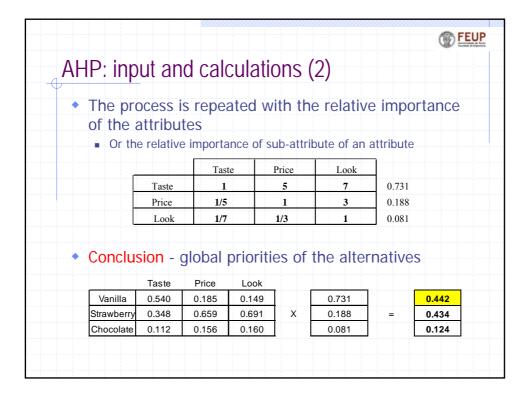


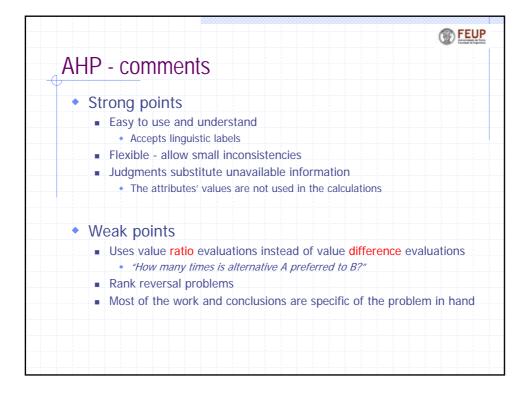


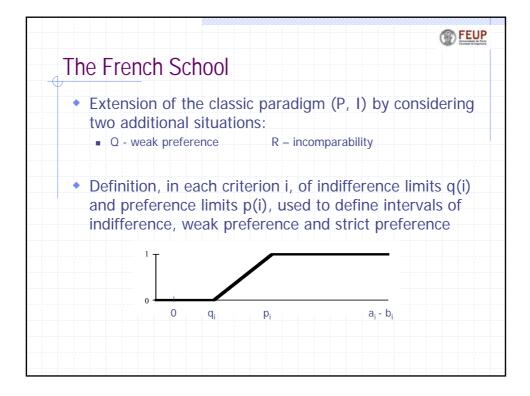

		() FEL
Individual valu	e functions	
	conditional) value fund satisfaction in one criterion, re	
 Typical value 	functions (minimization	n):
 Linear 	$v(x) = x_N = \frac{x_{\max} - x}{x_{\max} - x_{\min}}$	
 Quadratic 1 	$v(x) = (x_N)^2$	Generally v(x) is normalized, with: v(best x) = 1
Quadratic 2	$v(x) = 2 \cdot x_N - (x_N)^2$	$\mathbf{v}(\mathbf{worst}\;\mathbf{x}) = 0$
 Exponential 	$v(x) = \frac{e^{a \cdot x_N} - 1}{e^a - 1}$	

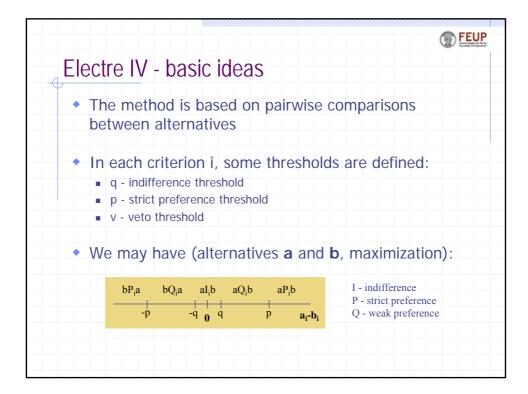


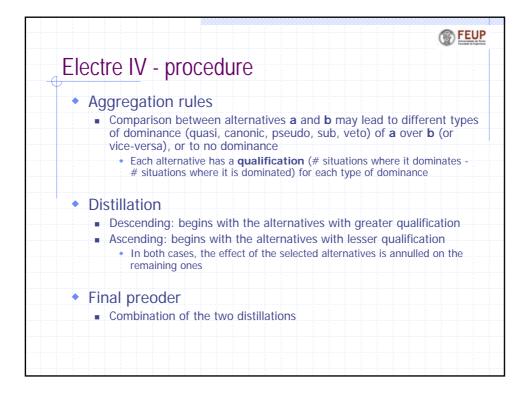


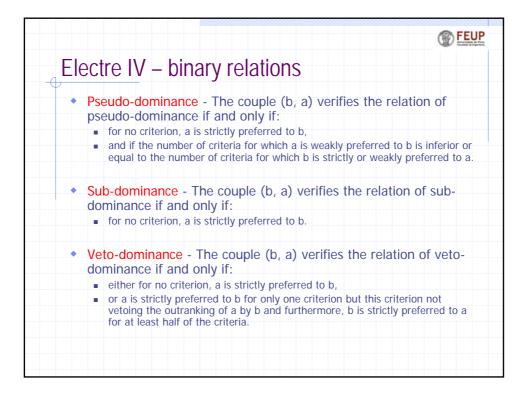

	FEUP
Minimum distance to the Ideal	
 A possible decision paradigm for determinis 	tic
multiattribute problems	
 Induces an order in the set of the alternatives 	
 May also be used in multiobjective problems 	
 Ideal (Zeleny) 	
 (Non feasible) solution, defined only in the attributes' joins up the individual optima 	space, that
Limitations	
If scales are very different, some kind of normalization	n is mandatory
 We are implicitly accepting equal compensation between the second second	
 e.g. 30% loss in Attribute X are compensated by 30% g 	ain in Attribute Y

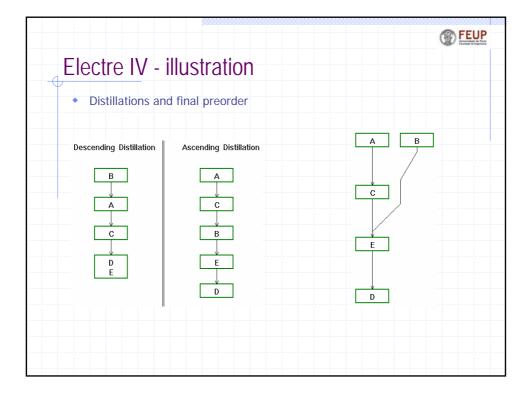



AHP: example					
		Taste			
	Vanilla	Strawberry	Chocolate]	
Vanilla	1	3/2	5	0.540	
Strawberry	2/3		3	0.348	
Chocolate	1/5	1/3	1	0.112	
		Price		_	
····	Vanilla	Strawberry	Chocolate		
Vanilla	1	1/3	1	0.185	
Strawberry	3	1	5	0.659	
Chocolate	1	1/5	1	0.156	
		Look			
	Vanilla	Strawberry	Chocolate		
Vanilla	1	1/5	1	0.149	
Strawberry	5	1	4	0.691	
Chocolate	1	1/4	1	0.160	

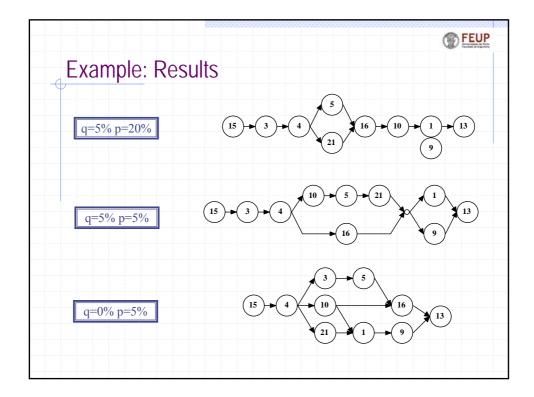


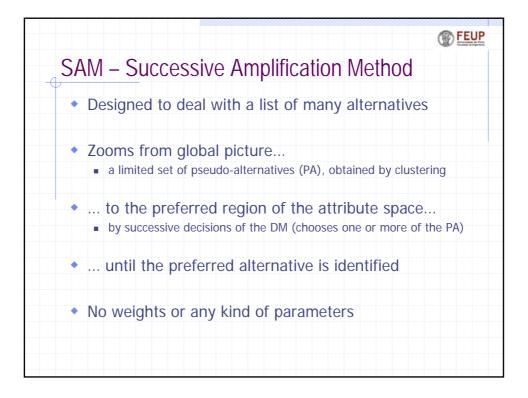

AHP: a	surprise				® <u>E</u>
			but keepir	ng the remaini	ng
	nents			Ū	Ū
		Taste	Price	Look	
	Vanilla	3/5	1/4	1/6	
	Strawberry	2/5	3/4	5/6	
	Suawberry			5/0	
• Th				es are obtained	J. !

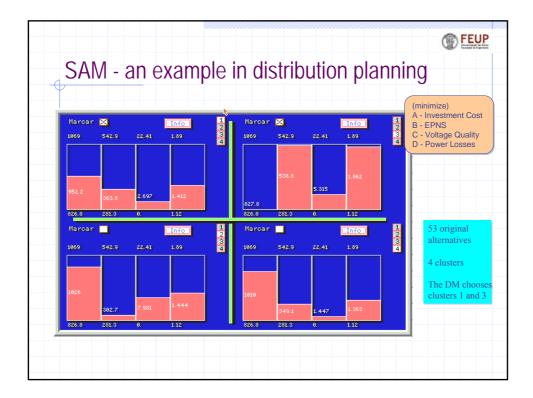

	© FEUI
De	ecision-aid methodologies
	The French School of decision-aid proposes a number of methods that try to better model the structure of preferences of the DM, without prescribing a total order
	 The methodologies include indifference thresholds hesitations between strict preference and indifference (weak preference) veto thresholds incomparability situations the complementary concepts of concordance and discordance
•	Aggregation of preferences mainly by rules as opposed to formulas
•	Members of the family ELECTRE I, IS, II, III, IV, Tri, PROMETHEE, GAIA



Elec	tre IV – binary relations
	uasi-dominance - The couple (b, a) verifies the relation of quasi- minance if and only if: for every criterion, b is either preferred or indifferent to a, and if the number of criterion for which the performance of a is better than the one of b (a staying indifferent to b) is strictly inferior to the number of criteria for which the performance of b is better than the one of a.
ca •	nonic-dominance - The couple (b, a) verifies the relation of nonic-dominance if and only if: for no criterion, a is strictly preferred to b, and if the number of criteria for which a is weakly preferred to b is inferior or equal to the number of criteria for which b is strictly preferred to a, and if the number of criteria for which the performance of a is better than the one of b is strictly inferior to the number of criteria for which the performance of b is better than the one of a.

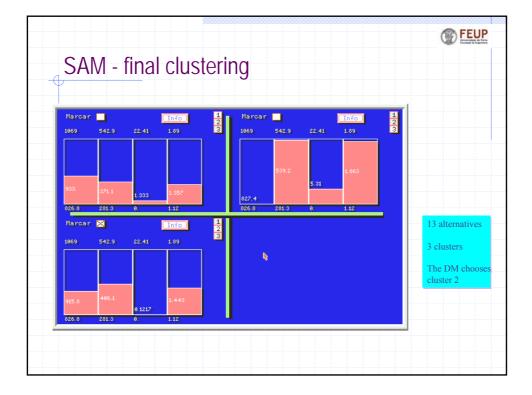


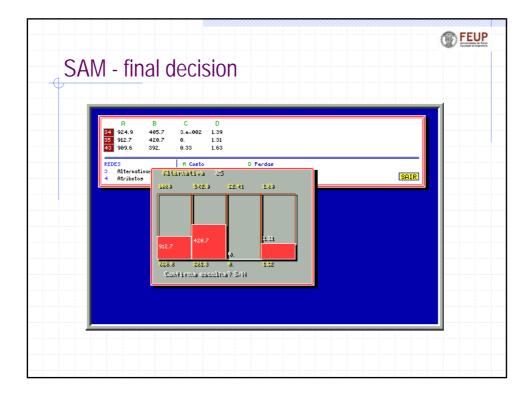

alternative cost lambda U A 1000 0.10 7 B 800 0.15 10 C 500 0.21 12 D 850 0.12 11 E 1200 0.30 4	alternative cost lambda U A 1000 0.10 7 B 800 0.15 10 C 500 0.21 12 D 850 0.12 11 E 1200 0.30 4 1.0 - quasi A B C D 0.8 - canonic A B C D 0.6 - pseudo C 0 0 0	alternative cost lambda U A 1000 0.10 7 B 800 0.15 10 C 500 0.21 12 D 850 0.12 11 E 1200 0.30 4 1.0 - quasi A B C D 0.8 - canonic A B C D 0.6 - pseudo C 0 1.0 1 0.4 - sub C 0.4 1 0.4 0										
A 1000 0.10 7 B 800 0.15 10 p 150 0.1 2 C 500 0.21 12 v 500 6 D 850 0.12 11 E 1200 0.30 4 Image: 1.0 - quasi A B C D E	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	 A SITI2 	all distributi	on plan	ning p	proble	em				
A 1000 0.10 7 B 800 0.15 10 p 150 0.1 2 C 500 0.21 12 v 500 6 D 850 0.12 11 E 1200 0.30 4 Image: 1.0 - quasi A B C D E	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_					
B 800 0.15 10 p 150 0.1 2 C 500 0.21 12 v 500 6 D 850 0.12 11 v 500 6 E 1200 0.30 4 v 500 6	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_		bid			
C 500 0.21 12 v 500 6 D 850 0.12 11 v 500 6 E 1200 0.30 4 v 500 6 1.0 - guasi A B C D E	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					_					
D 850 0.12 11 E 1200 0.30 4 1.0 - guasi A B C D E	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$					-				0.1	
1.0 - guasi A B C D E	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	A B C D E 1.0 - quasi A 1 0 0.2 0.8 0.8 0.8 - canonic B 0 1 0 1 0 0.6 - pseudo C 0 0.4 1 0.4 0										
1.0 - quasi	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	E	1200	0.30	4						
1.0 - quasi	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
1.0 - quasi	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$										
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	0.8 - canonic A 1 0 0.2 0.8 0.8 0.6 - pseudo C 0 1 0 1 0 0.4 - sub C 0 0.4 1 0.4 0			\sim	А	В	С	D	Е		
	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			A	1	0	0.2	0.8	0.8		
	0.6 - pseudo C 0 0.4 1 0.4 0	0.6 - pseudo 0.4 - sub		0.8 - canonio	B	-	_	-		-		
	\sim 1 U U U 4 U U			0.6 - pseudo	_	-	•	_				
					С	0	0.4	1	0.4	0		
0.6 - pseudo		- 0 0.4 0 0			D	0	0.4	0	1	0		
0.6 - pseudo -	- 0 0.4 0 1 0			0.2 - veto	Е	0	0	0	0	1		
0.8 - canonic A 1 0 0.2 0.8 0.8	\sim U U4 U U4 U	0.4 - sub		0.8 - canonio	В	1 0	0	0.2	0.8 1	0.8	_	
	\sim 1 U U.4 U U.4 U	0.4 - sub		0.6 - pseudo	_	-	•	_				
					C	0	0.4	1	0.4	0		
0.6 - pseudo c 1 0 1 0 0.4 - sub D 0 0.4 1 0.4 0					F		1 0	1 0	1 0	1 1		



слаттр	le: original da	ala				
	Algorithm	no rot	with rot	blazewic	shirt	milenk
1 MAX_OVERLAP		69.00	72.00	32.57	66.44	308.37
2 MAX_OVERLAP		73.00	71.00	33.96	77.96	314.95
3 MAX_OVERLAP		74.50	67.50	30.00	70.28	275.55
4 MAX_OVERLAP		74.50	67.50	30.73	69.93	273.45
	OVERLAP+DISTANCE WASTE+OVERLAP	75.50 76.00	65.00 66.00	31.83 32.07	69.95 84.86	275.89 333.71
7 MAX OVERLAP		78.00	67.75	32.07	70.00	333.71
8 MIN AREA	OVERLAP	67.00	67.00	33.26	68.12	315.82
9 MIN AREA	DISTANCE	68.00	77.50	30.90	67.80	298.87
10 MIN AREA	OVERLAP+DISTANCE	69.50	71.00	32.75	67.43	291.37
11 MIN AREA	WASTE	73.00	67.00	31.09	73.83	281.99
12 MIN AREA	WASTE+DISTANCE	73.00	67.50	31.75	76.07	282.80
13 MIN AREA	WASTE+OVERLAP	77.00	66.50	32.65	76,15	305.45
14 MIN_AREA	WASTE+OVERLAP+DISTANCE	77.00	73.00	32.03	71.61	339.50
15 MIN_LENGTH	OVERLAP	66.75	67.00	29.48	68.12	276.11
16 MIN_LENGTH	DISTANCE	71.00	73.00	31.91	67.72	282.00
17 MIN_LENGTH	WASTE	73.00	67.00	30.09	70.00	286.35
18 MIN_LENGTH	WASTE+DISTANCE	73.00	67.50	30.42	74.42	280.14
19 MIN_LENGTH	WASTE+OVERLAP	74.00	71.00	29.92	76.13	313.98
20 MIN_LENGTH	WASTE+OVERLAP+DISTANCE	74.50	72.00	32.35	73.10	300.19
21 MIN LENGTH	OVERLAP+DISTANCE	83.50	67.00	28.90	67.30	281.99

	Algorithm	no rot	with rot	blazewic	shirt	milenk
1 MAX_OVERL	AFDISTANCE	69.00	72.00	32.57	66.44	308.37
3 MAX_OVERL	APWASTE	74.50	67.50	30.00	70.28	275.55
4 MAX_OVERL	APWASTE+DISTANCE	74.50	67.50	30.73	69.93	273.45
5 MAX_OVERL	AFOVERLAP+DISTANCE	75.50	65.00	31.83	69.95	275.89
9 MIN_AREA	DISTANCE	68.00	77.50	30.90	67.80	298.87
10 MIN_AREA	OVERLAP+DISTANCE	69.50	71.00	32.75	67.43	291.37
13 MIN_AREA	WASTE+OVERLAP	77.00	66.50	32.65	76.15	305.45
15 MIN_LENGTH	I OVERLAP	66.75	67.00	29.48	68.12	276.11
16 MIN_LENGTH	DISTANCE	71.00	73.00	31.91	67.72	282.00
21 MIN LENGTH	I OVERLAP+DISTANCE	83.50	67.00	28.90	67.30	281.99





· · · · · · · · · · · · · · · · · · ·	• (Globa	l list,	sho	owing s	electe	ed alte	erna	tives			
1	958. 943.5	314.8 344.3	0.45 0.37	1.47 1.45	20 827.	537.2	6.32	1.83	39 1006 40 1002	353.5 364.6	1.e-002 4.e-002	1.36
3	945.6	308.	0.37 3.08	1.45	21 826.8 22 1069	542.9 281.3	6.32 3.1	1.87 1.46	40 1002	364.6 366.4	4.e-002 4.e-002	1.4
4	995.6	306.	3.08	1.56	23 1040	314.4	0.68	1.21		369.9	4.e-002	1.40
5	995.6	309.5	2.71	1.43	24 1041	314.5	0.3	1.25	42 993.3 43 909.6	392.	0.33	1.63
6	1017	299.9	2.71	1.59	25 1034	315.6	0.68	1.22	44 924.	380.	6.79	1.35
	1016	302.4	2.71	1.58	26 1030	336.5	0.68	1.19	45 938.9	371.	0.	1.12
8	1014 1062	307.6 302.9	2.71 14.26	1.58 1.37	27 1023	352.6	0.68	1.19	46 1056	318.	0.	1.55
9	1062	293.2	14.25	1.37	28 1013	358.2	1.81	1.34	47 984.7	357.3	0.	1.55
11	1849	304.2	11.19	1.42	29 1007	359.4	1.81	1.34	48 980.1 49 973.2	358.9 361.1	0. 0.	1.53
12	1025	299.4	14.7	1.46	30 1005 31 925.5	363.5 374.8	1.16 1.08	1.32	50 957.1	370.9	0. 0.	1.54
13	1021	292.3	22.41	1.58	32 925.5	374.8 380.5	1.08	1.31	51 964.5	327.7	13.17	1.39
14	1026	288.	11.64	1.45	33 925.8	375.9	3.e-002	1.41	52 964.5	331.	13.17	1.28
15	1010	305.2	14.7	1.48	34 924.9	405.7	3.e-002	1.39	53 957.3	343.3	13.17	1.29
16	1011	300.6	14.7	1.45	35 912.7	420.7	0.	1.31	_			
17	1000	306.6	11.24	1.41	36 1017	332.3	4.e-002	1.46				
18	992.2	336.8	11.24	1.43	37 1016	336.	4.e-002	1.45				
19	828.5	537.6	3.29	1.89	38 1017	334.	1.e-002	1.42				

Fi	nal remarks
•	In deterministic multiattribute problems, the main issue is preference modeling
*	Building correctly a value function may be a good approach, namely if automatic decisions are needed Trade-off analysis is just a particular case
•	Decision-aid methods are an interesting alternative when the DN desires a more detailed representation of his preferences Very adequate when a large number of criteria exist
•	Filtering procedures and non-parametric approaches help the DM gaining more insight into the problem