Class Notes

MAD - Decision Aid Methodologies - FEUP 2005

Multicriteria Decision-Aid
basic concepts and definitions

Manuel Matos

FEUP
REMP

The role of the decision maker

- Deterministic, single-criterion problems
- The DM participates only in the problem formulation
- The rest of the process is mainly technical, leading (hopefully) to the optimal solution
- The decision is embedded in the problem formulation

Multicriteria problems
Minimize Cost
Maximize Reliability

\mathbf{n}	Cost	Reliability
1	65	0.994586
2	58	0.993677
3	72	0.995333
4	72	0.995531
5	60	0.994064
6	65	0.994641
7	71	0.995954
8	51	0.992906
9	67	0.995111
10	90	0.998551
11	67	0.995425
12	86	0.997641
13	66	0.994653
14	52	0.992848
15	76	0.995913

The role of the decision maker

- Deterministic, multicriteria problems
- The DM participates in the problem formulation
- The structure of preferences of the DM must be incorporated in the problem
- The process leads to the preferred solution

Some definitions

- Dominated (inferior) alternative
- A solution is dominated iff there exists another one that is better in at least one criterion, without being worse in any of the remaining criteria
- Efficient (nondominated, noninferior, Pareto optimal) alternative
- A solution is efficient iff it is not dominated by any other feasible alternative
- Ideal
- (Non feasible) solution that joins up the individual optima
- Defined only in the attributes' space

Examples

Minimize Cost Maximize Reliability		
n	Cost	Reliability
1	65	0.994586
2	58	0.993677
3	72	0.995333
4	72	0.995531
5	60	0.994064
6	65	0.994641
7	71	0.995954
8	51	0.992906
9	67	0.995111
10	90	0.998551
11	67	0.995425
12	86	0.997641
13	66	0.994653
14	52	0.992848
15	76	0.995913

Different types of uncertainty

- Probabilistic - Different scenarios with probabilities

\mathbf{n}	Cost		
	C1 (0.3)	C2 (0.6)	C3 (0.1)
1	59	65	75
2	50	58	71
3	68	72	60
4	69	72	62
5	53	60	63
6	51	59	65
7	68	71	77
8	56	57	75
9	62	58	80
10	62	55	70

- Fuzzy - Vague or $\quad \max z=2 x_{1}+x_{2}$ imprecise constraints suj: $x_{1}+x_{2} \check{\leq} 4$ $\begin{array}{ll}x_{1}+2 x_{2} & \underset{\sim}{\sim} 6 \\ x_{1} & \underset{\leq}{\leq} \\ x_{1}\end{array}$
$\begin{array}{ll}x_{1} \\ x_{1}, & \\ & \quad \leq 2 \\ \geq 0\end{array}$

The role of the decision maker

- Single or multicriteria problems under uncertainty
- The DM participates in the problem formulation and in the uncertainty characterization
- The preferred solution results from the incorporation in the problem of the structure of preferences of the DM, including its risk attitude

Use of decision paradigms (or rules)

Original problem - Dominated solutions shown			
	Cost		
n	C1 (0.3)	C2 (0.6)	C3 (0.1)
1	59	65	75
2	50	58	71
3	68	72	60
4	69	72	62
5	53	60	63
6	51	59	65
7	68	71	77
8	56	57	75
9	62	58	80
10	62	55	70

Min E(Cost)	
\mathbf{n}	Expected Cost
1	64.2
2	56.9
3	69.6
4	70.1
5	58.2
6	57.2
7	70.7
8	58.5
9	61.4
10	58.6

Minimax Cost

\mathbf{n}	Minimax
Cost	
1	75
2	71
3	72
4	72
5	63
6	65
7	77
8	75
9	80
10	70

	(2) FEUP
Modeling	
- A coherent family of criteria must be:	
- Exhaustive - All important points of view must be included	
- Consistent - If two alternatives A and B are equivalent except in criterion k, and A_{k} is better than B_{k}, then A must be at least as good	
- Non-redundant - Eliminating a criterion leads to the violation of one	
- Other desirable proprieties	
- Legibility - The number of criteria used must be relatively low - Operationality - The family of criteria must be accepted by the stakeholders and the decision makers	

Alternatives

- Alternatives may be explicit (MA) or implicit (MO)
- To be a candidate, an alternative must be feasible
- or almost feasible
- Decisions are made based on the attributes of each alternative

- The alternatives are completely defined and assumed feasible
- Attributes may be determinist, probabilistic, fuzzy (or mixed)
- The problem may be: choice, ranking or sorting

Multicriteria analysis - main approaches

- Ensure that the DM follows a "rational" behavior (Normative option)
- Give some advice based on reasonable (but not indisputable) rules
- Find the preferred solution from partial decisions about decision hypothesis
- Prepare decision sets
- Value functions, Utility theory, distance to the Ideal
- The French School
- Interactive methods
- Generation methods Filtering of efficient solutions
from Benjamin Franklin (1772)

> Dear Sir,
> In the affair of so much importance to you, wherein you ask my advice, I cannot, for want of sufficient premises, advise you what to determine, but if you please I will tell you how. When those difficult cases occur, they are difficult, chiefly because while we have them under consideration, all the reasons pro and con are not present to the mind at the same time; but sometimes one set present themselves, and at other times another, the first being out of sight. Hence the various purposes or informations that alternatively prevail, and the uncertainty that perplexes us. To get over this, my way is to divide half a sheet of paper by a line into two columns; writing over the one Pro, and over the other Con. Then, during three or four days consideration, I put down under the different heads short hints of the different motives, that at different times occur to me, for or against the measure. When I have thus got them all together in one view, I endeavor to estimate their respective weights; and where I find two one on each side, that seem equal. I strike them both out. If I find a reason pro equal to some two reasons con, I strike out the three. If I judge some two reasons con, equal to three reasons pro, I strike out the five; and thus proceeding I find at length where the balance lies; and if, after a day or two of further consideration, nothing new that is of importance occurs on either side, I come to a determination accordingly. And, though the weight of the reasons cannot be taken with the precision of algebraic quantities, yet when each is thus considered, separately and comparatively, and the whole lies before me, I think I can judge better, and am less liable to make a rash step, and in fact I have found great advantage from this kind of equation, and what might be called moral or prudential algebra.
> Wishing sincerely that you may determine for the best, I am ever, my dear friend, yours most affectionately.
> B. Franklin

