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Outline of the tutorial
Basic ideas and concepts

Modeling

Identifying efficient alternatives (multiattribute problems)

Generating efficient alternatives (multiobjective problems)

Methods for deterministic problems

Decisions under uncertainty
Applying decision paradigms

Using multiple (risk) indices

Some ideas about fuzzy modeling

Final remarks
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Basic ideas and concepts

Trivial decision problems
Minimize Cost Maximize profit z max z = 2x1 + x2

suj:   x1 + x2 ≤ 4
x1 + 2x2 ≤ 6
x1 ≤ 3
x1 , x2 ≥ 0
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z

n Cost
1 65
2 58
3 72
4 72
5 60
6 65
7 71
8 51
9 67
10 90
11 67
12 86
13 66
14 52
15 76
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Deterministic, single-criterion problems
The role of the decision maker

The DM participates only in the problem formulation
The rest of the process is mainly technical, leading (hopefully) to the 
optimal solution
The decision is embedded in the problem formulation

Deterministic
Single-Criterion

Problem

Optimization 
Process

Optimal 
Solution Implementation Outcome

Decision 
Maker

Deterministic multicriteria problems
Minimize Cost
Maximize Reliability

Maximize profit z1

Maximize export z2

max z1 = 2x1 + x2

max z2 = x2

suj:   x1 + x2 ≤ 4
x1 + 2x2 ≤ 6
x1 ≤ 3
x1 , x2 ≥ 0
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z1z2

n Cost Reliability
1 65 0.994586
2 58 0.993677
3 72 0.995333
4 72 0.995531
5 60 0.994064
6 65 0.994641
7 71 0.995954
8 51 0.992906
9 67 0.995111
10 90 0.998551
11 67 0.995425
12 86 0.997641
13 66 0.994653
14 52 0.992848
15 76 0.995913
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Deterministic, multicriteria problems
The role of the decision maker

The DM participates in the problem formulation
The structure of preferences of the DM must be incorporated in the 
problem
The process leads to the preferred solution

Important message:
There is no way to “solve” a MC problem without incorporating the 
DM’s preferences

Deterministic
Multicriteria

Problem

Decision-Aid 
Process

Preferred
Solution

Decision 
Maker

Implementation Outcome

Different types of uncertainty
Probabilistic - Different 
scenarios with probabilities

Fuzzy - Vague or 
imprecise constraints

max z = 2x1 + x2

suj:   x1 + x2
˜ ≤ 4

x1 + 2x2
˜ ≤ 6

x1
˜ ≤ 3

x1 , x2 ≥ 0

0

1

2

3

4
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6

0 1 2 3 4 5 6

z

Cost
n C1 (0.1) C2 (0.6) C3 (0.3)
1 59 65 75

2 50 58 71

3 68 72 60
4 69 72 62

5 53 60 63
6 51 59 65

7 68 71 77

8 56 57 75
9 62 58 80
10 62 55 70
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The role of the decision maker
The DM participates in the problem formulation and in the 
uncertainty characterization
The preferred solution results from the incorporation in the problem 
of the structure of preferences of the DM, including his risk attitude

Important message:
There is no way to “solve” a problem under uncertainty without 
incorporating the DM’s preferences and risk attitude

Problems under uncertainty

Single or 
Multicriteria

Problem under 
Uncertainty

Decision-Aid 
Process

Preferred
Solution

Decision 
Maker

Implementation

Uncertainty

Outcome

Modeling
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Modeling
Identification of

Alternatives
Or the constraints that define them implicitly

Relevant criteria (how to compare the outcomes of two alternatives)
Main sources of uncertainty

Formulation of
Decision variables
External variables and parameters
Coherent family of criteria
Attributes

How to measure the satisfaction in each criterion
(e.g. Criterion – Minimize environmental impact. Attribute - %CO2)

Modeling
A coherent family of criteria must be:

Exhaustive – All important points of view must be included 
Consistent – If two alternatives A and B are equivalent except in 
criterion k, and Ak is better than Bk, then A must be at least as good 
as B
Non-redundant - Eliminating a criterion leads to the violation of one 
of the preceding conditions

Other desirable proprieties
Legibility - The number of criteria used must be relatively low
Operationality - The family of criteria must be accepted by the 
stakeholders and the decision makers
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Modeling
Impact

Outcome of each particular decision (e.g. objective functions)

Physical model
How to evaluate feasibility (e.g. mathematical constraints)

Uncertainty
Probability distributions
Scenarios (with or without probabilities)
Possibility distributions (fuzzy sets)

Modeling
No uncertainty

Decision Variables Impact
Model Decision attributes

External Variables

Physical
Model Feasibility
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Modeling
Uncertain environment

Decision Variables Central tendency
Decision attributes

External Variables (uncertain) Risk indices
(uncertain)

Impact
Model

Decision Variables Yes
Feasibility Risk of insatisfaction

External Variables No
(uncertain)

Physical
Model

Some definitions
Dominated (inferior) alternative

A solution is dominated iff there exists another one that is better in 
at least one criterion, without being worse in any of the remaining 
criteria

Efficient (nondominated, noninferior, Pareto optimal) 
alternative

A solution is efficient iff it is not dominated by any other feasible 
alternative

Ideal
(Non feasible) solution that joins up the individual optima
Defined only in the attributes’ space
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Identifying efficient alternatives
(multiattribute problems)

Multiattribute problems

Main characteristics
The alternatives are completely defined and assumed feasible
Attributes may be determinist, probabilistic, fuzzy (or mixed)
The problem may be: 

Choice – Select the best alternative
Ranking – Draw a complete order of the alternatives
Sorting – Select the best k alternatives from a list of n>k
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Attributes
may be

real numbers, intervals,
probability distributions,
possibility distributions, 
qualitative labels
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Example
E dominates D

E is strictly better than D in both 
criteria

B dominates C
B is strictly better than C in the Cost
criterion
B is not worse than C in any criterion

C and D are dominated

A, B and E are efficient
They are not dominated by any other 
alternative

NB:
A possible rank: B, C, E, D, A

Two attribute plot
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Examples
Minimize Cost
Maximize Reliability

n Cost Reliability
1 65 0.994586
2 58 0.993677
3 72 0.995333
4 72 0.995531
5 60 0.994064
6 65 0.994641
7 71 0.995954
8 51 0.992906
9 67 0.995111
10 90 0.998551
11 67 0.995425
12 86 0.997641
13 66 0.994653
14 52 0.992848
15 76 0.995913
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Generating efficient alternatives 
(multiobjective problems)

Multiobjective problems
Main characteristics

Alternatives are not known in 
advance
Optimization procedures are 
always needed
May have a big number of 
constraints and decision 
variables
May not be completely described 
by the mathematical formulation
Sometimes interpreted as 
optimization problems with more 
than one objective function 
(vector optimization)

x vector of decision variables
(may include integer or binary variables)

f(x) vector of objective functions
g(x) set of equality constraints
h(x) set of inequality constraints
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Attribute’s space

Decision space vs attribute’s space
Decision space
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z1z2

max z1 = 2x1 + x2

max z2 = x2

suj:   x1 + x2 ≤ 4
x1 + 2x2 ≤ 6
x1 ≤ 3
x1 , x2 ≥ 0

0
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6

0 1 2 3 4 5 6 7 8

z1

z2

Generation methods
Parametric variation of λ>0 in

The optimal solution of this auxiliary problem is an efficient solution 
of the original multiobjective problem
The parameters λ are only instrumental (not judgments of the DM)

Constrained optimization
Define additional constraints in n-1 objective functions
Optimize the remaining objective function
Repeat for different RHS values of the additional constraints

Multiobjective simplex

Multiobjective metaheuristics
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=

=
m

i
ii f)(fmin

1
λ xx
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Parametric variation

0
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0 1 2 3 4 5 6 7 8 9

z1

z2

6

2

1/3

λ2/λ1

Parametric variation
In MO linear problems, post-optimization (parametric 
analysis) can be used to find all the efficient solutions

e.g. (previous problem)                         e.g. (tricriteria problem)

0       0.25       0.5                     1    (λ1)
Each area corresponds to 
the same extreme efficient 
solution

Each line corresponds 
to the same efficient 
edge

Each intersection point 
corresponds to the same 

efficient face
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Exposure

Cost

0

1

a

d

c

b

a,b,c,d - Efficient solutions
c - “Convex dominated” but not dominated
a,b,c,d - Efficient solutions
c - “Convex dominated” but not dominated

Parametric variation 
Difficulties in combinatory problems

Some efficient solutions are never selected

Constrained optimization (ε - constraint)

z2  ≥ 1.5

max z1

0

1

2

3

4

5

6

0 1 2 3 4 5 6 7 8 9

z1

z2

z2  ≥ 1.5

max z1
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Strategies for MO problems 
Generation methods

Aggregation of criteria (use of a value function)
Transforms the problem into an optimization one

Interactive methods
Based on an implicit value function (never explicitly known!)

Geoffrion-Dyer-Feinberg, Surrogate Worth Trade-off, Zionts-Wallenius

Without special conditions
STEM, Trimap

Goal programming

Some arguments
Strategy Pro Con 

Generation Doesn’t have parameters 

Gives the global picture 

Doesn’t require the DM’s presence 

Doesn’t produce a solution or an order 

Risk of generating to many solutions 

Heavy calculations 

Aggregation Leads to optimization 

Induces a total order 

No further intervention of the DM 

Difficulties in building the Value Function 

Some arbitrariness 

Tendency to predefinitions and confusion 

between OF and VF 

Interactive Reduces information overload 

Easier calculations (in general) 

Induces learning 

Loss of holistic vision 

Produces only a final solution 

May need many judgments 

Goal Prog. Well established in OR 

Easy to apply 

Adequate to large dimension 

problems 

Only linear problems 

Needs goal definition 

Requires a lexicographic order of the 

criteria (no compensation) 
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Aggregation (use of a value function)
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x vector of decision variables
(may include integer or binary variables)

f(x) vector of objective functions
g(x) set of equality constraints
h(x) set of inequality constraints
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Interactive approaches
(typically, only for MO linear problems)

General procedure
1. Find an initial solution (efficient)
2. Ask the DM if he is satisfied if he is, this is the preferred solution. STOP
3. Ask the DM  which criteria he wants to improve and which criteria he accepts 

to worsen
4. Use the precedent information to find a new solution
5. Return to 2

Some classics
STEM

STRANGE
Zionts-Wallenius
Interval Criterion Weights
Surrogate Worth Trade-off
Geoffrion-Dyer-Feinberg
Pareto Race
Trimap



17

Methods for deterministic problems

Trade-off analysis
5 possible investment plans

0

2
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6

8

10

12

5000 10000 15000 20000 25000

Cost (€)

E
E

N
S 

(M
W

h)

Cost (€) EENS (MWh)
9000 11

11000 9
13500 5
16000 3.5
20000 2.5

2500 €

4 MWh

4000 €

1 MWh

0.625 €/kWh

4 €/kWh
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Trade-off analysis
When comparing B to A (two efficient alternatives)

We gain something in one criterion 
We loose something in another criterion

If we have a reference value for the trade-off
We know immediately if we prefer A or B
It’s easy to select the preferred alternative

Trade-off analysis
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5000 10000 15000 20000 25000

Cost (€)

EE
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(M

W
h)

0.25 €/kWh
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Cost (€)

EE
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Trade-off analysis

1 €/kWh

alternative Cost (€) EENS (MWh) EENS (€) Total
A 9 000 11 11 000 20 000
B 11 000 9 9 000 20 000
C 13 500 5 5 000 18 500
D 16 000 3.5 3 500 19 500
E 20 000 2.5 2 500 22 500

(1 €/kWh)

Trade-off analysis
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Trade-off analysis
Each trade-off β defines a family of indifference lines

f(Cost, EENS) = Cost + β. EENS β in €/MWh
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1 €/kWh

4 €/kWh

0.25 €/kWh

0.436k   0.564k
 If

8.511000
8.5βk               

8.511000
11000k

2.511
EENS11k

900020000
Cost20000kEENS)(Cost,v

: normalized a Using
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+
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−
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+
−
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=

€/MWh 1000

functionvalue

β
ββ

Never Selected

Trade-off analysis
Conclusions:

Constant trade-offs lead to linear indifference curves
… and to linear value functions
… with constant weights

that have no special meaning as indicators of the relative importance of 
the criteria in general

Important issues
The process may be extended to more than two criteria
Trade-offs are not always constant

e.g. beyond a certain level, your willingness to pay for extra reliability 
decreases

… leading to non-linear indifference curves
… and non-linear value functions 

but generally still additive, with constant parameters
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Indifference curves
Indifference curves join all the points with the same global value
The DM is indifferent between two points in the same curve

Both quadratic

1000

1500

2000

2500

3000

3500

4000

50 55 60 65 70 75 80

Both linear

1000

1500

2000

2500

3000

3500

4000

50 60 70 80

20
17.5
15
12.5
10

Minimization in both criteria
Value scale (20f17.5, etc)

Summarizing
Indifference curve (attribute space) 

Set of the alternatives that are valued the same way by the Decision 
Maker
The indifference curves completely describe the structure of 
preferences of the Decision Maker

Trade-off between two attributes X and Y
What you must lose in X to increase one unit in Y, while staying in 
the same indifference curve (slope of the curve)

Weights
If and only if the trade-offs are constant, weights are constant
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Value functions
A formal way to address decision problems

Sometimes called deterministic utility functions

If some conditions are met, there exists a real value 
function v() such that:

AfB ⇔ v(A)>v(B)
A~B ⇔ v(A)=v(B)

Use of an additive value function requires:
Verifying assumptions
Construction of the individual value functions
Indifference judgments to build the multiattribute value function

No naïve weights asked directly to the DM!

Individual value functions
Individual (or conditional) value function

Measures the satisfaction in one criterion, regardless of the values of 
the other criteria

Typical value functions (minimization):

Linear

Quadratic 1

Quadratic 2

Exponential

minmax

max)(
xx

xxxxv N −
−

==

( )2)( Nxxv =

1
1)(

.

−
−

= a

xa

e
exv

N

( )2.2)( NN xxxv −=

Generally v(x) is 
normalized, with:

v(best x) = 1

v(worst x) = 0
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Individual value functions
The convexity of the value function reflects the variation of the 
DM’s satisfaction in the range of the attribute

The same difference in the attribute (e.g. 50-100 and 200-250) does not 
correspond to the same increase in satisfaction (exception: linear v.f.)

Keep away from bad outcomes

0

0.25

0.5

0.75

1

0 50 100 150 200 250

x
v(

x)

(linear) quad 1 exp(-3) exp(-5)

Keep close to good outcomes

0

0.25

0.5

0.75

1

0 50 100 150 200 250

x

v(
x)

(linear) quad 2 exp(3) exp(5)

MA value function - parameters
Assess the parameters k1 and k2

Build “extreme” alternatives:

Ask for a judgment (eg: P f Q, that implies k1 ≥ k2)

Find M = (z, worst A2) ~ Q
Then: 

This is very different from asking directly for weights!
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Example
Build “extreme” alternatives:

P=(9000, 11), Q=(20000, 2.5)

Search for an indifference
P or Q?

The DM says P f Q

P’=(11000, 11) or Q?
P’ f Q

P’’=(12000, 11) or Q?
Q f P’’

M=(11500, 11) ~ Q=(20000, 2.5)

vC(11500)=0.773

kC=0.564 kE=0.436
( ) ( )

( ) CE
C

C

ECC

k1k
zv1

1k

kzvkv(Q)Mv

−=
+

=

=⇒=

Cost (€) EENS (MWh)
9000 11

11000 9
13500 5
16000 3.5
20000 2.5

2.511
EENS11k

900020000
Cost20000kEENS)(Cost,v EC −

−
+

−
−

=

NB:
8 500 € compensates 8.5 MWh
Trade-off = 1 €/kWh

Other methodologies for MA problems
AHP - Analytic Hierarchy Process

Hierarchical organization of the criteria
Based on comparison matrices of binary comparisons

Between sub-criteria, regarding the parent criterion
Between alternatives, regarding all the last level criteria
Inconsistencies are allowed (to a certain degree)

Decision-aid methodologies (the French School)
Preference models include indifference and veto thresholds, weak and strong 
preference, and incomparability situations
Aggregation of preferences mainly by rules (as opposed to formulas)
Methods - ELECTRE I, IS, II, III, IV, Tri, PROMETHEE, GAIA

Non-parametric methodologies
Based on successive choices between a reduced number of alternatives
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53 original
alternatives

4 clusters

The DM chooses
clusters 1 and 3

53 original
alternatives

4 clusters

The DM chooses
clusters 1 and 3

SAM – a cluster based methodology
an example in distribution planning (extract)

(minimize)
A - Investment Cost
B - EPNS
C - Voltage Quality
D - Power Losses

(minimize)
A - Investment Cost
B - EPNS
C - Voltage Quality
D - Power Losses

Decisions under uncertainty



26

Uncertainty issues
Uncertainty about the data

Loads, costs, wind power, hydro inflows, economical parameters
Reliability parameters

Uncertainty about the outcome of random variables
Quality of service indices

Uncertainty about the behavior of other agents
Regulatory decisions
Environmental pressure
Competitors’ decisions

Uncertainty about the model

Uncertainty models
Scenarios

with or without probabilities

Probabilistic models
continuous, discrete, subjective

Fuzzy models
(intervals are fuzzy sets)
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Scenarios
Scenarios are coherent estimates of the uncertain 
environment

Taking into account the relations and dependencies between 
variables
Although quantitatively characterized, they correspond to 
qualitatively different realizations of the uncertainties

e.g. “Moderate economic development”, “Economic stagnation”

Probabilities may be assigned to each scenario
Sometimes, subjective probabilities
But also interval or fuzzy probabilities

Output
Impact of the decisions in each scenario

Probabilistic models
Input

Continuous variables with known distributions
Discrete independent variables
Scenarios

Output
Probability distributions of the attributes
Expected values of the attributes
Other moments of the distributions of the attributes

Methods
Analytic
Simulation (e.g. Monte-Carlo)
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Fuzzy models
Basic concept

The degree of membership of an element of the universe of 
discourse to the concept associated to the fuzzy set may take any 
value in (0,1)

e.g. u(7, “near 9”)=0.3
e.g. u(17 min, “a quarter of hour”)=0.9

Typical applications
“This load will be around 800 kW”
“The consumption will grow from 3 to 5%”
“The deficit should not exceed too much 3%”

Output
Possibility distributions of the attributes
Robustness regarding constraint violations

A global view on alternatives (one criterion)
In each criterion, each alternative has an outcome:

a real number, when no uncertainty exists
a list of real numbers, when a finite number of scenarios exists
a list of pairs (attribute value, probability), when a finite number of scenarios 
exists with assigned probabilities
a discrete probability distribution or a probability density function, when the 
uncertainty is probabilistic

Dependencies may exist between random variables
a possibility distribution, when a fuzzy model is used

e.g. to describe mathematically qualitative labels
Intervals are a particular case of fuzzy sets

An alternative may be a stream of decisions over time
Including conditional decisions in the future (strategy)

Hedging policies can “generate” additional alternatives
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Uncertain environment (probabilistic)
Single criterion

Multicriteria

Alternatives p=0.9 p=0.1
A 100 1000
B 150 550

Cost

cost env cost env
X 1000 0.9 1000 0.8
Y 800 1.6 900 1.9
Z 500 1.7 1300 2

prob

scenarios

0.7 0.3

C1 C2
cost env cost env

X 1000 0.9 1000 0.8
Y 800 1.6 900 1.9
Z 500 1.7 1300 2

prob

scenarios

0.7 0.3

C1 C2

Decision trees - basics
A systematic way to represent a sequence of decisions and 
uncertain events through time, along with their outcomes

Complemented with procedures that identify the best strategy, according to 
some decision paradigm

A

Receive 2 salaries

Receive nothing

0.6

0.4

Receive 1 salary 

B

decision 
node

chance 
node

outcomes

probabilities

02 salariesA

1 salary1 salaryB

2nd Scen.(0.4)1st Scen. (0.6)Decision
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A more complex tree

Decision trees - basics

Decisions that 
compose a strategy

Applying decision paradigms
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Decision paradigms
Problems under uncertainty

Sometimes, the risk attitude of the DM is incorporated in the form of 
a pre-defined decision paradigm (expected value, regret, etc.)
This leads generally to an optimization process

Problem under 
Uncertainty Solution

Decision 
Maker

Implementation

Uncertainty

Outcome

Decision
Paradigm

Optimization 
Process

Use of decision paradigms (or rules)
Original problem

Dominated solutions 
shown

Min E(Cost) Minimax Cost

Cost
n C1 (0.3) C2 (0.6) C3 (0.1)
1 59 65 75

2 50 58 71

3 68 72 60
4 69 72 62

5 53 60 63
6 51 59 65

7 68 71 77

8 56 57 75
9 62 58 80
10 62 55 70

Expected
n Cost
1 64.2

2 56.9
3 69.6

4 70.1
5 58.2

6 57.2
7 70.7

8 58.5
9 61.4
10 58.6

Max
n Cost
1 75

2 71

3 72

4 72
5 63
6 65

7 77

8 75
9 80
10 70
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Maximize the Minimum Value

Maximize the Expected Value

Applying decision rules to a decision tree

Procedure
(from the leaves to the root)
Chance nodes are collapsed 
according to the paradigm
Decision nodes are collapsed 
according to Max ou Min
Conditional decisions are saved

A

Receive 2 salaries

Receive nothing

0.6

0.4

Receive 1 salary 

B

1.2 salary = 0.6 x 2 + 0.4 x 0

1 salary 

//

0 salary = min ( 2 ; 0)

1 salary 

\\

A

B

Decision paradigms for uncertainty
Expected value paradigm 
Mean-variance (E-V) analysis 
Utility theory
Robust optimization
Bellman and Zadeh fuzzy decision
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Expected value paradigm
Basic paradigm

Choose the alternative with the best expected value of the attribute
(implies risk indifference of the DM – linear utility)
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= →==
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i
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( ) ( )∫
∞

∞−

= →= dzzf.zAzfA kk
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kk

Mean-variance (E-V) analysis
Basic paradigm

Choose the alternative that simultaneously has the best expected 
value of the attribute and the smaller variance

Greater variance for risk seeking DM!
multicriteria approach (E-V diagrams are common)

Value functions
Risk equivalents added to the expected value

[ ] ( )[ ]2.max zzEzE −−α

[ ] ( )[ ] ( )[ ]32 ..max zzEzzEzE −+−− βα

α>0 for risk aversion, β>0 for skewness inclusion
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Utility theory
A formal way to include risk in the evaluation of 
alternatives

Basic paradigm
Choose the alternative with the greatest expected utility
(incorporates the risk attitude of the DM through an utility function)

Risk attitude:
Risk Aversion: concave function 
Risk Proneness: convex function
Risk Indifference: linear function

Equivalent to the Expected Value P.

0

1

z

u(
z)

I
P

A

Utility functions – single attribute
Decision rule: maximize the expected utility: ( )∑ =

=
c
k kkk AUp)A(U

1

Alternatives p=0.9 p=0.1 E
A 100 1000 190
B 150 550 190

Cost

0

0,1

0,2

0,3

0,4

0,5

0,6

0,7

0,8

0,9

1

0 200 400 600 800 1000

Indif

Averse

Prone

Alternatives p=0.9 p=0.1 U
A 0,90 0 0,81
B 0,85 0,45 0,81

Alternatives p=0.9 p=0.1 U
A 0,97 0 0,87
B 0,95 0,69 0,92

Alternatives p=0.9 p=0.1 U
A 0,79 0 0,71
B 0,70 0,23 0,65

Risk Indifferent

Risk Prone

Risk Averse

Cost 0 100 150 550 1000
Indif 1 0,90 0,85 0,45 0
Averse 1 0,97 0,95 0,69 0
Prone 1 0,79 0,70 0,23 0

Utility Functions
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Utility functions – single attribute
Check the risk profile of the DM

Prefers A? (Risk prone)

Prefers B? (Risk averse)

Indifferent? (Risk neutral)

Build the utility function
Using a predetermined form

or

Point by point, using lotteries to interrogate the DM

A

Receive 2 salaries

Receive nothing

0.5

0.5

Receive 1 salary 

B

Some useful functions...
You may want to use a predefined function to ease your work

linear

polynomial

exponential

a<0 means constant aversion
a>0 means constant proneness

1
1

−
−

= a

a

e
e)X(U

x

( ) worstbest

worst

XX
XXxXU
−

−
==

kxXU =)(

Exponential Utility Functions (maximization)
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Exponential Utility Functions (maximization)
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Multiattribute utility functions
When there are multiple criteria

Typical forms:

additive

multiplicative

multilinear
2 attributes

Best on all attributes

Worst on all attributes

p

1-p

Best on Y, worst on all others

( ) ( ) ( ) ( )
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MA utility functions - parameters
Build the multiattribute utility function

parameters result from judgments
Similar to value functions
eg two attributes

or decisions between a lottery
and a sure value

eg kY=p (additive function)

but never from guesses!
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MA utility function (example)
X=(cost, negative environmental impact)

500<cost<1500, 0.5<env<2.0

A=(1000, 0.5) ~ B=(700, 1.7)
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5001500

1500
−
−

=
costcostUcost ( ) ( )
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2

502
501

.
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0
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0.5 1 1.5 2

Negative environmental impact
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MA utility function (example)
3 alternatives X,Y,Z
2 scenarios

Calculate the utilities in each scenario and the expected utility

( ) ( )
( )( ) ( ) ( )XU.XU.XUE

XU.XU.)X(U

sc2sc1

envcost

3070

320680

+=

+=

cost env cost env
X 1000 0.9 1000 0.8
Y 800 1.6 900 1.9
Z 500 1.7 1300 2

prob

scenarios

0.7 0.3

C1 C2
cost env cost env

X 1000 0.9 1000 0.8
Y 800 1.6 900 1.9
Z 500 1.7 1300 2

prob

scenarios

0.7 0.3

C1 C2

cost env U1 cost env U2 E(U)
X 0.5 0.93 0.64 0.5 0.96 0.65 0.64
Y 0.7 0.46 0.62 0.6 0.13 0.45 0.57
Z 1 0.36 0.80 0.2 0.00 0.14 0.60

prob 0.7 0.3

scenarios
C1 C2

cost env U1 cost env U2 E(U)
X 0.5 0.93 0.64 0.5 0.96 0.65 0.64
Y 0.7 0.46 0.62 0.6 0.13 0.45 0.57
Z 1 0.36 0.80 0.2 0.00 0.14 0.60

prob 0.7 0.3

scenarios
C1 C2
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Sensitivity analysis
If your are not sure about the scenarios’ probabilities you may 
want to study the sensitivity of the final order to them

example: p(C1) from 0.8 to 0.5
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Robust optimization
Idea

This approach deals with uncertainty by trying to avoid unpleasant 
outcomes in adverse scenarios

Basic paradigm
Choose the alternative that, in the worst case, has the best value 
(minimax paradigm)

Basic concepts
Robustness, disappointment, regret

Single attribute approach
In multicriteria problems, you must first aggregate
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When
goal satisfaction
situations where the uncertainty comes from competitors' decisions

Rule
Choose the alternative corresponding to: ( )c,zCostmaxmin

SsZz ∈∈

Absolute robust approach

Z - set of alternatives
S - set of scenarios

alternative Sc 1 Sc 2 Sc 3 order
A 850 1100 900 2
B 500 1650 1600 4
C 1200 1100 1150 3
D 900 1000 950 1
E 500 800 1700 5

Cost

( ) ( ) ( )( )sCosts,zCostmaxmins,zRegretmaxmin
SsZzSsZz

∗

∈∈∈∈
−=

Minimax regret approach
when the quality of the decision is evaluated ex post facto
when your losses are automatically gains of your competitors
Rule:

Best in scenario sBest in scenario s

alternative Sc 1 Sc 2 Sc 3 order
A 350 300 0 1
B 0 850 700 5
C 700 300 250 3
D 400 200 50 2
E 0 0 800 4

Regret

alternative Sc 1 Sc 2 Sc 3
A 850 1100 900
B 500 1650 1600
C 1200 1100 1150
D 900 1000 950
E 500 800 1700

Best in Sc 500 800 900

Cost
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( ){ }s,zRegret).s(probmaxmin
SsZz ∈∈

Minimax weighted regret approach
when scenarios have very different probabilities
Rule:

We may have also uncertainty on the probabilities
e.g. modeled with intervals or fuzzy sets

alternative Sc 1 Sc 2 Sc 3
A 350 300 0
B 0 850 700
C 700 300 250
D 400 200 50
E 0 0 800

prob 0.3 0.6 0.1

Regret
alternative Sc 1 Sc 2 Sc 3 order

A 105 180 0 3
B 0 510 70 5
C 210 180 25 4
D 120 120 5 2
E 0 0 80 1

Weighted Regret

Using multiple (risk) indices
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Using multiple indices
Decision-aid in uncertain environments can be performed by 
constructing multicriteria models

Mathematically deterministic

Traditional prescriptive approaches (decision paradigms) may be 
interpreted as possible points of view, leading to different 
attributes

The Uncertainty model and the Decision methodology are separated

Other risk related attributes can be constructed and used
Must be meaningful for the Decision Maker
Problem dependent!

Multiple indices (example)
Cost Expected Max

n C1 (0.1) C2 (0.6) C3 (0.3) Cost Cost
1 59 65 75 64.2 75

2 50 58 71 56.9 71
3 68 72 60 69.6 72

4 69 72 62 70.1 72

5 53 60 63 58.2 63
6 51 59 65 57.2 65
7 68 71 77 70.7 77

8 56 57 75 58.5 75

9 62 58 80 61.4 80
10 62 55 70 58.6 70

60

65

70

75

80

85

55 60 65 70 75

Expected Cost

M
ax

 C
os

t
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( ) ( ){ }
S#

thresholds,zRegretSs#
zExposure

≤∈
=

Some traditional risk indices
Used with probability models or scenarios

Variance (or Standard deviation)
Skewness
Probability of a negative outcome
Expected value of losses
Worst-case value
Regret
Exposure

Possible indices
Expected value (central measure attribute)

Risk related indices
Variance, skewness, regret, etc.
Probability of an outcome worst than a specified value
Negative outcomes with a probability greater than a sp. Value

“Optimistic” indices
Expected value of gains
Best-case value
Probability of a positive outcome

Constraint related indices ( )( )
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Some ideas about fuzzy modeling

Why fuzzy sets?
Fuzzy sets incorporate implicitly an infinite number of scenarios

But we can conjugate the two concepts

Experts’ knowledge can be “translated” in a simple way

In most cases, uncertainty is better captured than with 
probabilities

Most of the times, no significant statistical data exists
But Fuzzy Sets are not a substitute for probabilistic models when these are 
adequate

We can construct fuzzy-probabilistic methodologies
e.g. Reliability calculations when failure rates are fuzzy

A bonus: Calculations are not difficult
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Load fuzzy models

u(P)

800 P (kW)

1 

0 
770 830 800 P (kW)

1 

0 

u(P)

Crisp
“A load of 800 kW”

Fuzzy
“A load about 800 kW”

Load fuzzy models
A “dictionary” for qualitative declarations:

poss

50 load 

1 

0 
45 55 load 

poss

3

1 

0 
2.7 4 4.4 

poss

load 

1 

0 
10 12 

“Load about 50 MW” ”Load more or less 
between 3 and 4 MW”

“Load between 10 and 12 MW”
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With fuzzy data ...
It is possible to develop physical and impact models that 
propagate this kind of uncertainty (extension principle)

State variables may turn fuzzy
Fuzzy voltages (if loads are fuzzy)
Fuzzy branch currents (if loads are fuzzy)

Attributes may turn fuzzy
Fuzzy Investment cost (if costs or rates are fuzzy)
Fuzzy Operation costs (if loads are fuzzy)
Fuzzy EENS (if loads or failure rates are fuzzy)

New criteria may appear
Using central measures, risk indices and constraint violation indices

Indices for fuzzy models
Central measure attribute:

Removal
Center of gravity
Maximum value

(additional) Risk related indices
Largest and smallest of maximum degree of membership
Largest and smallest possible values
Divergence
Set of possible results
Measures of fuzziness

a scalar index to measure the degree of fuzziness of a fuzzy set

Constraint related indices
Robustness, severity, inadequacy
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Constraint related indices
Robustness
Severity, Inadequacy

u(I)

1

0
0.2

Imax I

Small violation
Robustness = 0.8, Exposure = 0.2
Severity = Inadequacy/ Imax

inadequacy

u(I)

1

0
Imax I 

Strong violation
Robustness = 0, Exposure = 1
Severity = Inadequacy/ Imax

inadequacy

Final remarks
Decision problems result from the consideration of multiple 
criteria or because of uncertainty

The concept of optimum is no longer applicable
(But optimizing procedures are still needed!)

The DM preferences must be incorporated in the process
The different methodologies try to help the DM doing so
Preferences are relative to criteria and/or risk

Value functions result from a systematic building process
They are generally additive, but not necessarily linear
Parameters should be determined, not asked as naïve weights

To deal with uncertainty, no decision paradigm prevails
Choosing one of them is a kind of meta-decision
We also may use multiple indices and transform the problem into a 
deterministic MC one


