Value functions							
		onctru	ct an e	rdor	of all th	o alta	rnativoc
						ie dite	Induves
in a r	nuiticritei	ria dei	cermin	IISTIC	environ	iment	
👷 ea	alternative	cost	λ	U	ì		
oo cy	X	1000	0.10	5	1		
	Y	800	0.15	10]		
	Z	500	0.21	11			
		C\$	/yr	h/yr	1		
	alternative	cost	rick	-			
	Δ	1000	5	-			
	B	800	10	-			
	С	500	12	-			
	D	850	10				
	E	1200	6				

The first example is a typical situation in planning, when different investments correspond to different (estimated) quality of service, as measured by classical reliability indices.

Note that *risk*, in the second example, stands for a **deterministic measure of risk**, like, for instance, risk=prob*loss. Also, *cost* could be an **average cost**. This could be an alternative way of addressing an uncertainty situation (like E-V analysis in portfolio theory).

Of course, examples of deterministic problems could be presented, like choosing the best development project taking into account cost, environmental impact and amount of people served.

So, value functions can be used to deal with *true* deterministic problems (multicriteria problems) or with uncertainty situations where deterministic indices have previously been calculated.

Independence and additivit	ty
K Given a set of attributes K a subset X of K is said to be	preferentially independent
(p.i.) from its complement Y=K-X iff, for a particular val	lue P _y ,
$(A_X, P_Y) \succeq (B_X, P_Y) \Rightarrow (A_X, Q_Y) \succeq (B_X, Q_Y)$	U
st stands for all Q _Y , A and B being arbitrary.	
A set K is mutually preferentially independent (m.p.i.) if from its complement K-X	f every subset X of K is p.i.
For three or more criteria (m>2), this is a sufficient con	dition to additivity:
$\underline{A \succeq B} \Longrightarrow v_1(A_1) + \ldots + v_m(A_m) \ge v_1(B_1) + \ldots + v_m(B_1) + \ldots + v_m(B_2) + \ldots + v_m(B_1) + \ldots + v_m(B_2) + \ldots + v_m(B_1) + \ldots + v_m(B_2) + \ldots + v_m(B_2) + \ldots + v_m(B_1) + \ldots + v_m(B_2) + \ldots + v_m(B$	$v_m(B_m)$
Serr: Short Course - Priver System Reliability and Rick Assessment Jowa State University Antil 2001	Manuel Matos INESC Porto & FELIP

Note that this process differs from the utility theory case, since no lotteries are employed here (no uncertainty, no risk).

Different techniques can be used in order to obtain reference points (like y, z, w). For instance, the DM must be indifferent between getting two alternatives with cost y or one with cost 500 plus another with cost 800.

On the other hand, predefined functions may be used: linear, quadratic and exponential are again the most popular. In this approach, only one reference point is generally needed, but more can be used to estimate the parameters by regression.

Note that, in the figure, values are not normalized (no problem with that, since the scale of a value function is only relative).

Indifference curves are similar to the lines we see in maps, corresponding to points with the same altitude. They show us indirectly the shape of the multiattribute value function. As they carry the same information, they can be used to find the preferred solution (the one that touches the curve with lesser value, in mimization problems).

Of course, graphical representation can only be used with two criteria

*

