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uid crystal surrounding the isotropic 
droplet can be changed applying an elec- 
tric field surrounding the device with 
conducting (ITO-coated) glasses (Fig. 1). 
The polarization state of the light im- 
pinging on the rear polarizer is a function 
of the applied field and therefore the non- 
linear behavior of the device can be con- 
trolled by the extemal electric field. 

We have studied two devices-the 
first ( P  device) is constructed with par- 
allel polarizers; the second (C device) 
with crossed polarizers-and developed 
a simple model to describe their behav- 
ior. 

The P device shows self-transparency 
effect, while the C device shows optical 
bis tability. 

Experimental measures of the trans- 
mittance of both the P and C devices are 
shown. The experimental data are com- 
pared with predictions based on our 
model. 
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Incoherently coupled soliton pairs in biased 
photorefractive crystals 
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Recently it was demonstrated that spatial 
optical solitons at pW power levels can 
be supported in photorefractive (PR) 

In particular, the so-called 
screening solitons are possible when an 
extemal bias voltage is appropriately ap- 
plied to a PR cry~tal.2,~ Moreover, the op- 
tical beam is required to be linearly po- 
larized. Very recently, vector solitons 
involving the two polarization compo- 
nents have also been predicted in biased 
PR materials.’,* This latter class of soli- 
tons can only be achieved in speafic sys- 
tem geometries. 

We show that a new type of incoher- 
ently coupled soliton pairs is possible un- 
der steady-state conditions provided that 
their carrier beams share the same polar- 
ization and wavelength and are mutually 
incoherent. They can be readily realized 
in a simple experimental setup where the 
optical beams co-propagate collinearly in 
a biased PR crystal, in which case they 
experience equal electro-optic coeffi- 
cients. The two optical beams can be also 
slightly misaligned at the input so as to 
differentiate them at the output plane.”” 
To start, let us consider two one-dimen- 
sional optical beams that are polarized 
parallel to the c axis (x axis) in a stron- 
tium barium niobate (SBN) PR crystal. 
Moreover, under strong bias conditions 
and for relatively broad beam configura- 
tions, the steady-state space charge elec- 
tric field is approximately given b p  
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QWE22 Fig. 1 Soliton components, 
I U12 (solid curve) and I VI’ (dash-dot 
curve), for a (a) bright-bright pair when 
r = 10 and tl = 309 (b) dark-dark pair 
when p = 3 and tl = 309 and (c) bright- 
dark pair when p = 3 and 6 = -0.01. 

QWE22 Fig. 2 Stable propagation of 
a ( r  = 10, 8 = 30”) bright-bright soliton 
pair when its larger intensity component 
is perturbed by 20% at the input. 

where I(x, z) is total power density of the 
two optical beams, Id is the so-called dark 
irradiance, and I, represents the total 
power density soliton pair attains away 
from the center of the PR crystal. E,, is 
value of the electric field at x + 2- and 
is approximately Vext/ W, where V., is the 
extemal bias applied along the x-width 
W of the crystal. In such a case, it can be 
readily shown that normalized beam en- 
velopes U ,  V, where U = (n#/2q&)’/’+ 
and V = (n./2qdd1/’JI, [! = (ne/2?o)()+12 
+ ~ ~ ~ ’ ) ] ,  obey the followmg paraxla1 ev- 
olution equations: 

U ,  iU, + - 
2 

iv, + 5 
2 

where U ,  = a U / a g  etc. and p = L / I d  and 
p = (kbro)’n:r~EO/2. ko = 2n/&, ne is the 
extraordinary index of refraction and r, 
is the electro-optic coefficient involved. 
Moreover, in Eqs. (2) and (3) the follow- 
ing simplifying transformations have 
been used: 5 = (z/konJ:) and s = x/xo, 
where x,, is an arbitrary scaling parame- 
ter. 

Let us now solve Eqs. (2) and (3) by 
first considering a bright-bright soliton 
pair. To do so, the envelopes U and V are 

ressed in the following fashion: U = 7$( s)cos 8 exp(ipe) and V = ~~/’y(s)sin e 
exp(ip[). p represents a nonlinear shift of 
the propagation constant, y(s) is a nor- 
malized real function bounded between 
0 5 y(s) s 1, and the parameter 8 is an 
arbitrary projection angle. In turn, it can 
be readily shown that y(s) obeys the sin- 
gly polarized bright soliton equation. In 
this case, the soliton pair components can 
be considered as the 0 projections of the 
fundamental bright soliton envelope. Fig- 
ure l a  shows a normalized intensity pro- 
file of the soliton pair obtained at r = 10 
and 8 = 30” for typical SBN crystal par- 
ameters. Also shown in Fig. 1 is a dark- 
dark soliton profile that can be obtained 
(Fig. lb) in a similar fashion. 

Finally, bright-dark soliton pairs are 
also possible. To obtain them, the enve- 
lopes U and V are expressed in the fol- 
lowing way: U = ~‘/2fexp(ip[) and V = 
p‘/’g exp(ip(), where f corresponds to a 
bright beam envelope and g to a dark 
one. An approximate solution set can 
then be obtained provided that f ’ + g’ = 
1, and it is given by 

U = rl/’ sech[(p6)’/’s] 
. exp[-ip(l - 6/2)[] (4) 

V = p’/’ tanh[(p6)”’s]exp[ip~]. (5) 

An example of the above.pair is shown 
in Fig. IC. 

The stability properties of the soliton 
pairs were also investigated with use of 
numerical methods. The bright-bright 
and dark-dark pairs were found to be 
stable against small perturbations. Figure 
2 depicts the evolution of the pair com- 
ponent when the high intensity beam has 
been perturbed by 20%. Bright-dark pairs 
were found to be stable only in the re- 
gime where the applied bias (or p) is neg- 
ative. 
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Multiple scale hexagonal patterns 
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Sciences, Prospekt V m d s k o g o  101, Moscow, 
117526 Russia 
Hexagonal optical pattems appear as a 
result of a transverse instability of coun- 
terpropagating laser beams in a nonlinear 
medium. In large aspect ratio experi- 
ments, where transverse boundary con- 
ditions play only a weak role, a single 
spatial scale characterizes the hexagons. 
This scale results from a compatibility 
condition between different mechanisms. 
In transverse nonlinear optics a reso- 
nance occurs when a nonlinear phase 
shift resulting from, e.g., a cubic nonlin- 
earity, cancels the linear diffractive phase 
shift because of propagation. The result- 
ing transverse patterns have a character- 
istic spatial scale given by a, where X 
is the optical wavelength and I is the 
length of the nonlinear medium. 

When the nonlinear medium is placed 
in an optical cavity that provides feed- 
back, additional resonances come into 
play. By use of the polished end faces of 
the nonlinear medium, here a 5-mm-long 
photorefractive crystal of KNbO, as a 
weakly reflecting Fabry-Perot cavity 
new spatial scales corresponding to cav- 
ity resonances are selected. An example, 
showing simultaneous excitation of two 
distinct scales, is shown in Fig. 1. We 
present a range of experimental data 
showing excitation of a single scale, with 

near field far field 

QWE23 Fig. 1 Experimental 
observation of a multiple scale 
hexagonal pattem. 

the scale fixed by the cavity tuning, ex- 
citation of multiple scales, and excitation 
of multiple hexagons exhibiting near- 
field grain boundaries at a single scale. 
We have studied the coexistence of mul- 
tiple scales theoretically on the basis of a 
dispersion relation that accounts for the 
influence of the cavity resonances. 
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Tunable, upconverted stimulated 
ultraviolet Mellow triplet via four-wave 
mixing 

L. Moorman, I. Pop, Department of Physics 
and Astronomy, University of Wyoming, 
PO Box 3905, Laramie, Wyoming 82071 
Two new types of upward-converted, 
tunable, stimulated ultraviolet emissions 
and one fixed frequency type are gener- 
ated via two-photon near-resonant 3&/2- 
5SIl2 pumping of a Na vapor.’ All ob- 
served tunable components near 330 nm 
are assodated with the J = 3/2 multiplet 
and none with the J = 1/2 multiplets of 
4P state. 

A fixed frequency ultraviolet emission 
(Type 0) is generated in a two-step pro- 
cess in which infrared tunable hyper-Ra- 
man radiation is generated that is util- 
ized in a four-wave mixing process with 
two laser photons to generate a fixed fre- 
quency ultraviolet emission that is red- 
shifted compared with the atomic tran- 
sition, shown as peaks A and B in Fig. 1. 
The two lines associated with the 4&/2 
and 4P1,2 multiplets show inversion of 
relative line strength close to the two- 
photon pump resonance, compared with 
a statistical model and normal line 
strength at larger detunings. 

Type I tunable ultraviolet stimulated 
emission is generated in a two-step pro- 
cess involving four-wave mixing of an 
ASE, infrared photon, resulting in linear 
ultraviolet tunability (E in Figs. 1 and 2). 
Type I1 tunable stimulated emission em- 
ploys three steps: infrared hyper-Raman 
scattering, four-wave mixing, and ac- 
Stark splitting. Type 2 is induced by Type 
0 ultraviolet radiation strong enough to 
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QWE24 Fig. 1 Typical ultraviolet 
spectrum with negative detuned two- 
photon (3S5S) linearly polarized 
focused pump. Dashed vertical curves 
indicate the 4F3S resonances for 
3/2 and J = 1/2 multiplets. 
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QWE24 Fig. 2 Ultraviolet shifts as a 
function of two-photon pump detuning. 
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QWE24 Fig. 3 Asymmetry of the two 
side components of the stimulated 
Mollow triplet as a function of pump 
detuning. 

create ac-Stark splitting described by the 
dressed atom model for the 3s1/2 and 
4P3/2 states. As a consequence Type JJ 
produces two side components (C, D) be- 
sides the central component (A) that to- 
gether can be interpreted as a stimulated 
ultraviolet Mollow triplet. The side com- 
ponents (C, D) are broadened by the dif- 
ferent ultraviolet intensities over the 
cross section of the beam at the focus. 
The Rabi frequency measured from a 
quadratic fit to the measured shifts of 
peak D with the two-photon pump de- 
tuning shown in Fig. 2 determines the 
value of the generated UV intensity at the 
focus. The value is consistent with a di- 
rect measurement of the integrated pulse 
energy. The model also explains mea- 
sured spatial beam cross section patterns. 

A study of observed asymmetries be- 
tween the two side components of the 
stimulated Mollow triplet is currently in- 
vestigated? Preliminary data shown in 
Fig. 3, with a a measure of the asymme- 
try [(C - D)/C + D)], show that near the 
resonance the red-shifted component is 
dominant whereas far off resonance the 
blue-shifted component has the larger 
line strength. By reflecting the forward- 
generated light back through the vapor, 
we measured a systematic increase of rel- 
ative strength of the blue side component 
in the backward spectra compared with 
the forward spectra. A qualitative expla- 
nation can be tziven at this time; a full 


