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Abstract 

We investigate higher-order space charge field effects on the evolution of bright spatial solitons in biased photorefractive 
crystals under steady-state conditions. Numerical simulations demonstrate that these optical solitons can experience 
considerable increase in their self-deflection especially in the regime of very high bias field strengths. This process is further 
studied using perturbation techniques. Our analysis indicates, that for very high bias fields, the self-bending process is 
further enhanced by a factor that varies cubically with the applied field. Relevant examples are provided. 

Lately, spatial optical solitons in photorefractive 
(PR) materials have been a topic of considerable 
research [l-6]. Of particular interest are the so-called 
screening solitons which are possible in steady-state 
when an external bias voltage is appropriately ap- 
plied to a PR crystal [2,3]. Thus far, bright, dark and 
gray steady-state domains have been predicted. These 
soliton states occur provided the bias field is rela- 
tively high so that the drift term dominates in the 
expression of the space charge field. In a recent 
study [7], the effects arising from first-order diffu- 
sion terms have been investigated. In particular, it 
was found that the PR soliton can experience adia- 
batic self-deflection which varies linearly with the 
applied electric field. However, recent experiments 
[8] have shown that this self-deflection can exceed 
the one predicted by theory [7], especially in the 
regime of quite high bias fields. 

To account for this discrepancy, we here investi- 
gate the effects arising from other higher-order space 
charge field terms on the evolution of bright steady- 

state solitons in PR media. Our numerical results 
indicate that these optical solitons experience consid- 
erable increase in their self-deflection especially in 
the regime of very high bias field strengths. More- 
over, we find that these spatial beams remain approx- 
imately invariant during propagation. The self-bend- 
ing process is further studied using perturbation pro- 
cedures which involve the conservation laws of the 
nonlinear wave equation. Our analysis predicts that 
the optical beam moves on a parabolic trajectory and 
that the central spatial frequency component shifts 
linearly with the propagation distance. Unlike the 
low bias field case in which the process is dominated 
by first-order diffusion effects [7], in the high bias 
regime the self-deflection is found to be enhanced by 
a factor which varies cubically with the applied field 
strength. These analytical results are then compared 
to those obtained numerically and are found to be in 
good agreement. 

To start, let us first consider an optical beam that 
propagates in a PR crystal along the z-axis and is 
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allowed to diffract only along the x direction. For 
demonstration purposes, the PR material is taken 
here to be strontium barium niobate (SBN) [9] with 
its optical c-axis oriented along the x coordinate. 
Moreover, let us assume that the optical beam is 
linearly polarized along x and that the external bias 
electric field is applied in the same direction. Under 
these conditions, the perturbed extraordinary refrac- 
tive index is given by rzt = $ - n~r33Esc [lo] where 
rs3 is the electrooptic coefficient involved, n, is the 
unperturbed extraordinary index of refraction and 
E, = Es, 2 is the induced space-charge field. Follow- 
ing Ref. [3], the induced space-charge electric field 
can be directly obtained from the Kukhtarev-Vinetskii 
model [ll] and is given by 

K,T E,,E, #Es, 
+_-_ 

e eNA 3x2 ’ (1) 

where I = Z(x,z) is the power density of the optical 
beam and it is related to the slowly varying envelope 
C$ through Poynting’s vector, i.e. I = (n,/2~>1~j1~. 
In Eq. (l), Id is the dark irradiance, e is the electron 
charge, NA is the acceptor density and er is the static 
relative permittivity. E, represents the value of the 
electric field in the dark regions (at x + 5-m) of the 
crystal. If the spatial extent of the optical wave is 
much less than the x-width W of the PR sample, 
then under a constant voltage bias V, E, is approxi- 
mately given by V/W [3]. In obtaining Eq. (11, it 
was also implicitly assumed that the optical beam 
involved is of the bright type [3]. At moderately high 
bias voltage, V, the space charge field, Es,, is heav- 
ily dominated by drift and moreover in typical PR 
materials the dimensionless quantity 
I( e0 E,/eN* )~E,,/~xl s 1. In that case, to first order, 
Es, is approximately given by [2,3] 

(2) 

Note, that the term (eOe,/eN,)aES,/dx indicates the 
extent by which the ionized donor density, NL, 
deviates locally from the trap density NA [3]. To 
study the effects arising from higher-order space 
charge field terms such as ~Es,,/i3x and c~~E,,/c?x~ 

in Eq. (l), we now use the first-order solution of Eq. 
(11, i.e. Eq. (21, and in turn the other terms are 
obtained in an iterative fashion. By doing so, the 
perturbative solution of the space charge field, E,, 
reads as follows: 

Es, = -Kc0 + Ey, + Ey, + E~3 + E~c 
where 

K,T (aZ/tYx) 
Ey, = -- 

e (Z+Z,) ’ 

E = 
Y2 

2K,T l oer E,Z, 
Eyy, = - - 

e eNA (z+z,)~ 

E 
K,T EWE, EoZd 

= --- 
Y4 

e 4 (z+z,)’ 

(3) 

(4) 

It is important to note that Eq. (3) is valid as long as 
the perturbations Eyi (i = 1, 2, 3, 4) are much 
smaller than the leading term of the space charge 
field, Escp. The envelope propagation equation is 
then obtamed by substituting the expression for the 
perturbed refractive index (induced by the space 
charge field) into the pat-axial wave equation [3]. 
After appropriate normalizations, the envelope U is 
then found to obey the following dynamical evolu- 
tion equation: 

u,, u 
iU,+--/3p--- 

2 1 + IU12 

+ y1 w~2L~ 
1 +IZJ12 

(IU12),U [(lu12)s]2~ 

+ y2 (1 -i- Ju12)3 - y3 (1 + Iu12)3 

+ y4 (lU12)SSU = 

(1 + Iul*)* ,,O- 
(5) 

where U = [r~,/(27),1,)]‘/~+, i.e. the power .density 
is normalized with respect to the dark irradiance 
(Z/Z, = lUl*>, and UE = iXJ/&f, etc. The dimension- 
less transverse coordinate s is given by s = x/x,, 
where x0 is an arbitrary spatial scale, and the nor- 
malized coordinate 6 is related to the actual propa- 
gation distance z through .$ = z/(&n, x,2>, where 
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k, = 27~/&, is the free space wavevector. The di- 
mensionless quantity /3 is associated with the pro- 

cess of drift and is equal to p = (k, ~~>~(n~r~J2)E~. 
In Eq. (5), the yr term represents the first-order 
diffusion process whereas y2, ys and y4 are higher 
order space charge field effects. Note, that the y2 
term primarily arises from the deviation of ND’ from 
NA. The y coefficients are given by y, = PS, y2 = 

PEE:, y3 = 2/3&E,2, y4 = /3&E: where S = 
(K,Z’/ex,E,) and E=((E~E,/E~x~~N,). It is also 
important to note that the fundamental soliton solu- 
tions of Eq. (5) are obtained by considering only the 
drift nonlinearity (i.e. the 6 term) and by neglecting 
all the y-perturbations [2,3]. These planar bright 
solitons are only possible when p or E. are positive 
quantities. As previously shown, the intensity full 
width half maximum (FWHM) of these solitary 
beams depends only on two parameters namely E, 
and r [2,3]. The positive ratio r is defined as 
I = I,,,,,/I,, where I,,,,, is maximum power density 
of the solitary beam, Finally, the following remark 
may be necessary in order to better understand the 
anticipated role of these y-perturbations. From Eq. 
(51, it is clear that the y, and y2 terms will have odd 
effects (such as beam-deflection) on an otherwise 
even in x spatial beam whereas the y3 and y4 are 
expected to produce an even perturbation such as 
spatial broadening. 

We will now investigate the effects arising from 
these higher-order y terms on such bright soliton 
states. By assuming solitary wave solutions as input 
beam profiles, Eq. (5) is solved numerically using a 
beam propagation method. As an example, let us 
consider a SBN:60 PR crystal with the following 
parameters [9]: n, = 2.33, rx3 = 237 pm/V, NA = 4 
X 1016cm-3 and l r = 880. Moreover, the free space 
wavelength, ha, is taken here to be 0.5 pm. If we let 
the arbitrary spatial scale, x,,, be 25 pm and the bias 
field E, = 1 kV/cm, we find that p = 34.5, yr = 

0.35, y2 = 0.168, y3 = 0.0035 and y4 = 0.0017. By 
solving Eq. (51, we find that the optical soliton 
experiences adiabatic self-deflection and moves ap- 
proximately on a parabolic trajectory. On the other 
hand its power spectrum shifts linearly with propaga- 
tion distance. Figs. l(a) and (bl depict the evolution 
of an r = 10 soliton and its power spectrum respec- 
tively at E, = 2 kV/cm. In this case, the spatial and 
angular shifts are considerably higher than those 
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Fig. 1. Evolution of (a) the intensity profile and (b) the angular 

power spectrum of an r = 10 soliton at E, = 2 kV/cm under the 

influence of y, and y2 terms. 

previously obtained [7] by considering the first-order 
diffusion term, yr, alone. This effect is more pro- 
nounced at higher applied electric field strengths. 
Fig. 2(a) compares the spatial self-deflection due to 
yr alone to that obtained when both y, and y2 act 
together at different applied electric field strengths of 
E,, i.e. E,, = 1, 2 and 5 kV/cm. A fundamental 
bright soliton with r = 3 is used at the input. It is 
quite clear from the figure that at low bias fields the 
process is dominated by first-order diffusion effects 
whereas at high bias fields one needs to account for 
yZ effects. These results support the experimental 
observations of Ref. [8]. This increasing effect of the 
y2 term with E, becomes more evident by looking 
at the corresponding perturbations in the space charge 
field. Fig. 2(b) compares the various space charge 
field contributions (normalized with respect to E,) 
i.e Esco/Eo and E,;/E, (i = 1, 2, 3, 4), at these 
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Fig. 3. Intensity profiles of an r = 3 soliton input beam at z = 0, 

0.6, 1.2 and 2 cm at E, = 5 kV/cm. 

three values of E,, that is E. = 1, 2 and 5 kV/cm. 
The perturbations, Ey, 2 3,4 /E,, have been enlarged in 
Fig. 2(c) for convenience. Figs. 2(b) and 2(c) indi- 
cate that these perturbations are small compared to 
the leading term, ,I&,. At E, = 1 kV/cm, E,,, is the 
dominant second order contribution whereas E,,, is 
still rather small. However, Ey2 tends to increase 
rapidly at higher values .of E,. For example, at 
E, = 5 kV/cm its contribution becomes quite large 
and dominates over the other terms and the perturba- 
tive approach of Eq. (3) is now reaching its limits. It 
is also interesting to note that at such high bias 
fields, the soliton is found to rapidly lose its ampli- 
tude and form after a certain distance of propagation. 
Fig. 3 shows the intensity profiles of an r = 3 soliton 
input beam at various distances of z = 0, 0.6, 1.2 
and 2 cm at E, = 5 kV/cm. As one can see, the 
intensity of the optical beam reduces from 3 at the 

Fig. 2. (a) Comparison of spatial shifts obtained by considering 

the y, term alone (solid curve) and the y,, yz terms together 
(dashed curve). (b) Plots of various normalized electric field 

contributions, ,?&/E, and EY,,2J,I/Eo where the main lobe 

represents E,,JE, and the small contributions around the zero 

line are the I$, /IT, terms. (c) An expanded view of the perturba- 

tions Ey, /E,’ (solid curve), EY, /E. (dashed curve), EY, /E, 
(dotted curve) and EY4 /E, (dashed-dot curve). All the plots have 
been calculated at three different applied electric field strengths of 

E, = 1,2, and 5 kV/cm. A fundamental bright soliton with r = 3 
is used at the input. 
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input to less than 1 after 1.4 cm of propagation. 
Moreover, its intensity FWHM increases from 5 pm 
to 8 pm, that is by 60%, at z = 2 cm. If E, is 
increased further, this process is reached earlier. 
Nevertheless, in the regime in which the soliton 
evolution is still adiabatic, one can use perturbative 
procedures to treat this self-deflection process. It is 
also important to note that, for the range of applied 
electric fields below 5 kV/cm, the y3 and yq terms 
were not found to have any significant effects. Since 
they play a negligible role, they will be omitted in 
our analysis from this point on. 

The self-bending effect will now be further inves- 
tigated using perturbative procedures [7]. Keeping in 
mind that the beam evolution is approximately adia- 
batic, we start by making the following ansatz for the 
solution of Eq. (5): 

Xexp&S+w(Ws+ G)) -43IL 
(6) 

where U(6.s) = r”*y(s)exp(ipg) is the steady- 
state fundamental bright soliton solution of Eq. (5) 
when all the y terms are neglected. In Eq (61, Y( .$ > 
represents a shift in the position of the beam center, 
w( 5) is associated with the angle between the ‘cen- 
tral wavevector of this beam and the propagation 
axis 5, and a( 5 > is the phase accumulated during 
propagation. The equations of motion of these real 
variables can then be obtained by substituting Eq. (6) 
into the two complex conservation laws of Eq. (5) 
[7,12,13] when y3 and y4 are equal to zero. By 
doing so, a straightforward calculation yields the 
following results: d u/d6 = - w, d cr/dc = - w2/2 
and dw/dt = 4P[y,K,(r) + y2 K,(r)], where the 
dimensionless functions K,,,(r) are given by 

K,,,(r) = /+“ds 
2Y2(S) 

-cc [l +?y2(s)]1*3 

x{y2(s)ln(l +r) -ln[l +r~‘(s)]} 
1 

X (7) 
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Fig. 4. (a) Dependence of K, (solid curve) and K, (dashed 

curve) functions on r and (b> an expanded view of the K,(r) 
function. 

Note that the exponent power of the term [l + u2(s>l 
is 1 in obtaining K,(r) [7] whereas is 3 in the case 
of K,(r). These functions are uniquely determined 
by the value of the parameter r. In the low amplitude 
soliton regime, that is for I e I., K, and K, can be 
directly obtained by substituting the low amplitude 
beam solution [3] of Eq. (51, i.e. y(s) = 
sech[( p~->‘/~s], when yi = 0 into Eq. (7). In this 
case, K,(r) = K,(r) = -(2r2/15>. However, for 
other values of I these functions can only be evalu- 
ated numerically. Their behavior as a function of r 
is depicted in Fig. 4(a). The function K,(r) is also 
shown on an expanded scale in Fig. 4(b). The equa- 
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tions of motion for w, v and C.X can then be directly 
integrated, in which case we obtain: 

WCC> =4P[M,W +YJw)15~ (8) 
v(5) = -w[r,q7-) +Y*w9l5* 7 (9) 

45) = -@[y,W-1 + 1’zKdr)1)~(t~/3). 
(10) 
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Fig. 5. Evolution of (a) the spatial shift, Ax, and (b) the angular 
power spectrum shift, Ak,, obtained from the numerical solution 

(solid line) and the analytical model (dashed line). Comparison is 
made at different applied electric field strengths of E, = 1, 2 and 

4 kV/cm. A fundamental bright soliton with r = 3 is used at the 

input. Both y, and yz terms are considered. 
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Fig. 6. Evolution of (a) the spatial shift, Ax, and (b) the angular 

power spectrum shift, Ak,, obtained from the numerical solution 

(solid line) and the analytical model (dashed line). Comparison is 

made for different values of r = 0.3, 3 and 40. The soliton 

solutions were obtained at E, = 2 kV/cm. Both yt and -ys terms 

are considered. 

From these latter results, one quickly finds that the 
beam suffers a lateral displacement which is given 

by 

xd = [(k&33)2/2] [(KBT/e)EOKdr) 

(11) 
where z is the actual propagation distance. The 
angular deflection i.e. the angle between the central 
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wavevector of this solitary beam and the z-axis can 
also be evaluated and is given by 

0, = (k,n~r33)2[(KBT/e)E,K,(r) 

+t~,E,/eNA)E03K2(T)]z- (12) 

Eqs. (9) and (11) clearly demonstrate that the beam 
center follows a parabolic trajectory, whereas Eqs. 
(8) and (12) imply that the central spatial frequency 
component shifts linearly with propagation distance. 
Moreover, Eqs. (S&(12) show that in the presence of 
y2, the self-deflection now follows a cubic polyno- 
mial of E,,. This implies that self-deflection will 
increase considerably at higher values of applied 
field strengths. Similar conclusions were reached by 
numerically solving Eq. (5). Figs. 5(a) and 5(b) 
depict both the spatial as well as the angular fre- 
quency shift i.e. Ax and Ak, = w/x,, as obtained 
using both approaches. The shifts experienced by an 
r = 3 soliton are compared at different applied field 
strengths of E, = 1, 2 and 4 kV/cm. The crystal 
parameters employed are the same as those consid- 
ered in Fig. 2(a). As previously stated, the self-de- 
flection effects are considerably more pronounced at 
higher values of applied bias strengths as a result of 
the yZ term. Furthermore, for a given value of E,, 
this effect depends on r via K, and K,. Figs. 4(a) 
and 4(b) indicate that these functions reach a maxi- 
mum in the range 2 < r < 10. Of course, such behav- 
ior should have been anticipated since the intensity 
FWHM of these optical PR solitons attains a mini- 
mum in this region [2,3,7]. The spatial and the 
angular shifts (analytical and numerical) are also 
compared in Figs. 6(a) and 6(b) for three different 
values of r at E,, = 2 kV/cm. Clearly, the two 
approaches are in good agreement with each other 
and the small difference between them is attributed 
to the fact that the evolution of these bright PR 
solitons is not entirely adiabatic. Nevertheless, this 
agreement starts to breakdown when soliton decay 
takes place i.e. at very high bias fields. 

In summary, the effects of higher-order electric 
field terms on the evolution of bright PR solitons 
have been investigated. By means of numerical 
methods, we found that these optical solitons experi- 
ence considerable increase in their self-deflection 
especially in the high bias field regime. The self- 
bending process was further studied using perturba- 
tion methods. The dependence of the spatial and 
angular shift on the value of the external electric 
field was also investigated. We have found that in 
the high bias field regime the self-deflection follows 
a cubic polynomial of E, whereas in the low bias 
range it is only linear. The analytical results were 
then compared to those obtained numerically and 
were found to be in good agreement with each other. 
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