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Optical spatial shock waves in photorefractive media
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We show that the evolution equations describing the two-wave mixing interaction between two codirectional
optical beams in photorefractive media can allow spatial shock-wave solutions. Our analysis indicates that
these kink-type wavefronts move together at an angle that falls outside the intiabctor of propagation.

The apparent direction of propagation and the spatial widths of these optical shock-wave beams are directly
related to their relative intensity.

PACS numbsds): 42.65.Tg, 42.65.Hw

I. INTRODUCTION cause adiabatic soliton self-bendif2f]. A possible way to
launch spatial shock waves in biased photorefractives was
Shock waves are ubiquitous entities that have been extersuggested in Ref.30]. In this work, a family of stationary
sively investigated in several diverse areas of physics such &hocklike solutions was numerically obtained by solving the
fluid mechanics, gas dynamics, plasma and solid-state phy§eam evolution equation in the so-called Kerr regime. These
ics[1,2]. Yet, in the field of optics, their occurrence is rather latter kink states are possible by combining the self-action
rare[3—12). Thus far, in the optical domain, spatiotemporal effects of the drift nonlinearity together with the power ex-
shock(kink) waves have been identified in nonlinear system<hangeamong spatial spectral compongrasising from the
with Raman nonlinearitie§3—6], in dispersive amplifying diffusion compongnt of the space-charge field. In adqmon,
nonlinear media that exhibit a frequency-dependent gain oi€Se photorefractive shock-wave solutions can occur in both
loss[7,8], and in nonlinear media with higher-order nonlin- & Self-focusing or defocusing environment and exhibit an
earities[9,10]. It is clear from these previously mentioned ©Scillatory intensity patterp30]. ,
examples that in many casg®-8] such optical shock waves I_n this paper, we describe an alternative avenue through
can occur provided that an energy exchange process which §pat|al optical shogk waves can be observed in photo-
present during propagation. This process can be, for instancEéfractive crystals. In particular, we demonstrate that the evo-
stimulated Raman scattering between a Stokes and pun{ _tlon_equatlons degcnbmg the interaction be_tween two co-
wave[4], intrapulse Raman scattering within a single shock-diréctional beams in unbiased photorefractive media can
wave state[3,5,6 or a frequency-dependent amplification gxh|b|t a pair of shock-wavg solutions. These _kl_nkllke solu-
[7.8]. In view of the above discussion, it may be reasonabldions are made possible via the two-wave mixing process.
to ask whether spatial shock waves can also exist as a resJii€se locked kink-antikink shock waves propagate undis-
of some energy exchange mechanism. This could piorted through the_ photorefractlve_ crys'gal even in the absgnce
achieved for example via two-wave mixing that naturally of any external bias. Our analysis indicates that these kn_"nk-
occurs in photorefractivefl3—21. Aside from two-wave type vyavefronts move together at an angle that faII; out_s,lde
mixing, photorefractive crystals are known to host severaf€ initial =6 sector of propagation. The apparent direction
other important nonlinear processes. These include four@f Propagation and the spatial widths of these optical shock-
wave mixing, phase conjugatidii3—16, and spatial soli- Wave beams are directly re!ated to the_|r relat|v§ intensity.
tons[22—29. Like shock waves, photorefractive spatial soli- Pertinent examples are provided to elucidate their behavior.
tons retain their form during propagation. They owe their
existence to the_ drift/photovc_)ltaic compong@6,26,28 of Il THEORETICAL MODEL
the photorefractive nonlinearity and can be observed at very
low power levels. Bright and dark, one- and two-dimensional Let us begin by considering the evolution equations of
solitons have been systematically demonstrated in laboratotyvo codirectional waves propagating inside a photorefractive
experiments. However, in contrast to shock waves, spatiadrystal. These two waves, henceforth referred to as be&am
photorefractive solitons rely on a conservative drift/ and beanb, propagate in thez plane at an angle-6 and
photovoltaic nonlinearity(i.e., no power exchange takes + 6, respectively, with respect to theaxis. For simplicity,
place during propagationin this case, the small diffusion let us neglect any variation of these two beams alpfice.,
part of the photorefractive nonlinearity is known to only they are planar beamsn which case their evolution will

1063-651X/2000/6@)/86576)/$15.00 PRE 62 8657 ©2000 The American Physical Society



8658 M. I. CARVALHO et al. PRE 62

depend only on the spatial variabbeandz. Moreover, let us . SPATIAL SHOCK WAVES—RESULTS AND
also assume that the two optical beams are relatively broad. DISCUSSION

Hence, diffraction effects can be neglected and the two
beams can be treated as quasiplane waves. In the absence R
any external bias, these two optical wavefronts can intera
with each other via diffusion-induced two-wave mixing as
described by the Kukhtarev-Vinetskii transport model - h . . dinat ;
[13,14). When the depth of modulation of the intensity pat- . b(£), whereg is a common moving coo‘r‘ inate sys em
tern resulting from the interference of these two opticalg've.n byglzx—vez. Ve ls a Q|me.n5|onless veIo_C|ty as-
waves is small, the space-charge field equations can bseouated with the a'ppgrent direction of propagation Of 'these
solved perturbatively13]. In this case, the equations govern- two s_hock beams inside the Cry_stal and_ can be positive or
ing the intensity evolution of these two optical beams can b@egatlve. The angle of propagatignat which these beams

. - . _ 71 _
readily obtained from the two-wave mixing formalism, and move with respect ta is given by =tan (Ve).' Further .
more, for convenience, let us study the previous evolution

1ln this section we will demonstrate that Ed4) exhibit
ock-wave solutions. These represent a pair of kink wave
ronts propagating together in the photorefractive crystal. In
order to obtain them, letl(x,2)=1,(£) and 1,(X,2)

are given b . ) : .
g y equations in a normalized fashion. In order to do so, we scale
the intensities of the two optical beams with respect to the
g dlg lalp dark irradiancel 4, that is, letl (&) =rl4X(&) and 1,(¢)
5z U ax VT, =0, (1a =slyY(£), whereX(¢) andY(£) are normalized real func-
tions bounded between 0 and 1, and the positive quantities
ands stand for the ratio of the maximum intensity of these
aly aly lalp beams with respect to the dark irradiance. Substituting these
oz TV ax TV, 0, (1b)  Ilatter forms ofl, andl, in Egs.(1a and(1b), we obtain
v+ Ve dX XY
. o . e v apavasd O (2a)
wherel , andl, are the intensities of the two beams involved s Jd§ T 1HrX+sY

propagating at+# with respect to thez axis. In Egs.(1)

power flows froml,, to |, as a result of nonlinear two-wave (U _Ve>d_Y n XY -0
mixing amplification. In the linear regimey&0), the solu- r dé Y1+ X+sY
tions of these equations are given by=I,.(Xx+vz2), I, o .
—1yo(X—22), i.e., the input intensity profiles remain invari- From Egs.(2), it is then straightforward to show that the
ant during propagation. The spatial “velocity'is related to ~ following quantity remains constant:

0 throughv=tané. | 4 is the so-called dark irradiance, which btV
phenomenologically accounts for the thermal generation of €
electrons in the conduction bapdi3]. It is important to note S
that this quantity () can be artificially elevatef25-27, in . .

which case the requirement for a small depth of modulationWhE(r)%Eir']z a:‘ocrogr?;irllt-vt\?a\?: Sgltjtrignr:gegf' Eq&2), we must
\(/:/.:\./’ezﬁj IpdoJ\;vI ng-rclobL)Jpﬁi?]r;; ?:%é?f?c?gétsiztg:\llee% g;ﬁ%vo use ap_propriate b(_)undary condi_tio_n_s. In particular, a shock
y=[ko/(n COSO)] [E Eg/(Eo+Ey|T, whereko=2/hg, Ng wave is charactenzed by two |nf|n|te_ tall§. One of them
is the free-space \7vaveleﬁlgth, aﬁ ds the crystal’s u,nper— reaches _asymptotlcally a constant valure this .normahzed
bt e of refactor andE, known as he safra-Cosejor'Y AMErees the thr a2 spproaching sero, Here
tion space-charge and diffusion fields, respectively, are giveRNO optical beams are “symmetric” with re)s/ppect to each
by E,=eNa/eKg andEq=KgTKy/e. In these expressions, iner ‘That is, we assume that at the tails whérel, X is

Kg is Boltzmann’s constanfl is the absolute temperature, o 0 anq con,versely, at the other end whire 1 then'Y

N, is the acceptor density,= g4z, is the total static permit- —0. Using the above boundary conditions in E@), we

tivity of the crystal,e is the electronic charge, arnd, is the immediately find thatC=(v+V.)/s=— (v—V,)/r, which
absolute value of the so-called grating vector, which is r'®leads to the result ¢ €

lated to the angle throughK = 2kon sin 6. Finally, the pa-

rameterI” is given byI'= .- [(nn?SyrijkS) - Py, where Str

the unit vectorgd, and p, represent the polarization state of Ve=g—v- (4)
the two beams, and the indice$, andk take the values 1, 2,

or 3, which refer to the opticaprincipal axes 1 2, and 3 Using Eqgs.(3) and(4) it is then easy to deduce that the two
respectively.n; is the refractive index “seen” by a wave normalized profiles are complementary to each other, i.e.,
polarized along thé direction,r;; are the electro-optic co- Y(§)=1—X(¢). Furthermore, from Eq(4) it is clear that
efficients, ands, represent the projections of the space-the special cass=r is not allowed. Therefore the two opti-
charge field unit vector along the principal axes. For simplic-cal shock-wave beams must have different maximum inten-
ity, any loss effects have been omitted in Eds) and(1b). sities. By rewriting Eq.(4) asV.=[1+2r/(s—r)]v=—[1

In deriving these equations, it was assumed that the donot 2s/(r —s)]v, one can readily conclude that the effective
and acceptor densities were much larger than that of eledransverse velocity parameter V§>v whens>r, and V,
trons and the tensorial nature of the dielectric permittivity< —wv whenr>s. Hence the angle that defines the direc-
and that of the electron mobility has been neglected. tion of propagation of this pair of kink waves lies between

(2b)

e

X<§>—(” )Y<§)=c, @3

r
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< p<m/2 whens>r and — 7/2< o< — 6 whens<r. This
latter result clearly indicates that the apparent direction of
propagation of these two beams is always outside tfte
sector defined by the two initial wavefronts and it is closer to
the direction of propagation of the beam with the highest
intensity.

By substituting the expressiol(£)=1—X(¢§) in Eq.
(2a), one obtains

dX yp X(1-X)
dé 2v 1+pX’ ®
where the dimensionless real paramgteas been defined as
p=(r—s)/(1+s). From Eq.(4) it is obvious thatV, andp
have opposite signs. It is also important to note that, since
the cases=r is not allowed,p can never be zero. Further-
more, if p is rewritten in the formp=—21+(1+r)/(1+s),
we clearly see that, for everfpositive) value ofs andr, p

> —1. Since the real functioiX(£) is bounded between 0
and 1, the quantityX(1—X)/(1+pX) is never negative.

Normalized Intensities
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FIG. 1. Normalized intensity profiles of a photorefractive shock-
wave pair as a function of whenr=0.08,s=0.12, y=40cm %,
and #=1.02°.

figure. As it can be directly observed from Fig. 2, the spatial

the parametev and the coupling constantare positive, the
derivative dX/d¢ will be positive (and dY/dé negative
when p>0, that is, wherr >s, whereas it will be negative

intensity ratiop. We now define the spatial widih of these
waves in the following wayw=|&— &, whereX(&)=1
=X, X(&)=X,. X, in this definition represents a chosen

(dY/d¢ positive whens>r. This implies that the beam with percentage amount with respect to the maximum intensity of

the highest intensity in this shock-wave pair exhibits every-this beam. In this case, a straightforward calculation shows
where a positive derivative whereas the derivative of thdhat the spatial width of these shock waves is given by

weaker one is negative. This problem could have also been
treated with respect t&/(&¢) by substituting the condition
Y(&)=1—-X(¢) in Eq. (2b). In this case theY differential
equation is identical to that of Ed5), provided that the
parameterp is replaced withp” wherep’=(s—r)/(1+r).
These parameters are related through+1/p’=-1, or

w=

20 (2+p) (1—xw
=— —IN| —/——
vy Ipl

®

From Eg.(8), and by keeping in mind thgi>—1, one can
readily show that the spatial width attains its minimum value

p’'=—-p/(1+p). Thus the normalized intensity function o= (2v/y)In[(1—X,)/X,] atp=—1 andp=c. Conversely,

X(&) found for a particular value ob is symmetrically re-
lated to the profile associated withp/(1+p).

when|p| is very small, that is, when the relative intensities of
both beams are almost the same, the intensity spatial width is

Equation(5) can then be integrated to obtain the normal-given by w=[4v/(y|p|)]In[(1—X,)/X,], i.e., it increases as

ized intensity profile forX(¢), that is

|p|—0. It is interesting to note that, in this same regime, the

intensity profileX(&) can be analytically obtained from Eg.

X P
—(1_x)(1+p)=Cexr<Z§), (6)

(7), and it is approximately given bhyX(&)=(1/2)1
+tanh(@pé&/4v)]. This solution is identical in nature to that

previously found in Ref[4], within the context of fast and

whereC is a constant to be determined by the initial condi-slow Raman shock-wave domains.

tions. For presentation purposes it is more convenient to im-
pose a reflection symmetry on thiY shock wave pair.
This is accomplished by requiring that at the orig{ig0)
=Y(0)=4%. In this case, Eq(6) takes the form
XI(1—X) P =2P exp( ypél2v). (7)
In principle, by solving the transcendental Ed), the func-
tional form of X(&) can be determined. Figure 1 shows such
a photorefractive shock-wave pair as a functionéofthen
y=40cml, #=1.02°@p=1.78x102), r=0.08, ands
=0.12. These values can be easily realized in high-gain pho-
torefractive crystals such as strontium barium niokS®N).
Figure 2 on the other hand, depicts the normalized inten-
sity profile of theX component as a function @ffor various
values ofp, when the photorefractive gain ig=40cm %,
and #=1.02°@ =1.78< 10 2?). For simplicity, only profiles

Normalized Intensities
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FIG. 2. Normalized intensity profilX (&) of beama as a func-

associated with positive values @f are presented in this tion of & for p=0.05, 0.1, 0.2 whery=40cmi %, and §=1.02°.
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IV. EXAMPLES 0.16

I/lg=

Let us now illustrate our results by means of relevant
examples. Let the photorefractive crystal be of the SBN type,

with its optical axis (3 directed along the direction, that
is, let x=3. Moreover, let the crystal be oriented in such a

way thaty=2 andz=—1. Thus, for this particular crystal
orientation, the grating vector and the space-charge electric

field only have components along theaSis. A straightfor- q —)
ward calculation then shows that, in this cdggven that

SBN is of a symmetry clas&4 mm)], the parametef in- e@:S

volved in the definition of the coupling constamtis given v 0 45 -1 -05 o 05 1
by I'=nZr33co8 6—njr,5sir? 6, wherer 33 andr ;5 represent, X (mm)

in contracted notation, the electro-optic coefficienis; and . o

r113, respectively{13]. n, is the extraordinary index of re- FIG. 3. A shock-wave pair propagating in SBN:75 crystal when
fraction whereas, is the ordinary refractive index of this "~0-08:5=0.16,y=53.2cm", and¢=1.4°.

crystal. In deriving this expression, an extraordinary polar- . . .
ization for both beams was also assumed. For SBNs the the. shqck-wavg pair attains an apparent transverse velocity,
dominant electro-optic coefficient and thus, under the previyvhICh lies outside the originat-¢ range. In this example

: - . - heres>r, the two shock waves shift along the positixe
ous assumptions, the coupling constanis approximately wheres~>r, > ) ; ;
given by yw(kon‘e}r%cosaln)[Ep EJ/(E,+E], where the direction, i.e., toward the beam with the highest intengiy

unperturbed index of refractiam for extraordinary polarized We would like o stress that the tails of these shocks play an
beams, is obtained from = sir? 0/n§+cos’- 0/n§ [13]. Let important role in this process. In essence they “prepare” the

Us now assume that the SBN-75 crystal parameter§3die way for this self-similar exchange to occur and the two
) 3?11]_ shocks move at a higher velociyy,. For this same reason
r33=1022pm/V, No=4X10?2m~3 n.,~n,~2.3, which g Ve

however, this shock shift can not occur indefinitely. This is
means thain~2.3 ande,=¢/egy=1000, whereg, is the Y

. . o _ because the tail of beam (to be amplified will eventually
free-space dielectric permittivity. The photorefractive crystalreach the noise floor of the system after a certain distance.
is assumed to be at room temperature and the free-spa

| h of the ligh | . K §%t, this process can be observed as long as the differential
wavelength of the lig tvv_ave emp _oyed_ Is ta en 0 B¢ heam shifts are of the order of the spatial beam widths where
=0.5um. In all cases discussed in this section, the two

L ; - ‘the beam power is above the noise level.

wave mixing interaction takes place well within the Bragg  he stability of these shock-wave pairs was investigated
regime. In this examplé=1.4°, from where one finds that ,, means of computer simulations. This was done by nu-
v=2.44x10"° and y=53.2cm ". Furthermore, let the in-  erically solving Eqs(1). Our simulations show that rea-
tensity ratios ber=0.08 ands=0.16, in which cas@= gonaply small perturbations on any of the two envelojpes
—0.069. The transverse velocity of the_sze shocks can be djotry do not prevent the simultaneous shifting and locking of
termined from Eq(4), andV=7.32x<10"". If we now de-  the two shock-wave beams. In other words, the shock-wave
fine the spatial width as the distance between the pointgo|ytion is quite stable and thus should be observable at least
where each wave attains 10% and 90% of its peak valugjithin the realistic distances given in our examples. Figure 5
(X,=0.1), then for this data one finds from E@) thatw  gepicts the case where a 10% perturbation was uniformly
=564um. For such a broad width, diffraction effects are imposed on theX(x) component right at the origitdotted

i_ndeed negligible, a fact consistent with our earlier assumpgyrvg. All other parameters are identical to those used in
tions. The actual angle at which these shock waves propa-

gate with respect to the axis is 4.19°(outside the*1.4°
sectoj. As previously noted, this pair moves more toward
the side of beam, which exhibits the highest intensity
ratio. Figure 3 shows the propagation dynamics of these two
kink-antikink shock waves as a function of distance. At a
distancez=1 cm, the two locked beams have been laterally
displaced byky=V.z=732um. Note that for this same dis-
tance, each beam alori@ the absence of any two-wave
mixing) would have traveledxy=*vz=*244um, as
shown in Fig. 4. In this case, the difference between these
displacements is 488m for thel , beam and 97@um for | ,.

This appreciable shift can be easily detected experimentally.
Physically, this process can be understood as follows. As 15 1 05 0 05 1 o s
previously noted, power flows from beamto beama via X (mm)

two-wave mixing. This exchange occurs primarily in the tail

region of these two shock-wave beams. In this case, the am- FIG. 4. A shock-wave pair shown after 1 cm of propagation
plification of beama and the depletion of beatmoccur in a  with two-wave mixing(dotted curveand without two-wave mixing
self-similar way. As a result of these two beams coalescingsolid curve. The initial conditions are the same as in Fig. 3.
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FIG. 6. A shock-wave pair propagating in SBN:75 crystal when

FIG. 5. Stability properties of the photorefractive shock-waver =0.16,5=0.08, y=53.2cm*, and#=1.4°.

pair shown in Fig. 3. Th&(x) component was uniformly perturbed
by 10% whereasY(x) remained unchanged. The dotted curve Before closing, we would like to emphasize again that

shows the perturbed configuration at the input. Intensity profiles othere is a marked difference between the spatial shock waves
this shock-wave pair after 1 cm of propagation with this perturba-reported here and those suggested in R#]. First of all,
tion (dashed curveand without perturbatiofsolid curve. the photorefractive shocks reported[®0] exist through a
Fig. 3. After 1 cm of propagation, the beams wittashed combination of drift and diffusion nonlinea_rity and they in-
curve or without (solid curve this perturbation are also volve only_ one component. In contrast, in our yvork, t_he
shown. It is clear from this figure that the shock-wave pairWaVe §o|ut|on involves a parr of ShOCk.S fro.nts that 1S po_ssmle
remain.s stable and as a matter of fact, it shifts a little faste} unblgsed photorgfractweése., only diffusion nonlinearity
e Is required. In addition, these locked states must move out-

as compared to the unperturbed case since more power &de their normal sector of propagation, unlike thaf2]
now involved. In addition, other simulations with localized which propagates along theaxis ' '
perturbations on the tails and around the center region have ’
been performed. In all cases, we have found that the wave-
locking and shifting mechanism still persists in spite of these
perturbations. In conclusion, we demonstrated that the evolution equa-

Another scenario occurs when the roles of beaasidb  tjons describing the interaction between two codirectional
are reversed, that is, when beanfias a higher intensityr( peams in photorefractive media can exhibit a pair of shock-
>s). In order to study this case, let=0.16,s=0.08, in  \yaye solutions. These kinklike solutions are made possible
which case the parameter=0.074 is positive. The initial g the two-wave mixing process. These locked shock waves
anglesd are taken here to be 1.4° and thus 2.44x10°2%  propagate undistorted through the photorefractive crystal
From this data one finds thab=564um, Ve=—7.32  eyen in the absence of any external bias. Our analysis indi-
.><19_2, and thereforep=—4.19°. This interaction is shown cates that these kink-type wavefronts move together at an
in Fig. 6 up to a distance of 1 cm. In this example, the twoangle that falls outside the initiat 8 sector of propagation.
shocks move together toward the negative semiaxis at afhe apparent direction of propagation and the spatial widths
angle below that of beam. This apparent direction can of these optical shock-wave beams are directly related to

V. CONCLUSIONS

again be understood keeping in mind that beam ampli-  thejr relative intensity.
fied at the expense dif. After 1 cm of propagation, the two
locked beams have shifted by a distangg=V.z=

. . . ACKNOWLEDGMENTS
—732um. For this same distance, each beam alonehe
absence of any two-wave mixipgvould have traveledy This project was financially supported by ARO-MURI,
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