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Optical spatial shock waves in photorefractive media
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We show that the evolution equations describing the two-wave mixing interaction between two codirectional
optical beams in photorefractive media can allow spatial shock-wave solutions. Our analysis indicates that
these kink-type wavefronts move together at an angle that falls outside the initial6u sector of propagation.
The apparent direction of propagation and the spatial widths of these optical shock-wave beams are directly
related to their relative intensity.

PACS number~s!: 42.65.Tg, 42.65.Hw
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I. INTRODUCTION

Shock waves are ubiquitous entities that have been ex
sively investigated in several diverse areas of physics suc
fluid mechanics, gas dynamics, plasma and solid-state p
ics @1,2#. Yet, in the field of optics, their occurrence is rath
rare @3–12#. Thus far, in the optical domain, spatiotempor
shock~kink! waves have been identified in nonlinear syste
with Raman nonlinearities@3–6#, in dispersive amplifying
nonlinear media that exhibit a frequency-dependent gain
loss @7,8#, and in nonlinear media with higher-order nonli
earities@9,10#. It is clear from these previously mentione
examples that in many cases@3–8# such optical shock wave
can occur provided that an energy exchange proces
present during propagation. This process can be, for insta
stimulated Raman scattering between a Stokes and p
wave@4#, intrapulse Raman scattering within a single sho
wave state@3,5,6# or a frequency-dependent amplificatio
@7,8#. In view of the above discussion, it may be reasona
to ask whether spatial shock waves can also exist as a r
of some energy exchange mechanism. This could
achieved for example via two-wave mixing that natura
occurs in photorefractives@13–21#. Aside from two-wave
mixing, photorefractive crystals are known to host seve
other important nonlinear processes. These include fo
wave mixing, phase conjugation@13–16#, and spatial soli-
tons@22–28#. Like shock waves, photorefractive spatial so
tons retain their form during propagation. They owe th
existence to the drift/photovoltaic component@25,26,28# of
the photorefractive nonlinearity and can be observed at v
low power levels. Bright and dark, one- and two-dimensio
solitons have been systematically demonstrated in labora
experiments. However, in contrast to shock waves, spa
photorefractive solitons rely on a conservative dr
photovoltaic nonlinearity~i.e., no power exchange take
place during propagation!. In this case, the small diffusion
part of the photorefractive nonlinearity is known to on
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cause adiabatic soliton self-bending@29#. A possible way to
launch spatial shock waves in biased photorefractives
suggested in Ref.@30#. In this work, a family of stationary
shocklike solutions was numerically obtained by solving t
beam evolution equation in the so-called Kerr regime. Th
latter kink states are possible by combining the self-act
effects of the drift nonlinearity together with the power e
change~among spatial spectral components! arising from the
diffusion component of the space-charge field. In additi
these photorefractive shock-wave solutions can occur in b
a self-focusing or defocusing environment and exhibit
oscillatory intensity pattern@30#.

In this paper, we describe an alternative avenue thro
which spatial optical shock waves can be observed in ph
refractive crystals. In particular, we demonstrate that the e
lution equations describing the interaction between two
directional beams in unbiased photorefractive media
exhibit a pair of shock-wave solutions. These kinklike so
tions are made possible via the two-wave mixing proce
These locked kink-antikink shock waves propagate und
torted through the photorefractive crystal even in the abse
of any external bias. Our analysis indicates that these k
type wavefronts move together at an angle that falls outs
the initial 6u sector of propagation. The apparent directi
of propagation and the spatial widths of these optical sho
wave beams are directly related to their relative intens
Pertinent examples are provided to elucidate their behav

II. THEORETICAL MODEL

Let us begin by considering the evolution equations
two codirectional waves propagating inside a photorefrac
crystal. These two waves, henceforth referred to as beaa
and beamb, propagate in thexz plane at an angle2u and
1u, respectively, with respect to thez axis. For simplicity,
let us neglect any variation of these two beams alongy ~i.e.,
they are planar beams! in which case their evolution will
8657 ©2000 The American Physical Society
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depend only on the spatial variablesx andz. Moreover, let us
also assume that the two optical beams are relatively br
Hence, diffraction effects can be neglected and the
beams can be treated as quasiplane waves. In the absen
any external bias, these two optical wavefronts can inte
with each other via diffusion-induced two-wave mixing
described by the Kukhtarev-Vinetskii transport mod
@13,14#. When the depth of modulation of the intensity pa
tern resulting from the interference of these two opti
waves is small, the space-charge field equations can
solved perturbatively@13#. In this case, the equations gover
ing the intensity evolution of these two optical beams can
readily obtained from the two-wave mixing formalism, an
are given by

]I a

]z
2v

]I a

]x
2g

I aI b

I d1I a1I b
50, ~1a!

]I b

]z
1v

]I b

]x
1g

I aI b

I d1I a1I b
50, ~1b!

whereI a andI b are the intensities of the two beams involv
propagating at6u with respect to thez axis. In Eqs.~1!
power flows fromI b to I a as a result of nonlinear two-wav
mixing amplification. In the linear regime (g50), the solu-
tions of these equations are given byI a5I a0(x1yz), I b
5I b0(x2yz), i.e., the input intensity profiles remain invar
ant during propagation. The spatial ‘‘velocity’’y is related to
u throughy5tanu. I d is the so-called dark irradiance, whic
phenomenologically accounts for the thermal generation
electrons in the conduction band@13#. It is important to note
that this quantity (I d) can be artificially elevated@25–27#, in
which case the requirement for a small depth of modulat
~i.e., 2AI aI b!I d1I a1I b) can be readily satisfied. The two
wave mixing power-coupling coefficientg is given by@13#
g5@k0 /(n cosu)# bEp Ed /(Ep1Ed)c G, wherek052p/l0 , l0
is the free-space wavelength, andn is the crystal’s unper-
turbed index of refraction.Ep andEd, known as the satura
tion space-charge and diffusion fields, respectively, are gi
by Ep5eNA /«Kg andEd5KBTKg /e. In these expressions
KB is Boltzmann’s constant,T is the absolute temperature
NA is the acceptor density,«5«0« r is the total static permit-
tivity of the crystal,e is the electronic charge, andKg is the
absolute value of the so-called grating vector, which is
lated to the angleu throughKg52k0n sinu. Finally, the pa-
rameterG is given by G5pW a•@(ni

2nj
2(kr i jksk)•pW b#, where

the unit vectorspW a andpW b represent the polarization state
the two beams, and the indicesi, j , andk take the values 1, 2
or 3, which refer to the optical~principal! axes 1ˆ , 2̂, and 3̂,
respectively.ni is the refractive index ‘‘seen’’ by a wave
polarized along thei direction, r i jk are the electro-optic co
efficients, andsk represent the projections of the spac
charge field unit vector along the principal axes. For simp
ity, any loss effects have been omitted in Eqs.~1a! and~1b!.
In deriving these equations, it was assumed that the do
and acceptor densities were much larger than that of e
trons and the tensorial nature of the dielectric permittiv
and that of the electron mobility has been neglected.
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III. SPATIAL SHOCK WAVES—RESULTS AND
DISCUSSION

In this section we will demonstrate that Eqs.~1! exhibit
shock-wave solutions. These represent a pair of kink w
fronts propagating together in the photorefractive crystal.
order to obtain them, letI a(x,z)5I a(j) and I b(x,z)
5I b(j), where j is a common moving coordinate syste
given by j5x2Vez. Ve is a dimensionless ‘‘velocity’’ as-
sociated with the apparent direction of propagation of th
two shock beams inside the crystal and can be positive
negative. The angle of propagationw at which these beam
move with respect toz is given by w5tan21(Ve). Further-
more, for convenience, let us study the previous evolut
equations in a normalized fashion. In order to do so, we sc
the intensities of the two optical beams with respect to
dark irradianceI d , that is, let I a(j)5rI dX(j) and I b(j)
5sIdY(j), whereX(j) andY(j) are normalized real func
tions bounded between 0 and 1, and the positive quantitir
ands stand for the ratio of the maximum intensity of the
beams with respect to the dark irradiance. Substituting th
latter forms ofI a and I b in Eqs.~1a! and ~1b!, we obtain

S v1Ve

s D dX

dj
1g

XY

11rX1sY
50, ~2a!

S v2Ve

r D dY

dj
1g

XY

11rX1sY
50. ~2b!

From Eqs.~2!, it is then straightforward to show that th
following quantity remains constant:

S v1Ve

s DX~j!2S v2Ve

r DY~j!5C, ~3!

whereC is a constant to be determined.
Looking for shock-wave solutions of Eqs.~2!, we must

use appropriate boundary conditions. In particular, a sh
wave is characterized by two infinite tails. One of the
reaches asymptotically a constant value~in this normalized
case, unity! whereas the other tail is approaching zero. He
we also assume that the normalized intensity profiles of
two optical beams are ‘‘symmetric’’ with respect to ea
other. That is, we assume that at the tails whereY51, X is
zero and conversely, at the other end whereX51 then Y
50. Using the above boundary conditions in Eq.~3!, we
immediately find thatC5(y1Ve)/s52(y2Ve)/r , which
leads to the result

Ve5
s1r

s2r
v. ~4!

Using Eqs.~3! and~4! it is then easy to deduce that the tw
normalized profiles are complementary to each other,
Y(j)512X(j). Furthermore, from Eq.~4! it is clear that
the special cases5r is not allowed. Therefore the two opti
cal shock-wave beams must have different maximum int
sities. By rewriting Eq.~4! as Ve5@112r /(s2r )#y52@1
12s/(r 2s)#y, one can readily conclude that the effectiv
transverse velocity parameter isVe.y when s.r , and Ve
,2y when r .s. Hence the anglew that defines the direc
tion of propagation of this pair of kink waves lies betwe
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u,w,p/2 whens.r and2p/2,w,2u whens,r . This
latter result clearly indicates that the apparent direction
propagation of these two beams is always outside the6u
sector defined by the two initial wavefronts and it is closer
the direction of propagation of the beam with the high
intensity.

By substituting the expressionY(j)512X(j) in Eq.
~2a!, one obtains

dX

dj
5

gp

2v
X~12X!

11pX
, ~5!

where the dimensionless real parameterp has been defined a
p5(r 2s)/(11s). From Eq.~4! it is obvious thatVe andp
have opposite signs. It is also important to note that, si
the cases5r is not allowed,p can never be zero. Furthe
more, if p is rewritten in the formp5211(11r )/(11s),
we clearly see that, for every~positive! value of s and r, p
.21. Since the real functionX(j) is bounded between 0
and 1, the quantityX(12X)/(11pX) is never negative.
Therefore, if we assume without any loss of generality t
the parametery and the coupling constantg are positive, the
derivative dX/dj will be positive ~and dY/dj negative!
when p.0, that is, whenr .s, whereas it will be negative
~dY/dj positive! whens.r . This implies that the beam with
the highest intensity in this shock-wave pair exhibits eve
where a positive derivative whereas the derivative of
weaker one is negative. This problem could have also b
treated with respect toY(j) by substituting the condition
Y(j)512X(j) in Eq. ~2b!. In this case theY differential
equation is identical to that of Eq.~5!, provided that the
parameterp is replaced withp8 wherep85(s2r )/(11r ).
These parameters are related through 1/p11/p8521, or
p852p/(11p). Thus the normalized intensity functio
X(j) found for a particular value ofp is symmetrically re-
lated to the profile associated with2p/(11p).

Equation~5! can then be integrated to obtain the norm
ized intensity profile forX(j), that is

X

~12X!~11p! 5C expS gp

2v
j D , ~6!

whereC is a constant to be determined by the initial con
tions. For presentation purposes it is more convenient to
pose a reflection symmetry on thisX-Y shock wave pair.
This is accomplished by requiring that at the originX(0)
5Y(0)5 1

2 . In this case, Eq.~6! takes the form

X/~12X!~11p!52p exp~gpj/2v !. ~7!

In principle, by solving the transcendental Eq.~7!, the func-
tional form ofX(j) can be determined. Figure 1 shows su
a photorefractive shock-wave pair as a function ofj when
g540 cm21, u51.02°(v51.7831022), r 50.08, and s
50.12. These values can be easily realized in high-gain p
torefractive crystals such as strontium barium niobate~SBN!.

Figure 2 on the other hand, depicts the normalized int
sity profile of theX component as a function ofj for various
values ofp, when the photorefractive gain isg540 cm21,
andu51.02°(v51.7831022). For simplicity, only profiles
associated with positive values ofp are presented in this
f
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figure. As it can be directly observed from Fig. 2, the spa
width of these shock-type profiles varies with the relati
intensity ratiop. We now define the spatial widthv of these
waves in the following way:v5ujs2j i u, whereX(js)51
2Xv , X(j i)5Xv . Xv in this definition represents a chose
percentage amount with respect to the maximum intensit
this beam. In this case, a straightforward calculation sho
that the spatial width of these shock waves is given by

v5
2v
g

~21p!

upu
lnS 12Xv

Xv
D . ~8!

From Eq.~8!, and by keeping in mind thatp.21, one can
readily show that the spatial width attains its minimum val
v5(2v/g)ln@(12Xv)/Xv# at p521 andp5`. Conversely,
whenupu is very small, that is, when the relative intensities
both beams are almost the same, the intensity spatial wid
given byv5@4v/(gupu)# ln@(12Xv)/Xv#, i.e., it increases as
upu→0. It is interesting to note that, in this same regime, t
intensity profileX(j) can be analytically obtained from Eq
~7!, and it is approximately given byX(j)5(1/2)@1
1tanh(gpj/4v)#. This solution is identical in nature to tha
previously found in Ref.@4#, within the context of fast and
slow Raman shock-wave domains.

FIG. 1. Normalized intensity profiles of a photorefractive shoc
wave pair as a function ofj when r 50.08,s50.12,g540 cm21,
andu51.02°.

FIG. 2. Normalized intensity profileX(j) of beama as a func-
tion of j for p50.05, 0.1, 0.2 wheng540 cm21, andu51.02°.
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IV. EXAMPLES

Let us now illustrate our results by means of releva
examples. Let the photorefractive crystal be of the SBN ty

with its opticalĉ axis (3̂) directed along thex direction, that

is, let x̂[3̂. Moreover, let the crystal be oriented in such

way that ŷ[2̂ and ẑ[21̂. Thus, for this particular crysta
orientation, the grating vector and the space-charge ele

field only have components along the 3ˆ axis. A straightfor-
ward calculation then shows that, in this case@given that
SBN is of a symmetry class~4 mm!#, the parameterG in-
volved in the definition of the coupling constantg is given
by G5ne

4r 33cos2 u2no
4r13sin2 u, wherer 33 andr 13 represent,

in contracted notation, the electro-optic coefficientsr 333 and
r 113, respectively@13#. ne is the extraordinary index of re
fraction whereasno is the ordinary refractive index of thi
crystal. In deriving this expression, an extraordinary pol
ization for both beams was also assumed. For SBN,r 33 is the
dominant electro-optic coefficient and thus, under the pre
ous assumptions, the coupling constantg is approximately
given by g'(k0ne

4r 33cosu/n)@Ep Ed /(Ep1Ed)#, where the
unperturbed index of refractionn, for extraordinary polarized
beams, is obtained from 1/n25sin2 u/no

21cos2 u/ne
2 @13#. Let

us now assume that the SBN:75 crystal parameters are@31#
r 3351022 pm/V, NA5431022m23, ne'no'2.3, which
means thatn'2.3 and « r5«/«051000, where«0 is the
free-space dielectric permittivity. The photorefractive crys
is assumed to be at room temperature and the free-s
wavelength of the lightwave employed is taken to bel0
50.5mm. In all cases discussed in this section, the tw
wave mixing interaction takes place well within the Bra
regime. In this exampleu51.4°, from where one finds tha
v52.4431022 and g553.2 cm21. Furthermore, let the in-
tensity ratios ber 50.08 ands50.16, in which casep5
20.069. The transverse velocity of these shocks can be
termined from Eq.~4!, andVe57.3231022. If we now de-
fine the spatial width as the distance between the po
where each wave attains 10% and 90% of its peak va
(Xv50.1), then for this data one finds from Eq.~8! that v
5564mm. For such a broad width, diffraction effects a
indeed negligible, a fact consistent with our earlier assum
tions. The actual anglew at which these shock waves prop
gate with respect to thez axis is 4.19°~outside the61.4°
sector!. As previously noted, this pair moves more towa
the side of beamI b , which exhibits the highest intensit
ratio. Figure 3 shows the propagation dynamics of these
kink-antikink shock waves as a function of distance. At
distancez51 cm, the two locked beams have been latera
displaced byxd5Vez5732mm. Note that for this same dis
tance, each beam alone~in the absence of any two-wav
mixing! would have traveledxd56vz56244mm, as
shown in Fig. 4. In this case, the difference between th
displacements is 488mm for theI b beam and 976mm for I a .
This appreciable shift can be easily detected experiment
Physically, this process can be understood as follows.
previously noted, power flows from beamb to beama via
two-wave mixing. This exchange occurs primarily in the t
region of these two shock-wave beams. In this case, the
plification of beama and the depletion of beamb occur in a
self-similar way. As a result of these two beams coalesc
t
,
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the shock-wave pair attains an apparent transverse velo
which lies outside the original6u range. In this example
wheres.r , the two shock waves shift along the positivex
direction, i.e., toward the beam with the highest intensity~b!.
We would like to stress that the tails of these shocks play
important role in this process. In essence they ‘‘prepare’’
way for this self-similar exchange to occur and the tw
shocks move at a higher velocityVe . For this same reason
however, this shock shift can not occur indefinitely. This
because the tail of beama ~to be amplified! will eventually
reach the noise floor of the system after a certain distan
Yet, this process can be observed as long as the differe
beam shifts are of the order of the spatial beam widths wh
the beam power is above the noise level.

The stability of these shock-wave pairs was investiga
by means of computer simulations. This was done by
merically solving Eqs.~1!. Our simulations show that rea
sonably small perturbations on any of the two envelopes~or
both! do not prevent the simultaneous shifting and locking
the two shock-wave beams. In other words, the shock-w
solution is quite stable and thus should be observable at l
within the realistic distances given in our examples. Figur
depicts the case where a 10% perturbation was unifor
imposed on theX(x) component right at the origin~dotted
curve!. All other parameters are identical to those used

FIG. 3. A shock-wave pair propagating in SBN:75 crystal wh
r 50.08,s50.16,g553.2 cm21, andu51.4°.

FIG. 4. A shock-wave pair shown after 1 cm of propagati
with two-wave mixing~dotted curve! and without two-wave mixing
~solid curve!. The initial conditions are the same as in Fig. 3.
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Fig. 3. After 1 cm of propagation, the beams with~dashed
curve! or without ~solid curve! this perturbation are also
shown. It is clear from this figure that the shock-wave p
remains stable and as a matter of fact, it shifts a little fas
as compared to the unperturbed case since more pow
now involved. In addition, other simulations with localize
perturbations on the tails and around the center region h
been performed. In all cases, we have found that the wa
locking and shifting mechanism still persists in spite of the
perturbations.

Another scenario occurs when the roles of beamsa andb
are reversed, that is, when beama has a higher intensity (r
.s). In order to study this case, letr 50.16, s50.08, in
which case the parameterp50.074 is positive. The initial
anglesu are taken here to be 1.4° and thusv52.4431022.
From this data one finds thatv5564mm, Ve527.32
31022, and thereforew524.19°. This interaction is shown
in Fig. 6 up to a distance of 1 cm. In this example, the t
shocks move together toward the negative semiaxis a
angle below that of beama. This apparent direction ca
again be understood keeping in mind that beama is ampli-
fied at the expense ofb. After 1 cm of propagation, the two
locked beams have shifted by a distancexd5Vez5
2732mm. For this same distance, each beam alone~in the
absence of any two-wave mixing! would have traveledxd
56vz56244mm.

FIG. 5. Stability properties of the photorefractive shock-wa
pair shown in Fig. 3. TheX(x) component was uniformly perturbe
by 10% whereasY(x) remained unchanged. The dotted cur
shows the perturbed configuration at the input. Intensity profile
this shock-wave pair after 1 cm of propagation with this pertur
tion ~dashed curve! and without perturbation~solid curve!.
s

-

r
r
is

ve
e-
e

an

Before closing, we would like to emphasize again th
there is a marked difference between the spatial shock wa
reported here and those suggested in Ref.@30#. First of all,
the photorefractive shocks reported in@30# exist through a
combination of drift and diffusion nonlinearity and they in
volve only one component. In contrast, in our work, t
wave solution involves a pair of shocks fronts that is possi
in unbiased photorefractives~i.e., only diffusion nonlinearity
is required!. In addition, these locked states must move o
side their normal sector of propagation, unlike that of@30#,
which propagates along thez axis.

V. CONCLUSIONS

In conclusion, we demonstrated that the evolution eq
tions describing the interaction between two codirectio
beams in photorefractive media can exhibit a pair of sho
wave solutions. These kinklike solutions are made poss
via the two-wave mixing process. These locked shock wa
propagate undistorted through the photorefractive cry
even in the absence of any external bias. Our analysis i
cates that these kink-type wavefronts move together a
angle that falls outside the initial6u sector of propagation
The apparent direction of propagation and the spatial wid
of these optical shock-wave beams are directly related
their relative intensity.
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