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We investigate the effects of diffusion on the evolution of steady-state dark and gray spatial solitons in
biased photorefractive media. Numerical integration of the nonlinear propagation equation shows that the
soliton beams experience a modification of their initial trajectory, as well as a variation of their minimum
intensity. This process is further studied using perturbation analysis, which predicts that the center of the
optical beam moves along a parabolic trajectory and, moreover, that its minimum intensity varies linearly with
the propagation distance, either increasing or decreasing depending on the sign of the initial transverse velocity.
Relevant examples are provided.
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I. INTRODUCTION

Since their first experimental observation �1�, optical spa-
tial solitons in photorefractive media have been the focus of
considerable attention. Among the reasons for the interest in
these self-trapped entities, the most important are probably
the possibility of observing them at �W power levels and in
two transverse dimensions �2,3�. Moreover, photorefractive
media host a number of interesting nonlinear phenomena,
that allowed the prediction and observation of photorefrac-
tive solitons in the form of bright or dark beams �3–5�, as
scalar or vector �6,7�, resulting from coherent or incoherent
illumination �8–10� and even as discrete solitons in wave-
guide arrays �11,12�. This variety of behavior makes them
excellent candidates to beam steering and beam manipula-
tion.

Photorefractive spatial solitons are possible when the pro-
cess of diffraction is exactly balanced by light-induced pho-
torefractive waveguiding. Most often, the photorefractive
nonlinearity responsible for the self-trapping of solitary
beams relies on the application of an external electric field.
Under strong bias conditions, drift dominates the transport
mechanism. In this case, bright, dark, and gray solitary wave
beams have been investigated in steady-state conditions
�4,5,13�. However, in some situations diffusion effects can-
not be neglected. Effectively, the diffusion process intro-
duces an asymmetric tilt in the light-induced photorefractive
waveguide, thus affecting the propagation characteristics of
these solitons. Until now, diffusion effects in photorefractive
media have been investigated solely for bright solitary
beams. The results obtained show that these optical beams
move along parabolic trajectories �14–17�, in a distortionless
and stable fashion �18,19�. Even though the evolution of dark
and gray photorefractive solitons under diffusion effects has
not yet been considered, it is important to refer that in the
low amplitude regime, the photorefractive nonlinearity turns
to be cubic, similar to the Kerr nonlinearity. In this limit, the
model including drift and diffusion resembles the model used
for nonlinear propagation of femtosecond pulses in fibers,
where the effect of intrapulse Raman scattering is important.
In this context, the phenomenon is called soliton self-

frequency shift and the behavior of existing dark pulses was
already approached by a perturbation method �20–23�.

In this paper we investigate the effects of the diffusion
process on the evolution of steady-state dark and gray �1
+1�D solitons in biased photorefractive media. Our numeri-
cal results indicate that the shape of these optical beams re-
mains approximately invariant during propagation, although
the minimum value it attains varies considerably. Moreover,
we also find that the trajectory of the optical soliton is modi-
fied as a result of the diffusion transport mechanism. This
process is further studied using perturbation methods which
involve the modified conservation laws of the nonlinear
wave equation in a moving coordinate frame. Our analysis
predicts that the optical beam moves along a parabolic tra-
jectory and that its minimum intensity varies linearly with
the propagation distance, either increasing or decreasing de-
pending on the sign of the initial transverse velocity. These
analytical results are then compared to those obtained nu-
merically and are found to be in good agreement.

II. THEORETICAL MODEL AND DIFFUSIONLESS
SOLUTIONS

We start our analysis by considering a planar optical beam
that propagates in a photorefractive material along the z axis
and is allowed to diffract only along the x direction, which
coincides with the optical c axis of the crystal. Thus, we will
be dealing with �1+1�D optical beams, and any y variation
has been neglected. Let us assume that the optical beam is
linearly polarized along x and that the external bias field is
applied in the same direction. Under these conditions, the
evolution of the optical beam depends on the so-called pho-
torefractive screening nonlinearity and is governed by the
equation �5�

i
��

�z
+

1

2k

�2�

�x2 −
k0

2
�ne

3r33Esc�� = 0, �1�

where � is the slowly varying envelope of the optical beam,
k=k0ne, with k0=2� /�0 being the free-space wave vector of
the lightwave employed and ne the unperturbed extraordinary
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index of refraction, r33 is the electro-optic coefficient and Esc
is the space-charge electric field resulting from the external
bias electric field and the redistribution of charge caused by
the optical intensity. For relatively broad optical beams it can
be shown that Esc is approximately given by �5�

Esc = E0
I� + Id

I + Id
−

kBT

e

�I/�x

I + Id
, �2�

where the first term relates to charge drift and the latter to
charge diffusion. Here Id is the so-called dark irradiance, I
= I�x ,z� is the power density of the optical beam, which is
related to the slowly varying envelope � through Poynting’s
vector, i.e., I= �ne /2�0� ���2, where �0=��0 /�0 is the intrin-
sic impedance of free space, and I�= I�x→ ± � �. Further-
more, kB is the Boltzmann’s constant, T is the absolute tem-
perature, and E0 represents the value of the space-charge
field at x→ ±�. If the spatial extent of the optical beam is
much less than the x-width W of the photorefractive crystal,
then E0 is approximately ±V /W, where V is the applied ex-
ternal voltage. By substituting Eq. �2� into Eq. �1� and after
appropriate normalization we have

iU� +
1

2
Uss + �1 + 	�

U

1 + �U�2
+ 


��U�2�sU

1 + �U�2
= 0, �3�

where U�=�U /��, etc. The power density is now normalized
with respect to the dark irradiance, i.e., U=�ne / �2�0Id��,
the normalized coordinate � is related to the actual propaga-
tion distance by �= �k0ne

3r33 �E0 � /2�z and the dimensionless
transverse coordinate is given by s= �k0ne

2�r33 �E0 � /2�x. In
this equation, 	 stands for the ratio of the optical intensity at
the tails of the beam to the dark irradiance, that is 	= I� / Id,
and 
 is a parameter associated with diffusion effects that is
given by 
= �kBT /e�k0ne

2�r33/ �2 �E0 � �. In deriving Eq. �3�, it
was assumed that E0�0, so that the associated self-
defocusing nonlinearity is capable of supporting the forma-
tion of dark and gray solitons.

Under strong bias conditions and for relatively large op-
tical beams, the drift process dominates. In this case, we can
neglect the diffusion process, that is, 
=0, and Eq. �3� takes
the form of a nonlinear Schrödinger equation with a higher-
order nonlinearity, which exhibits solitary wave solutions of
the dark and gray type.

Before analyzing the solitary solutions of the above
model, let us apply the following transformation:

U�s,�� = A��,��exp�i������exp�i���� , �4�

where � is a moving coordinate given by �=s−����, ����
represents the trajectory of the moving transverse coordinate
and is such that �����=����, and ����, which is associated
with the angle between the central wave vector and the
propagation axis, plays the role of a transverse velocity. Fi-
nally, ��� allows the variation of the phase during propaga-
tion in the new coordinate system and satisfies ����
=�2��� /2.

The new envelope A�� ,�� satisfies the following evolu-
tion equation:

iA� +
1

2
A�� + �1 + 	�

A

1 + �A�2
+ 


��A�2��A

1 + �A�2
− ���A = 0.

�5�

Whenever ����=const, say �, we have ����=�� and ���
=�2� /2. In this case, we are in the presence of a Galilean
transformation, which showed to be particularly convenient
to determine solutions of Eq. �3� with 
=0, whose phase is
constant when s or �→ ±�.

These solitary wave solutions are given by �5,13�

U�s,�� = �	y���exp�i�� − iJ�
0

� d��

y2 + i�� + i
�2

2
� + i�0	 ,

�6�

where �0 is an arbitrary initial phase and y��� is a normal-
ized real function �0�y����1� that represents the soliton
profile and satisfies the boundary conditions y��→ � �=1,
y�0�=�m, and y�=y�=0 for �→�. Note that the parameter
m is associated with the minimum intensity of the optical
soliton, and also that m=0 corresponds to a dark soliton. The
normalized field profile obeys the ordinary differential equa-
tion

�y��2 − 2��y2 − 1� − J2�1 −
1

y2	 − 2
�1 + 	�

	
ln� 1 + 	

1 + 	y2	 = 0,

�7�

where y�=dy /d�. Moreover, the phase shift � is given by

� =
1

1 − m
+

m

�1 − m�2

�1 + 	�
	

ln�1 + 	m

1 + 	
	 , �8�

and the constant J satisfies J2=2�1−��. The condition for
constant phase at infinity implies that �=J, hence the trans-
verse velocity depends on the solitary wave characteristics
through the expression

�2 =
2m

1 − m

 1

1 − m

1 + 	

	
ln� 1 + 	

1 + 	m
	 − 1� , �9�

and, furthermore, � can be a positive or negative quantity as
it happens with J. In the case of dark solitons, we have m
=0, which results in a null transverse velocity.

At this point, it should be mentioned that Eq. �7� does not
allow closed-form solutions and, therefore, the envelope pro-
file must be obtained numerically by integrating this equa-
tion.

III. DIFFUSION EFFECTS

Let us now consider the effects of the diffusion process in
the propagation of dark and gray solitons. These effects can
be directly observed by numerically solving Eq. �3� using a
beam propagation method, with the solitary waves �obtained
above for 
=0� as the input beams. As observed for bright
solitons in the photorefractive focusing model �14–17�, the
trajectories of dark and gray beams are curvilinear �Fig.
1�a��. Moreover, our simulation results also show that the
shape of the optical beam remains approximately constant
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during propagation. Nonetheless, the minimum value at-
tained by the profile varies considerably, as illustrated in Fig.
1�b�. This is in clear contrast with the bright soliton case,
where the maximum intensity value remained approximately
constant �15�.

These self-bending effects can be systematically studied
using a perturbation method that makes use of the conserva-
tion laws associated to Eq. �3�. More specifically, we con-
sider the conservation of the system momentum which is
obtained by multiplying Eq. �3� with Us

*, and then adding the
result with its complex conjugate. Bearing in mind that we
are considering optical beams with nonzero tails, this conser-
vation statement must be renormalized and, in the absence of
diffusion effects, it is given by �21,22�

d

d�
� i

2
�

−�

�

ds�UUs
* − U*Us� − �	 Arg U�s=−�

s=+�	 = 0, �10�

where Arg U represents the phase of U. It is interesting to
note that, as a result of the moving coordinate system con-
sidered, the system momentum is a finite quantity. When
diffusion effects are taken into account in Eq. �3�, the previ-
ous conservation law takes the modified form

d

d�
 i

2
�

−�

�

ds�UUs
* − U*Us��1 −

	

�U�2	�
= − 
�

−�

�

ds
���U�2�s�2

1 + �U�2
, �11�

where we have also used Arg U= �i /2�ln�U* /U�.

Keeping in mind the numerical simulation results, we as-
sume that the solution of Eq. �3� in the presence of diffusion
effects is again given by Eqs. �6�–�9�, but now with m being
dependent on the propagation distance �. As a consequence,
the beam profile y, the phase shift �, and the transverse
velocity � are also functions of the propagation distance. In
turn, this implies that the trajectory �=s−����, with �����
=����, will be curvilinear, as observed by numerical simula-
tions. The dependence of the wave characteristics on the
propagation distance can then be obtained by substituting Eq.
�6� into Eq. �11�, which yields

d

d�
��
−�

�

d��y −
1

y
	2� = − 4
	�

−�

�

d�
y2�y��2

1 + 	y2 . �12�

Since the envelope profile y��� depends on m, the two inte-
grals present in this equation will be functions of m, and,
thus, also functions of �. Moreover, given that m and � are
related through Eq. �9�, we can write the previous equation
in the form

d�

d�
= − 4
	

�
−�

�

d�
y2�y��2

1 + 	y2

d

d�
��
−�

�

d��y −
1

y
	2� . �13�

Note that the right-hand side of this equation is a function of
� and, therefore, we can think of Eq. �13� as a differential
equation which allows the evaluation of ����. Unfortunately,
the nonexistence of a closed-form solution for the envelope
profile y��� requires that the two integrals present in this
equation be evaluated using numerical procedures, which
prevent us from obtaining a general analytical expression for
����. Nevertheless, this equation can always be numerically
integrated. Furthermore, an approximate expression for the
soliton velocity can be easily obtained by considering the
first terms of its Taylor series expansion in the vicinity of �
=0. To first order, we have

���� � �0 + 
K� , �14�

where �0=���=0� and the product 
K is simply the right-
hand side of Eq. �13� evaluated at �=0, that is, 
K=���0�.
The function K represents a self-bending coefficient and de-
pends on parameters 	 and m, more specifically, on 	 and
m0=m��=0�. It is important to point out that this function
does not depend on the sign of the initial transverse velocity
�0. Effectively, since the two integrals present in the defini-
tion of �� are even functions of � �they depend on m, which
in turn is related to �2� we can conclude that �� and K are
both even functions of �. Moreover, it is also important to
mention that the denominator in Eq. �13� represents
�dP /d�� /	, where P is the renormalized system momentum.
The sign of dP /d� is known to be associated with the sta-
bility of dark and gray solitons �13,24�. More specifically,
these beams are stable when dP /d��0, and unstable other-
wise. Note that, in photorefractive media and in the absence
of diffusion, the instability region corresponds to solitons
with approximately 	�40 and very small values of m0 �13�.
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FIG. 1. �a� Evolution of the normalized intensity of a gray soli-
ton and beam trajectory �m=0.02, 	=20, and 
=0.01�; the dotted
line represents the beam trajectory in the absence of diffusion. �b�
Intensity profiles at �=0 and �=10.
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In the following analysis, we will consider only stable soli-
tons, that is, beams with initial profiles lying outside this
instability region �25�. For these solitons, it is straightfor-
ward to show from Eq. �13� that the self-bending coefficient
is always positive. Since 
�0, then ���0� is positive too
and, therefore, the absolute value of the soliton transverse
velocity can initially increase or decrease depending on the
sign of �0.

The value of the self-bending coefficient can be numeri-
cally evaluated, using the solutions of Eq. �7� for a given set
of parameters 	 and m0. The derivative appearing in the de-
nominator of Eq. �13� has been computed using a finite dif-
ference approach. Figure 2 shows the dependence of function
K on parameters 	 and m0 for some soliton parameters. Even
though the variation of K with m0 is only depicted for three
values of 	, our calculations show that the self-bending co-
efficient of stable solitons is a decreasing function of m0. The
dependence on parameter 	 is slightly more complicated.
The self-bending coefficient exhibits a maximum for a value
of 	 that depends on m0, and then approaches a saturation
value for large 	. Naturally, both the maximum K and its
saturation value depend on m0, being decreasing functions of
this parameter. This behavior of the self-bending coefficient
is well understood if we realize that the width of the normal-
ized beam increases with m0 and, furthermore, has a mini-
mum for 	 around the same value for which there is a peak in
Fig. 2�b� �13�. Hence, as expected, broader beams suffer less
self-bending.

Having determined an approximate expression of the
transverse velocity ����, it is now possible to obtain the
variation of the minimum optical intensity with �, as well as
the trajectory of the optical beam under diffusion effects.
Assuming that in the moving coordinate the beam profile
minimum is at �min=0 then the beam trajectory is given by
smin=����, where ��=�. Using Eq. �14�, to first order and in
the neighborhood of �=0, we have

smin � �0� + 1
2
K�2, �15�

where it was assumed that ��0�=0. This equation clearly
shows that, as a result of the diffusion process, the beam
trajectory is deflected, and the beam center moves along a
parabolic line. The deviation from the initial trajectory is
given by �smin=smin−�0�=
K�2 /2, and depends not only on
the diffusion parameter, but also on the soliton characteristics
through the self-bending coefficient. In actual coordinates,
this deviation takes the form �xmin= �kBT /8e�
��k0ne

3r33�2 �E0 �Kz2, which indicates that the shift of the tra-
jectory of dark and gray stable solitons is always in the posi-
tive x direction. While the previous result could indicate that
the degree of bending increases linearly with the applied
field �which is not consistent with an expected drift domi-
nance for high applied fields�, we should stress that, for
higher E0, a given K �	 and m0 fixed� corresponds to a nar-
rower real beam. For a better understanding of the actual
importance of E0 and the actual width of the beam on the
diffusion effects, we have fixed 	 and allowed m0 to vary in
order to obtain beams of equal full width at half maximum
xfwhm under different external applied field E0, or to obtain
beams of different xfwhm under the same applied field E0 �Fig.
3�. As expected, the self-bending is negligible for higher val-
ues of E0, since the diffusion transport mechanism can be
neglected when compared to the drift counterpart. Also,
broader beams suffer less self-bending since diffusion is a
nonlocal mechanism that depends on the strength of the spa-
tial derivative of the intensity profile. At this point, it is note-
worthy pointing out that these results are similar to the ones
obtained for bright solitons in biased photorefractive media
�15�. However, there is a significant difference concerning
the bending direction, since bright solitary beams bend to-
ward the negative x direction. Keeping in mind that the sign
of E0 is associated with the type of solitons, that is, E0�0
for bright solitons, and E0�0 for dark and gray ones, we can
then conclude that the trajectories of optical screening soli-
tons in photorefractive material always bend in the direction
opposite to the applied field.

In turn, the variation of m with the propagation distance
can be approximately obtained with the help of Eqs. �9� and
�14�, and using a Taylor series expansion. Once again to first
order and in the vicinity of �=0 we have

m��� � m0 + m��0�z , �16�

where m��0� can be obtained from Eq. �9� as m��0�
= �2��� / �d�2 /dm����=0, or
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FIG. 2. Dependence of the self-bending coefficient K on �a�
parameter m0 for 	=0.1, 1, and 10; �b� parameter 	 for m0=0.05,
0.1, and 0.2.
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m��0� =
�0�1 − m0�2���0�

1 + m0

1 − m0

1 + 	

	
ln� 1 + 	

1 + 	m0
	 −

m0�1 + 	�
1 + 	m0

− 1

.

�17�

It can be shown that the denominator on the right-hand side
of Eq. �17�, which is associated with �d�2 /dm���=0, is always
greater than zero. Moreover, taking into account that ���0� is
positive, this implies that m��0� has the same sign as the
initial transverse velocity �0. Hence, for the region of valid-
ity of the previous equation, positive �negative� initial veloci-
ties will be associated with an increase �decrease� in the
value of the minimum.

To illustrate our results, let us consider the evolution of
gray solitons, when the diffusion parameter is 
=0.01 and
for a propagation distance of �=10. Figure 4 compares the
deviation of the beam center from its initial trajectory and
the variation of the beam minimum intensity predicted by
our model with those found by numerically solving Eq. �3�.
In this figure, different values of 	 and m0, and both positive
and negative initial velocities, have been considered. Also

note that in order to facilitate the comparison between the
different cases represented, the variation of the minimum
intensity is illustrated by the evolution of m��� /m�0�. As one
can see, the analytical approach is generally in good agree-
ment with the numerical results. By comparing the evolution
of solitons I–III, which correspond to m0=0.05, 0.1, and 0.2,
respectively, it is possible to verify that diffusion effects are
more notorious for small values of m0. It is also interesting to
compare the evolution of the gray solitons represented in
cases II and IV, which differ only in the sign of the initial
transverse velocity. As expected, the minimum intensity in-
creases when �0�0, decreasing otherwise. Moreover, the
approximate expression derived for �smin predicts a self-
bending independent of the sign of �0. However, it can be
verified in Fig. 4�a� that the numerical results obtained for
cases II and IV are slightly different, thus indicating that the
higher order terms not considered in Eq. �14� depend on the
sign of �0.

It is also important to note that the application of Eq. �16�
to the case of dark solitons will give erroneous results. In
effect, since the initial transverse velocity �0 of these beams
is zero, Eq. �17� predicts that m��0�=0, which implies a con-
stant m for dark solitons. Nonetheless, the results of our nu-
merical simulations showed that although this variation is
not considerable, it still can be observed. Therefore, a better
approximation of m��� is required for dark solitons. In the
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FIG. 3. Dependence of the actual degree of bending, given by
�kBT /4e��k0ne

3r33�2 �E0 �K, on the applied electric field E0 and on the
full width at half maximum xfwhm for �a� 	=0.1 and �b� 	=10. The
represented degree of bending, E0 and xfwhm are normalized by
kBTr33�k0ne

3�2 / �4e�, r33
−1 and �2/ �k0ne

2�, respectively. Without loss of
generality and whenever fixed E0 is taken to be r33

−1 and xfwhm is
taken to be �2/ �k0ne

2�. Note that the minimum value of the x range
in both graphs is imposed by the existence of solitons.
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FIG. 4. Comparison of numerical and analytical results when
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vicinity of �=0 and to second order in �, we obtain for the
case of dark solitons m�m��0��2 /2, where

m��0� =
���0�2

1 + 	

	
ln�1 + 	� − 1

. �18�

Figure 5 presents the comparison between the numerical
and analytical results for a dark soliton with 	=40 and 

=0.01, for a propagation distance of �=30. In particular, the
evolution of the normalized minimum optical intensity, illus-
trated in Fig. 5�b�, shows that the second-order expansion to
m��� is in good agreement with the numerical results.

The evolution of both the trajectory and the minimum
intensity of a gray soliton with a small minimum intensity
�m0=0.01� and a negative initial velocity is illustrated in Fig.
6. Our numerical simulations indicate that the absolute value
of the transverse velocity � will decrease, until it becomes
zero. Similarly, as predicted by Eq. �9�, the minimum inten-
sity of the optical beam decreases, and when �=0 we also
have m=0. This means that the gray soliton becomes a dark
soliton. From that point on, both the transverse velocity and
the minimum intensity increase, and the dark soliton again
becomes a gray soliton. As shown in Fig. 6�a�, the analytical
results for the trajectory of this optical beam agree well with
the numerical simulations. On the contrary, the first-order
analytical results for the variation of the minimum, given by

Eq. �16�, are not very good. In effect, they are obtained from
an expansion around �=0, and therefore do not take into
account the change in the sign of �. Nevertheless, these ana-
lytical results can be improved by numerically solving the
differential equation for ����� �Eq. �13��. This can be easily
achieved by simply dividing the propagation distance in
smaller steps, and by adjusting the self-bending coefficient at
each step, which corresponds to integrate the differential
equation by Euler’s method. The results obtained by this
method, also depicted in Fig. 6�b�, are in good agreement
with the numerical simulations. Furthermore, it should be
referred that our numerical simulations indicate that the evo-
lution of the beam trajectory and its minimum intensity for
larger propagation distances can also be predicted by numeri-
cal integrating Eq. �13�.

The low-amplitude case also deserves special attention. In
this limit, that is, when 	�1 or �U�2�1, Eq. �3� takes the
form

iU� + 1
2Uss + �1 + 	�U − �U�2U + 
��U�2�sU = 0, �19�

which is a modified version of the nonlinear Schrödinger
equation. It is interesting to point out that this equation is
analogous to the equation describing the evolution of tempo-
ral pulses under the influence of intrapulse Raman scattering,
which is known to be associated with the phenomenon of
soliton self-frequency shift already studied �20–24�.
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FIG. 5. Comparison of numerical and analytical results for a
dark soliton �m0=0� with 	=40, when 
=0.01. �a� Position of beam
center; �b� minimum intensity.
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gray soliton with m0=0.01 and 	=15, when 
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�a� Position of beam center; �b� minimum intensity.
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Unlike Eq. �3�, the previous evolution equation �with 

=0� exhibits dark and gray solitons which are given in an
analytical form �26�. The action of diffusion on the behavior
of these Kerr-type solitons can then be investigated by sim-
ply substituting the low amplitude beam profile in Eq. �13�,
in which case we obtain d� /d�=4
�	−�2�2 /15. Even
though this ordinary differential equation can be easily inte-
grated, it is not possible to solve it for � in a closed form.
However, as before, an approximate expression for the soli-
ton velocity ���� can be obtained by considering the first-
order term of its Taylor series expansion in the vicinity of
�=0,

���� � �0 + 4
15
	2�1 − m0�2� . �20�

It is noteworthy pointing out that the low amplitude self-
bending coefficient is given by K=4	2�1−m0�2 /15, which is
in excellent agreement with the numerical value obtained for
the general case when 	�1. Furthermore, in the case of a
dark soliton, m0=0 and �0=0, and so the previous equation
reduces to �����4
	2� /15. Analogously to the general case
presented earlier, the trajectory of a low amplitude optical
beam and its minimum intensity evolution can now be ap-
proximately determined from Eq. �20�, and are given by
smin��0�+ 2

15
	2�1−m0�2�2 and m����m0+ 8
15�
	�	m0�1

−m0�2�, where once again it was assumed that ��0�=0. Simi-
larly to the general case, a second-order approximation of
m��� is required for dark solitons, yielding m���
�16
2	3�2 / �15�2 for this type of optical beams. In actual
coordinates, the deviation from the initial trajectory in the
low-amplitude regime can be easily obtained as �xmin
= �KBT / �30e���k0ne

3r33�2 �E0 �	2�1−m0�2z2 or, equivalently, as
a function of E0 and xfwhm, �xmin= �KBT / �30e��

��38.6/ �k0
2ne

2 �E0 �xfwhm
4 ��z2. It is interesting to compare this

deviation with the one predicted for bright solitons, which is
given by �15� �xMAX=−�KBT / �15e���k0ne

3r33�2E0r2z2, where
r is the ratio of the soliton maximum intensity to the dark
irradiance, or �xMAX=−�KBT / �15e���38.6/ �k0

2ne
2E0xfwhm

4 ��z2.
In addition to the expected dependence on soliton param-
eters, these two deviations also differ in their signs. Further-
more, the previous expressions also show that the bending of
bright solitons is twice the one suffered by dark or gray ones
with the same spatial width.

IV. CONCLUSIONS

The effects of the diffusion process on the evolution of
dark and gray photorefractive solitons have been systemati-
cally investigated. By employing numerical techniques we
have found that these optical beams experience a modifica-
tion of their initial trajectory, as well as a variation of their
minimum intensity. This process was further studied using a
perturbation method which involves the modified conserva-
tion laws of the nonlinear wave equation in a moving coor-
dinate system, yielding a differential equation that governs
the evolution of the transverse velocity of the optical beam.
Our analysis indicates that the deviation of the center of the
solitary beam from its initial trajectory is approximately
parabolic, whereas the minimum intensity increases or de-
creases linearly with the propagation distance, depending on
the sign of its initial transverse velocity. Moreover, the de-
pendence of these diffusion effects on the value of the exter-
nal bias electric field and on soliton parameters was also
considered in detail. The analytical results were then com-
pared to those obtained numerically and were found to be in
good agreement with each other.
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�25� Our numerical simulations have shown that the diffusion pro-
cess does not drastically change the stability of initially stable
dark and gray solitons.

�26� In the absence of diffusion, the dark and gray soliton solu-

tions of Eq. �19� are given by U�s ,��=�	y���
�exp−i� tan−1�a tanh��	a�� /�1−a2��exp�i��+�0��, where
y���=�1−a2 sech2��	a��, a=�1−m, and �=� / ���, with �2

=	m in order to prevent infinite phase values in the tails.
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