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Abstract

Biased photorefractive media are known to admit bright and dark
solitons. Their bright solitons are always stable, nevertheless, their dark
counterparts are unstable above certain background intensity and below
a critical velocity. Here, we use the stability criterion and the Vakhitov-
Kolokolov function to precisely determine the unstable parameter region.
We also anticipate the strength of the instability by determining the un-
stable eigenvalues and eigenmodes using the Evans function method. The
results are confirmed by numerical simulation of the full evolution equa-
tion.

1 Introduction

Photorefractive materials support the propagation of self-guided beams since
the variations in refractive index produced by the beams may be sufficient to
compensate for their diffraction. These beams are usually named photorefrac-
tive (PR) solitons. Whenever the self-guiding effect benefit from an external
electric field, these solitons are called screening solitons. Both bright and dark
screening solitons were predicted theoretically [2] and experimentally observed
[11, 10, 3]. The bright solitons are parameterised by peak value or power and
all of them are stable [4]. The dark solitons are parameterised by the intensity
of the background and velocity or minimum of intensity [2, 5]. For relatively
large background intensities, there is a critical velocity below which the dark
solitons are unstable. This threshold of stability is easily determined by the
stability criterion for dark solitons whenever gray solitons are considered [1, 7].
However, there are numerical difficulties associated with the application of the
above criterion to black solitons (dark solitons with zero intensity).
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Here, we investigate the stability of black solitons using the Vakhitov-Kolo-
kolov function at zero [8]. Moreover, the strength of the instability is inves-
tigated using the Evans function method to compute the unstable eigenvalues
and eigenmodes.

The article is structured as follows. In section 2, we introduce the ordinary
differential equation for the dark soliton profile, its phase and general charac-
teristics. In section 3, we determine the stability threshold for black and gray
solitons and use the Evans function method to calculate the unstable eigenvalues
and eigenmodes. Then, we present the results of direct numerical simulations
in section 4 and the conclusions in section 5

2 Stationary solutions

The propagation of dark beams in biased photorefractive planar waveguides is
modeled by [2]

iqz +
1
2
qxx + (1 + ρ)

q

1 + |q|2 = 0. (1)

The propagation is along z and diffraction is only allowed along x which coin-
cides with the c axis of the crystal. The above equation is valid whenever the
transport of charge is dominated by drift so that diffusion may be neglected.
The above condition is fulfilled for strong bias fields and relatively large beams.
The equation (1) admits localized stationary solutions corresponding to a hole
over a background of constant intensity [2, 5], so that the nonzero boundary
condition at infinity is given by

q → √
ρei(θ0±S/2) x→ ±∞ (2)

where S is the phase difference across x. Let q(z, x) =
√
ρy(η)eiθ(z,η) be a

solution to (1) where η = x− ωz + η0, then the phase is given by

θ(z, η) = z − ω

∫ η

0

dη′

y2
+ ωη + θ0.

and y(η) is a real non-negative function such that y(η) ≤ 1, y(η) → 1 as η → ±∞
and satisfies the following ordinary differential equation

y′′ + (ω2 − 2)y − ω2

y3
+ (1 + ρ)

2y
1 + ρy2

= 0 (3)

The profiles y(η) (see Fig. 1(a)) are parameterized by ρ and ω such that ω2 <
ρ/(1 + ρ). The minimum of y(η) is

√
m, where m relates to the velocity ω by

ω2 =
2m

1−m

[
1 + ρ

ρ(1−m)
ln

(
1 + ρ

1 + ρm

)
− 1

]
.

Note that when ω = m = 0 the above phase and ODE describe a black
soliton. In this case and for all ρ, the phase difference between both tails is
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Figure 1: Normalised field profile (a) and phase profile (b) of gray solitons.

π which occurs as a discontinuity at the minimum η-position. Nevertheless,
generally the phase difference of gray solitons is not π (Fig. 1(b)) . For small ρ
all the gray solitons (every m > 0) have phase differences less than π, however,
for larger ρ and small m the phase difference is greater than π (Fig. 2). These
latter solitons are usually named darker than black.

3 Stability Analysis

The stability region for solutions to (1) can be determined using the stability
criterion for dark solitons, which asserts that the beam is stable unless ∂P/∂ω >
0 [1, 7], where P is the renormalized momentum given by

P =
i

2

∫ ∞

−∞
(q∗xq − qxq

∗)dx− ρArg q|+∞−∞

= ωρ

∫ ∞

−∞
(y2 − 1)dη − ρArg q|+∞−∞.

(4)

The latter expression for P shows that for a dark soliton to be unstable it is
necessary (not sufficient) that the soliton is black or darker than black. To prove
it, let us consider ω > 0 for which the phase difference is negative so that the
second term is positive. In the limit ω = 0, the first term is zero and P = ρπ.
As ω moves away from zero, the first term is always negative in such a away that
cannot contribute to increase P , therefore only solitons whose phase difference
is, in modulus, greater than π may have ∂P/∂ω > 0.

It is important to realize that this criterion only tell us if a given soliton
is stable or unstable, i.e., it is not possible to directly obtain the properties of
unstable solitons, such as the stength of the instability, from that derivative.
Therefore, one must resort to alternative methods in order to further study this
subject.

We proceed by considering the linear stability equations, which are obtained
by assuming a solution to equation (1) given by the above dark solution plus a
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Figure 2: Modulus of the phase difference as function of ρ and ω. The thicker
part of the line ρ = 100 corresponds to unstable solitons.

small perturbation term, namely

q(z, x) =
√
ρeiθ(z,η) [y(η) + ∆(z, η)] .

Introducing this solution into equation (1) we obtain equation (3) as the
zero-order approximation and

i∆z +
1
2
∆ηη − iω

∆η

y2
+ iω

∆y′

y3
+

(
ω2

2
− 1− ω2

2y4
+

1 + ρ

1 + ρy2

)
∆

− ρ(1 + ρ)y2

(1 + ρy2)2
(∆ + ∆∗) = 0 (5)

as the first order approximation. To investigate spectral stability we assume that
∆ has an exponential dependence on z, that is, ∆(z, η) = u(η)eiλz +v∗(η)e−iλ∗z

and ∆∗(z, η) = u∗(η)e−iλ∗z + v(η)eiλz. By substituting these expressions in the
previous equation, we arrive to the following eigenvalue problem

L

(
u

v

)
= λ

(
u

v

)
. (6)

The operator L is given by

L = σ3

(
1
2
∂ηη + F (η)−G(η)

)
− iσ2G(η) + iI2

(
ωy′

y3
− ω

y2
∂η

)

where I2 is the 2×2 identity matrix and σ2 and σ3 are the Pauli matrices given
by

σ2 =
(

0 −i
i 0

)
, σ3 =

(
1 0
0 −1

)
.
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The functions F (η) and G(η) are given by

F (η) =
ω2

2
− 1− ω2

2y4
+

1 + ρ

1 + ρy2

G(η) =
(1 + ρ)ρy2

(1 + ρy2)2
.

The stationary solution is spectrally stable if the spectrum of L has no strictly
negative imaginary part.

The symmetry of L implies that if λ is an eigenvalue −λ, λ∗ and −λ∗ are also
eigenvalues. Following Henry [6], the continuous spectrum of L is on the regions
defined by the curves defined by the continuous spectrum of the operator L∞,
where L∞ stands for the form of L as η →∞, namely

L∞ = σ3

(
1
2
∂ηη − ρ

1 + ρ

)
− iσ2

ρ

1 + ρ
− iI2ω∂η.

Since the continuous spectrum of L∞ is R, then R is also the continuous spec-
trum of L.

Due to the symmetry of (6) relatively to the real axis, the existence of
any discrete eigenvalues implies instability. We search for discrete eigenvalues
following the standard Evans function method. Let Y =

(
u uη v vη

)T ,
then Y satisfies the equation

dY

dη
= A(η, λ)Y, (7)

where

A(η, λ) =




0 1 0 0

2(G− F − iω
y′

y3
+ λ) 2i

ω

y2
2G 0

0 0 0 1

2G 0 2(G− F + iω
y′

y3
− λ) −2i

ω

y2



.

(8)
For η → ±∞ the matrix A(η, λ) is independent of η and we shall denote it by
A∞(λ). Therefore, the system (7) transforms to a constant coefficient system
of ordinary differential equations. It has solutions of the form Y∞r (η, λ) =
yr(λ) exp[r(λ)η], where r(λ) is one of the eigenvalues of A∞(λ) and yr(λ) is the
corresponding eigenvector. For λ ∈ C \ R, there are two r values with positive
real part and other two with negative real part. Let us denote them as follows:

Re(r1,2) > 0 Re(r3,4) < 0.

The full system (7) has two bounded solutions as η → −∞ satisfying

Y −r1,2
(η, λ) ∼ Y∞r1,2

as η → −∞,
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and two bounded solutions as η → +∞ satisfying

Y +
r3,4

(η, λ) ∼ Y∞r3,4
as η → +∞.

The localized eigenfunction corresponding to discrete eigenvalues should be a
linear combination of Y −r1

(η, λ) and Y −r2
(η, λ) (they span the unstable manifold)

and also a linear combination of Y +
r3

(η, λ) and Y +
r4

(η, λ) (they span the stable
manifold).

Following Alexander et al we work on the exterior space Λ2(C4) where the
2-vector U−(η, λ) = Y −r1

(η, λ) ∧ Y −r2
(η, λ) represents the unstable manifold and

U+(η, λ) = Y +
r3

(η, λ) ∧ Y +
r4

(η, λ) represents the stable manifold. In Λ2(C4), λ is
an eigenvalue if and only if U−(λ, η) ∧ U+(λ, η) = 0. The function D̃(λ, η) =
U−(λ, η) ∧ U+(λ, η) is independent of η and analytic on λ ∈ C \ R. Here, we
define

D(λ) = U−(λ, 0) ∧ U+(λ, 0)

as our Evans function, whose zeros are eigenvalues of L. Moreover, we define a
normalized version of the Evans function as

E(λ) =
D(λ)
D∞

, (9)

where D∞ stands for D(λ→∞). Therefore, we obtain E(λ) → 1 as |λ| → ∞.
The unstable eigenvalues can then be found using the Evans function. Since

the Evans function is analytic, the existence of unstable eigenvalues may be in-
vestigated by calculating it on an infinite line parallel and very close to the real
axis and applying the argument principle. For ρ and ω inside the region of insta-
bility, we found one pair of eigenvalues symmetrically located in the imaginary
axis. For fixed ρ, they start at some ±bi (b real positive) and travel toward the
origin as ω increases. Then, they reach the origin when ω attains the stability
boundary. Fig. 3 represents the absolute value of the unstable eigenvalues using
a grayscale plot. Once the eigenvalues are known, the associated eigenmodes
may also be determined.

Note that the stability/instability boundary for photorefractive dark soli-
tons, shown in Fig. 3, is consistent with the results obtained by directly apply-
ing the stability criterion, i. e., by using the condition ∂P/∂ω = 0. Finalizing
some controversies about the definiteness of ∂P/∂ω at ω = 0 and the possi-
bility of its application as stability criterion of black solitons, Pelinovsky and
Kevrekidis [9] have recently demonstrated that both are true. Although this
criterion could be used for all dark photorefractive solitons, its application to
the black case presents some numerical difficulties, which are associated with the
phase integral in definition (4). In order to find the stability boundary for black
solitons we followed an alternative approach suggested by di Menza and Gallo
[8]. We begin by assuming now that ∆ and ∆∗ are of the form (∆+∆∗)(z, η) =
U(η)eiλz +U∗(η)e−iλ∗z and (∆−∆∗)(z, η) = V (η)eiλz−V ∗(η)e−iλ∗z and obtain
the following eigenvalue problem for the black solitons (ω = 0)

L0V = 2λU, L1U = 2λV
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Figure 3: Stability and instability regions and absolute value of the unstable
eigenvalue in the parameter space (ρ, ω).

where L0 and L1 are Sturm-Liouville operators given by:

L0 = ∂ηη − 2 +
2(1 + ρ)
1 + ρy2

,

L1 = ∂ηη − 2 +
2(1 + ρ)
1 + ρy2

− 4ρy2(1 + ρ)
(1 + ρy2)2

.

Then following a procedure identical to the one used by Vakhitov and Kolokolov
[12], we define the function

g(ξ) =
〈
y′, (L0 − ξ)−1

y′
〉

(10)

The black solitons are unstable if g(0) > 0 and stable otherwise. In fact, it was
demonstrated that g(0) is equal to − 1

2∂P/∂ω(0) [9]. Nevertheless, the numerical
calculation of g(0) is preferable to the numerical calculation of P close to ω = 0.

Hence, to determine the sign of g(0), we numerically find ψ(η) such that
ψ(η) = L−1

0 y′. This is done by solving

ψ′′ − 2ψ + (1 + ρ)
2ψ

1 + ρy2
= y′

with ψ decaying as η → ±∞. Then, we determine the sign of g(0) as

g(0) =
∫ ∞

−∞
y′(η)ψ(η)dη.

Following this procedure we determine that yblack is stable for ρ ≤ ρc where
ρc is approximately 29.3 and unstable otherwise. These results are in complete
agreement with the application of the stability condition ∂P/∂ω = 0 in the limit
of very small ω.
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Figure 4: Evolution of the unstable soliton with ρ = 100 and m = 0.001 (ω =
0.0845).

4 Numerical simulations

The evolution equation (1) was numerically integrated using a beam propaga-
tion method, with the solitary waves as the input beams. The numerical results
obtained are in good agreement with our stability results. In effect, dark soli-
tons evolve in a stable way for parameter values inside the stability region and
destabilize otherwise, as it is shown in Fig. 4 for the soliton associated with
ρ = 100 and m = 0.001. Moreover, for relatively small z, the perturbation of
unstable solitons grows exponentially with propagation distance, with a growth
rate that coincides with the absolute value of the unstable eigenvalue. This is
illustrated in Fig. 5, which depicts the evolution of the maximum of the per-
turbation absolute value, for this soliton, as well as the expected growth rate
associated with its unstable eigenvalue (approximately −2.03i). On the other
hand, our numerical simulations also indicate that the growing perturbations
of unstable solitons are quite similar to the associated eigenfunctions. This
is clearly indicated in Fig. 6, which represents the unstable eigenfunction as-
sociated with the previously considered soliton and the perturbation obtained
numerically for different values of z. For comparison purposes, the absolute
values on this figure are normalized to their maxima. Furthermore, is is also
interesting to mention that our simulations suggest that the unstable solitons
evolve to stable ones while radiate part of their energy. This instability induced
dynamics will be studied elsewhere.

5 Conclusions

We have determined parameter region for stability of PR screening dark solitons.
For small ρ (ρ < ρc ∼ 29.3), all the dark solitons are stable. Note that in the
limit of small ρ the model resembles the defocusing NLS for which all the dark
solitons are stable. For ρ > ρc ∼ 29.3, there is a critical velocity (dependent
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on ρ) below which the solitons are unstable and stable solitons otherwise. Us-
ing the Evans function method, we have determined unstable eigenvalues and
eigenmodes of the linear stability eigenvalue problem. The absolute value of
the unstable eigenvalue (strength of the instability) decreases with ω for fixed
ρ. Growth rates and eigenmodes agree reasonably with the initial instability
evolution as observed by direct simulation of the full equation.
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