
OSI formal specification case study: 
the Inres protocol and service, revised 
 
Dieter Hogrefe 
Institut für Informatik 
Universität Bern 
Länggassstrasse 51 
CH-3012 Bern, Switzerland 
 
May 1991 
Update May 1992 
 
Abstract 
 
This paper contains an OSI specification case study. An informal specification of an OSI-like protocol and service is 
followed by an SDL [Z100], Estelle [ISO 9074] and LOTOS [ISO 8807] specification of the same protocol and service. 
The protocol is called Inres, for Initiator-Responder protocol. It is connection oriented and asymmetric, i.e. one side can 
only establish connections and send data while the other side can accept connections, release them and receive data. 
 
 
1. Introduction 
 
The system under study, Inres, is not a real system, although it does contain many basic OSI concepts and is therefore 
very suitable for illustrative purposes because it is easy to understand and not too big. It is an abridged version of the 
Abracadabra system described in [TR 10167]. The Inres system has originally been published in [HOG89] in German 
and has already been used as a reference in many publications. This paper contains only a short evaluation and 
experience section at the end. The main purpose of the paper is to offer the community a well worked out protocol 
example, which has been checked in parts with tools to serve as: 
 
- a reference for other work using the Inres protocol 
- an illustration for the use of FDTs (formal description techniques) 
- stimulate and provoke the discussion on protocol against service verification, automatic  
  generation of conformance tests, ... 
- stimulate and provoke experts of other formal description techniques such as Z [SPI89], stream  
  functions [BRO87], temporal logic [GOT91], to specify the same protocol with their approach. 
 
In the following, two services and one protocol are described: 
 
· the Medium service, which can be used for unreliable transmission of data units 
· the Inres protocol (initiator-responder), which - with the aid of the Medium service - renders a  
  connection-oriented service to its users 
· the Inres service, which is the service rendered by the Inres protocol and the Medium service. 
 
The services and protocols described here cannot be related to any specific layers of the OSI-BRM, although they 
contain some basic OSI elements. Fig. 1.1 shows the basic structure of the example. 

Medium
service 
primitives

Medium 
service
primitives

Medium service

Inres service
Inres protocolInres

entity
Inres
entity

Inres user

Inres
service
primitives

Inres user

Inres 
service
primitives

 
Figure 1.1 Basic architecture of the Inres system 

2
In the following sections the services and the protocol are first described verbally and semi-formally with TS diagrams. 
These informal descriptions form the basis for the formal specifications with SDL. 
 
There are some conventions in the descriptions for the naming of SPs, SAPs and SDUs. Those SPs, SAPs, and SDUs 
that are related to the Medium service have the prefix M. For example, MSDU is the name of a service data unit of the 
Medium service. SPs, SAPs, and SDUs that are related to the Inres service and protocol have the prefix I. 
 
The order of the description in the next chapters is a recommended order: First, one should think about the service that 
has to be rendered, then the service that can be used is taken into account, and thereafter the protocol is designed which 
can render the desired service. 
 
 
1.1 Informal specification of the Inres service 
 
This is an abridged version of the Abracadabra service [TR 10167]. The service is connection-oriented. A user who 
wants to communicate with another user via the service must first initiate a connection before exchanging data. Fig. 1.2 
shows the basic schema of the service with its SPs and SAPs. 
 

Inres service

Initiator user Responder user

ICONconf
IDISind

ISAPini

ICONind
IDATind

IDISreq
ICONresp

ICONreq
IDATreq ISAPresp

 
Figure 1.2 The Inres service 
 
For simplification purposes the service is not symmetrical. The service can be accessed on two SAPs. On the one SAP 
(the left one in Fig. 1.2) the Initiator-user can initiate a connection and afterwards send data. On the other SAP another 
user, Responder-user, can accept the connection or reject it. After acceptance it can receive data from the initiating user. 
 
The following SPs are used for the communication between user and provider: 
 
· ICONreq: request of a connection by Initiator-user 
· ICONind: indication of a connection by the provider 
· ICONresp: response to a connection attempt by Responder-user 
· ICONconf: confirmation of a connection by the provider 
· IDATreq(ISDU): data from the Initiator-user to the provider, this SP has a parameter of type ISDU 
· IDATind(ISDU): data from the Provider to the Responder-user, this SP has a parameter of type ISDU 
· IDISreq: request of a disconnection by the Responder-user 
· IDISind: indication of a disconnection by the provider 
 
The order of SPs at the different SAPs is specified in Fig. 1.3a-1.3h with generalized TS-diagrams (see [TR 8509]). 
 

ICONreq

ICONconf

ICONind

ICONresp

 
 
Figure 1.3a Successful connection establishment 



3

ICONreq

IDISind

ICONind

IDISreq

 
Figure 1.3b Unsuccessful connection establishment (rejection by the Responder) 
 

ICONreq

IDISind

 
Figure 1.3c Unsuccessful connection establishment (erroneous transmission of the connection request) 
 

ICONreq

IDISind

ICONind

ICONresp

 
Figure 1.3d Unsuccessful connection establishment (erroneous transmission of the connection response) 
 

 

ICONreq

ICONind

IDISind
 

Figure 1.3e Unsuccessful connection establishment (Responder ignores connection request) 
 

IDATreq

IDATind

 
Figure 1.3f Successful data transfer 
 

IDISind

IDATreq

 

4
Figure 1.3g Unsuccessful data transfer (erroneous transmission of data) 
 

IDISreq

IDISind
 

Figure 1.3h Successful disconnection 

IDISreq

 
Figure 1.3i Unsuccessful disconnection (erroneous transmission of disconnection request) 
 
 
1.2  Informal specification of the Medium service 
 
The Medium service has two SAPs: MSAP1 and MSAP2. The service is symmetrical and operates connectionless. It 
can be accessed at the two SAPs by the SPs MDATreq and MDATind, both of which have a parameter of type MSDU. 
 
With the SPs data (MSDUs) can be transmitted from one SAP to the other. The data transmission is unreliable, and data 
can be lost. But data cannot be corrupted or duplicated. Fig. 1.4 shows the overall schema of the service, and Fig. 1.5a-
1.5b show the respective TS diagrams. 
 

Medium service

MDATind

MSAP1

MDATreq

MDATind

MDATreq

MSAP2

Medium service

user

MDATind

MSAP1

user

MDATreq

MDATind

MDATreq
MSAP2

 
Figure 1.4 The Medium service 
 

MDATreq

MDATind

 
Figure 1.5a Successful data transfer 
 

MDATreq

 
Figure 1.5b Unsuccessful data transfer (erroneous transmission of data) 
 
 
1.3 Informal specification of the Inres protocol  
 



5
This section describes a protocol, which by use of the unreliable Medium service, renders the Inres service to users in 
the imaginary next higher layer. Fig. 1.6 shows the overall architecture of the protocol. 
 
General properties of the protocol  
 
The Inres protocol is a connection-oriented protocol that operates between two protocol entities Initiator and Responder. 
The protocol entities communicate by exchange of the protocol data units CR, CC, DT, AK and DR. The meaning of the 
PDUs is specified below. 
 

6
 
PDU Meaning parameter respective SPs 

CR connection establishment none ICONreq,ICONind 
CC connection confirmation none ICONresp,ICONconf 
DT data transfer sequence number,ISDU IDATreq,IDATind 
AK acknowledgement sequence number         - 
DR disconnection none IDISreq,IDISind 
 
The communication between the two protocol entities takes place in three distinct phases: the connection establishment 
phase, the data transmission phase, and the disconnection phase. 
 
In each phase only certain PDUs and SPs are meaningful. Unexpected PDUs and SPs are ignored by the entities Initiator 
and Responder. 
 

Medium service

MDATind

MSAP1
MDATreq MDATind

MDATreq

MSAP2

ICONreq

ICONconf

IDATreq

IDISind ICONind

ICONresp

IDATind

IDISreq

Inres protocol

CC,DR,AK CR,DT

InitiatorResponder

ISAPini ISAPresp

 
Figure 1.6 The Inres protocol 
 
 
Connection establishment phase  
 
A connection establishment is initiated by the Initiator-user at the entity Initiator with an ICONreq. The entity Initiator 
then sends a CR to the entity Responder. 
 
Responder answers with CC or DR. In the case of CC, Initiator issues an ICONconf to its user, and the data phase can 
be entered. If Initiator receives a DR from Responder, the diconnection phase is entered. If Initiator receives nothing at 
all within 5 seconds, CR is transmitted again. If, after 4 attempts, still nothing is received by Initiator, it enters the 
diconnection phase. 
 
If Responder receives a CR from Initiator, the Responder-user gets an ICONind. The user can respond with ICONresp 
or IDISreq. ICONresp indicates the willingness to accept the connection, Responder thereafter sends a CC to Initiator, 
and the data transmission phase is entered. Upon receipt of an IDISreq, Responder enters the disconnection phase. 
 
Data transmission phase  
 
If the Initiator-user of the entity issues an IDATreq, the Initiator sends a DT to the Responder and is then ready to 
receive another IDATreq from the user. IDATreq has one parameter that is a service data unit ISDU, which is used by 
the user to transmit information to the peer user. This user data is transmitted transparently by the protocol entity 
Initiator as a parameter of the protocol data unit DT. After having sent a DT to Responder, Initiator waits for 5 seconds 
for a respective acknowledgement AK. Then the DT is sent again. After 4 unsuccessful transmissions, Initiator enters the 
disconnection phase. 
 
DT and AK carry a one-bit sequence number (0 or 1) as a parameter. Initiator starts, after having entered the data 
transmission phase, with the transmission of a DT with sequence number 1. A correct acknowledgement of a DT has the 



7
same sequence number. After receipt of a correct acknowledgement, the next DT with the next (i.e. other) sequence 
number can be sent. If Initiator receives an AK with incorrect sequence number, it sends the last DT once again. It is 
also sent again if the respective AK does not arrive within 5 seconds. A DT can only be sent 4 times. Afterwards 
Initiator enters the disconnection phase. The same happens upon receipt of a DR. 
 
Following the establishment of a successful connection, Responder expects the first DT with the sequence number 1. 
After receipt of a DT with the expected number, Responder gives the ISDU as a parameter of an IDATind to its user and 
sends an AK with the same sequence number to the Initiator. A DT with an unexpected sequence number is 
acknowledged with an AK with the sequence number of the last correctly received DT. The user data ISDU of an 
incorrect DT is ignored. If Responder receives a CR, it enters the connection establishment phase. And upon receipt of 
an IDISreq, it enters the disconnection phase. 
 
Disconnection phase  
 
An IDISreq from the Responder-user results in the sending of a DR by the Responder. Afterwards Responder can 
receive another connection establishment attempt CR from Initiator. 
 
At the Initiator, the DR results in an IDISind sent by the Initiator to its user. An IDISind is also sent to the user after DT 
or CR have been sent unsuccessfully to the Responder. Then a new connection can be established. 
 
 
2. Formal specification of Inres in SDL 
 
At some places the formal specification has to add some information to that found in the informal one. This is because 
informal specifications tend to be incomplete: they sometimes leave things up to the intuition of the reader. Therefore, 
informal service and protocol specifications can interpreted correctly only if the reader has some universal knowledge 
about services and protocols. Examples are given in the following sections. 
 
The basic approach to the specification of the services and protocol is as follows. We consider a system called Inres 
(shown in Example 2.1). The system contains exactly one block, the Inres_service. The processes of this block specify 
the behaviour of the service provider, one process for each service access point. In addition, the block has a 
substructure, which is the Inres_protocol (specified in Example 2.4). This protocol specification again contains a block 
for the specification of a service, the Medium service. This block can in turn have a substructure if a protocol has to be 
specified, which should render the Medium service. More on this approach can be found in [BHT88] 
 
The substructure specification is used in SDL to specify the behaviour of a block in more detail, as an alternative to a 
more abstract block specification in terms of interacting processes. 
 
This approach to service and protocol specification takes two very basic aspects of OSI into account: 
 
· First, that of the recursive nature of the OSI-BRM. A service can be defined by a protocol using the underlying 
service, which again can be defined by a protocol using the next lower underlying service, and so on. The recursion 
stops with the Physical Medium (see [ISO 7498]). This recursive definition is mapped on a repeated use of the 
substructure construct. 
 
· Second, the very important aspect that the service can be seen as an abstraction of the protocol and the next lower 
service. This is expressed in SDL by an abstract "overview" block specification in terms of interacting processes. 
 
 
2.1 The Inres service in SDL/GR 
 
In Example 2.1 the service provider block Inres_service consists of two processes interconnected by a signal route. Each 
process models the behaviour of one service access point. 
 

8
Example 2.1: 
 

NEWTYPE
  /* insert type of service data
      unit here */
ENDNEWTYPE;

/* Definition of macro "daemon"
     see "inres_protocol" */

BLOCK
ISAP_Ini

BLOCK
ISAP_Resp

ICONconf,
IDISind

ICONreq,
IDATreq

ISAPini

ICON,
IDAT

ICONF,
IDIS

Internal

ICONind,
IDATind

ICONresp,
IDISreq

ISAPresp

SIGNAL
ICONreq,
IDATreq(ISDUType),
ICONconf,
ICONind,
ICONresp,
ICONind,
IDATind(ISDUType),
ICON, ICONF,
IDIS, IDAT(ISDUType);

ISAP

In

ISAP

In

SYSTEM
Inres_Service

_Ini
MSAP_Manager_MSAP_Manager_

_Ini

 
 
 
In principle, it would have been possible to model the whole behaviour of the service by just one process. But the multi-
process solution usually results in a less complex specification. Especially in situations in which difficult collision 
situations may occur (this is not the case here, but is, for example, in the Abracadabra protocol in [ISO 10167]), it is 
very useful to model each service access point separately. 
 
Example 2.2 shows the behaviour of the Initiator-SAP called ISAP_Manager_Ini, and Example 2.3 shows the behaviour 
of the Responder-SAP called ISAP_Manager_Res. ISAP_Manager_Ini and ISAP_Manager_Res can communicate 
through a channel to establish the global behaviour of the service. 
 
Example 2.2: 



9

IDIS

*

IDISind

IDAT(d)IDISind

any

IDATreq(d)

Connected

ICONconf

RESET(T)

TICONF

DCL

d ISDUType;

TIMER T;

SYNONYM
P Duration = EXTERNAL;

Wait

Disconnected Connected

Disconnected

RESET(T)

IDISind

Disconnected

IDISind

Wait

SET
(NOW+P,T)

ICON

any

ICONreq

Disconnected

Disconnected

PROCESS
ISAP_Manager_Ini

1(1)

Example 2.3: 

10

-

IDIS

Disconnected

IDIS

any

IDISreq

*

Wait

ICONindIDATind(d)

ICONIDAT(d)

ConnectedICONF

any

ICONresp

Wait

ICONind

IDAT(d)ICON

Disconnected

DCL

d ISDUType;

Connected

Connected

Connected

Disconnected

PROCESS ISAP_Manager_Resp 1(1)

  
 
The SDL specification of the service relies on the TS diagrams of Section 1.1. Since the TS diagrams do not have a 
formal semantics, whereas SDL does, no one-to-one mapping between the diagrams and the SDL specification is 
possible. Some information has to be added for formal specification of the service. 
 
The Inres service is connection-oriented. Therefore, we will distinguish between the three phases connection 
establishment, data transfer, and disconnection. 
 
In the following, not all features of the SDL specification are discussed; rather, only those are commented on which may 
not be obvious to the reader. 
 
Connection establishment  
 
Fig. 1.3a-1.3e illustrate the basic behaviour of the service provider during the connection establishment phase. Fig. 1.3a 
and Fig. 1.3b show the "normal" course of events, first a successful connection establishment and second a user-rejected 
connection attempt. Fig. 1.3c-1.3e show unpredictable non-deterministic behaviour of the service provider. In Fig. 1.3c 
the service provider does not indicate the connection attempt to the Responder-user, and in Fig. 1.3d the response of the 
Responder-user is not transmitted to the Initiator-user. In Fig. 1.3e the Responder-user does not respond "in time." 
 
The modelling of the "normal" course of events in SDL is quite obvious. The difficulties arise from the various 
"abnormal" situations.  
 
After the provider has received an ICONreq by the Initiator-user, basically two things can happen: Either the provider 
rejects the connection attempt with an IDISind to the Initiator-user (Fig. 1.3c); or the provider indicates an ICONind to 
the Responder-user (Fig. 1.3a). The latter is modelled by the sending of an ICON from ISAP_Manager_Ini to 
ISAP_Manager_Res. The Responder-user may answer with an ICONresp or an IDISreq. According to Fig. 1.3d, even if 
an ICONresp is issued to the provider, it may not be able to transmit it to the Initiator-user. The Initiator-user then 
receives an IDISind instead. 
 



11
The TS diagram in Fig. 1.3e specifies the situation in which the Responder-user does not react "in time" upon receipt of 
the ICONind - or does not react at all. This is modelled in SDL by the use of the timer construct. After a certain 
unspecified time, ISAP_Manager_Ini aborts the connection attempt on its own. 
 
If Responder-user issues the ICONresp after the time-out, this results in a "half-open connection." Initiator-user "thinks" 
the connection has been aborted, whereas Responder-user "thinks" the connection exists. ISAP_Manager_Ini is in state 
disconnected and ISAP_Manager_Ini is in state connected. If Initiator-user now tries to open a connection by issuing an 
ICONreq, ISAP_Manager_Res receives an ICON, issues an ICONind to the user, and proceeds to state wait. This 
specific behaviour is not clearly specified by the TS diagrams, but it follows directly if one makes a model of the 
provider. 
 
Data transfer  
 
If a connection has been established successfully, the Initiator-user may issue an IDATreq with a parameter d of type 
ISDU to the ISAP_Manager_Ini. According to Fig. 1.3f and 1.3g, two things may happen: Either the data are issued to 
the Responder-user as an IDATind, or the Initiator-user receives an IDISind. In Example 2.2 this is modelled by the use 
of the Daemon after receipt of the signal IDATreq in state connected. 
 
It is important to note that, in case of a disconnection during data transfer, the process ISAP_Manager_Ini may be in 
state disconnected, whereas the process ISAP_Manager_Res is still in state connected. This situation is terminated when 
the Initiator user tries to open up another connection. ISAP_Manager_Res then goes to state wait from state connected. 
 
Disconnection  
 
An IDISreq may be issued by the Responder-user at any time. According to Fig. 1.3h and 1.3i, an IDISreq may or may 
not result in an IDISind at the Initiator-user. This is modelled by the Daemon in Example 2.3. Should the IDIS not be 
transmitted, the system runs into a half-open connection: ISAP_Manager_Res is in state disconnected while 
ISAP_Manager_Ini is in state connected and still trying to send data. But upon the first attempt ISAP_Manager_Res 
then aborts the connection with an IDIS. This situation is also captured by the TS diagram 1.3g. 
 
 
2.2 The Inres Service in SDL/PR 

system Inres_Service;

signal
ICONreq,
IDATreq( ISDUType),
ICONconf,
ICONind,
ICONresp,
IDISind,
IDISreq,
IDATind( ISDUType),
ICON,
ICONF,
IDIS,
IDAT( ISDUType);

newtype ISDUType
literals 0, 1

/* insert type of service data
unit here */
endnewtype;

channel ISAPresp
from ISAP_Resp to env
with ICONind, IDATind;

from env to ISAP_Resp
with ICONresp, IDISreq;

endchannel ISAPresp;

channel Intern
from ISAP_Ini to ISAP_Resp
with ICON, IDAT;

from ISAP_Resp to ISAP_Ini
with ICONF, IDIS;

endchannel Intern;

channel ISAPini
from ISAP_Ini to env
with ICONconf, IDISind;

from env to ISAP_Ini
with ICONreq, IDATreq;

endchannel ISAPini;

12

block ISAP_Resp referenced;

block ISAP_Ini referenced;
endsystem Inres_Service;

block ISAP_Resp;

connect Intern and Internal;

connect ISAPresp and ISAP;

signalroute Internal
from ISAP_Manager_Resp to env
with ICONF, IDIS;

from env to ISAP_Manager_Resp
with ICON, IDAT;

signalroute ISAP
from ISAP_Manager_Resp to env
with ICONind, IDATind;

from env to ISAP_Manager_Resp
with ICONresp, IDISreq;

process ISAP_Manager_Resp referenced;
endblock ISAP_Resp;

block ISAP_Ini;

connect Intern and Internal;

connect ISAPini and ISAP;

signalroute ISAP
from ISAP_Manager_Ini to env
with ICONconf, IDISind;

from env to ISAP_Manager_Ini
with ICONreq, IDATreq;

signalroute Internal
from ISAP_Manager_Ini to env
with ICON, IDAT;

from env to ISAP_Manager_Ini
with ICONF, IDIS;

process ISAP_Manager_Ini referenced;
endblock ISAP_Ini;

process ISAP_Manager_Resp;

dcl
d ISDUType;

start;
nextstate Disconnected;

state Wait;
input ICONresp;
decision ANY;
( EITHER) :
output ICONF;
nextstate Connected;

( OR) :
nextstate Connected;

enddecision;

state Disconnected;
input ICON;
output ICONind;
nextstate Wait;

input IDAT( d);
output IDIS;
nextstate -;

state Connected;
input IDAT( d);



13
output IDATind( d);
nextstate Connected;

input ICON;
output ICONind;
nextstate Wait;

state * ;
input IDISreq;
decision ANY;
( EITHER) :
output IDIS;
nextstate Disconnected;

( OR) :
nextstate Disconnected;

enddecision;
endprocess ISAP_Manager_Resp;

process ISAP_Manager_Ini;

dcl
d ISDUType;

timer
T;

synonym P Duration = external;

start;
nextstate Disconnected;

state Disconnected;
input ICONreq;
decision ANY;
( EITHER) :
output ICON;
set( now + P, T);
nextstate Wait;

( OR) :
output IDISind;
nextstate Disconnected;

enddecision;

state Connected;
input IDATreq( d);
decision ANY;
( EITHER) :
output IDISind;
nextstate Disconnected;

( OR) :
output IDAT( d);
nextstate Connected;

enddecision;

state Wait;
input ICONF;
reset( T);
output ICONconf;
nextstate Connected;

input T;
output IDISind;
nextstate Disconnected;

state * ;
input IDIS;
reset( T);
output IDISind;
nextstate Disconnected;

endprocess ISAP_Manager_Ini;

_ 
2.3 The Inres protocol and Medium service in SDL/GR 
 
Example 2.4 shows the overall structure of the Inres protocol together with the underlying Medium service as a 
substructure diagram (referenced in the block diagram Inres_service in Example 2.1) 
 

14

BLOCK
Res_Station

BLOCK
Medium

BLOCK
Ini_Station

ISAP2

ICONind,
IDATind

ICONresp,
IDISreq

MSAP2
MDATreq

MDATind

ISAP1
ICONconf,
IDISind

ICONreq,
IDATreq

MSAP1
MDATreq

MDATind

Initiator

(1,1)

ISAP

IPDU

CR,
DT

CC,
AK,
DR

MSAP

SIGNAL

CC,
AK(Sequencenumber),
DR, CR,
DT(Sequencenumber,
      ISDUType);

Coder_Ini

(1,1)

SIGNAL

ICONreq,
IDATreq(ISDUType),
ICONconf,
ICONind,
ICONresp,
IDISreq,
IDISind,
IDATind(ISDUType),
MDATreq(MSDUType),
MDATind(MSDUType);

Responder

(1,1)

ISAP

IPDU

CR,
DT

CC,
AK,
DR

MSAP

SIGNAL

CC,
AK(Sequencenumber),
DR, CR,
DT(Sequencenumber,
      ISDUType);

Coder_Resp

(1,1)

SIGNAL
IDAT(MSDUType);

MSAP_Manager1 (1,1) MSAP_Manager2 (1,1)

Internal IDATIDAT

MSAP_2MSAP_1

MSAP_
_Manager

MSAP_
_Manager

SYSTEM
Inres_protocol

MACRO
Data_type_definitions

Example 2.4:
 
 
MACRODEFINITION Datatypedefinitions 
 
 NEWTYPE Sequencenumber 
  LITERALS 0,1; 
  OPERATORS succ: Sequencenumber-> Sequencenumber; 
  AXIOMS succ(0) == 1; 
   succ(1) == 0; 
 ENDNEWTYPE Sequencenumber; 
 
 NEWTYPE ISDUType 
 /* Here the data type of the service data unit is specified */ 
 ENDNEWTYPE ISDUType; 
 
 NEWTYPE IPDUType 
  LITERALS CR, CC, DR, DT, AK; 
 ENDNEWTYPE IPDUType; 
 
 NEWTYPE MSDUType 
  STRUCT id IPDUType; 
   num Sequencenumber; 



15
   data ISDUType; 
 ENDNEWTYPE MSDUType; 
 
ENDMACRO Datatypedefinitions; 
 
 
The specification consists of three basic parts, all three of which are modelled by blocks: the two protocol entities 
Station_Ini and Station_Res, and the service provider Medium. 
 
Each Station consists of two processes. The Coder processes model the interface to the next lower layer by transforming 
the PDUs produced by the other processes (Initiator and Responder) into the SDUs of the next lower layer, which are 
then passed down as parameters of SPs. 
 
This chosen architecture of a protocol entity is a useful one for all sorts of different protocols. Many protocol 
specifications nowadays describe the behaviour of the processes similar to Initiator and Responder, and they assume that 
there is an (abstract) channel between them which can be used to transmit the PDUs directly. Of course, according to the 
OSI-BRM, this is not the case: The service of the next lower layer has to be used for this communication. Therefore, the 
PDUs have to be transformed by processes like Coder_Ini and Coder_Res. 
 

16
 
 

Wait

DR

RESET (T)

IDISind

Disconnected

T

Counter<4

IDISind

Disconnected

CR

Counter:=
Counter+1

SET
(NOW+P,T)

Wait

CC

RESET (T)

Number:=1

ICONconf

Connected

Disconnected

DR

IDISind

Disconnected

ICONreq

Counter:=1

CR

SET
(NOW+P,T)

Wait

FALSETRUE

PROCESS Initiator 1(2)

DCL

Counter Integer,
d ISDUType,
Num,
Nummer Sequencenumber;

TIMER T;

SYNONYM
P Duration=5;



17

1

1

Sending

T

Counter<4

IDISind

Disconnected

DT
(Number,d)

Counter:=
Counter+1

SET
(NOW+P,T)

Sending

AK(Num)

RESET (T)

Num=
Number

Number:=
succ(Number)

Connected

FALSE

TRUE

TRUE

FALSE

PROCESS Initiator 2(2)

Connected

DR

IDISind

Disconnected

DT
(Number,d)

Counter:=1

SET
(NOW+P,T)

Sending

IDATreq(d)

IDATreq

DR

RESET (T)

IDISind

Disconnected

Sending

Example 2.5: 
 
In the most general case the Coder processes may have additional duties. According to [ISO 7498] (more precisely 
Section 5.7.4 in [ISO 7498]) these processes may handle the connection setup and maintenance of the next lower layer. 
More on this topic is given in [BHS91]. 
 
The SDL specification of the Inres protocol is rather obvious and needs no further comments. It follows rather naturally 
from the informal description, although, similar to the service, some additional information had to be provided. The 
verification of the SDL specification with respect to the informal description is left to the reader. 
 
 
 

18

PROCESS Responder 1(1)

DCL

d ISDUType,
Num,
Number Sequencenumber;

Connected

CR

ICONind

Wait

DT(Num,d)

Num=
succ(Number)

IDATind(d)

AK(Num)

Number:=
succ(Number)

Connected

AK(Num)

Connected

ICONresp

Number:=0

CC

Connected

Disconnected

CR

ICONind

Wait

TRUE

FALSE

Disconnected

DR

IDISreq

*

Example 2.6: 
 
 



19

PROCESS Coder_Ini 1(1)

DCL

Sdu MSDUType; Idle

MDATind
(Sdu)

Sdu!id

DR

Idle

AK
(Sdu!Num)CC

Idle

CR

Sdu!id:=CR

MDATreq
(Sdu)

Idle

DT(num,d)

DR

AK

CCELSE

num Sequencenumber,
d ISDUType,

Sdu!Num:=num,
Sdu!Data:=d

Sdu!id:=DT,

Example 2.7: 
 

20
Example 2.8: 

DCL

Num Sequencenumber,
Sdu MSDUType; Idle

MDATind
(Sdu)

Sdu!id

CR

Idle

DT
(Sdu!Num,
Sdu!Data)

Idle

CC

Sdu!id:=CC

MDATreq(Sdu)

Idle

AK(num)

Sdu!id:=AK,
Sdu!Num:=num

DR

Sdu!id:=DR

CR DTELSE

PROCESS
Coder_Resp

1(1)

 
 
 
Example 2.9: 

any

Idle

IDAT(d)

MDATind(d)

Idle

MDATreq(d)

Idle IDAT(d)

Idle

DCL
d MSDUType;

MACRODEFINITION MSAP_Manager 1(1)

 
 
 
2.4 The Inres protocol and Medium service in SDL/PR 
 
system INRES;

signal



21
ICONreq,
IDATreq( ISDUTyp),
ICONconf,
ICONind,
ICONresp,
IDISreq,
IDISind,
IDATind( ISDUTyp),
MDATreq( MSDUTyp),
MDATind( MSDUTyp);

channel MSAP1
from Ini_Station to Medium
with MDATreq;

from Medium to Ini_Station
with MDATind;

endchannel MSAP1;

channel ISAP1
from Ini_Station to env
with ICONconf, IDISind;

from env to Ini_Station
with ICONreq, IDATreq;

endchannel ISAP1;

channel MSAP2
from Res_Station to Medium
with MDATreq;

from Medium to Res_Station
with MDATind;

endchannel MSAP2;

channel ISAP1
from Res_Station to env
with ICONind, IDATind;

from env to Res_Station
with ICONresp, IDISreq;

endchannel ISAP1;

block Ini_Station referenced;

block Medium referenced;

block Res_Station referenced;

newtype Sequencenumber
literals 0, 1
operators
succ :
Sequencenumber -> Sequencenumber;

axioms
succ( 0) == 1;
succ( 1) == 0;

endnewtype Sequencenumber;

newtype ISDUType
/* Here the data type of the service data unit is specified */
endnewtype ISDUType;

newtype IPDUType
literals CR, CC, DR, DT, AK

endnewtype IPDUType;

newtype MSDUType
struct
id IPDUType;
Num Sequencenumber;
Daten ISDUType;

endnewtype MSDUType;
endsystem INRES;

block Ini_Station;

signal
CC,
AK( Sequencenumber),
DR,
CR,
DT( Sequencenumber, ISDUType);

connect ISAP1 and ISAP;

connect MSAP1 and MSAP;

22

signalroute MSAP
from Coder_Ini to env
with MDATreq;

from env to Coder_Ini
with MDATind;

signalroute IPDU
from Initiator to Coder_Ini
with CR, DT;

from Coder_Ini to Initiator
with CC, AK, DR;

signalroute ISAP
from Initiator to env
with ICONconf, IDISind;

from env to Initiator
with ICONreq, IDATreq;

process Coder_Ini (1, 1) referenced;

process Initiator (1, 1) referenced;
endblock Ini_Station;

block Medium;

signal
IDAT( MSDUType);

connect MSAP1 and MSAP_1;

connect MSAP2 and MSAP_2;

signalroute MSAP_1
from MSAP_Manager1 to env
with MDATind;

from env to MSAP_Manager1
with MDATreq;

signalroute MSAP_2
from MSAP_Manager2 to env
with MDATind;

from env to MSAP_Manager2
with MDATreq;

signalroute Internal
from MSAP_Manager1 to MSAP_Manager2
with IDAT;

from MSAP_Manager2 to MSAP_Manager1
with IDAT;

process MSAP_Manager2 (1, 1) referenced;

process MSAP_Manager1 (1, 1) referenced;
endblock Medium;

block Res_Station;

signal
CC,
AK( Sequencenumber),
DR,
CR,
DT( Sequencenumber, ISDUType);

connect ISAP2 and ISAP;

connect MSAP2 and MSAP;

signalroute MSAP
from Coder_Resp to env
with MDATreq;

from env to Coder_Resp
with MDATind;

signalroute IPDU
from Responder to Coder_Resp



23
with CC, AK, DR;

from Coder_Resp to Responder
with CR, DT;

signalroute ISAP
from Responder to env
with ICONind, IDATind;

from env to Responder
with ICONresp, IDISreq;

process Coder_Resp (1, 1) referenced;

process Responder (1, 1) referenced;
endblock Res_Station;

process Coder_Ini;

dcl
d ISDUType,
Num Sequencenumber,
Sdu MSDUType;

start;
nextstate Idle;

state Idle;
input CR;
task Sdu!id := CR;
grs0 :
output MDATreq( Sdu);
nextstate Idle;

input DT( Num, d);
task Sdu!id := DT,
Sdu!Num := Num,
Sdu!Data := d;

join grs0;
input MDATind( Sdu);
decision Sdu!id;
( CC) :
output CC;
grs1 :
nextstate Idle;

( AK) :
output AK( Sdu!Num);
join grs1;

( DR) :
output DR;
join grs1;

else :
nextstate Idle;

enddecision;
endprocess Coder_Ini;

process Initiator;

dcl
Counter Integer,
d ISDUType,
Num,
Nummer Sequencenumber;

timer
T;

synonym P Duration = 5;

start;
nextstate Disconnected;

state Disconnected;
input ICONreq;
task Counter := 1;
output CR;
set( now + P, T);
nextstate Wait;

input DR;
output IDISind;
nextstate Disconnected;

state Wait;
input CC;

24
reset( T);
task Number := 1;
output ICONconf;
nextstate Connected;

input T;
decision Counter < 4;
( TRUE) :
output CR;
task Counter := Counter + 1;
set( now + P, T);
nextstate Wait;

( FALSE) :
output IDISind;
nextstate Disconnected;

enddecision;
input DR;
reset( T);
output IDISind;
nextstate Disconnected;

state Connected;
input IDATreq( d);
output DT( Number, d);
task Counter := 1;
set( now + P, T);
nextstate Sending;

input DR;
output IDISind;
nextstate Disconnected;

state Sending;
input T;
grs0 :
decision Counter < 4;
( TRUE) :
output DT( Number, d);
task Zaehler := Zaehler + 1;
set( now + P, T);
nextstate Sending;

( FALSE) :
output IDISind;
nextstate Disconnected;

enddecision;
input AK( Num);
reset( T);
decision Num = Number;
( FALSE) :
join grs0;

( TRUE) :
task Number := succ( Number);
nextstate Connected;

enddecision;
input DR;
reset( T);
output IDISind;
nextstate Disconnected;

save IDATreq;
endprocess Initiator;

process MSAP_Manager2;

dcl
d MSDUTyp;

start;
nextstate Idle;

state Idle;
input MDATreq( d);
decision ANY;
( EITHER) :
nextstate Idle;

( OR) :
output IDAT( d);
nextstate Idle;

enddecision;
input IDAT( d);
output MDATind( d);
nextstate Idle;

endprocess MSAP_Manager2;

process MSAP_Manager1;

dcl
d MSDUType;



25

start;
nextstate Idle;

state Idle;
input MDATreq( d);
decision ANY;
( EITHER) :
nextstate Idle;

( OR) :
output IDAT( d);
nextstate Idle;

enddecision;
input IDAT( d);
output MDATind( d);
nextstate Idle;

endprocess MSAP_Manager1;

process Coder_Resp;

dcl
Num Sequencenumber,
Sdu MSDUType;

start;
nextstate Idle;

state Idle;
input DR;
task Sdu!id := DR;
grs0 :
output MDATreq( Sdu);
nextstate Idle;

input CC;
task Sdu!id := CC;
join grs0;

input AK( Num);
task Sdu!id := AK,
Sdu!Num := Num;

join grs0;
input MDATind( Sdu);
decision Sdu!id;
( CR) :
output CR;
grs1 :
nextstate Idle;

( DT) :
output DT( Sdu!Num, Sdu!Data);
join grs1;

else :
nextstate Bereit;

enddecision;
endprocess Coder_Resp;

process Responder;

dcl
d ISDUType,
Num,
Number Sequencenumber;

start;
nextstate Disconnected;

state Disconnected;
input CR;
output ICONind;
nextstate Wait;

state Wait;
input ICONresp;
task Number := 0;
output CC;
nextstate Connected;

state Connected;
input DT( Num, d);
decision Num = succ( Number);
( FALSE) :
output AK( Num);
nextstate Connected;

( TRUE) :
output IDATind( d);
output AK( Num);
task Number := succ( Number);

26
nextstate Connected;

enddecision;
input CR;
output ICONind;
nextstate Wait;

endprocess Responder;

 
 
3. Formal specification of Inres in Estelle 
 
3.1 The Inres service in Estelle 
 
This section describes the Inres service in Estelle. Figure 3.1 gives an overview on the specification. It consists of two 
modules User plus the module Service_provider. The Service_provider itsself consists of two modules Initiator and 
Responder which define the behaviour at the two service access points. They communicate via the channel INTERNchn. 
The specification is very similar to the SDL specification, therefore any comments made there also apply here. 



27

Figure 3.1

module User U_Ini module User U_Res

ip ISAP ip ISAP

 channel
ISAPchn

ip ISAPini

ip ISAP

module Initiator I
   channel
INTERNchn

 channel
ISAPchn

module Serviceprovider D

ip ISAP

module Responder R

ip INTERN ip INTERN

specification Inres_Service

ip ISAPres

 
 
 
specification Inres_service;
default individual queue;
timescale seconds;
type ISDUType = integer; {Pascal type definitions}
channel ISAPchn(User,Service);

by User :
ICONreq;
ICONresp;
IDATreq(ISDU : ISDUType);
IDISreq;

by Service :
ICONconf;
ICONind;
IDATind(ISDU : ISDUType);
IDISind;

module User systemprocess;
ip ISAP : ISAPchn(User); end;

body User_Body for User; end;
module Service_Provider systemprocess;

ip ISAPini : ISAPchn(Service);
ISAPres : ISAPchn(Service); end;

body Service_Provider_Body for Service_Provider;
channel INTERNchn(Ini,Res);

by Ini :
ICON;
IDAT(ISDU : ISDUType);

by Res :
ICONF;
IDIS;

module Initiator process;
ip USER : ISAPchn(Service);

INTERN : INTERNchn(Ini); end;
body Initiator_Body for Initiator;

state DISCONNECTED, WAIT, CONNECTED;
stateset

anystate = [DISCONNECTED, WAIT, CONNECTED];
ignoreICONreq = [WAIT, CONNECTED];
ignoreIDATreq = [DISCONNECTED, WAIT];
ignoreICONF = [DISCONNECTED, CONNECTED];

initialize to DISCONNECTED begin end;
trans

from DISCONNECTED to WAIT {1}
when USER.ICONreq begin

output INTERN.ICON end;
from DISCONNECTED to same {2}

when USER.ICONreq begin
output USER.IDISind end;

from WAIT to DISCONNECTED {3}
delay (5) begin

output USER.IDISind end;
from WAIT to CONNECTED {4}

when INTERN.ICONF begin
output USER.ICONconf end;

from CONNECTED to same {5}
when USER.IDATreq(ISDU) begin

output INTERN.IDAT(ISDU) end;
from CONNECTED to DISCONNECTED {6}

when USER.IDATreq(ISDU) begin
output USER.IDISind end;

from anystate to DISCONNECTED {7}
when INTERN.IDIS begin

output USER.IDISind end;

from ignoreICONreq to same {8}

28
when USER.ICONreq begin end;

from ignoreIDATreq to same {9}
when USER.IDATreq begin end;

from ignoreICONF to same {10}
when INTERN.ICONF begin end; end;

module Responder process;
ip USER : ISAPchn(Service);

INTERN : INTERNchn(Res); end;
body Responder_Body for Responder;

state DISCONNECTED, WAIT, CONNECTED;
stateset

anystate = [DISCONNECTED, WAIT, CONNECTED];
ignoreICONresp = [DISCONNECTED, CONNECTED];
ignoreICON = [WAIT, CONNECTED];
ignoreIDAT = [WAIT];

initialize to DISCONNECTED begin end;
trans

from DISCONNECTED to WAIT {11}
when INTERN.ICON begin

output USER.ICONind end;
from WAIT to CONNECTED {12}

when USER.ICONresp begin
output INTERN.ICONF end;

from WAIT to CONNECTED {13}
when USER.ICONresp begin end;

from CONNECTED to same {14}
when INTERN.IDAT(ISDU) begin

output USER.IDATind(ISDU) end;
from DISCONNECTED to same {15}

when INTERN.IDAT(ISDU) begin
output INTERN.IDIS end;

from CONNECTED to WAIT {16}
when INTERN.ICON begin

output USER.ICONind end;
from anystate to DISCONNECTED {17}

when USER.IDISreq begin
output INTERN.IDIS end;

from anystate to DISCONNECTED {18}
when USER.IDISreq begin end;

from ignoreICONresp to same {19}
when USER.ICONresp begin end;

from ignoreICON to same {20}
when INTERN.ICON begin end;

from ignoreIDAT to same {21}
when INTERN.IDAT begin end; end;

modvar
I : Initiator;
R : Responder;

initialize begin
init I with Initiator_Body;
init R with Responder_Body;
attach ISAPini to I.USER;
attach ISAPres to R.USER;
connect I.INTERN to R.INTERN; end; end;

modvar
U_Ini,U_Res : User;
SP : Service_Provider;

initialize begin
init U_Ini with User_Body;
init U_Res with User_Body;
init SP with Service_Provider_Body
connect U_Ini.ISAP to SP.ISAPini;
connect U_Res.ISAP to SP.ISAPres; end; end.



29
 
3.2 The Inres protocol and Medium service in Estelle 
 
This section describes the Inres protocol in Estelle. The basic structure of the specification is depicted in Figure 3.2. The 
specification is very similar to the SDL specification, therefore any comments made there also apply here. 

Figure 3.2

Specification Inres_Protocol

ip MSAP1 ip MSAP2
module Medium_Service M

channel
   IPdu

  channel
MSAPchn

module Coder C

channel 
ISAPchn

module User U_Res

module
Station
S_Res

ip PDU

ipUSER

module Responder R

module
Station
S_Ini

channel
   IPdu

  channel
MSAPchn

module Initiator I

ip PDU

ipUSER

module Coder C

channel 
ISAPchn

module User U_Ini

ip ISAP ip ISAP

ip ISAPip ISAP

ip MSAPip MSAP

ip PDUip PDU

ip MSAPip MSAP

 
 
 
specification Inres_Protocol;
default individual queue;
timescale seconds;
type ISDUType = integer; {Pascal data type definition. Use integer for compilation.}
type Sequencenumber = 0..1;
type PduType = (CR,CC,DT,AK,DR);
type MSDUType = record id : PduType;

num : Sequencenumber;
data : ISDUType; end;

channel ISAPchn(User,Station);
by User :

ICONreq;
ICONresp;
IDATreq(ISDU : ISDUType);
IDISreq;

by Station :
ICONconf;
ICONind;
IDATind(ISDU : ISDUType);
IDISind;

channel MSAPchn(Station,Medium_Service);
by Station :

MDATreq(MSDU : MSDUType);
by Medium_Service :

MDATind(MSDU : MSDUType);
module User systemprocess;

ip ISAP : ISAPchn(User); end;
body User_Body1 for User; end;
body User_Body2 for User; end;
module Medium_Service systemprocess;

ip MSAP1 : MSAPchn(Medium_Service);
MSAP2 : MSAPchn(Medium_Service); end;

body Medium_Body for Medium_Service;

30
trans

when MSAP1.MDATreq(MSDU) begin
output MSAP2.MDATind(MSDU) end;

when MSAP2.MDATreq(MSDU) begin
output MSAP1.MDATind(MSDU) end;

when MSAP1.MDATreq(MSDU) begin end;
when MSAP2.MDATreq(MSDU) begin end; end;

module Station systemprocess;
ip ISAP : ISAPchn(Station);

MSAP : MSAPchn(Station); end;
body Station_Ini_Body for Station;

channel IPdu(Initiator,Coder);
by Initiator :

CR;
DT(Num:Sequencenumber;ISDU:ISDUType);

by Coder :
CC;
AK(Num:Sequencenumber);
DR;

module Initiator process;
ip USER : ISAPchn(Station);

PDU : IPdu(Initiator); end;
body Initiator_Body for Initiator;

var olddata : ISDUType;
counter : 0..4;
number : Sequencenumber;

function succ(Number:Sequencenumber) : Sequencenumber; begin
if Number = 0 then succ :=1
else succ := 0 end;

state DISCONNECTED,WAIT,CONNECTED,SENDING;
stateset

anystate = [DISCONNECTED,WAIT,CONNECTED,SENDING];
ignoreICONreq = [WAIT,CONNECTED,SENDING];
ignoreIDATreq = [DISCONNECTED,WAIT];
ignoreCC = [DISCONNECTED,CONNECTED,SENDING];
ignoreAK = [DISCONNECTED,WAIT,CONNECTED];

initialize to DISCONNECTED begin end;
trans

from DISCONNECTED to WAIT
when USER.ICONreq begin

counter := 0;
output PDU.CR end;

from WAIT to CONNECTED
when PDU.CC begin

number := 1;
counter := 0;
output USER.ICONconf end;

from WAIT
delay(5)

provided counter < 4
to same begin

output PDU.CR;
counter := counter + 1 end;

provided otherwise
to DISCONNECTED begin

output USER.IDISind end;
from CONNECTED to SENDING

when USER.IDATreq(ISDU) begin
output PDU.DT(number,ISDU);
olddata := ISDU end;

from SENDING
when PDU.AK(Num)

provided Num = number
to CONNECTED begin

number := succ(number) end;
provided (Num <> number)

and (counter < 4)
to same begin

output PDU.DT(number,olddata);
counter := counter + 1 end;

provided otherwise
to DISCONNECTED begin

output USER.IDISind end;
from SENDING

delay(5)
provided counter < 4

to same begin
output PDU.DT(number,olddata);
counter := counter + 1 end;

provided otherwise
to DISCONNECTED begin

output USER.IDISind end;
from anystate to DISCONNECTED

when PDU.DR begin
output USER.IDISind end;

from anystate to same
when USER.ICONresp begin end;
when USER.IDISreq begin end;

from ignoreICONreq to same
when USER.ICONreq begin end;

from ignoreIDATreq to same



31
when USER.IDATreq begin end;

from ignoreCC to same
when PDU.CC begin end;

from ignoreAK to same
when PDU.AK begin end; end;

module Coder process;
ip PDU : IPdu(Coder);

MSAP : MSAPchn(Station); end;
body Coder_Body for Coder;

var MSDU : MSDUType;
trans

when PDU.CR begin
MSDU.id := CR;
output MSAP.MDATreq(MSDU) end;

when PDU.DT(Num,ISDU) begin
MSDU.id := DT;
MSDU.num := Num;
MSDU.data := ISDU;
output MSAP.MDATreq(MSDU) end;

when MSAP.MDATind(MSDU) begin
case MSDU.id of
CC: output PDU.CC;
AK: output PDU.AK(MSDU.num);
DR: output PDU.DR; end; end; end;

modvar
I : Initiator;
C : Coder;

initialize begin
init I with Initiator_Body;
init C with Coder_Body;
attach ISAP to I.USER;
attach MSAP to C.MSAP;
connect I.PDU to C.PDU; end; end;

body Station_Res_Body for Station;
channel IPdu(Responder,Coder);

by Responder :
CC;
AK(Num:Sequencenumber);
DR;

by Coder :
CR;
DT(Num:Sequencenumber;ISDU:ISDUType);

module Responder process;
ip USER : ISAPchn(Station);

PDU : IPdu(Responder); end;
body Responder_Body for Responder;

state DISCONNECTED,WAIT,CONNECTED;
var number : Sequencenumber;
function succ(Number:Sequencenumber) : Sequencenumber; begin

if Number = 0 then succ :=1
else succ := 0 end;

stateset
anystate = [DISCONNECTED,WAIT,CONNECTED];
ignoreICONresp = [DISCONNECTED,CONNECTED];
ignoreCR = [WAIT];
ignoreDT = [DISCONNECTED,WAIT];

initialize to DISCONNECTED begin end;
trans

from DISCONNECTED to WAIT
when PDU.CR begin

output USER.ICONind end;
from WAIT to CONNECTED

when USER.ICONresp begin
number := 0;
output PDU.CC end;

from CONNECTED to same
when PDU.DT(Num, ISDU)
provided Num = succ(number) begin

output USER.IDATind(ISDU);
output PDU.AK(Num);
number := succ(number) end;

provided Num = number begin
output PDU.AK(Num) end;

from CONNECTED to WAIT
when PDU.CR begin

output USER.ICONind end;
from anystate to DISCONNECTED

when USER.IDISreq begin
output PDU.DR end;

from anystate to same
when USER.ICONreq begin end;
when USER.IDATreq begin end;

from ignoreICONresp to same
when USER.ICONresp begin end;

from ignoreCR to same
when PDU.CR begin end;

from ignoreDT to same
when PDU.DT begin end; end;

module Coder process;
ip PDU : IPdu(Coder);

MSAP : MSAPchn(Station); end;

32
body Coder_Body_Res for Coder;

var MSDU : MSDUType;
trans

when PDU.CC begin
MSDU.id := CR;
output MSAP.MDATreq(MSDU) end;

when PDU.AK(Num) begin
MSDU.id := AK;
MSDU.num := Num;
output MSAP.MDATreq(MSDU) end;

when PDU.DR begin
MSDU.id := DR;
output MSAP.MDATreq(MSDU) end;

when MSAP.MDATind(MSDU) begin
case MSDU.id of
CR: output PDU.CR;
DT: output PDU.DT(MSDU.num,MSDU.data); end; end; end;

modvar
R : Responder;
C : Coder;

initialize begin
init R with Responder_Body;
init C with Coder_Body_Res;
attach ISAP to R.USER;
attach MSAP to C.MSAP;
connect R.PDU to C.PDU; end; end;

modvar
U_Ini,U_Res : User;
S_Ini,S_Res : Station;
M : Medium_Service;

initialize begin
init U_Ini with User_Body1;
init U_Res with User_Body2;
init S_Ini with Station_Ini_Body;
init S_Res with Station_Res_Body;
init M with Medium_Body;
connect U_Ini.ISAP to S_Ini.ISAP;
connect U_Res.ISAP to S_Res.ISAP;
connect M.MSAP1 to S_Ini.MSAP;
connect M.MSAP2 to S_Res.MSAP; end; end.

 
 
4. Formal specification of Inres in LOTOS 
 
4.1 The Inres service in LOTOS 
 
This section describes the Inres service in LOTOS. The specification style is constraint oriented [VSS88]. Constraints 
specify parts of the total behaviour of a system which are combined via the parallel operator. In the following example 
there are three constraints which define the 
 
- behaviour at the service access point ISAPini (ICEPini) 
- behaviour at the service access point ISAPres (ICEPres) 
- end-to-end behaviour related to the events at the service access points (EndtoEnd) 
 
The sequences of events ICEPini, ICEPres and EndtoEnd are first defined independently from each other. Then they are 
coordinated by the parallel operator to define the overall behaviour of the system. 
 
 

 
specification Inres_service[ISAPini,ISAPres]:noexit
type ISDUType is

(* library Boolean type is not necessary *)

sorts ISDU
opns data1,data2,data3,data4,data5: -> ISDU
endtype (* ISDUType *)

type InresSpType is ISDUType
sorts SP
opns ICONreq,ICONind,

ICONresp,ICONconf,
IDISreq,IDISind : -> SP
IDATreq,IDATind : ISDU -> SP

endtype (* InresSpType *)

behaviour
( ICEPini[ISAPini]
|||
ICEPres[ISAPres]

)
||
EndtoEnd[ISAPini,ISAPres]



33

where

process ICEPini[g] :noexit:=
( ConnectionphaseIni[g]
>>
DataphaseIni[g]

)
[>
DisconnectionIni[g]

where

process ConnectionphaseIni[g] :exit:=
g! ICONreq;
g! ICONconf;
exit

endproc (* ConnectionphaseIni *)

process DataphaseIni[g] :noexit:=
g! IDATreq? par:ISDU;
DataphaseIni[g]

endproc (* DataphaseIni *)

process DisconnectionIni[g] :noexit:=
g!IDISind;
ICEPini[g]

endproc (* DisconnectionIni *)

endproc (* ICEPini *)

process ICEPres[g] :noexit:=
( ConnectionphaseRes[g]
>>
DataphaseRes[g]

)
[>
DisconnectionRes[g]

where

process ConnectionphaseRes[g] :exit:=
g!ICONind;
g!ICONresp;
exit

endproc (* ConnectionphaseRes *)

process DataphaseRes[g] :noexit:=
g! IDATind? par:ISDU;
DataphaseRes[g]

endproc (* DataphaseRes *)

process DisconnectionRes[g] :noexit:=
g!IDISreq;
ICEPres[g]

endproc (* DisconnectionRes *)

endproc.(* ICEPres *)

process EndtoEnd[ini,res] :noexit:=
( ConnectionphaseEte[ini,res]
>>
DataphaseEte[ini,res]

)
[>
DisconnectionEte[ini,res]

where

process ConnectionphaseEte[ini,res] :exit:=
( ini! ICONreq;
res! ICONind;
exit

)
|||
( res! ICONresp;
ini! ICONconf;
exit

)
endproc (* ConnectionphaseEte *)

process DataphaseEte[ini,res] :noexit:=
ini! IDATreq? par:ISDU;
res! IDATind! par:ISDU;
DataphaseEte[ini,res]

endproc (* DataphaseEte *)

process DisconnectionEte[ini,res] :noexit:=
res! IDISreq;

34
ini! IDISind;
EndtoEnd[ini,res]
[]
i; (* termination by provider *)
ini! IDISind;
EndtoEnd[ini,res]

endproc (* DisconnectionEte *)

endproc (* EndtoEnd *)

endspec (* Inres_service *)

 
4.2 The Inres protocol and Medium service in LOTOS 
 
This section describes the Inres protocol and Medium service. While the Inres service specification was constraint 
oriented, this specification is state oriented according to [VSS88]. Fig. 4.1 depicts the basic architecture of the example. 

ISAPini ISAPres

process
Inres_
Protocol

process
Station_
Ini

Process
Initiator

IPdu

process
 Coder

MSAP1

process
Medium

IPdu

process
 Coder

process
Station_
Res

Process
Responder

MSAP2

 
Figure 4.1 Basic architecture of the Inres protocol in LOTOS 
 
 
specification Inres_Protocol[ISAPini,ISAPres]:noexit

library Boolean
endlib

type DecNumb is Boolean
sorts DecNumb
opns
0 : -> DecNumb
s : DecNumb -> DecNumb
1,2,3,4,5,6,7,8,9 : -> DecNumb
_==_, _<_,
_<=_, _>=_, _>_ : DecNumb , DecNumb -> Bool

eqns forall x,y: DecNumb
ofsort Bool

x == x = true;
s(x) == s(y) = x == y;
s(x) == 0 = false;
0 == s(y) = false;
x < x = false;
s(x) < s(y) = x < y;
0 < s(y) = true;
s(x) < 0 = false;



35
x <= y = (x < y) or (x == y);
x >= y = not (x < y) ;
x > y = not (x <= y );

ofsort DecNumb
1 = s(0);
2 = s(s(0));
3 = s(s(s(0)));
4 = s(s(s(s(0))));
5 = s(s(s(s(s(0)))));
6 = s(s(s(s(s(s(0))))));
7 = s(s(s(s(s(s(s(0)))))));
8 = s(s(s(s(s(s(s(s(0))))))));
9 = s(s(s(s(s(s(s(s(s(0)))))))));

endtype (* DecNumb *)

type ISDUType is
sorts ISDU
opns data1,data2,data3,data4,data5 : -> ISDU
endtype (* ISDUType *)

type Sequencenumber is Boolean
sorts Sequencenumber
opns
0 : -> Sequencenumber
1 : -> Sequencenumber
succ : Sequencenumber -> Sequencenumber
_eq_, _ne_ : Sequencenumber,Sequencenumber -> Bool

eqns forall a,b : Sequencenumber
ofsort Sequencenumber
succ(0) = 1;
succ(1) = 0;

ofsort Bool
0 eq 0 = true;
1 eq 1 = true;
0 eq 1 = false;
1 eq 0 = false;
0 ne 1 = true;
1 ne 0 = true;
0 ne 0 = false;
1 ne 1 = false;

(*a eq b = b eq a;
a ne b = b ne a;
a eq a = true;
a ne a = false;*)

endtype (* Sequencenumber *)

type InresSpType is Boolean, ISDUType, DecNumb
sorts SP
opns
ICONreq,ICONconf,IDISind,
ICONind,ICONresp,IDISreq : -> SP
IDATreq,IDATind : ISDU -> SP
isICONreq,isICONconf,isIDISind,isIDATreq,
isIDATind,isICONind,isICONresp,isIDISreq: SP -> Bool
data : SP -> ISDU
map : SP -> DecNumb

eqns forall d : ISDU, sp : SP
ofsort DecNumb
map(ICONreq) = 0;
map(ICONconf) = 1;
map(IDISind) = 2;
map(IDATreq(d)) = 3;
map(IDATind(d)) = 4;
map(ICONind) = 5;
map(ICONresp) = 6;
map(IDISreq) = 7;

ofsort ISDU
data(IDATreq(d)) = d;
data(IDATind(d)) = d;

ofsort Bool
isICONreq(sp) = map(sp) == 0;
isICONconf(sp) = map(sp) == 1;
isIDISind(sp) = map(sp) == 2;
isIDATreq(sp) = map(sp) == 3;
isIDATind(sp) = map(sp) == 4;
isICONind(sp) = map(sp) == 5;
isICONresp(sp) = map(sp) == 6;
isIDISreq(sp) = map(sp) == 7;

endtype (* InresSpType *)

type IPDUType is Boolean, ISDUType, DecNumb, Sequencenumber
sorts IPDU
opns

36
CR,CC,DR : -> IPDU
DT : Sequencenumber,ISDU -> IPDU
AK : Sequencenumber -> IPDU
isCR,isCC,isDT,
isAK,isDR : IPDU -> Bool
data : IPDU -> ISDU
num : IPDU -> Sequencenumber
map : IPDU -> DecNumb

eqns forall f: Sequencenumber, d : ISDU, ipdu : IPDU
ofsort DecNumb
map(CR) = 0;
map(CC) = 1;
map(DT(f,d)) = 2;
map(AK(f)) = 3;
map(DR) = 4;

ofsort ISDU
data(DT(f,d)) = d;

ofsort Sequencenumber
num(DT(f,d)) = f;
num(AK(f)) = f;

ofsort Bool
isCR(ipdu) = map(ipdu) == 0;
isCC(ipdu) = map(ipdu) == 1;
isDT(ipdu) = map(ipdu) == 2;
isAK(ipdu) = map(ipdu) == 3;
isDR(ipdu) = map(ipdu) == 4;

endtype (* IPDUType *)

type MediumSpType is Boolean, IPDUType, DecNumb
sorts MSP
opns
MDATreq,MDATind : IPDU -> MSP
isMDATreq,isMDATind : MSP -> Bool
data : MSP -> IPDU
map : MSP -> DecNumb

eqns forall d : IPDU, sp : MSP
ofsort DecNumb
map(MDATreq(d)) = 8;
map(MDATind(d)) = 9;

ofsort IPDU
data(MDATreq(d)) = d;
data(MDATind(d)) = d;

ofsort Bool
isMDATreq(sp) = map(sp) == 8;
isMDATind(sp) = map(sp) == 9;

endtype (* MediumSpType *)

behaviour
hide MSAP1,MSAP2 in

Station_Ini[ISAPini,MSAP1]
|[MSAP1]| Medium[MSAP1,MSAP2]
|[MSAP2]| Station_Res[MSAP2,ISAPres]

where

process Medium [MSAP1,MSAP2] :noexit:=
Channel[MSAP1,MSAP2]

||| Channel[MSAP2,MSAP1]

where
process Channel[a,b] :noexit:=
a?d:MSP [isMDATreq(d)];
(b!MDATind(d);Channel[a,b]
[]i;Channel[a,b])
endproc (* Channel *)

endproc (* Medium *)

process Station_Ini[ISAPini,MSAP1] :noexit:=
hide IPdu_ini in

Initiator[ISAPini,IPdu_ini]
|[IPdu_ini]| Coder[IPdu_ini,MSAP1]

where

process Initiator[ISAP,IPdu] :noexit:=
(Connectionphase[ISAP,IPdu]
>>Dataphase[ISAP,IPdu] (succ(0)))
[>Disconnection[ISAP,IPdu]

where

process Connectionphase[ISAP,IPdu] :exit:=
Connectrequest[ISAP,IPdu]

>>accept z:DecNumb in Wait[ISAP,IPdu](z)



37

where

process Connectrequest[ISAP,IPdu] :exit(DecNumb):=
(ISAP?sp:SP;([isICONreq(sp)]->IPdu!CR;exit(s(0))

[][not(isICONreq(sp))]->Connectrequest[ISAP,IPdu])
(* User errors are ignored *)
[]IPdu?ipdu:IPDU[not(isDR(ipdu))];Connectrequest[ISAP,IPdu])
(* DR is only accepted by process Disconnection *)
(* System errors are ignored *)
endproc (* Connectrequest *)

process Wait[ISAP,IPdu](z:DecNumb) :exit:=
(IPdu?ipdu:IPDU[not(isDR(ipdu))];([isCC(ipdu)]

->ISAP!ICONconf;exit
[][not(isCC(ipdu))]

->Wait[ISAP,IPdu](z))
(* DR is only accepted by process Disconnection *)
(* System errors are ignored *)
[]i;([z < 4]->IPdu!CR;Wait[ISAP,IPdu](s(z))

[][z == 4]->ISAP!IDISind;Connectionphase[ISAP,IPdu])
(* Timeout *)

[]ISAP?sp:SP[not(isIDISind(sp))];Wait[ISAP,IPdu](z))
(* User errors are ignored *)
endproc (* Wait *)

endproc (* Connectionphase *)

process Dataphase[ISAP,IPdu](number:Sequencenumber) :noexit:=
Readytosend[ISAP,IPdu](number)
(* 1 is the first Sequencenumber *)

>>accept z:DecNumb,number:Sequencenumber,olddata:ISDU
in Sending[ISAP,IPdu](z,number,olddata)

(* z is number of sendings. At the beginning z=1 *)
where
process Readytosend[ISAP,IPdu](number:Sequencenumber):

exit(DecNumb,Sequencenumber,ISDU):=
(ISAP?sp:SP;

([isIDATreq(sp)]
->IPdu!DT(number,Data(sp));exit(s(0),number,Data(sp))

[][not(isIDATreq(sp))]->Readytosend[ISAP,IPdu](number))
[]IPdu?ipdu:IPDU[not(isDR(ipdu))];Readytosend[ISAP,IPdu](number))
endproc (* Readytosend *)

process Sending[ISAP,IPdu]
(z:DecNumb,number:Sequencenumber,olddata:ISDU):noexit:=

(IPdu?ipdu:IPDU[not(isDR(ipdu))];
([isAK(ipdu) and (num(ipdu) eq number)]

->Dataphase [ISAP,IPdu](succ(number))
[][isAK(ipdu) and (num(ipdu) ne number) and (z < 4)]

->IPdu!DT(number,olddata);
Sending[ISAP,IPdu](s(z),number,olddata)

(* The Initiator shall not resend more than 4 times in case of *)
(* faulty transmission *)

[][isAK(ipdu) and (num(ipdu) ne number) and (z == 4)]
->IPdu!DR;ISAP!IDISind;Initiator[ISAP,IPdu]

[][not(isAK(ipdu))]->Sending[ISAP,IPdu](z,number,olddata))
[]i;([z < 4]->IPdu!DT(number,olddata);

Sending[ISAP,IPdu](s(z),number,olddata)
[][z == 4]->ISAP!IDISind;Initiator[ISAP,IPdu])

[]ISAP?sp:SP[not(isIDATreq(sp))];
Sending[ISAP,IPdu](z,number,olddata))

endproc (* Sending *)
endproc (* Dataphase *)

process Disconnection[ISAP,IPdu]:noexit:=
IPdu!DR;ISAP!IDISind;Initiator[ISAP,IPdu]

endproc (* Disconnection *)
endproc (* Initiator *)

process Coder[IPdu,MSAP] :noexit:=
(IPdu?ipdu:IPDU;MSAP!MDATreq(ipdu);Coder[IPdu,MSAP]
[]MSAP?sp:MSP;IPdu!data(sp);Coder[IPdu,MSAP])
endproc (* Coder *)

endproc (* Station_Ini *)

process Station_Res[MSAP2,ISAPres] :noexit:=
hide IPdu_res in

Responder[ISAPres,IPdu_res]
|[IPdu_res]|Coder[IPdu_res,MSAP2]

where

process Responder[ISAP,IPdu]:noexit:=
(Connectionphase[ISAP,IPdu]
>>Dataphase[ISAP,IPdu](succ(1)))
[>Disconnection[ISAP,IPdu]

where

process Connectionphase[ISAP,IPdu]:exit:=
Connectrequest[ISAP,IPdu]

38
>>Wait[ISAP,IPdu]

where

process Connectrequest[ISAP,IPdu]:exit:=
(IPdu?ipdu:IPDU;([isCR(ipdu)]->ISAP!ICONind;exit

[][not(isCR(ipdu))]->Connectrequest[ISAP,IPdu])
(* System errors are ignored *)

[]ISAP!ICONresp;Connectrequest[ISAP,IPdu])
(* User errors are ignored *)

endproc (* Connectrequest *)

process Wait[ISAP,IPdu] :exit:=
(IPdu?ipdu:IPDU;Wait[ISAP,IPdu]

(* System errors are ignored *)
[]ISAP!ICONresp;IPdu!CC;exit)
endproc (* Wait *)

endproc (* Connectionphase *)

process Dataphase[ISAP,IPdu](number:Sequencenumber):noexit:=
(* number is the last acknowledged Sequencenumber *)

(IPdu?ipdu:IPDU;([isDT(ipdu) and (num(ipdu) eq succ(number))]
->ISAP!IDATind(data(ipdu));IPdu!AK(num(ipdu));

Dataphase[ISAP,IPdu](succ(number))
[][isDT(ipdu) and (num(ipdu) eq number)]

->IPdu!AK(num(ipdu));
Dataphase[ISAP,IPdu](number)

[][isCR(ipdu)]->ISAP!ICONind;Wait[ISAP,IPdu]
[][not(isDT(ipdu) or isCR(ipdu))]

->Dataphase[ISAP,IPdu](number))
[]ISAP!ICONresp;Dataphase[ISAP,IPdu](number))

(* User errors are ignored *)
where

process Wait[ISAP,IPdu]:noexit:=
(IPdu?ipdu:IPDU;Wait[ISAP,IPdu]

(* System errors are ignored *)
[]ISAP!ICONresp;IPdu!CC;Dataphase[ISAP,IPdu](succ(1)))
endproc (* Wait *)

endproc (* Dataphase *)

process Disconnection[ISAP,IPdu] :noexit:=
ISAP!IDISreq;IPdu!DR;Responder[ISAP,IPdu]

endproc (* Disconnection *)
endproc (* Responder *)

process Coder[IPdu,MSAP] :noexit:=
(IPdu?ipdu:IPDU;MSAP!MDATreq(ipdu);Coder[IPdu,MSAP]
[]MSAP?sp:MSP;IPdu!data(sp);Coder[IPdu,MSAP])
endproc (* Coder *)

endproc (* Station_Res *)
endspec

 
5. Experiences and evaluation 
 
The specifications have been ckecked by tools and by thorough review. This of course doesn't exclude the possibility of 
errors. The specifications appear to be fairly "correct" as far as syntax and the specified behaviour are concerned. But 
since the term "correct" has many meanings in the context of semantics the author is aware of the fact that there may still 
be problems with the specifications and is happy about any comment. In particular, it wasn't possible to formally verify 
the protocol specifications against the service specifications, also due to the fact that it is not really clear what 
verification means in this context. What kinds of equivalence relation should hold between service and protocol? 
 
The LOTOS specifications have been syntactically checked with the Hippo tool [vEI88]. The sematics have been 
checked by performing a limited number of simulation experiences on the specification with the same tool. 
 
The syntax of the Estelle specifications has been checked with the Estelle-C compiler [CHA87] and also some 
experiments have been performed on the specifications by simulation. 
 
The SDL specifications have been check by thorough review. Many comments have been received from readers of 
[HOG89] after the first publication of the specification of Inres. Some of the comments lead to corrections in the 
specification. 
 
It has been experienced during the specification process that the differences between the three languages are not very 
big. The SDL and Estelle specifications could almost be translated one to one into another. Differences are mainly due 
to the different input port semantics of the two languages. SDL only has one input port per process and discards 
unexpected signals, while in Estelle any number if input ports per process are possible and unexpected messages may 
lead to deadlock. 
 



39
The LOTOS specification of the Inres protocol has been produced according to the state oriented approach [VSS88]. 
This makes it very similar to the SDL and Estelle specifications of the Inres protocol. Many of the state names in SDL 
and Estelle appear as process names in the LOTOS specification. The Inres service specification on the other hand is 
constraint oriented. This makes it fundamentally different to the SDL and Estelle specifications of the Inres service. 
 
6. References  
 
[BHS91] Belina, F., Hogrefe, D., Sarma, A.: SDL with applications from protocol specification, Prentice-Hall, 

1991 
 
[BHT88] Belina, F., Hogrefe, D., Trigila, S.: Modelling OSI in SDL (in Turner: Formal Description 

Techniques, North-Holland, Amsterdam, 1988) 
 
[BRO87] Broy, M. et al: A stream function definition of MASCOT. System Designers, Software Technology 

Centre, Final Report, 1987. 
 
[CHA87] Chan, I.: Estelle-C compiler, Version 2.0, University of British Columbia, 1987. 
 
[GOT91] Gotzhein, R.: Specifying Communication Services with Temporal Logic (in Logrippo, L. et al (eds.): 

Protocol specification, testing and verification X), North-Holland, 1991. 
 
[HOG89] Hogrefe, D.: Estelle, LOTOS und SDL, Springer Verlag, 1989. 
 
[ISO 7498] ISO TC97/SC21: Basic Reference Model (ISO/IS 7498, 1984) 
 
[ISO 8807] ISO TC97/SC21: LOTOS - A Formal Description Technique Based on the Temporal Ordering of 

Observational Behaviour (ISO/IS 8807, 1988) 
 
[ISO 9074] ISO TC97/SC21: Estelle - A formal description technique based on an extended state transition model 

(ISO/IS 8807, 1988) 
 
[SPI89] Spivey, J.M.: The Z notation, Prentice-Hall, 1989. 
 
[TR 8509] ISO TC97/SC21: OSI Service Conventions ( ISO/TR 8509, 1987) 
 
[TR 10167] ISO TC97/SC21: Guidelines for the application of Estelle, LOTOS and SDL (ISO TR 10167, 1990) 
 
[vEI88] van Eijk, P.: Software tools for the specification language LOTOS, Twente University, 1988. 
 
[VSS88] Vissers, C., Scollo, G., van Sinderen, M.: Architecture and specification style in formal descriptions of 

distributed systems (in Aggarwal, S., Sabnani, K.: Protocol specification, testing and verification 
VIII), North Holland, 1988 

 
[Z100] CCITT Recommendation Z.100: Specification and Description Language SDL (Blue Book, Volume 

X.1 - X.5, 1988, ITU General Secretariat - Sales Section, Places des Nations, CH-1211 Geneva 20) 
 
 

 


