OSI formal specification case study:
the Inres protocol and service, revised

Dieter Hogrefe

Institut fur Informatik
Universitat Bern
Langgassstrasse 51
CH-3012 Bern, Switzerland

May 1991
Update May 1992

Abstract

This paper contains an OSI specification case study. An informal specification of an OSI-like protocol and service is
followed by an SDL [Z100], Estelle [ISO 9074] and LOTOS [ISO 8807] specification of the same protocol and service.
The protocol is called Inres, for Initiator-Responder protocol. It is connection oriented and asymmetric, i.e. one side can
only establish connections and send data while the other side can accept connections, release them and receive data.

1. Introduction

The system under study, Inres, is not a real system, although it does contain many basic OSI concepts and is therefore
very suitable for illustrative purposes because it is easy to understand and not too big. It is an abridged version of the
Abracadabra system described in [TR 10167]. The Inres system has originally been published in [HOG89] in German
and has already been used as a reference in many publications. This paper contains only a short evaluation and
experience section at the end. The main purpose of the paper is to offer the community a well worked out protocol
example, which has been checked in parts with tools to serve as:

- a reference for other work using the Inres protocol

- an illustration for the use of FDTs (formal description techniques)

- stimulate and provoke the discussion on protocol against service verification, automatic
generation of conformance tests, ...

- stimulate and provoke experts of other formal description techniques such as Z [SP189], stream
functions [BRO87], temporal logic [GOT91], to specify the same protocol with their approach.

In the following, two services and one protocol are described:

- the Medium service, which can be used for unreliable transmission of data units

- the Inres protocol (initiator-responder), which - with the aid of the Medium service - renders a
connection-oriented service to its users

- the Inres service, which is the service rendered by the Inres protocol and the Medium service.

The services and protocols described here cannot be related to any specific layers of the OSI-BRM, although they
contain some basic OSI elements. Fig. 1.1 shows the basic structure of the example.

Inres user Inres user

Inres Inres
service service
primitives primitives

* Inres service

wes | ... resprotocol [T

entity entity
Medium Medium
service service
primitives primitives

Medium service

Figure 1.1 Basic architecture of the Inres system

2
In the following sections the services and the protocol are first described verbally and semi-formally with TS diagrams.
These informal descriptions form the basis for the formal specifications with SDL.

There are some conventions in the descriptions for the naming of SPs, SAPs and SDUs. Those SPs, SAPs, and SDUs
that are related to the Medium service have the prefix M. For example, MSDU is the name of a service data unit of the
Medium service. SPs, SAPs, and SDUs that are related to the Inres service and protocol have the prefix I.

The order of the description in the next chapters is a recommended order: First, one should think about the service that
has to be rendered, then the service that can be used is taken into account, and thereafter the protocol is designed which
can render the desired service.

1.1 Informal specification of the Inres service
This is an abridged version of the Abracadabra service [TR 10167]. The service is connection-oriented. A user who

wants to communicate with another user via the service must first initiate a connection before exchanging data. Fig. 1.2
shows the basic schema of the service with its SPs and SAPs.

Initiator user Responder user
ICONCconf ICONind
IDISind IDATind
ICONreq IDISreq
1sAPini | IPATreq ICONresp Y |sapresp

Inres service

Figure 1.2 The Inres service

For simplification purposes the service is not symmetrical. The service can be accessed on two SAPs. On the one SAP
(the left one in Fig. 1.2) the Initiator-user can initiate a connection and afterwards send data. On the other SAP another
user, Responder-user, can accept the connection or reject it. After acceptance it can receive data from the initiating user.

The following SPs are used for the communication between user and provider:

- ICONTreq: request of a connection by Initiator-user

- ICONind: indication of a connection by the provider

- ICONTresp: response to a connection attempt by Responder-user

- ICONconf: confirmation of a connection by the provider

- IDATreq(ISDU): data from the Initiator-user to the provider, this SP has a parameter of type ISDU

- IDATind(ISDU): data from the Provider to the Responder-user, this SP has a parameter of type ISDU
- IDISreq: request of a disconnection by the Responder-user

- IDISind: indication of a disconnection by the provider

The order of SPs at the different SAPs is specified in Fig. 1.3a-1.3h with generalized TS-diagrams (see [TR 8509]).

ICONreq
ICONind
ICONresp

ICONconf

Figure 1.3a Successful connection establishment

ICONreq — |

Disind 4]

ICONind

IDISreq

Figure 1.3b Unsuccessful connection establishment (rejection by the Responder)

ICONreq —

Disind 4|

Figure 1.3c Unsuccessful connection establishment (erroneous transmission of the connection request)

ICONreq

IDISind

ICONind

4— |CONresp

Figure 1.3d Unsuccessful connection establishment (erroneous transmission of the connection response)

ICONreq —a
\

IDISind 4

™ coNind

Figure 1.3e Unsuccessful connection establishment (Responder ignores connection request)

IDATreq —l
\

Figure 1.3f Successful data transfer

IDATreq

IDISind

™ pATind

4
Figure 1.3g Unsuccessful data transfer (erroneous transmission of data)

IDISreq

IDISind

Figure 1.3h Successful disconnection

‘/ IDISreq

Figure 1.3i Unsuccessful disconnection (erroneous transmission of disconnection request)

1.2 Informal specification of the Medium service

The Medium service has two SAPs: MSAP1 and MSAP2. The service is symmetrical and operates connectionless. It
can be accessed at the two SAPs by the SPs MDATreq and MDATInd, both of which have a parameter of type MSDU.

With the SPs data (MSDUSs) can be transmitted from one SAP to the other. The data transmission is unreliable, and data

can be lost. But data cannot be corrupted or duplicated. Fig. 1.4 shows the overall schema of the service, and Fig. 1.5a-
1.5b show the respective TS diagrams.

user user

MDATind MDATind

MDATreq MDATreq
MSAP1 MSAP2

Medium service

Figure 1.4 The Medium service

MDATreq

MDATind

Figure 1.5a Successful data transfer

MDATreq

Figure 1.5b Unsuccessful data transfer (erroneous transmission of data)

1.3 Informal specification of the Inres protocol

5
This section describes a protocol, which by use of the unreliable Medium service, renders the Inres service to users in
the imaginary next higher layer. Fig. 1.6 shows the overall architecture of the protocol.

General properties of the protocol
The Inres protocol is a connection-oriented protocol that operates between two protocol entities Initiator and Responder.

The protocol entities communicate by exchange of the protocol data units CR, CC, DT, AK and DR. The meaning of the
PDUs is specified below.

6

PDU__Meaning parameter respective SPs
CR connection establishment none ICONreq,ICONind
CC connection confirmation none ICONresp,ICONconf
DT data transfer sequence number,|ISDU IDATreq,IDATIind
AK acknowledgement sequence number -
DR disconnection none IDISreq,IDISind

The communication between the two protocol entities takes place in three distinct phases: the connection establishment
phase, the data transmission phase, and the disconnection phase.

In each phase only certain PDUs and SPs are meaningful. Unexpected PDUs and SPs are ignored by the entities Initiator
and Responder.

ICONconf IDATind
IDISind ICONind
ICONreq IDISreq
IDATreq ICONresp
ISAPIni ISAPresp

Inres protocol
Responder |¢q----"- Protocos »

or
CC,DR,AK CRDT
MDATind MDATreq
MDATreq MDATind
MSAP1 MSAP2

Medium service

Figure 1.6 The Inres protocol

Connection establishment phase

A connection establishment is initiated by the Initiator-user at the entity Initiator with an ICONreq. The entity Initiator
then sends a CR to the entity Responder.

Responder answers with CC or DR. In the case of CC, Initiator issues an ICONconf to its user, and the data phase can
be entered. If Initiator receives a DR from Responder, the diconnection phase is entered. If Initiator receives nothing at
all within 5 seconds, CR is transmitted again. If, after 4 attempts, still nothing is received by Initiator, it enters the
diconnection phase.

If Responder receives a CR from Initiator, the Responder-user gets an ICONind. The user can respond with ICONresp
or IDISreq. ICONresp indicates the willingness to accept the connection, Responder thereafter sends a CC to Initiator,
and the data transmission phase is entered. Upon receipt of an IDISreq, Responder enters the disconnection phase.

Data transmission phase

If the Initiator-user of the entity issues an IDATreq, the Initiator sends a DT to the Responder and is then ready to
receive another IDATreq from the user. IDATreq has one parameter that is a service data unit ISDU, which is used by
the user to transmit information to the peer user. This user data is transmitted transparently by the protocol entity
Initiator as a parameter of the protocol data unit DT. After having sent a DT to Responder, Initiator waits for 5 seconds
for a respective acknowledgement AK. Then the DT is sent again. After 4 unsuccessful transmissions, Initiator enters the
disconnection phase.

DT and AK carry a one-bit sequence number (0 or 1) as a parameter. Initiator starts, after having entered the data
transmission phase, with the transmission of a DT with sequence number 1. A correct acknowledgement of a DT has the

7
same sequence number. After receipt of a correct acknowledgement, the next DT with the next (i.e. other) sequence
number can be sent. If Initiator receives an AK with incorrect sequence number, it sends the last DT once again. It is
also sent again if the respective AK does not arrive within 5 seconds. A DT can only be sent 4 times. Afterwards
Initiator enters the disconnection phase. The same happens upon receipt of a DR.

Following the establishment of a successful connection, Responder expects the first DT with the sequence number 1.
After receipt of a DT with the expected number, Responder gives the ISDU as a parameter of an IDATInd to its user and
sends an AK with the same sequence number to the Initiator. A DT with an unexpected sequence number is
acknowledged with an AK with the sequence number of the last correctly received DT. The user data ISDU of an
incorrect DT is ignored. If Responder receives a CR, it enters the connection establishment phase. And upon receipt of
an IDISreq, it enters the disconnection phase.

Disconnection phase

An IDISreq from the Responder-user results in the sending of a DR by the Responder. Afterwards Responder can
receive another connection establishment attempt CR from Initiator.

At the Initiator, the DR results in an IDISind sent by the Initiator to its user. An IDISind is also sent to the user after DT
or CR have been sent unsuccessfully to the Responder. Then a new connection can be established.

2. Formal specification of Inres in SDL

At some places the formal specification has to add some information to that found in the informal one. This is because
informal specifications tend to be incomplete: they sometimes leave things up to the intuition of the reader. Therefore,
informal service and protocol specifications can interpreted correctly only if the reader has some universal knowledge
about services and protocols. Examples are given in the following sections.

The basic approach to the specification of the services and protocol is as follows. We consider a system called Inres
(shown in Example 2.1). The system contains exactly one block, the Inres_service. The processes of this block specify
the behaviour of the service provider, one process for each service access point. In addition, the block has a
substructure, which is the Inres_protocol (specified in Example 2.4). This protocol specification again contains a block
for the specification of a service, the Medium service. This block can in turn have a substructure if a protocol has to be
specified, which should render the Medium service. More on this approach can be found in [BHT88]

The substructure specification is used in SDL to specify the behaviour of a block in more detail, as an alternative to a
more abstract block specification in terms of interacting processes.

This approach to service and protocol specification takes two very basic aspects of OSI into account:

First, that of the recursive nature of the OSI-BRM. A service can be defined by a protocol using the underlying
service, which again can be defined by a protocol using the next lower underlying service, and so on. The recursion
stops with the Physical Medium (see [ISO 7498]). This recursive definition is mapped on a repeated use of the
substructure construct.

Second, the very important aspect that the service can be seen as an abstraction of the protocol and the next lower
service. This is expressed in SDL by an abstract "overview" block specification in terms of interacting processes.

2.1The Inres service in SDL/GR

In Example 2.1 the service provider block Inres_service consists of two processes interconnected by a signal route. Each
process models the behaviour of one service access point.

Example 2.1:

SYSTEM SIGNAL 4 [icoNind,
Inres_Service ICONreg, NEWTYPE IDATind
IDATreq(ISDUType), X .

ICONconf, | A a(¥pe) [* insert type of service data
) ICONconf, X
IDISind) unit here */
ICONind,
ENDNEWTYPE; ISAPresp
ISAPini ICONresp,
ICONind, /* Definition of macro "daemon”
IDATInd(ISDUType), see "inres_protocol" */
ICONreq, ICON, ICONF, ICONresp,
IDATreq | y IDIS, IDAT(ISDUType); Y |IDISreq
BLOCK BLOCK
ISAP_Ini ISAP ISAP_Resp ISAP
v In Internal n ﬁz
MSAP_Manager_ (¢ < > MSAP_Manager_ ‘
Ini i
- ICONF, ICON, L
IDIS IDAT

In principle, it would have been possible to model the whole behaviour of the service by just one process. But the multi-
process solution usually results in a less complex specification. Especially in situations in which difficult collision
situations may occur (this is not the case here, but is, for example, in the Abracadabra protocol in [ISO 10167]), it is
very useful to model each service access point separately.

Example 2.2 shows the behaviour of the Initiator-SAP called ISAP_Manager_Ini, and Example 2.3 shows the behaviour
of the Responder-SAP called ISAP_Manager_Res. ISAP_Manager_Ini and ISAP_Manager_Res can communicate
through a channel to establish the global behaviour of the service.

Example 2.2:

J

PROCESS

ISAP_Manager_Ini DCL
d ISDUType;
TIMER T;
SYNONYM

P Duration = EXTERNAL;

v

(Discnnnecled) ICONF ‘ T
\ \ \
ICONreq RESET(T) ‘ ‘ IDISind
=
‘ ICON ‘ IDISind (Connected j
\ \ \
(NO?NEIP‘T) (Dlsconnec(ed) \DATreq(d)<

IDISind

IDAT(d)

‘ IDISind

(Dlsconnecled

(Connected

)

(Dlsconnec(ed)

Example 2.3:

PROCESS ISAP_Manager_Resp 1(1)

IDAT(d) ‘ ICON

|DATind(d)

Wait

Connected

—
_J
—
_J

‘ ICONF (Connecled) IDIS Disconnected

Disconnected

The SDL specification of the service relies on the TS diagrams of Section 1.1. Since the TS diagrams do not have a
formal semantics, whereas SDL does, no one-to-one mapping between the diagrams and the SDL specification is
possible. Some information has to be added for formal specification of the service.

—5
N

I

The Inres service is connection-oriented. Therefore, we will distinguish between the three phases connection
establishment, data transfer, and disconnection.

In the following, not all features of the SDL specification are discussed; rather, only those are commented on which may
not be obvious to the reader.

Connection establishment

Fig. 1.3a-1.3e illustrate the basic behaviour of the service provider during the connection establishment phase. Fig. 1.3a
and Fig. 1.3b show the "normal” course of events, first a successful connection establishment and second a user-rejected
connection attempt. Fig. 1.3c-1.3e show unpredictable non-deterministic behaviour of the service provider. In Fig. 1.3c
the service provider does not indicate the connection attempt to the Responder-user, and in Fig. 1.3d the response of the
Responder-user is not transmitted to the Initiator-user. In Fig. 1.3e the Responder-user does not respond "in time."

The modelling of the "normal” course of events in SDL is quite obvious. The difficulties arise from the various
"abnormal" situations.

After the provider has received an ICONreq by the Initiator-user, basically two things can happen: Either the provider
rejects the connection attempt with an IDISind to the Initiator-user (Fig. 1.3c); or the provider indicates an ICONind to
the Responder-user (Fig. 1.3a). The latter is modelled by the sending of an ICON from ISAP_Manager_Ini to
ISAP_Manager_Res. The Responder-user may answer with an ICONresp or an IDISreq. According to Fig. 1.3d, even if
an ICONresp is issued to the provider, it may not be able to transmit it to the Initiator-user. The Initiator-user then
receives an IDISind instead.

11
The TS diagram in Fig. 1.3e specifies the situation in which the Responder-user does not react "in time" upon receipt of
the ICONind - or does not react at all. This is modelled in SDL by the use of the timer construct. After a certain
unspecified time, ISAP_Manager_Ini aborts the connection attempt on its own.

If Responder-user issues the ICONTresp after the time-out, this results in a "half-open connection." Initiator-user "thinks"
the connection has been aborted, whereas Responder-user "thinks" the connection exists. ISAP_Manager_Ini is in state
disconnected and ISAP_Manager_Ini is in state connected. If Initiator-user now tries to open a connection by issuing an
ICONreq, ISAP_Manager_Res receives an ICON, issues an ICONind to the user, and proceeds to state wait. This
specific behaviour is not clearly specified by the TS diagrams, but it follows directly if one makes a model of the
provider.

Data transfer

If a connection has been established successfully, the Initiator-user may issue an IDATreq with a parameter d of type
ISDU to the ISAP_Manager_Ini. According to Fig. 1.3f and 1.3g, two things may happen: Either the data are issued to
the Responder-user as an IDATInd, or the Initiator-user receives an IDISind. In Example 2.2 this is modelled by the use
of the Daemon after receipt of the signal IDATreq in state connected.

It is important to note that, in case of a disconnection during data transfer, the process ISAP_Manager_Ini may be in
state disconnected, whereas the process ISAP_Manager_Res is still in state connected. This situation is terminated when
the Initiator user tries to open up another connection. ISAP_Manager_Res then goes to state wait from state connected.

Disconnection

An IDISreq may be issued by the Responder-user at any time. According to Fig. 1.3h and 1.3i, an IDISreq may or may
not result in an IDISind at the Initiator-user. This is modelled by the Daemon in Example 2.3. Should the IDIS not be
transmitted, the system runs into a half-open connection: ISAP_Manager_Res is in state disconnected while
ISAP_Manager_Ini is in state connected and still trying to send data. But upon the first attempt ISAP_Manager_Res
then aborts the connection with an IDIS. This situation is also captured by the TS diagram 1.3g.

2.2 The Inres Service in SDL/PR

system | nres_Service;

si gnal
I CONr e
| DATT e
| CONcol
| CONi nd,
| CONr esp,

DI Si nd,

Dl Sreq,

DATi nd(| SDUType),

q,
q(1 SDUType),
nf,

g

1 CONF,
1D'S,
| DAT(| SDUType) ;

newt ype | SDUType
literals O,
/* insert type of service data
unit here */
endnewt ype;

channel | SAPresp
from | SAP_Resp to env
with | CONi nd, | DATi nd;
fromenv to | SAP_Resp
with | CONresp, |DlSreq;
endchannel | SAPresp;

channel Intern
fromISAP_Ini to | SAP_Resp
with | CON, | DAT;
from | SAP_Resp to | SAP_I ni
with |CONF, I1DS;
endchannel Intern;

channel | SAPi ni
fromISAP_Ini to env
with I CONconf, 1Dl Sind;
fromenv to | SAP_I ni
with | CONreq, I|DATreq;
endchannel | SAPi ni ;

12

bl ock | SAP_Resp referenced;

bl ock | SAP_I ni referenced;
endsystem | nres_Servi ce;

bl ock | SAP_Resp;
connect Intern and Internal;
connect | SAPresp and | SAP;

signal route | nternal
from | SAP_Manager _Resp to env
w th | CONF, 3
fromenv to | SAP_Manager _Resp
with | CON, | DAT;

signal route | SAP
from | SAP_Manager _Resp to env
wi th | CONi nd, | DATi nd;
fromenv to | SAP_Manager _Resp
with | CONresp, |Di Sreq;

process | SAP_Manager _Resp referenced;
endbl ock | SAP_Resp;

bl ock | SAP_I ni;
connect Intern and Internal;
connect | SAPi ni and | SAP;

signal route | SAP
from | SAP_Manager _Ini to env
with | CONconf, 1Dl Sind;
fromenv to | SAP_Manager _I ni
with | CONreq, |DATreq;

signal route Internal
from | SAP_Manager _Ini to env
with | CON, | DAT;
fromenv to | SAP_Manager _I ni
with ICONF, 1D'S;

process | SAP_Manager _I ni referenced;
endbl ock 1 SAP_I ni ;

process | SAP_Manager _Resp;

dcl
d | SDUType;

start;
next state Di sconnect ed,;

state Wait;
input | CONresp;
deci si on ANY;
(EI THER)
out put | CONF;
next st ate Connect ed;
(R
next st ate Connect ed;
enddeci si on;

state Di sconnect ed;
input | CON,
out put | CONi nd;
nextstate Wait;
input | DAT(d);
output I1D'S;
nextstate -;

state Connected;
input | DAT(d);

13
out put | DATi nd(d);
next st ate Connect ed;
input | CON,
out put | CONi nd;
nextstate Wait;

state * ;
input |DISreq;
deci si on ANY;
(EITHER) :
output IDS;
nextstate Di sconnected;
xR -

nextstate Di sconnect ed;
enddeci si on;
endprocess | SAP_Manager _Resp;

process | SAP_Manager _I ni;

dcl
d | SDUType;

timer

synonym P Duration = external;

start;
next state Di sconnected;

state Di sconnect ed;
i nput | CONreq;

deci si on ANY;

(EITHER) :
out put | CON;
set(now + P, T);
nextstate Wit;
R -

out let | DI Si nd;
nextstate Di sconnected;
enddeci si on;

state Connect ed;
input | DATreq(d);
deci si on ANY;
El THER)
out put 1Dl Sind;
next st ate Di sconnect ed;
(R :
output | DAT(d);
next state Connect ed;
enddeci si on;

state Wait;
i nput | CONF;
reset(T);
out put | CONconf;
next state Connect ed;
input T;
out put I D Sind;
next state Di sconnected;

state * ;
input I1DS;
reset(T);
out put | DI Sind;
nextstate Di sconnect ed;
endpr ocess | SAP_Manager _| ni ;

2.3The Inres protocol and Medium service in SDL/GR

Example 2.4 shows the overall structure of the Inres protocol together with the underlying Medium service as a
substructure diagram (referenced in the block diagram Inres_service in Example 2.1)

14

SYSTEM 4 [lcor_\lconf, J [ICONind, } 4
Inres_protocol ISAP1 IDISind IDATind ISAP2
ICONreq, ICONresp,
A LDATrec? } [IDISreq } \
Y
BLOCK BLOCK
Ini_Station ISAP Res_Station ISAP
SIGNAL N\
(1,1) (1,1)
Initiat ICONreq, g
nitiator IDATreq(ISDUType), Responder
ICONCconf,
ICONind,
SIGNAL K ICONresp, N CR
DR IDISreq, {DT}
CC, IDISind,
AK(Sequencenumber), IDATind(ISDUType), AK(Sequencenumber), IPDU
B?(-SCR- X IPDU MDATreq(MSDUType), g?(- SCR- X c
equencenumber, MDATind(MSDUType): equencenumber, :
ISDUType); [CR} ind(yPe) ISDUType); AK,
DT DR
1,2) 1,1)
Coder_lIni Coder_Resp
A Y
MSAP MSAP
[MDATind | & [mpaTind |
MSAP1 MSAP2
v [MDATreq } v [MDATreq}
A
BLOCK
" MSAP_1 MSAP_2
Medium _:
MSAP_Managerl (1,1) MSAP_Manager2
[ipat] Internal LipaT]

Example 2.4:

MACRODEFINITION Datatypedefinitions

NEWTYPE Sequencenumber
LITERALS 0,1;
OPERATORS succ: Sequencenumber-> Sequencenumber;
AXIOMS succ(0) == 1;

succ(l) == 0;

ENDNEWTYPE Sequencenumber;

NEWTYPE ISDUType

I* Here the data type of the service data unit is specified */

ENDNEWTYPE ISDUType;

NEWTYPE IPDUType
LITERALS CR, CC, DR, DT, AK;

ENDNEWTYPE IPDUType;

NEWTYPE MSDUType
STRUCT id IPDUType;

num

Sequencenumber;

15
data ISDUType;
ENDNEWTYPE MSDUType;

ENDMACRO Datatypedefinitions;

The specification consists of three basic parts, all three of which are modelled by blocks: the two protocol entities
Station_Ini and Station_Res, and the service provider Medium.

Each Station consists of two processes. The Coder processes model the interface to the next lower layer by transforming
the PDUs produced by the other processes (Initiator and Responder) into the SDUs of the next lower layer, which are
then passed down as parameters of SPs.

This chosen architecture of a protocol entity is a useful one for all sorts of different protocols. Many protocol
specifications nowadays describe the behaviour of the processes similar to Initiator and Responder, and they assume that
there is an (abstract) channel between them which can be used to transmit the PDUs directly. Of course, according to the
OSI-BRM, this is not the case: The service of the next lower layer has to be used for this communication. Therefore, the
PDUs have to be transformed by processes like Coder_Ini and Coder_Res.

16

PROCESS |Initiator

12)

GHHHHHHHHHB

DCL

ICONreq ‘ DR

IHHHHI%I

Counter Integer,
d ISDUType,
Num,

Nummer Sequencenumber;

Disconnected

TIMERT;

SYNONYM
P Duration=5;

TRUE FALSE
RESET (T) RESET (T)

IDISind ‘ IDISind

(]
Py

Number:=1
ICONconf Counter: Disconnected Disconnected
Counter+1
SET
(Connected) (NOW+P.T) ‘

17

PROCESS Initiator 2(2)

Connected

L

IDATreq(d

DT .
(Number,d) IDISind
(Disconnected)

SET [[|
(NOW+P,T)

2\

Counter:=1

AK(Num) ‘ T IDATreq

RESET (T)

Sending

Sending

—

DT .
ﬂ (Number,d) ‘ IDISind (Connected)
Counter:= :
RESET (T) Counter+1 ‘ (Dlsconnected)
ind SET
IDISin: (NOW+P.T)

Q
<]
=]
=
@
o
@
=

Example 2.5:

In the most general case the Coder processes may have additional duties. According to [ISO 7498] (more precisely
Section 5.7.4 in [ISO 7498]) these processes may handle the connection setup and maintenance of the next lower layer.
More on this topic is given in [BHS91].

The SDL specification of the Inres protocol is rather obvious and needs no further comments. It follows rather naturally
from the informal description, although, similar to the service, some additional information had to be provided. The
verification of the SDL specification with respect to the informal description is left to the reader.

PROCESS Responder

DCL

d ISDUType,
Num,
Number Sequencenumber;

L

Connected

1(1)

——
e

N

Disconnected DT(Num,d CR
TRUE
CR ICONind
FALSE
ICONind AK(Num) IDATind(d) (Wait)

(Wait j (Connected) AK(Num)
i Number:=

ICONresp succ(Number)

Number:=0

cC

Connected

Connected

Disconnected

Example 2.6:

19
PROCESS Coder_Ini 1(1)
DCL -
d ISDUType,
num Sequencenumber,
SR “
[[
MDATInd
CR DT(num,d) (Sdu)
Sdulid:=DT, ELSE cc DR
Sdulid:=CR Sdu!Num:=num, Sdulid
Sdu!Data:=d
AK
MDATreq AK
(Sdu) ce (Sdu!Num) DR

Example 2.7:

20
Example 2.8:

PROCESS 1(1)
Coder_Resp DCL

Num Sequencenumber,
Sdu MSDUType;

DR cc AK(num)
MDATind
(Sdu)
. o Sdulid:=AK,
Sdulid:=DR Sdutid:=CC || gy Num:=num
Sdutid
MDATreq(Sdu) ELSE CR
DT
Idle CR (Sdu!Num,
Sdu!Data)

Example 2.9:
MACRODEFINITION MSAP_Manager (1)
DL
L “
MDATreq(d) IDAT(d)
0 MDATind(d)
(e) AT “

2.4 The Inres protocol and Medium service in SDL/PR

system | NRES;

si gnal

21
eq,
DATreq(| SDUTyp),
onf

| DATI nd(| SDUTyp) ,
MDATr eq(MSDUTyp),
MDATI nd(MSDUTyp) ;

channel MSAP1
fromiIni_Station to Medium
wi t h MDATr eq;
from Mediumto Ini_Station
wi t h MDATI nd;
endchannel MSAP1;

channel | SAP1
fromini_Station to env
with | CONconf, |DISind;
fromenv to Ini_Station
with | CONreq, | DATr eq;
endchannel | SAP1;

channel MSAP2
fromRes_Station to Medium
wi th MDATTr eq;
from Mediumto Res_Station
W th MDATI nd;
endchannel NBAP2;

channel | SAP1
fromRes_Station to env
with | CONi nd, | DATi nd;
fromenv to Res_Station
th | CONresp, |DiSreq;
endchannel | SAP1;

bl ock Ini_Station referenced,
bl ock Medi um ref er enced;

bl ock Res_Station referenced;

newt ype Sequencenumrber
literals 0, 1
operators
succ :
Sequencenumber -> Sequencenunber ;
axi ons
succ(0) == 1;
succ(1) == 0;
endnewt ype Sequencenunber;

newt ype | SDUType

/* Here the data type of the service data unit is specified */

endnewt ype | SDUType;
newt ype | PDUType
literals CR, CC, DR, DT, AK
endnewt ype | PDUType;
newt ype MSDUType
struct
id | PDUType;
Num Sequencenunber ;
Dat en | SDUType;
endnewt ype MSDUType;
endsyst em | NRES;

bl ock Ini_Station;
si gnal

CC,
AK(Sequencenunber),
DR,

CR,

DT(Sequencenunber, |SDUType);
connect | SAP1 and | SAP;
connect MSAP1 and NBAP;

si gnal route MSAP
from Coder _Ini to env

wi th MDATr eq;
fromenv to Coder_lIni

wi t h MDATI nd;

signal route | PDU
fromlnltlator to Coder _Ini
with CR
fromCDdeer to Initiator
with CC, AK, DR

signal route | SAP
fromiInitiator to env
with I CONconf, 1Dl Sind;
fromenv to Initiator
with | CONreq, | DATreq;

process Coder_Ini (1, 1) referenced;

process Initiator (1, 1) referenced;
endbl ock | ni_Station;

bl ock Medi um

si gnal
I DAT(MSDUType) ;

connect MSAP1 and MSAP_1;
connect MSAP2 and MSAP_2;

signal route MSAP_1
from MBAP_Manager1 to env
with MDATI nd;
fromenv to MSAP_Manager 1
with MDATreq;

signal route MSAP_2
from MSAP_Manager2 to env

with MDATI nd;
fromenv to NBAP >_Manager 2

with MDATreq;

signal route |nternal
from MSAP_Manager 1 to MSAP_Manager 2

wi th | DAT;
from MBAP_Manager2 to MSAP_Manager 1
wi th | DAT;

process MSAP_Manager2 (1, 1) referenced;

process MSAP_Managerl (1, 1) referenced;

endbl ock Medi um

bl ock Res_Station;
si gnal

AK(Sequencenunber) ,

R

DT(Sequencenunber, | SDUType);
connect | SAP2 and | SAP;
connect MSAP2 and NSAP;

si gnal rout e MSAP
from Coder _Resp to env
with MDATreq;
fromenv to Coder_Resp
wi th MDATI nd,;

signal route | PDU
from Responder to Coder_Resp

22

23

with CC, AK, DR
from Coder _Resp to Responder
with CR DT;

si gnal route | SAP
from Responder to env
with | CONi nd, | DATi nd;
fromenv to Responder
with | CONresp, |ID Sreq;

process Coder_Resp (1, 1) referenced;

process Responder (1, 1) referenced;
endbl ock Res_Station;

process Coder_Ini;

dcl
d | SDUType,
Num Sequencenunber,
Sdu MSDUType;

start;
nextstate Idle;

state ldle;
input CR
task Sdulid := CR
grso :
out put MDATreq(Sdu);
nextstate Idle;
input DT(Num d);
task Sdu!id := DT,
Sdu! Num : = Num
Sdu! Data : = d;
join grso;
i nput NMDATI nd(Sdu);
deci si on Sdu!id;

O

out put CC,
grsl :
nextstate Idle;
AK)

out let AK(Sdu! Num);
join grsi,
DR) :

out put DR
join grsi;
el se :
nextstate Idle;
enddeci si on;
endprocess Coder _I ni;

process Initiator;

dcl

Count er |nteger,

d | SDUType,

Num

Nummer Sequencenunber ;
tine

T

synonym P Duration = 5;

start;
nextstate Di sconnected;

state Di sconnect ed;

i nput | CONreq;
task Counter := 1;
out put CR
set(now + P, T);
nextstate Wait;

input DR
out put | Dl Sind;
nextstate Di sconnected;

state Wait;
i nput CC

24
reset(T);
task Nunmber := 1;
out put | CONconf;
next state Connected;

input T;
deci si on Counter < 4;
(TRUE) :
out put CR

task Counter := Counter + 1;
set(now + P, T);
nextstate Wait;
FALSE) :
out put 1Dl Sind;
next state Di sconnected;
enddeci si on;
input DR
reset(T);
out put | Dl Sind;
next state Di sconnected;

state Connected;

input | DATreq(d);
out put DT(Nunber,
task Counter := 1;
set(now + P, T);
next state Sendi ng;

input DR
out put | Dl Sind;
next state Di sconnected;

d);

state Sending;

input T;
grso :
deci sion Counter < 4;
(TRUE) :
out put DT(Nunber, d);
task Zaehler := Zaehler + 1;

set(now + P, T);
next state Sending;
FALSE) :
out put 1Dl Sind;
next st ate Di sconnected;
enddeci si on;
input AK(Num;
reset(T);
deci si on Num = Nunber;
(FALSE) :
join grso;
TRUE) :

task Number := succ(Nunber);
next st ate Connect ed;
enddeci si on;
input DR
reset(T);
out put | DI Sind;
next state Di sconnected;
save | DATreq;
endprocess Initiator;

process MSAP_Manager 2;

dcl
d MSDUTyp;

start;
nextstate Idle;

state Idle;
i nput MDATreq(d);
deci si on ANY;
(EITHER) :
nextstate ldle;
(OR :
out put | DAT(d);
nextstate Idle;
enddeci si on;
input | DAT(d);
out put MDATI nd(d);
nextstate Idle;
endpr ocess NMSAP_Manager 2;

process MSAP_Manager 1;

dcl
d MSDUType;

25

start;
nextstate Idle;

state ldle;
i nput MDATreq(d);
deci si on ANY;
(El THER)
nextstate Idle;
R -

out put | DAT(d);
nextstate Idle;
enddeci si on;
input | DAT(d);
out put MDATI nd(d);
nextstate Idle;
endpr ocess MSAP_Manager 1;

process Coder_Resp;

dcl
Num Sequencenunber,
Sdu MSDUType;

start;
nextstate Idle;

state ldle;
input DR
task Sdu!id := DR
grso :
out put MDATreq(Sdu);
nextstate Idle;
input CC
task Sdu'id := CC
join grso;
input AK(Num;
task Sdu!id := AK,
Sdu! Num : = Num
join grso;
i nput NMDATI nd(Sdu);
deci si on Sdu!id;
CR) :
out put CR,
grsl :
nextstate Idle;

DT) :
out put DT(Sdu! Num Sdu! Data);
join grsi,
el se :
nextstate Bereit;
enddeci si on;
endprocess Coder _Resp;

process Responder;

dcl
d | SDUType,
Nu

m
Nunber Sequencenunber ;

start;
nextstate Di sconnected;

state Di sconnect ed;
input CR

out put | CONi nd;

nextstate Wait;

state Wait;
i nput | CONresp;
task Number := 0;
out put CC;
next st ate Connect ed;

state Connect ed;
input DT(Num d);
deci si on Num = succ(Number);
(FALSE) :
out put AK(Num);
nextstate Connect ed,

out put " | DATI nd(d);
out put AK(Num);
task Number := succ(Nunber);

26
nextstate Connected;
enddeci si on;
i nput
out put | CONi nd;
nextstate Wait;
endprocess Responder;

3. Formal specification of Inres in Estelle
3.1The Inres service in Estelle

This section describes the Inres service in Estelle. Figure 3.1 gives an overview on the specification. It consists of two
modules User plus the module Service_provider. The Service_provider itsself consists of two modules Initiator and
Responder which define the behaviour at the two service access points. They communicate via the channel INTERNchn.
The specification is very similar to the SDL specification, therefore any comments made there also apply here.

27

specification Inres_Service

module User U_lIni module User U_Res

ip ISAP ip ISAP

channel channel

ISAPchn ISAPchn

ip ISAPIni ip ISAPres
module Serviceprovider D
ip ISAP ip ISAP
ip INTERN ip INTERN
channel

module Initiator | INTERNchn | module Responder R

Figure 3.1

specification Inres_service;
defaul t individual queue;
tinescal e seconds;
type | SDUType = integer; {Pascal type definitions}
channel ISAPchn(User Service);
by User

| DATreq(I SDU : | SDUType);
I Dl Sreq;
by Service :
I CONconf ;
| CONi nd;
I DATI nd(1 SDU : | SDUType) ;
I DI Si nd;
nodul e User systenprocess;
ip | SAP : | SAPchn(User);
body User_Body for User;
nodul e Servi ce_Provi der systenprocess;
ip ISAPini : |SAPchn(Service);
I SAPres : | SAPchn(Service);
body Service_Provi der_Body for Service_Provider;
channel | NTERNchn(I ni, Res);
by Ini :

CON;
| DAT(1 SDU : | SDUType) ;

nodul e Initiator process;
ip USER : | SAPchn(Service);
I'NTERN : | NTERNchn(1 ni):
body Initiator_Body for Initiator;
state DI SCONNECTED, WAI T, CONNECTED;
st at eset
anystate = [DI SCONNECTED, WAI T, CONNECTED ;
ignorel CONreq = [WAI'T, CONNECTED) ;
i gnor el DATreq = [DI SCONNECTED, WAI T];
i gnor el CONF = [DI SCONNECTED, CONNECTED] ;
initialize to D SCONNECTED
trans
from DI SCONNECTED to WAI T {1}
when USER. | CONreq
out put | NTERN. | CON
from DI SCONNECTED to same {2}
when USER. | CO\r eq
out put USER | DI Si nd
fromWAI T to DI SCONNECTED {3}
del ay (5)
out put USER. | DI Si nd
fromWAIT to CONNECTED {4}
when | NTERN. | CONF
out put USER. | CONconf
from CONNECTED to sane {5}
when USER. | DATr eq(| SDU)
out put | NTERN. | DAT(| SDU)
from CONNECTED t o DI SCONNECTED { 6}
when USER. | DATr eq(| SDU)
out put USER. | DI Si nd
fromanystate to DI SCONNECTED {7}
when | NTERN. | DI S
out put USER I DI Si nd

fromignorel CONreq to sane {8}

begi n

end;
end;

end;
begi
end;

begi
end;

begi
end;

begi
end;

begi
end;

begi
end;

begi
end;

28
when USER. | CONreq
fromignorel DATreq to same {9}
when USER. | DATr eq
fromignorel CONF to sane {10}
when | NTERN. | CONF
nodul e Responder process;
ip USER : | SAPchn(Service);
I'NTERN : | NTERNchn(Res) ;
body Responder_Body for Responder;
state DI SCONNECTED, WAI T, CONNECTED;
st at eset

anystate = [DI SCONNECTED, WAI T, CONNECTED) ;
i gnor el CONresp = [DI SCONNECTED, CONNECTED) ;

ignorel CON = [WAI' T, CONNECTED] ;
i gnorel DAT = [V\AIT]
initialize to DI SCONNECTED
trans
from DI SCONNECTED to WAI'T {11}
when | NTERN. | CON
out put USER. | CONi nd
fromWAI T to CONNECTED {12}
when USER. | CONr esp
out put | NTERN. | CONF
fromV\AIT to CONNECTED { 13}
when USER. | CONr esp
from OO\INECTED to sane {14}
when | NTERN. | DAT(| SDU)
out put USER. | DATI nd(| SDU)
from DI SCONNECTED to same {15}
when | NTERN. | DAT(1 SDU)
out put | NTERN. | DI S
from CONNECTED to WAI T {16}
when | NTERN. | CON
out put USER. | CONi nd
fromanystate to DI SCONNECTED {17}
when USER | DI Sreq
output INTERN.ID S
fromanystate to DI SCONNECTED { 18}
when USER. | DI Sreq
fromignorel CONresp to same {19}
when USER. | CONr esp
fromignorel CON to same {20}
when | NTERN. | CON
fromignorel DAT to sane {21}
when | NTERN. | DAT

nodvar
I : Initiator;
R : Responder;
initialize

init I with Initiator_Body;
init Rwth Responder_Body;
attach ISAPini to |.USER
attach I SAPres to R USER
connect |.INTERN to R | NTERN,
nodvar
U Ini,URes : User;
SP : Service_Provider;
initialize
init Ulni with User_Body;
init URes with User_Body;
init SP with Service_Provider_Body
connect U_Ini.|ISAP to SP. | SAPini;
connect U Res.|SAP to SP.| SAPres;

begi n

begin

begin
begi n

end;

begi n

begi n

end;

end;

begi n
end;

begi n
end;

end;

begi n
end;

begin
end;

begi n
end,

begl n

end;

begi n

29

3.2 The Inres protocol and Medium service in Estelle

This section describes the Inres protocol in Estelle. The basic structure of the specification is depicted in Figure 3.2. The
specification is very similar to the SDL specification, therefore any comments made there also apply here.

Specification Inres_Protocol
module User U_Ini module User U_Res
ip ISAP ip ISAP
channel channel
ISAPchn ISAPchn
module ip ISAP module ip ISAP
Station Station
S_Ini S_Res
ipUSER ipUSER
module Initiator | module Responder R
ip PDU ip PDU
T T
channel channel
IPdu IPdu
& -
ip PDU ip PDU
module Coder C module Coder C
ip MSAP ip MSAP
ip MSAP ip MSAP
channel channel
MSAPchn MSAPchn
ip MSAP1 ip MSAP2
module Medium_Service M

Figure 3.2

specification Inres_Protocol;
defaul t individual queue;
ti mescal e seconds;

type | SDUType = integer; {Pascal data type definition. Use integer for conpilation.}

type Sequencenunber = 0..1;
type PduType = (CR, CC, DT, AK, DR);
type MSDUType = record id : PduType;
num : Sequencenunber;
data : | SDUType; end;
channel | SAPchn(User, Station);
by User :
| CONr eq;
| CONr esp;
I DATreq(1SDU : | SDUType);
1 Dl Sreq;
by Station :
| CONconf ;
| CONi nd;
| DATi nd(1 SDU : | SDUType) ;
1 DI Si nd;
channel MSAPchn(Station, Medi um Service);
by Station :
MDATr eq(MSDU : MSDUType) ;
by Medi um Service :
NMDATI nd(MSDU : MSDUType) ;
nmodul e User systenprocess;

ip | SAP : | SAPchn(User); end;
body User _Bodyl for User; end;
body User_Body2 for User; end;

nodul e Medi um Servi ce systenprocess;
ip MSAPL : MBAPchn(Medi um Service);
MSAP2 : MBAPchn(Medi um Service); end;
body Medi um Body for Medi um Service;

30
trans
when MSAP1. MDATr eq(MSDU)
out put MSAP2. MDATi nd(MSDU)
when MSAP2. MDATT eq(MSDU)

when MSAP1. MDATr eq(MSDU) begi n
when MSAP2. MDATr eq(MSDU) begin end;
nmodul e Station systenprocess;
ip ISAP : | SAPchn(Station);
MSAP : MSAPchn(Station);
body Station_lni_Body for Station;
channel [Pdu(lnitiator, Coder);
by Initiator

DT(Num Sequencenunber ; | SDU: | SDUType) ;
by Coder :
CC,

AK(Num Sequencenunber) ;
nodul e Initiator process;
ip USER : | SAPchn(Station);
PDU : IPdu(lnitiator);
body Initiator_Body for Initiator;
var ol ddata : | SDUType;
counter : 0..4;
nunber : Sequencenunber;
function succ(Nunber: Sequencenunber) : Sequencenunber;
if Nunber = 0 then succ :=1

el se succ := 0
state DI SCONNECTED, WAI T, CONNECTED, SENDI NG
st at eset

anystate = [DI SCONNECTED, WAI T, CONNECTED, SENDI NG ;

i gnorel CONreq = [WAI T, CONNECTED, SENDI NG ;

ignorel DATreq = [DI SCONNECTED, WAI T] ;

i gnoreCC = [DI SCONNECTED, CONNECTED, SENDI NG ;

i gnor eAK = [DI SCONNECTED, WAI T, CONNECTED] ;
initialize to D SCONNECTED begin
trans

from DI SCONNECTED to WAI T

when USER. | CONr eq
counter := 0;
out put PDU. CR

fromWAIT to CONNECTED

when PDU. CC
nunber
counter : H
out put USER. | CONconf
fromWAI T
del ay(5)
provided counter < 4
to sanme
out put PDU. CR;
counter := counter + 1

provi ded ot herw se
to DI SCONNECTED
out put USER. | DI Si nd
from CONNECTED to SENDI NG
when USER. | DATr eq(| SDU)
out put PDU. DT(nunber, | SDU) ;
ol ddata : = | SDU
from SENDI NG
when PDU. AK(Num)
provi ded Num = nunber
to CONNECTED
nunber := succ(nunber)
provided (Num <> nunber)
and (counter < 4)

to sane
out put PDU. DT(nunber, ol ddat a) ;
counter := counter + 1

provi ded ot herw se
to DI SCONNECTED
out put USER. I DI Si nd
from SENDI NG

del ay(5)
provided counter < 4
to sane
out put PDU. DT(nunber, ol ddat a) ;
counter := counter + 1

provi ded ot herw se
to DI SCONNECTED
out put USER. | DI Si nd
fromanystate to DI SCONNECTED
when Pl

output USER I DI Si nd
fromanystate to same

when USER. | CONresp begi n

when USER | Dl Sreq begi n
fromignorel CON\req to sane

when USER. | CONreq begin

fromignorel DATreq to sane

begi
end;
begi
end;
end;
end;

end;

n

n

n

n

n

n

n

n

n

n

n

begi n

end;

31
when USER. | DATr eq
fromignoreCC to same
when PDU. CC
fromignoreAK to same
when PDU. AK
nodul e Coder process;
ip PDU : | Pdu(Coder);
MSAP : MSAPchn(Station);
body Coder _Body for Coder;
var MSDU : MSDUType;
trans

MBDU.id := CR

out put MSAP MDATT eq(MSDU)
when PDU. DT(Num | SDU)

MSDU.id := DT,

| SDU,
out put NSAP NDATreq(NBDU)
when MSAP. MDATI nd(MSDU)
case MSDU.id of
CC. out put PDU. CC;
AK: out put PDU. AK(MSDU. num ;
DR out put PDU. DR;

nodvar
I : Initiator;
C : Coder;
initialize

init I with Initiator_Body;
init Cwth Coder_Body;
attach I SAP to |.USER;
attach MSAP to C. NSAP;
connect |.PDU to C. PDU,
body Station_Res_Body for Station;
channel | Pdu(Responder, Coder);

by Responder

AK(Num Sequencenunber) ;
DR;
by Coder
CR;
DT(Num Sequencenunber ; | SDU: | SDUType) ;
nodul e Responder process;
ip USER : | SAPchn(Station);
PDU : | Pdu(Responder);
body Responder _Body for Responder;

state DI SCONNECTED, WAI T, CONNECTED;
var nunber : Sequencenunber;

begi n

function succ(Nunber: Sequencenunber) : Sequencenunber;

if Nunmber = O then succ :=1
el se succ := 0
st at eset
anystate = [DI SCONNECTED, WAI T, CONNECTED] ;
i gnorel CONresp = [DI SCONNE
ignoreCR = [WAIT];
i gnor eDT = [DI SCONNECTED, WAI T] ;
initialize to DI SCONNECTED
trans
from DI SCONNECTED to WAI T
when PDU. CR
out put USER. | CONi nd
fromWAIT to CONNECTED
when USER. | CONr esp
nunber := 0;
out put PDU. CC
from CONNECTED to sane
when PDU. DT(Num | SDU)
provi ded Num = succ(nunber)
out put USER. | DATi nd(1 SDU) ;
out put PDU. AK(Num) ;
nunber := succ(nunber)
provi ded Num = nunber
out put PDU. AK(Num
from CONNECTED to WAI T
when PDU. CR
out put USER. | CONi nd
fromanystate to DI SCONNECTED
when USER. | DI Sreq
out put PDU. DR
fromanystate to same
when USER. | CONreq
when USER. | DATr eq
fromignorel CONresp to same
when USER. | CONr esp
fromignoreCR to same
when PDU. CR
fromignoreDT to same
when PDU. DT
nmodul e Coder process;
ip PDU : | Pdu(Coder);
MSAP : MSAPchn(Station);

CTED, CONNECTED) ;

begin

begi n
begi n

end;

begi n
begi n

begi n
begi n

end;

begi n

end;
begi n

end;
begi n

begi n
begi n

begi n

begi n

begi n

begi n

begi n

end;

end;

32
body Coder _Body_Res for Coder;
var MSDU : MSDUType;
trans

MBDU.id := CR

out put MSAP. NDATT eq(MSDU)
when PDU. AK(Num)

MSDU.id : = AK;

MSDU. num :

out put NBAP NDATreq(NBDU)
when PDU,

NSDU |d = DR;

out put NMSAP. MDATT eq(MSDU)
when MSAP. MDATi nd(MSDU)

case MSDU.id of

CR out put PDU. CR;
DT: out put PDU. DT(MSDU. num MSDU. dat a) ; end;
nodvar
R : Responder;
C : Coder;
initialize

init Rwth Responder_Body;
init Cwth Coder_Body_Res;
attach |1 SAP to R USER,
attach MSAP to C. MBAP;
connect R PDU to C. PDU, end;
nodvar
U Ini,URes : User;
S Ini,S Res : Station;
M: Medium Service;

initialize
init Ulni with User_Bodyl;
init URes with User_Body2;
init S_Ini with Station_Ini_Body;
init S_Res with Station_Res_Body;
init Mw th Medi um Body;
connect .ISAPto S_Ini.|SAP;

U_I ni
connect UResISAPIOSRESISAP
connect M MBAPL to S_Ini.MSAP;

connect M MSAP2 to S_Res. MBAP; end;

4. Formal specification of Inres in LOTOS

4.1The Inres service in LOTOS

begi
end;
begi
end;
begi
end;
begi

end;

begi

begi

n

end;

This section describes the Inres service in LOTOS. The specification style is constraint oriented [VSS88]. Constraints
specify parts of the total behaviour of a system which are combined via the parallel operator. In the following example

there are three constraints which define the

- behaviour at the service access point ISAPini (ICEPini)
- behaviour at the service access point ISAPres (ICEPres)
- end-to-end behaviour related to the events at the service access points (EndtoEnd)

The sequences of events ICEPini, ICEPres and EndtoEnd are first defined independently from each other. Then they are

coordinated by the parallel operator to define the overall behaviour of the system.

specification I nres_service[lSAPini, | SAPres]: noexit
type | SDUType is

(* library Bool ean type is not necessary *)

sorts | SDU
opns datal, dat a2, dat a3, dat a4, data5: -> | SDU
endtype (* |SDUType *)

type InresSpType is | SDUType
sorts SP
opns | CONreq, | CONi nd,
| CONr esp, | CONconf ,
IDISreq, 1D Sind : -> SpP
| DATreq, IDATind : ISDU -> SP
endtype (* InresSpType *)

behavi our
(1 CEPi ni [1 SAPi ni]
1]
| CEPr es[| SAPr es]

Ll
Endt oEnd[| SAPi ni , | SAPr es]

33
wher e

process | CEPini[g] :noexit:=
(Connecti onphasel ni [g]
>>

Dat aphasel ni [g]

>
Di sconnectionl ni [g]

wher e

process Connectionphaselni[g] :exit:=
g! |1 CONreq;
g! 1 CONconf;
exit

endproc (* Connectionphaselni *)

process Dataphaselni[g] :noexit:=
g! | DATreq? par:|SDU;
Dat aphasel ni [g]

endproc (* Dataphaselni *)

process Disconnectionlni[g] :noexit:=
g! 1 DI Si nd;
I CEPi ni [g]

endproc (* Disconnectionlni *)

endproc (* I|CEPini *)

process | CEPres[g] :noexit:=
(Connecti onphaseRes[g]
>>

Dat aphaseRes[g]

[>
Di sconnecti onRes[g]

wher e

process Connecti onphaseRes[g] :exit:=
g! | CONi nd;
g!' | CONresp;
exit

endproc (* ConnectionphaseRes *)

process DataphaseRes[g] :noexit:=
g! | DATi nd? par: | SDU;
Dat aphaseRes| g]

endproc (* DataphaseRes *)

process Di sconnectionRes[g] :noexit:=
g! | DI Sreq;
| CEPres

endproc (* DisconnectionRes *)

endproc. (* | CEPres *)

process EndtoEnd[ini,res] :noexit:=
(ConnectionphaseEte[ini,res]
>>
Dat aphaseEt e[i ni, res]

>
Di sconnecti onEte[ini,res]

wher e
process ConnectionphaseEte[ini,res] :exit:=

(ini! 1CONreq;
res! | CONi nd;

exit

)

|11

(res! |1 CONresp;
ini! | CONconf;
exit

)
endproc (* ConnectionphaseEte *)

process DataphaseEte[ini,res] :noexit:=
ini! |1 DATreq? par:|SDY,
res! | DATi nd! par:|SDY,
Dat aphaseEt e[i ni, res]

endproc (* DataphaseEte *)

process DisconnectionEte[ini,res] :noexit:=
res! 1D Sreq;

34
ini! 1D Sind;
F]ndt oEnd[i ni, res]

i; (* termination by provider *)

ini! 1D Sind;
Endt oEnd[i ni , res]
endproc (* DisconnectionEte *)
endproc (* EndtoEnd *)

endspec (* Inres_service *)

4.2 The Inres protocol and Medium service in LOTOS

This section describes the Inres protocol and Medium service. While the Inres service specification was constraint
oriented, this specification is state oriented according to [VSS88]. Fig. 4.1 depicts the basic architecture of the example.

ISAPini ISAPres
process
Inres_
Protocol
process process
Station_ Station_
Ini Res
Pr.o_cess Process
Initiator Responder
IPdu IPdu
process process
Coder Coder
MSAP1 MSAP2
process
Medium

Figure 4.1 Basic architecture of the Inres protocol in LOTOS

speci fication Inres_Protocol [1SAPi ni, | SAPres]: noexit

library Bool ean
endlib

type DecNunb is Bool ean
sorts DecNunb

opns
: -> DecNunmb
: DecNunb -> DecNunmb
2,3,4,5,6,7,8,9 : -> DecNunb
<
_ T>=, _>_ : DecNunb , DecNumb -> Bool

eqns forall x,y: DecNumb
of sort Bool

35

X <=y = (x<y) or (>< ==y),

X >y =not (x <y) ;

X >y =not (x <=y);

of sort DecNunb

1 =5s(0);

2 = s(s(0));

3 = 5(s(s(0)));

4 = s(s(s(s(0))));

5 = s(s(s(s(s(0)))));

6 = s(s(s(s(s(s(0))))));

7 = s(s(s(s(s(s(s(0)))))));

8 = s(s(s(s(s(s(s(s(0)))))))):

9 = s(s(s(s(s(s(s(s(s(0))))))))):
endtype (* DecNunb *)

type | SDUType is

sorts | SDU

opns dat al, dat a2, dat a3, dat a4, data5 : -> | SDU
endtype (* |SDUType *)

type Sequencenunber is Bool ean
sorts Sequencenumber

opns
0 : -> Sequencenunber
1 : -> Sequencenunber
succ 1 Sequencenunber -> Sequencenunber
eq, _ne_ : Sequencenunber, Sequencenunber -> Bool

eqns forall a,b : Sequencenunber
of sort Sequencenunber

succ(0) =
succ(1l) =

of sort Bool

0 eq O = true;
leql=true

0 eq 1 = fal se;
1 eq 0 = fal se;
0 ne 1 =true;

1 ne 0 = true;

0 ne 0 = fal se;
1 ne 1 = false;
(*aeqb =beqa;
aneb=~>bne a;
a eq a = true;

a ne a = false;*)

endtype (* Sequencenunber *)
type InresSpType is Bool ean, | SDUType, DecNunb

sorts SP

opns
| CONr eq, | CONconf, | DI Si nd,
| CONi nd, | CONresp, | DI Sreq : -> SP
1 DATr eq, | DATi nd : 1ShU -> SP

i sI CONreq, i sl CONconf, i sl DI Si nd, i sl DATr eq,

i sI DATi nd, i s| CONi nd, i s| CONr esp, |sID|Sreq SP -> Bool
dat a SP -> 1SDU
nmap © SP -> DecNumb

eqns forall d: 1SDU, sp: SP
of sort DecNunb

map(| CONr eq)
map(| CONconf)
map(| DI Si nd)
map(| DATreq(d))
nap(| DATi nd(d))
map(| CONi nd)
map(| CONr esp)
map(| DI Sreq)

of sort |1SDU
data(1 DATreq(d)) = d;
data(l DATi nd(d)) = d;

of sort Bool
isl CONreq(sp) = map(sp) == O;
i sl CONconf (sp) = map(sp) 1;
isI Dl Sind(sp) = map(sp) 2;
i sl DATreq(sp) = map(sp) 3;
i sI DATi nd(sp) = map(sp) 4;
i sI CONi nd(sp) = map(sp) 5;
i s| CONresp(sp) = nmap(sp) 6;
islDlSreq(sp) = map(sp) == 7;

endtype (* Inr esSpType *)

type | PDUType is Bool ean, |SDUType, DecNunb, Sequencenunber
sorts | PDU
opns

36
CR, CC, DR : -> | PDU
DT : Sequencenunber, | SDU -> | PDU
AK : Sequencenunber -> | PDU
i sCR,isCC,isDT,
i SAK, i sDR : 1 PDU -> Bool
data : | PDU -> | ShU
num : | PDU -> Sequencenunber
map : IPDU -> DecNunb

eqns forall f: Sequencenunber, d : ISDU, ipdu : |PDU
of sort DecNunb

of sort | SDU
data(DT(f,d)) = d;

of sort Sequencenunber
nun(DT(f,d)) = f;
nun(AK(f)) = f;

of sort Bool
i SCR(i pdu) = map(i pdu)
i sCC(i pdu) = map(i pdu)
i sDT(i pdu) = map(i pdu)
|5AK(| pdu) = map(i pdu)

SDR(i pdu) = map(i pdu)
endlype (* 1 PDUType *)

type Medi unSpType is Bool ean, | PDUType, DecNunb
sorts MSP

opns
IVDATr eq, MDATI nd : I PDU -> MSP
i SMDATr eq, i SMDATI nd : MBP -> Bool
data : MSP -> | PDU
nap : MBP -> DecNunb

eqns forall d : IPDU, sp : MSP
of sort DecNunb

map(MDATr eq(d))

map(MDATI nd(d))

o
Lo

of sort | PDU
dat a(MDATr eq(d))
dat a(MDATi nd(d))

of sort Bool
i SMDATreq(sp) = map(sp) ==
i SMDATI nd(sp) = nap(sp) ==
endtype (* MediunSpType *)

o®

behavi our
hi de MSAP1, MSAP2 in
Station_| ni[| SAPi ni , MSAP1]
| [MBAP1] | Medi un{ NBAP1, MSAP2
| [MBAP2] | Station_Res[MBAP2, | SAPr es]

process Medi um [MSAP1, MSAP2] :noexit:=
Channel [MSAP1, VBAP2]
||| Channel [MSAP2, MSAP1]

wher e
process Channel [a, b] :noexit:=
a?d: MSP [i sSMDATreq(d)];
('b! MDATi nd(d) ; Channel [a, b]
[1i; Channel [a, b])
endproc (* Channel *)
endproc (* Medium *)

process Station_|ni[lSAPini, MSAP1] :noexit:=

hide IPdu_ini in
Initiator[lSAPini, | Pdu_ini]

| [1Pdu_ini]| Coder[!|Pdu_ini, MSAP1]

wher e

process Initiator[lISAP, | Pdu] :noexit:=
(Connecti onphase[| SAP, | Pdu

>>Dat aphase[| SAP, | Pdu] (succ(0)))

[>Di sconnection[| SAP, | Pdu]

wher e
process Connectionphase[| SAP, | Pdu] :exit:=

Connect request [| SAP, | Pdu]
>>accept z:DecNunmb in Wait[lSAP, | Pdu] (z)

37
wher e

process Connectrequest[|SAP, | Pdu] :exit(DecNunb): =
(1 SAP?sp: SP; ([i sl CONreq(sp)]->IPdu! CR; exit(s(0))
[1[not (i sl CONreq(sp))]->Connectrequest[|SAP, | Pdu])
(* User errors are ignored *)
[11Pdu?i pdu: | PDU not (1 sDR(i pdu))]; Connectrequest [| SAP, | Pdu])
(* DRis only accepted by process Disconnection *)
(* Systemerrors are ignored *)
endproc (* Connectrequest *)

process Wi t[lSAP, | Pdu] (z: DecNunmb) :exit:
(1 Pdu?i pdu: I PDU[not (i sDR(i pdu))]; ([|sd)(|pdu)]
SAP! | CONconf ; exi t
[][not(lscc(lpd)]
| SAP, | Pdu] (z))
(* DRis only accepted by process Dsconnectlon *)
(* Systemerrors are ignored *)
[1i;([z < 4] >| Pdu! CR; Wi t [| SAP, | Pdu] (s(z))
[][4] >| SAP! | DI Si nd; Connect i onphase[| SAP, | Pdu])
(* Ti meout *
[11SAP?sp: SP[nol(lsIDISl nd(sp))] Wi t[| SAP, | Pdu] (z))
* User errors are ignored *)
endproc (* Wait *
endproc (* Connectionphase *)

process Dat aphase[| SAP, | Pdu] (nunber : Sequencenunber) :noexit:=
Readyt osend[| SAP, | Pdu] (nunber)
(* 1is the first Sequencenunber *)
>>accept z: DecNunb, nunber : Sequencenunber, ol ddat a: | SDU
in Sending[| SAP, | Pdu] (z, nunber, ol ddat a)
(* z is number of sendings. At the beginning z=1 *)
wher e
process Readytosend[| SAP, | Pdu] (nunber : Sequencenurrber)
exi t (DecNunb, Sequencenunber, | SDU) :
(1 SAP?sp: SP;
([isIDATreq(sp)]
->| Pdu! DT(nunber, Dat a(sp)); exi t (s(0), nunber, Dat a(sp))
[1[not (i sl DATr eq(sp))] >Readyt osend[1 SAP, | Pdu] (nurrber))
[11 Pdu?i pdu: | PDU[not (i sDR(l pdu))] ; Readyt osend[| SAP, | Pdu] (nunber))
endproc (* Readytosend *)

process Sendi ng[| SAP, | Pdu]
(z: DecNunb, nunber : Sequencenunber, ol ddat a: | SDU) : noexi t: =
(1 Pdu?i pdu: | PDU[not (i sDR(i pdu))];
([isAK(ipdu) and (nungi pdu) eq nunber)]
- >Dat aphase [SAP, | Pdu] (succ(nunber))
[1[i sAK(i pdu) and (nun(i pdu) ne nunber) and (z < 4)]
u! DT(nunber, ol ddat a) ;
Sendi ng[| SAP, | Pdu] (s(z), nunber, ol ddat a)
(* The Initiator shall not resend nore than 4 times in case of *)
(* faulty transm ssion *)
[1[1sAK(ipdu) and (nun(ipdu) ne nunber) and (z == 4)]
->| Pdu! DR; | SAP! | DI Si nd; I ni tiator[| SAP, | Pdu]
[1[not (i sAK(i pdu))]->Sendi ng[| SAP, | Pdu] (z, nunber, ol ddat a))
[1i;([z < 4]->IPdu! DT(nunber, ol ddat a) ;
Sendi ng[| SAP, | Pdu] (s(z), nunber, ol ddat a)
[1[z == 4]->ISAP' I DI Sind; Initiator[|SAP, | Pdu])
[11 SAP?sp: SP[not (i sl DATreq(sp))]
Sendi ng[| SAP, | Pdu] (z, nunber, ol ddat a))
endproc (* Sending *)
endproc (* Dataphase *)

process Di sconnection[|SAP, | Pdu] : noexit: =
1 Pdu! DR; | SAP! 1 DI Si nd; I ni tiator[I| SAP, | Pdu]
endproc (* Disconnection *)
endproc (* Initiator *)

process Coder[| Pdu, MSAP] :noexit:=
(1 Pdu?i pdu: | PDU; MSAP! MDATT eq(i pdu) ; Coder [| Pdu, MSAP]
[1 MSAP?sp: MBP; | Pdu! dat a(sp) ; Coder [| Pdu, MSAP])
endproc (* Coder *)
endproc (* Station_Ini *)

process Station_Res[MSAP2, | SAPres] :noexit:=
hide IPdu_res in
Responder [| SAPr es, | Pdu_r es]
| [1 Pdu_res] | Coder [| Pdu_r es, MSAP2]

wher e
process Responder[| SAP, | Pdu] : noexi t:
(Connect i onphase[| SAP, | Pdu]
>>Dat aphase[| SAP, | Pdu] (succ(1)))
[>Di sconnecti on[| SAP, | Pdu
wher e

process Connectionphase[| SAP, | Pdu] :exit: =
Connect request [| SAP, | Pdu]

38
>>Wi t [1 SAP, | Pdu]

wher e

process Connectrequest[|SAP, | Pdu]:exit:=
(1 Pdu?i pdu: I PDU; ([i sCR(i pdu)]->] SAP! | CONi nd; exi t
[1[not (i sCR(ipdu))]->Connectrequest[| SAP, | Pdu])
(* Systemerrors are ignored *
[11 SAP!'| CONr esp; Connect request [| SAP, | Pdu])
(* User errors are ignored *)
endproc (* Connectrequest *)

process Wait[1SAP, | Pdu] :exit:=
(1 Pdu?i pdu: | PDU; Wai t [1 SAP, | Pdu]

(* Systemerrors are ignored *)
[11SAP! I CONresp; | Pdu! CC; exi t)
endproc (* Wait *)

endproc (* Connectionphase *)

process Dataphase[| SAP, | Pdu] (nurber : Sequencenumber) : noexi t: =
* nunber is the |ast acknow edged Sequencenumnber *)
(1 Pdu?i pdu: | PDU; ([i sDT(| pdu) and (nun(ipdu) eq succ(nunber))]
| SAP! | DATi nd(dat a(l pdu)) ; | Pdu! AK(nun(i pdu));
Dat aphasel[| SAP, | Pdu] (succ(nurrber))
[1[i SDT(I pdu) and (nun(i pdu) eq nunber)]
Pdu! AK(nun(i pdu));
Dat aphase[| SAP, | Pdu] (nunber)
[1[isCR(ipdu)]- >| SAP! | CON nd; Wai t [| SAP, | Pdu]
[1 [not(l SDT(I pdu) or isCR(ipdu))]
Dat aphase[| SAP, | Pdu] (nun‘oer))
[11 SAP! | CONr esp; Dat aphase[| SAP, | Pdu] (nunber))
(* User errors are i gnored *)
wher e

process Wait[I SAP, | Pdu] : noexit: =
(1 Pdu?i pdu: | PDU; Wai t [| SAP, | Pdu]
(* Systemerrors are ignored *)
[11 SAP!'I| CONr esp; | Pdu! CC; Dat aphase[| SAP, | Pdu] (succ(1)))
endproc (* Wit *
endproc (* Dataphase *)

process Di sconnection[lSAP, | Pdu] :noexit:=
| SAP! | DI Sreq; | Pdu! DR; Responder [| SAP, | Pdu]
endproc (* Disconnection *)
endproc (* Responder *)

process Coder[| Pdu, MSAP] :noexit:=
(1 Pdu?i pdu: | PDU; MBAP! MDATr eq(i pdu) ; Coder [| Pdu, NBAP]
[1 MBAP?sp: MBP; | Pdu! dat a(sp) ; Coder [| Pdu, MSAP])
endproc (* Coder *
endproc (* Station_Res *)
endspec

5. Experiences and evaluation

The specifications have been ckecked by tools and by thorough review. This of course doesn't exclude the possibility of
errors. The specifications appear to be fairly "correct" as far as syntax and the specified behaviour are concerned. But
since the term "correct" has many meanings in the context of semantics the author is aware of the fact that there may still
be problems with the specifications and is happy about any comment. In particular, it wasn't possible to formally verify
the protocol specifications against the service specifications, also due to the fact that it is not really clear what
verification means in this context. What kinds of equivalence relation should hold between service and protocol?

The LOTOS specifications have been syntactically checked with the Hippo tool [VEI88]. The sematics have been
checked by performing a limited number of simulation experiences on the specification with the same tool.

The syntax of the Estelle specifications has been checked with the Estelle-C compiler [CHA87] and also some
experiments have been performed on the specifications by simulation.

The SDL specifications have been check by thorough review. Many comments have been received from readers of
[HOGB89] after the first publication of the specification of Inres. Some of the comments lead to corrections in the
specification.

It has been experienced during the specification process that the differences between the three languages are not very
big. The SDL and Estelle specifications could almost be translated one to one into another. Differences are mainly due
to the different input port semantics of the two languages. SDL only has one input port per process and discards
unexpected signals, while in Estelle any number if input ports per process are possible and unexpected messages may
lead to deadlock.

39
The LOTOS specification of the Inres protocol has been produced according to the state oriented approach [VSS88].
This makes it very similar to the SDL and Estelle specifications of the Inres protocol. Many of the state names in SDL
and Estelle appear as process names in the LOTOS specification. The Inres service specification on the other hand is
constraint oriented. This makes it fundamentally different to the SDL and Estelle specifications of the Inres service.

6. References

[BHS91] Belina, F., Hogrefe, D., Sarma, A.: SDL with applications from protocol specification, Prentice-Hall,
1991

[BHT88] Belina, F., Hogrefe, D., Trigila, S.: Modelling OSI in SDL (in Turner: Formal Description
Techniques, North-Holland, Amsterdam, 1988)

[BRO87] Broy, M. et al: A stream function definition of MASCOT. System Designers, Software Technology
Centre, Final Report, 1987.

[CHAS8T] Chan, |.: Estelle-C compiler, Version 2.0, University of British Columbia, 1987.

[GOTI1] Gotzhein, R.: Specifying Communication Services with Temporal Logic (in Logrippo, L. et al (eds.):
Protocol specification, testing and verification X), North-Holland, 1991.

[HOG89] Hogrefe, D.: Estelle, LOTOS und SDL, Springer Verlag, 1989.

[ISO 7498] 1SO TC97/SC21: Basic Reference Model (ISO/IS 7498, 1984)

[ISO 8807] ISO TC97/SC21: LOTOS - A Formal Description Technique Based on the Temporal Ordering of
Observational Behaviour (ISO/IS 8807, 1988)

[ISO 9074] 1SO TC97/SC21: Estelle - A formal description technique based on an extended state transition model
(1SO/IS 8807, 1988)

[SPI89] Spivey, J.M.: The Z notation, Prentice-Hall, 1989.

[TR 8509] 1SO TC97/SC21: OSI Service Conventions (ISO/TR 8509, 1987)

[TR 10167] 1SO TC97/SC21: Guidelines for the application of Estelle, LOTOS and SDL (1SO TR 10167, 1990)

[VEI88] van Eijk, P.: Software tools for the specification language LOTOS, Twente University, 1988.

[VSS88] Vissers, C., Scollo, G., van Sinderen, M.: Architecture and specification style in formal descriptions of

distributed systems (in Aggarwal, S., Sabnani, K.: Protocol specification, testing and verification
VII1), North Holland, 1988

[z100] CCITT Recommendation Z.100: Specification and Description Language SDL (Blue Book, Volume
X.1-X.5,1988, ITU General Secretariat - Sales Section, Places des Nations, CH-1211 Geneva 20)

