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he development of a complex software system, be it a
safety-critical control program or the entire protocol

stack of a complex information processing system, is an engi-
neering discipline, consisting of a sequence of tasks, leading
from the prototype to the code. It comprises the capturing of
system requirements, service description, SW/HW partition-
ing, performance prediction, design and implementation of
the software components.

Traditionally the development process is carried out in an
informal way, relying on informal textual documentation,
graphical description techniques, and structural analysis and
design. Informal methodologies, lacking any scientific founda-
tion, lead to ambiguous definitions of the desired features and
offer no means to prove the completeness and consistency of
the system design and implementation. Error checking is car-
ried out with conformance testing, based on heuristic test-
suites whose coverage decreases with system complexity. If
faults are encountered, the code or even the entire develop-
ment process shall be reviewed, thus delaying commercial
release. If testing fails and functional errors appear after com-
mercialization, the financial cost can be immense. The final
check is often covered by human expertise (by means of peer-
reviews, walk-throughs, and informal inspection), which can-
not eliminate the chance that errors will appear during system
operation.

Conversely, a rigorous approach to system design and

implementation can be accomplished with the adoption of
mathematically-based techniques, which enable the introduc-
tion of rigorousness and reliability into the various steps of
the development process. Such techniques are called formal
methods (FM) and represent the theoretical foundation of
software engineering methods in the same way classical
mechanics supports civil engineering. As in any other engi-
neering discipline, in addition to a few technical issues that
can be addressed with mere practical experience, there are
critical aspects that require scientific, hence “formal,” quan-
tification and resolution, whose added value is the mathemati-
cally supported correctness of the results.

The need for such tools in software engineering has long
been recognized (see [1] for an early introduction). In the last
three decades research in computer science strongly contribut-
ed to the definition and formalization of formal description
techniques (FDT). Several formalisms and related automatic
tools have been developed and are currently available (for a
comprehensive list of notations, methods, and tools see [2]).
Within the wide spectrum of formal techniques, this tutorial
focuses on a selected subset of FDTs, which represents, either
for historical reasons or recently achieved popularity, the
essential state of the art in the field of communication systems
and protocols.
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FORMAL METHODS IN PROTOCOL ENGINEERING

Though it can speed up the development process and give
more confidence in the final implementation, the formal
approach to communication protocols is neither widespread
nor well established. One of the main objections to the adop-
tion of formal methods in the industrial world is that their
indisputable merits are counterbalanced by the high costs in
terms of time and resources incurred by users, costs that are
required to become familiar with the technique. Actually,
learning a specification language is as difficult as learning a
programming language, because the number of syntactic oper-
ators is similar and no particular mathematical background is
required. By means of a theoretical introduction and practical
examples, this tutorial aims to introduce the main formal
methods and illustrate how protocol development can be con-
veniently managed with the help of formal techniques and, by
refering to up-to-date applications in the field of communica-
tion protocols, to expand the interest and trust in such an
approach.

APPLICATION FIELDS OF FORMAL METHODS

When adopted in the critical steps of the code development
process (validation, verification, testing), FMs can help in sys-
tematically producing highly reliable software with costs and
time consumption that are comparable to traditional methods,
but which can be capitalized in software maintenance and
reuse [3]. However, as the history of successful industrial pro-
jects has taught [4, 5], FMs wll not replace traditional devel-
opment techniques, but rather integrate them with additional
insight into the system’s behavior, early error detection,
unambiguous documentation and, for high-integrity systems,
mathematical correctness proofs. More precisely, the main
applications of FM in the steps of SW development are:
• System specification: A formal approach to system

requirements enables unambiguous detection of the main
features that embody the service definition and the sys-
tem behavior.

• Validation and verification: High-level formal prototypes
result in executable specifications,1 which can be simulat-
ed and checked for proper behavior by means of model-
checking [6].

• Functional testing: Conformance or interoperability test-
ing can be carried out with optimal test suites that are
produced from a formal model of the system behavior [7].

• Rapid prototyping: Reliable source code can be produced
in an automatic (although not yet efficient) manner
thanks to the provably correct mapping between the syn-
taxes of specification and programming languages.

• Performance testing: Performance measures are usually
obtained with simulation or theoretical investigation. A
quantitative analysis of the implementation efficiency in
the presence of stochastic phenomena can be obtained if
formal prototypes are automatically linked to perfor-
mance models.

Model-checking routines perform validation of the system
behavior starting from a mathematical definition of the prop-
erties to be checked, by verifying that the required properties
are valid in all the reachable states and the execution
sequences of the equivalent dynamic model. The state space
size of such a model depends on the number of concurrent
processes, the number and range of the internal variables, the
type of the exchanged messages, and the nature of the com-
munication (i.e., the possibility of message queuing and the
maximum number of stored messages). If the state space size
is too large to allow exhaustive exploration (state space explo-
sion problem), partial validation can be performed on a subset
of execution sequences, selected either randomly or according
to user-defined criteria (by user-defined constraints on the
range of local variables or by neglecting parameters that do
not affect system behavior).

Validation concerns originally the logical consistency of
communication rules and internal data processing (the
absence of deadlocks, non-progressive loops, invariance viola-
tions). Full analysis of reactive systems also requires validation
of temporal properties on timed models, which is usually car-
ried out with model-checking of temporal logic formulas
(TLF). TLFs specify a requirement on the relative order of
events in the system behavior and are expressed in a notation
called Linear Temporal Logic.

Besides interaction with their environment, real-time sys-
tems are affected by time elapsing: in order to deal with the
density of time, a finite number of temporal intervals (called
temporal regions) can be envisaged where the system behavior
is invariant; within this assumption, the equivalent state space
is finite and complete model-checking of logical and temporal
properties can be executed on it.

Not all FDTs support all the above mentioned concepts
and application domains: FMs are based on different theoreti-
cal models (state machine, process algebra, Petri nets, etc.)
and philosophies (i.e., they can be more abstraction-oriented
or implementation-oriented), which affect the extensibility of
the methods and the scope of their application.

Tool support is another relevant factor that affects the
practical applicability of FMs. In this regard, it shall be
observed that the majority of FM-based tools have been
developed by universities, because academia has long been the
depository of FM theory and practice; for a few better-estab-
lished FDTs, commercial packages are also distributed. Obvi-
ously there is a gap between the performance of the two
families of tools: commercial packages often offer a general-
purpose environment, whose high costs discourage wide
acceptance by the medium to small business and the academic
target. Freeware packages usually address a particular design
problem and have the advantage of offering optimized and
efficient solutions, often on a graphical user interface, a fea-
ture that is necessary to promote wider acceptance in the
industrial world.

The FDTs reviewed in this article have been selected based
on the availability of adequate freeware tool support, in order
to provide the non-practitioner who intends to approach FMs
with introductory information on appropriate and practicable
solutions to address the various steps of software development
with a formal approach.

ORGANIZATION OF THE TUTORIAL

This article is a tutorial description of FMs for communica-
tion protocols, where a common framework is used to intro-
duce the reader to the most popular notations. After an
introduction to the formalisms and the mathematical princi-
ples exploited, each technique is illustrated by the specifica-

1 In most formal approaches for communicating processes, the system
specification can be translated into a dynamic model (e.g., finite state
machine), which can be “animated” with a set of stimuli. Some formal
methods for sequential and distributed algorithms (which are outside the
scope of the present tutorial) result in a static representation of the process
of implementation, through progressive refinements of the system features.
This kind of specifications are not executable; the correctness can be veri-
fied theoretically by proving (with computer-assisted tools) that each
refinement step from high-level formal specification to the final implemen-
tation preserves the required properties.
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tion of the go-back-N ARQ protocol. An overview of avail-
able automatic tools is then presented and critical conclusions
on both methods and tools are finally drawn, based on appli-
cation examples taken from the literature and from the
authors’ experiences.

The FDTs are ordered according to the operational model
on which they rely (finite state machine, process algebra, Petri
Nets, timed automata). Although timed automata are the
timed-version of finite state machine, they are introduced sep-
arately as the only method supporting model-checking of real-
time systems. The majority of the selected FTDs are based on
state machines, because of their familiarity in many branches
of electrical engineering and their natural correspondence

with communication protocol. The other operational models
that are illustrated in the article are less intuitive but have
equal capabilities in terms of description and analysis.

Fore the sake of completeness, a short paragraph is devot-
ed to two more notations, MSC and UML, which are quite
popular in telecommunications. The latter, in particular, has
gained widespread diffusion thanks to the object-oriented
modeling features it provides. Although the FMs that are
illustrated in this tutorial do no support the object-oriented
approach (with some exceptions that are noted), they can be
integrated within an object-oriented modeling framework, for
example, to model and validate the dynamic behavior of spe-
cific communication entities.

A final paragraph summarizes the
main advantages of the formal approach
and formulates critical conclusions on the
most appropriate application domains for
each of the discussed methods.

SDL
SDL (Specification and Description Lan-
guage) is a formal notation evolved and
standardized between 1976 and 1992 by
ITU-T [8]. Several updated versions have
been issued since then (SDL-2000 is the
latest), following the object-oriented
approach that has been tailoring the
development of software engineering and
programming languages in the last few
years. SDL is a high-level general-pur-
pose description language for event-driv-
en, real-time and communicating
systems; telecommunication systems and
protocols are one of its main application
fields [9].

The effectiveness and the intuitive
graphical format of SDL have won it a
widespread popularity in both the aca-
demic and industrial sectors and have led
the standardization institutes, that is,
ETSI (European Telecommunications
Standards Institute) and 3GPP (Third
Generation Partnership Project), which
is the international body responsible for
UMTS (Universal Mobile Telecommuni-
cations System) standardization, to
include SDL diagrams in their official
specification documents.

SYNTAX

SDL is based on Finite State Machines
(FSM), a standard technique for studying
reactive systems that dates back to the
1950s with Turing, Moore and Mealy
machines. The system described by an
SDL specification is actually an Extend-
ing Communicating Finite State Machine
(ECFSM), because it consists of a set of
concurrent processes, extended with vari-
ables and data space, which communi-
cate by exchanging control signals
(abstract stimuli) or structured messages
(signals associated with parameters) on
finite-length asynchronous channels.■ TABLE 1. Basic SDL graphical syntax.
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In system specification, structural and functional
aspects are distinguished. The system architecture is
sketched by deploying the building blocks (possibly in a
hierarchical/modular way) and the channels connecting
them and by declaring the signals exchanged on each com-
munication path. The behavior of each basic block is
detailed by editing the internal processes in accordance
with their required operations. The association among
blocks and processes is accomplished in the block dia-
gram, which contains the declaration of the processes (one
or more for each block) and the routes connecting each
process to other internal processes (if any) or to the block’s
interface.

Similar to a traditional FSM, SDL processes are character-
ized by a finite number of “macro” control states (which can
be compositionally refined in SDL-2000) connected by a finite
number of transitions. The transitions can be triggered by the
reception of an input signal (possibly subject to so called
enabling conditions, i.e., guard conditions on the current data
values of the process), by the expiring of a previously set
timer, or by the validity of a specified condition on the current
value of the state variables (continuous signal). Within the
execution of an enabled transition, a set of tasks (signal send-
ing, procedure or macro calls, process instantiation, variable
updating, evaluation of choices with multiple output branches,
etc.) is performed. The execution of the transitions leads to a
final state that, when equal to the originated one, is denoted
as “same state.”

SDL supports non-determinism (i.e. ANY concept, repre-
senting an alternative of equally possible actions), which can
be useful to describe uncertainty in the environment and to
validate accordingly all possible reactions of the system.

SDL graphical syntactical constructs are illustrated in
Table 1.

DATA TYPES

Processes can handle local variables and parameters of differ-
ent data types. The data type concept in SDL was originally
based on axiomatic definitions of Abstract Data Types (ADT),
defined by the set of possible values and the operations that
can be executed with them. With ADT it is possible to charac-
terize types through inheritance, thus avoiding redundant
redefinition of common operators, and to define parametric
data types, i.e., type generators, used for example to define
arrays of elements of any type, whose index can be of any type
supporting internal ordering. Due to the complexity of ADT,
a set of predefined data types and type generators are provid-
ed. In addition, SDL tools provide compatibility with ASN.1
(Abstract Syntax Notation 1, a formal notation for abstract
data types widely used in the specification of PDU formats),
and support object data and algorithmic definition of opera-
tors (SDL-2000).

COMMUNICATION IN SDL

In SDL, communication on the bidirectional routes that con-
nect processes is always asynchronous: that is, each process
has its own input queue, where signals coming from the envi-
ronment or from another process are buffered and sequential-
ly processed (“consumed”). Synchronous communication is
provided by the remote-procedure call instruction. SDL also
supports non-ordered signal reception by means of the SAVE
operator, which postpones the consumption of a specified sig-
nal to the following transition.

EXAMPLE OF SPECIFICATION

Figures 1 and 2 illustrate the specification of the Go-Back-N
Automatic Repeat Request (GBN ARQ) protocol governing
data transfer between sender and receiver on a noisy channel.
In the GBN ARQ protocol, the sender transmits data packets
(PDU Protocol Data Unit) carrying the sequence number ns,
and receives the Acknowledgments from the peer entity. For
each correctly and orderly received PDU, the receiver issues
an acknowledgement indicating the expected sequence num-
ber of the following packet; if duplicated PDUs are received,
acknowledgments are repeated. Denoting the sequence num-
ber of the next expected PDU with nr, the reception of an
Acknowledgment message carrying nr by the sender implies
the acknowledgment of all pending PDUs with sequence num-
bers lower than nr. In order to achieve unambiguous numera-
tion of data packets, the maximum number of pending PDUs
(which is called the transmission window) shall be at most half
of the available sequence numbers. When the transmission
credit is exhausted, the sender starts retransmitting the pend-
ing PDUs. When an Acknowledgment is received, the trans-
mission window can be updated and new PDUs can be issued
and sent. In this example and in those following, sequence
numbers range from 0 to 3 (4 sequence numbers) and the
maximum window size W is fixed to 2.

In Fig. 1 the system diagram illustrates the system struc-
tural decomposition in three basic blocks: transmitter, channel
and receiver. This kind of diagram usually comprises the glob-
al declaration of signals, signals lists, and definitions of new
types and constants. In a separate diagram (not shown), each
block is associated with the related process, represented by an
octagonal shape, which carries for simplicity the same identifi-
er of the block.

Figure 2 shows the diagrams of the three processes, which
declare local variables to perform internal data handling. In
this example, all processes perform a starting transition to
their single control state, where they remain indefinitely. The
initial transition in the process channel has been omitted due
to lack of space.

The specification of the transmitter’s behavior can be sum-
marized as follows. As long as the transmission window
(denoted with win and incremented for each sent PDU) is
below the maximum value W, the process can transmit pdu
messages following the spontaneous transition guarded by
continuous signal win<W; if the transmission credit is exhaust-
ed within this transition (decision block win=W), a timer T is
set to a default duration. The reception of an ack message
resets the transmission window, stops the timer T and restarts
the transmission of PDUs from sequence number nr. When
the transmitter is in the stalling condition win=W, if no
acknowledgement is received due to loss of pdu or ack mes-
sages on the channel, a timeout occurs, which triggers the
retransmission of all pending PDUs.

The process receiver behavior is triggered by reception of
pdu messages from the channel: it checks whether the
sequence number of the received PDU matches the expected
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■ FIGURE 1. Constitutive blocks of the go-back-N protocol specifica-
tion. Signal, data types and constants are declared at system level.

System go_back_N

[ack] [pdu]

[ack][pdu]

tx_ch rx_ch

SIGNAL pdu(Int4), ack(Int4);
SYNONYM N Integer = 4;
SYNONYM W Integer = 2;
SYNTYPE Int4=Integer constants 0:3
ENDSYNTYPE Int4;

Receiver

Channel

Transmitter
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sequence number, updates nr if possible, and issues an ack
signal.

According to the system diagram, pdu and ack signals are
conveyed to the channel process, whose handling of the signal
pdu is sketched in Fig. 2: the unreliability of the channel is
modeled with the ANY transition, which represents both the
possibilities of correct forwarding and unsuccessful delivery
(through silent consumption) of the signal. The handling of
the ack signal, which has been omitted due to lack of space,
can be obtained simply by changing the signal’s identifier.

TOOL SUPPORT

SDL is the formal specification language most exploited by
telecommunication manufacturing companies worldwide, and
a great deal of software has been produced on SDL-based
platforms [10]. Several software packages have been devel-

oped to handle formal specifications of systems in SDL. Some
freeware tools are available online. The most promising are
JADE, a public domain tool for specification written in Java
[11], for which code generation and optimization have been
recently announced [12], and SITE, an open development
environment supporting compilation of SDL and ASN.1 to
target languages Java and C++ [13]. Unfortunately, these
tools are not yet mature enough to adequately support system
development with SDL and offer no significant alternative to
commercial software.

The most successful commercial products are Telelogic
Tau SDL Suite (SDT), by Swedish Telelogic, and Object-
Geode (recently acquired by Telelogic). In particular, SDT
offers full support for SDL-2000, inclusion and automatic gen-
eration of C and C++ code (although not yet efficient
enough for real-time applications), and linking to test genera-
tion and execution tools. Validation facilities incorporate

model-checking routines and conformance testing of
SDL prototypes by means of testing sequences provided
in TTCN (Tree and Tabular Combined Notation, an ISO
standard for the specification of tests for communication
systems). The appealing support of the entire life cycle of
software is counterbalanced by the high price of the
packages, which usually induces users to eliminate what
is deemed less critical, that is, validation, which can be
performed with freeware tools based on other FMs (e.g,
SPIN, see following section).

Although SDL provides timers, performance evalua-
tion and analysis of temporal properties are poorly sup-
ported. Tools for performance analysis of queuing
systems specified in SDL have been proposed, but are
either frozen projects or not yet sufficiently mature for
professional use.

EXAMPLES OF APPLICATIONS

SDL has been successfully applied to system analysis and
design in many application domains for many years. For
an overview, see the report of the SDL and SAM (SDL
and Message Sequence Chart) forum [14].

We have used Telelogic Tau SDL Suite for the speci-
fication and simulation of UMTS Radio Access Network
(UTRAN) protocols involved in UMTS-GSM intersys-
tem handover procedure, a key feature of the next-gener-
ation dual-mode terminals [15]. With the aid of the SDL
modular approach, the software architecture has been
designed according to a hierarchical structure, following
the standard reference models for UMTS and GSM. For
the definition of service primitives and PDU, thanks to
the integration of techniques offered by the tool, the
ASN.1 standard modules provided by 3GPP as technical
documents have been imported and used to generate the
encoding rules, which are reusable C functions.

CRITICAL EVALUATION

As far as the modeling phase is concerned, the modular
approach and the clear distinction between structure and
behavior are very useful features in describing OSI-like
protocol architectures. In addition to this, the translation
of the informal textual specifications issued by ETSI and
3GPP, for example, to SDL diagrams is a very straight-
forward task because the style adopted complies with
SDL concepts and operators. Two other features that are
worth mentioning are the inclusion of ASN.1 and C-type
packages for a better message description, and the ability
to employ the underlying C environment for efficient

■ FIGURE 2. SDL diagrams of the protocol entities: the channel's non-
deterministic behavior is sketched only with respect to data handling.
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data manipulation. Verification of static and
dynamic properties of the system in SDT is per-
formed by exhaustive or partial model-checking
on the equivalent FSM produced by the combina-
tion of control states and data values. For com-
plex SDL specifications, compositional
verification and reliance on other formalisms
(i.e., LOTOS [16], Spin [17, 18], and Petri Nets
[19], which are introduced in later sections) have
also been suggested. The lack of adequate free-
ware tool support for validation prompts the
research for alternative solutions, that is, transla-
tors of SDL to other formal notations. The simu-
lation phase, when not provided with sufficient
quantitative information (i.e., timer values, error
generation functions), shrinks to mere MSC trac-
ing. In the hypothetical alternative use of SDT
for simulation of broader systems, an intensive
reliance on C functions and variables seems to be
necessary and users will hardly take advantage of
SDL friendly graphical notation.

SPIN
Spin (Simple ProMeLa Interpreter) is a widely
used tool for specification, simulation, and valida-
tion of communication protocols, freely available
online [20]. Being developed with the aim of rig-
orously supporting protocol engineering [21],
Spin adopts a strong formal basis, established,
like SDL, on ECFSM theory, and supports effi-
cient model-checking, i.e., validation of consisten-
cy requirements, invariant assertions, and
temporal properties expressed in an ad hoc Linear Temporal
Logic.

Spin uses a C-like specification notation (ProMeLa — Pro-
cess Meta Language) which increases its applicability in the
first stages of the design and makes the following phase of
code implementation a rather mechanical task of quantitative
detailing.

SYNTAX

ProMeLa is a textual notation for ECFSM that comprises the
constructs for data manipulation and communication between
processes. The system’s basic components are the processes,
whose internal behavior is described as a set of possible tran-
sitions (gathered within the if… fi construct), which can be
alternative or simultaneously enabled (non-determinism). The
firing of a transition leads to termination (execution states
labeled with end:) or non-terminating sequences of actions
(when the transitions are part of a loop do… od or a goto
operator points to a new control state). The triggering condi-
tions guarding each branch are: message receiving and send-
ing actions, which are true if executable; boolean expressions
on local or global variables or on the status of visible chan-
nels; and timeout events, executed only when no other transi-
tion is enabled and the system is stalled (Table 2). All starting
conditions inside do… od and if… fi constructs are introduced
by operator “: :” and separated by operator “Æ” from the set
of actions they trigger. All other actions in process behavior
are delimited by operator “;.”

The timeout construct mimics the possible occurrence of a
timer’s expiring, without quantitative or real-time concerns.
This approach is close to that of SDL, in which a timer, once
set, is treated as a signal and is processed when no other

immediate, ordinary signal can be put into the input message
queue. Modeling of multiple timer instances is described in
[22]. To keep track of the temporal increment consequent to
timeout events, a temporal counter should be explicitly updat-
ed for each time-consuming action. To cope with time and
temporal constraints an enhanced version of Spin, called real-
time Spin, was developed [23]. This version introduces clocks
and relies on a proper semantic to convert the system in a
finite state machine in spite of its continuous-time characteris-
tics. The project seems to be frozen (it adopts an old version
of Spin as the core program), but it is nevertheless worth
mentioning as an effort to add further usefulness to a well
established validator tool.

Processes can handle variables of predefined basic data
types, as well as arrays and struct types (typedef pdu {type1
type_id1; type2 type_id2; …}). Besides, messages can be
declared as symbolic constants (mtype = {list_of_identifiers})
and used as literals. The specification of channel types (chan
chan_id = [L] of {type1, type2, …}) consists of the characteri-
zation of the length of the equivalent queue (L) and of the list
of information elements constituting the PDU.

Processes can be immediately activated (by placing the
attribute active before the process declaration) or defined as
parametric types (proctype proc_id (par_id par_type; …)). In
the last case they are instantiated by a meta-process init {run
proc_id(actual_par);}, which is executed for the first and car-
ries out the deployments of the others. They can also be acti-
vated by other processes, as independent entities with their
own interfaces and channels or as procedures that deliver a
result to the parent process, either on a channel or by over-
writing a global variable (Fig. 3). Processes called procedures
are declared in the same way and on the same level as other
processes; hence, they are visible and available to them all.

■ Table 2. Syntax and semantics of the if…fi e do…od constructs and exam-
ples of transitions in ProMeLa.

stateP: if The process remains in stateP until
:: expression1 one of the alternative expressions
:: … becomes executable. If the executable
:: expressionN expression does not contain a statement
fi goto stateM, the  next process control

stateQ: … state is stateQ.

General syntax and semantic interpretation of the do…od construct

stateP: do The process remains in stateP until one
:: expression1 of the alternative expressions becomes
:: … executable. If the executable expression
:: expressionN does not contain a statement goto
od stateQ, the next process control state

stateQ: … is again stateP.

Examples of specifications in ProMeLa

if/do
:: bool_expr(vars) Æ /* boolean expression on variables */
:: else Æ /* true if other conditions are false */
:: asyn_ch?mesg Æ /* executable if mesg present in channel async_ch */
:: asyn_ch!mesg Æ /* executable if channel async_ch is not full */
:: syn_ch?mesg Æ /* ex. if there is a coupling action syn_ch!mesg */
:: syn_ch!mesg Æ /* ex. if there is a coupling action syn_ch?mesg */
:: full(asyn_ch) Æ /* test on asynchronous channel: ex. if true */
:: timeout Æ /* true when whole system is blocked */
:: skip Æ /* fictitious action: always executable */
fi/od

General syntax and semantic interpretation of the if…fi construct
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Processes can be declared as deterministic if their behavior
is not affected by external actions (dproctype proc_id). Deter-
ministic processes and execution steps isolate the algorithmic
part of the specification from the communicating and reactive
part. They are treated as lumpable states and cause a smaller
increase of the state space size, thus simplifying the following
validation. Grouping of logically linked actions in atomic
sequences has a similar effect.

COMMUNICATION IN PROMELA

Processes can communicate on channels, which are modeled
as finite-length queues. The default communication is there-
fore asynchronous, but can also be synchronous when relying
on channels of zero length. On these so called rendezvous
channels, sending and receiving actions must match to be exe-
cuted (they are interpreted as an atomic action), otherwise a
deadlock is detected.

Channels deliver structured messages: sending actions are
specified with the expression ch!expr1,expr2,… or equivalently
with ch!expr1(expr2,…), where the first field is usually the
message identifier. The reception of a message can be inter-
preted as data transfer (value-passing) — ch?var1,var2,…,
when the values received on channel ch overwrite the local
variables used by the receiving process — or, in contrast, the
received values with constant expressions (value-matching)
ch?msg_id(const1,const2,…), when the message msg_id is
extracted from the input queue ch provided that the received
information elements equal the specified constants.

Information exchange can also be performed by writing
and reading global variables, here interpreted as shared chan-
nels. This approach can help in modeling multicast transmis-
sion and MAC protocols.

EXAMPLE OF SPECIFICATION

Figure 4 illustrates the specification of the GBN ARQ proto-
col. In this example, only the two protocol entities are mod-
eled. The unreliability of the connection between process
transmitter and receiver is rendered by means of nondetermin-
istic choice (if ::skipÆ…; ::skipÆ…; fi) between reception or
silent consumption of data packets and acknowledgments.

The two processes communicate through unidirectional
channels t x and r x; messages are constituted by a message
type identifier (pdu or ack) and an integer value, which can
encode the sequence numbers of sent and acknowledged PDU
ns and nr (in this example, nr indicates the number of the last
acknowledged pdu).

Two local arrays (busy and rec) store the state of sent and
received data packets, respectively. In the process transmitter,
busy[ns] is set to 1 for each PDU sent within the transmission
window, and it is set to 0 for each acknowledgment. Based on
the contents of the buffer busy, the integer local variable h is
used to update, during the stalling condition (w = W), the
transmission window w. Similarly, in the process receiver,
rec[ns] is set to 1 for each correctly received PDU. The local

variable p is used to store the bound of the reception
window (the range of valid sequence numbers that can
be received according to the concerted value of the
maximum window size W). For sequence numbers
outside the reception window, rec[ns] is set to 0. Thus,
for each correctly received PDU (rec[nr] = 1), an ack
message is issued and nr is set to the next expected
sequence number.

When the system behavior stalls due to the corrup-
tion of pdu or ack messages, the timeout expression in
the process transmitter becomes executable and trig-

gers the retransmission of all pending PDUs in the transmis-
sion window.

It can be observed that there is no need for labels to iden-
tify the internal states, because the behavior of both processes
(as in the previous example) is described by a single loop with
multiple alternative transitions.

TOOL SUPPORT

Given a ProMeLa specification file, Spin performs simulation
and validation on it. In the graphical version of the tool
(xspin), these basic functions are integrated with MSC tracing
facilities, generation of graphical FSMs starting from process
models and analysis of process activity factor.

Preliminary analysis is carried out with random or interac-
tive simulations. For a more detailed inspection, the validator
checks for invalid end-states (deadlocks), non-progress cycles,
violation of temporal claims, and so on, tracing back the
shortest execution sequences to the incriminated states. When
the system is too huge to be handled due to the bounds in
available memory, the validation is carried out on a randomly
selected subset of the whole state-space (sub-optimal solu-
tion). Recently a slicing routine has been added to extract,
from complex protocol descriptions, partial specifications
related to the properties of interest [24]. These concepts are
powerful enough to cover almost all the correctness and con-
sistence requirements that can be imposed on prototypes.

EXAMPLES OF APPLICATION

Spin is the most popular and exploited among freeware FM-
based tools for the specification and verification of communi-
cation protocols. Extensive work has been carried out with its
help, both in industrial and academic areas. Theoretical
advancements and practical experiences are continuously
reported in the proceedings of the International Spin Work-
shops. Interesting applications of Spin model-checking to C
and Java code are presented in [25, 26].

Our expertise with Spin stems from the analysis of GPRS
radio interface protocols and UMTS radio connection estab-
lishment procedures, which resulted in a very concise and
provably correct specification of the essential signaling
exchange [27].

The power of Spin as a verifier, together with its free avail-
ability for commercial purposes, justifies its frequent usage in
the verification of large SDL models [17, 18]. Translating
technical documents in SDL diagrams is trivial, thanks to the
SDL-based style they adopt. Due to their common operational
model, converting SDL into ProMeLa is a mechanical task
because all SDL operators and concepts find a proper corre-
spondence in ProMeLa [28]. Automatic translators have also
been developed.

■ FIGURE 3. Examples of specification of a procedure call in ProMeLa.

Process
offspring

run

ch?result

Process
parent

proctype parent(param byte)   proctype offspring(input byte, ch chan)
{ chan ch=[0] of byte;   {   ch!expr(input);

run offspring(param,ch);   end: skip
ch?results;   }

end:skip 
}

init
{run parent(2);)
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CRITICAL EVALUATION

Spin has proved to be very useful in the simu-
lation and validation of system specifications.
Modeling protocols from technical specifica-
tion documents is rather straightforward and
results in compact specifications, but specifying
a complete protocol stack is not yet possible.
Protocols ought to be isolated as orthogonal
functions and verified layer after layer in the
services they are suppose to render. To over-
come the overhead of protocol processing
often implied by layering and modularity in
protocol design, a ProMeLa-based develop-
ment environment is proposed in [29]. In that
framework, protocols are specified and validat-
ed separately with Spin, but are treated as a
whole in the final C-code generation. However,
even without relying on rapid-prototyping, the
software implementation of protocols is easily
obtained from the formal model thanks to the
similarities between C and ProMeLa.

Unlike other high-level FDTs, ProMeLa has
no clear-cut separation between architectural
and functional aspects. Due to the lack of hier-
archical structuring facilities, it is not possible
to point out the interdependencies between
processes without looking at their behavior. A
graphical interface to ProMeLa with hierarchi-
cal and object-oriented extensions has recently
been presented [30], which is likely to grant
more popularity to the tool.

Spin could be used as a mere simulator. As
far as this application is concerned, an underly-
ing computational environment, such as SDT
inclusion of C code fragments, is indispensable.
It should not be difficult to add these features
in the simulator source code.

ESTELLE

Estelle is a formal description technique for
the specification of distributed and concurrent
systems approved as an international ISO stan-
dard in 1989 and particularly devoted to com-
munication protocols. Estelle is based on
ECFSM theory in modeling event-driven
behaviors (similarly to SDL and Spin) and
employs Pascal in data manipulation. With these two nota-
tions, both well established, a concise and consistent proto-
type is developed. The formal specification can be
automatically compiled into an executable model or a target
application, for simulation or implementation purposes,
respectively.

Because of the inclusion of a programming language for
the algorithmic segments of the specification, Estelle is more
implementation-oriented than LOTOS (see the following sec-
tion), which is conceived mainly for design and validation.
Their formal nature enables automatic transformation from
the latter to the former, for optimal support of the entire
development process [31]. For an introduction to Estelle
related to the other standard specification languages SDL and
LOTOS, see [32]. 

SYNTAX

A standard Estelle specification is a unique document that
collects several fields. The first section is comprised of the
declaration of data types, channel types, procedures, and func-
tions. Channels are bi-directional routes between two entities
conveying structured values. The specification then describes a
hierarchy of (possibly nested) module instances, each charac-
terized by its own interface on which messages are exchanged
by means of communication primitives. The basic element of
the specification is the “module,” comprising a header, which
lists the module’s interface by instantiating the appropriate
channel, and a body, which characterizes the internal structure
and/or functional behavior of the module. The body includes
the formal specification of the modules (if any) used to refine
its functional description, their declaration (multiple instantia-
tions) and displacement (mapping of the channels) and the
“textual” FSM depicting the system behavior as observable
from other protocol layers. This modeling rule is recursively

■ FIGURE 4. Examples of specification of the GBN ARQ protocol.

#define N 4 /*max sequence number*/
#define W 2 /*max window size*/
#define L 2 /*channel length*/
mtype={pdu,ack}  /*message type*/
chan tx=[L] of {mtype,int}; /*from transmitter to receiver*/
chan rx=[L] of {mtype,int}; /*from receiver to transmitter*/

active proctype transmitter( )
{ int busy[N]; /*pdu buffer: 1 if sent, 0 if ack'd*/

int ns=0, h=0, nr=0, w=0; /*w=window*/
do
::(w<W)-> w++; busy[ns]=1; tx!pdu,ns; ns++;

ns=ns%N; /*ns mod N*/
::rx?ack,nr-> if

:: skip-> atomic{busy[(nr-w)%N]=0;
busy[nr]=0} /*correctly received ack*/

::skip /* corrunpted ack*/
fi

::(w=W)-> if
::(busy[h]==0)-> w--;h++;h=h%N;
::(busy[h]==1)-> if

::timeout->tx!pdu,h /*re-transmission*;
::rx?ack,nr -> busy[nr]=0;
fi

fi
od
}

active proctype receiver( )
{ int rec[N];      /*pdu buffer: 1 if received, 0 if out of range*/

int ns=0, nr=0, p=0;

do
::tx?pdu, ns-> if

::(rec[ns]==1)-> if /*already received*/
::((p-ns+N)%N>0&&(p-ns+N)%N<=W)->

rx!ack,nr,
::else ->skip; /*out of range*/
fi

::(rec[ns]==0-> rec[ns]=1; /*marked as received*/
if /*update ack message*/
::(N+p-W<N)->p=N+ns-W;

rec[p]=0;
::else ->p=ns-W; rec[p]=0;
fi;

:: skip /*corrupted pdu*/
fi

::(rec[nr]==1) ->rx!ack,nr;
atomic{nr++; nr%N;} /*update counter of ack'd pdus*/

od
}
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applied to every substructure, preserving the coherence
between the specification of each module and those that
refine it.

In Estelle the system specification follows a strict order.
All modules are defined as abstract entities and then actual-

ized by giving them an identity and naming and connecting
their channels, as can be observed in the following example.

EXAMPLE OF SPECIFICATION

Figure 5 illustrates part of the formal specifica-
tion of the GBN ARQ protocol. The system
go_back_n is described as the association of enti-
ties Sender, Medium, and Receiver (whose body is
defined externally), which are instances of
S_module, M_module, and R_module, respective-
ly. The process Sender is connected to Medium
through a channel (of type Ch_type) that
exchanges the service primitives Data_Req and
Data_Ind. The process Receiver comprises a simi-
lar interface.

The Sender is also connected through a con-
trol channel to the process Timer, whose specifi-
cation is not included in the figure. The timeout
signals produced by process Timer are handled
when the transmission credit is exhausted (i.e.,
provided w = 2). The timer is reset by process
Sender (instruction: output control_ch.Reset) at
the reception of acknowledgment messages from
process Medium (when interface.Data_ind).

In the handling of the Data_ind carrying the
acknowledgment, the sequence number is
extracted (l_nr=Data_Ind.n) and used to update
the transmission window (win:=MOD_N(l_nr-
nr+N,N)) and the sequence number of the next
PDU to transmit (ns:=l_nr).

Figure 5 illustrates all state transitions of pro-
cess Sender, whose simple interpretation is left to
the reader, who can profit from the explanations
given in the previous examples. In the final sec-
tion mod-var…end, the four entities (Sender,
Receiver, Medium, and Timer) are instantiated
with the related modules and associated to the
related bodies within the construct initializer…
end. Finally, the common interfaces are connect-
ed with the construct connect… to.

TOOL SUPPORT

Several tools for design, debugging, simulation,
and testing of Estelle specifications have been
developed at universities and are distributed free
of charge. Among Estelle commercial tools, the
most complete one is the Estelle Development
Toolset (EDT), which supports model animation
with MSC tracing and implementation through
C-code generation.

EXAMPLE OF APPLICATIONS

Estelle has been used in several real-life exam-
ples for the specification, simulation, and testing
of communication protocols. Recent reports of
successful case studies are found in [33–35].
Large system verification, usually not achievable
with exhaustive state-space exploration, has been
addressed with probabilistic partial-state occur-
rence analysis [36], or relying on different opera-
tional models for which adequate model-
checking packages exist [37].■ FIGURE 5. Abstract from Estelle specification of the GBN protocol.

specification go_back_n systemactivity;
default individual queue; {queuing policy}
const N=4; const W=2;
type

pdu_type=...;

function decode(pdu:pdu_type):integer; primitive;
function MOD_N(x:Integer;y:integer):integer;primitive;

channel Ch_type(arq_entity,medium);
by arq_entity: Data_Req(n:integer);
by medium: Data_Ind; {contents are extracted from the receiving buffer}

channel T_type(arq_entity,t_entity);
by arq_entity: Activate; Reset;
by t_entity: Timeout;

module S_entity activity;
ip interface:Ch_type(arq_entity); {towards lossy channel}

control_ch:T_type(arq_entity); {towards internal timer}
end;

body sending for S_entity;
state ACTIVE_STATE; {list of control states}
var ns:integer; var nr: integer; var 1_nr:integer; {local variables}
var win:integer; var pdu:pdu_type;

initialize {starting state}
to ACTIVE_STATE
begin

ns:=0; nr:=0; win:=0; {variable initialization}
end;

trans {list of transitions}
from ACTIVE_STATE to same {starting and ending states}
provided win<W {guarding condition on variables}

begin
output interface.Data_Req(ns); {sending action}
win:=win+1; ns:=MOD_N(ns+1,N); {data manipulation}

end;
from ACTIVE_STATE to same
when interface.Data_Ind {signal reception}

begin
1_nr:=decode(pdu); output control_ch.Reset;
win:=MOD_N(1_nr-nr+N,N); ns:=1_nr; nr:=1_nr;

end;
from ACTIVE_STATE to same
when control_ch.Timeout {signal reception}
provided win=2
begin

ns:=nr; win:=0;
end;

end;

module R_entity activity;
ip interface:Ch_type(arq_entity);
end;

body Receiving for R-entity; external {specified in a separate document}

...(declaration of remaining modules)

modvar
Sender: S_entity; Receiver: R_entity; Timer:T_entity; Medium: M_entity;
initialize {association between bodies and modules}
begin

init Sender with Sending; init Receiver with Receiving;
init Medium with Loss; init Timer with Count;
connect Sender.interface to Medium.SAP1;
connect Receiver.interface to Medium.SAP2;
connect Sender.control_ch to Timer.control_ch;

end;
end.
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CRITICAL EVALUATION

In Estelle, system models are specified as ECFSM, recalling
the successful SDL approach toward asynchronously commu-
nicating concurrent processes. Support of Pascal for data defi-
nitions and calculations makes Estelle more suitable for
implementation and testing issues than model-checking.

Although the theoretical foundations of the language have
been thoroughly investigated in more than 10 years of
research, Estelle’s complex textual notation has not been suffi-
ciently updated. More friendly development environments as
well as graphical editors are necessary to meet industrial
needs.

LOTOS
LOTOS (Language Of Temporal Ordering Specifications) is a
formal description technique standardized by ISO in 1989 for
specifying concurrent and communicating systems [38].
Together with Estelle (standardized within the same ISO
committee responsible for the definition of the OSI architec-
ture) and SDL, LOTOS is an official FDT for use in stan-
dardization. In contrast with the other standard notations,
which are both based on the finite state machine paradigm,
LOTOS adopts a peculiar modeling approach, namely, pro-
cess algebra.

Although initially conceived for information processing sys-
tems modeled after the OSI reference model, LOTOS has
been widely applied to specification and validation of sequen-
tial, concurrent, and distributed systems in different scientific
domains. Thanks to the sound theoretical basis of the lan-
guage, LOTOS syntax has been integrated with temporal and
stochastic features, which have widened its application field to
the performance analysis of dynamic systems.

Feedback coming from the application of LOTOS to sys-
tem design in industrial environments has suggested several
improvements: more friendly definition of data types and
operators, support of temporal features, modularity, abstrac-
tion, testing, and so on. These additional capabilities have
been merged into an enhanced version of the standard 
(E-LOTOS [39]), which has recently been proposed as a draft
by ISO/IEC’s (International Electro-technical Commission)
competent working group.

SYNTAX

LOTOS consists of a language for describing the behavior of
processes (initially based on CCS [40]) and an algebraic data
type specification language called ACT ONE, which is con-
ceptually equivalent to SDL’s specification language. As antic-
ipated, LOTOS is primarily based on the theory of process

algebra (PA). PAs are abstract languages for
formal specification which, thanks to power-
ful logical operators, model distributed sys-
tems and concurrent communicating
processes in an effective and synthetic way
[41].

In LOTOS, system specification consists
of two parts (Fig. 6):
• Declaration, where the system behavior

is characterized as an interleaved or syn-
chronized composition of subsystems.

• Definition, where the behavior of each
component of the system is described by
listing the possible transitions and the
ordered sequence of actions (behaviors)
each transition gives rise to.

The specification of components can also be done by
describing their structure as a composition of simpler constitu-
tive processes, similar to system declaration. This approach is
analogous to SDL distinction between structural and function-
al issues: the declarative sections illustrate the deployment of
the basic components and their interconnections, whereas the
definition of the behavior is equivalent to tracing an ECFSM
in a textual way.

A process is characterized by its formal interface (gates,
which can be explicitly selected at process instantiation) and
parameters, which account for the data it manipulates, whose
types and operations are usually defined in an external library
included in the specification file. The process behavior P is a
deterministic sequence of actions or a random/guided choice
between competitive behaviors ([bool_expr1] Æ P1 [ ]
[bool_expr2] Æ P2), which are often described with the instan-
tiation of a different or the same process (thus implementing
recursion). An action is a communication activity; assignments
on parameters are executed by recursive instantiation of the
same process with a different numerical value (P(x): = a;
P(x+1)).

Processes can be combined in different ways: they can be
interleaved (P|||Q) and evolve in a completely independent
manner; they can be partially synchronized on specified gates
(P|[gate1, gate2,…]|Q) on which input/output action must be
matched; or they can be completely synchronized (P||Q),
sharing the whole of their gates. A process can also terminate
producing a value that enables another process to start. This
relation is called “enabling” (P>>Q) and can be exploited in
modeling procedure-call actions. A “disabling” construct
instead (P[>Q) renders interruption and can account for com-
petitive behaviors or high priority message handling.

A graphical notation has also been proposed [42], although
no significant tool support has been available so far. The
interest in this matter is high [43], because a friendlier graphi-
cal interface could widen the acceptance of LOTOS in the
industrial world.

COMMUNICATION

LOTOS communication is basically synchronous. Two or
more processes that are connected by some gates must per-
form coupled actions, otherwise a deadlock occurs:
send/receive actions are synchronized on value passing (a!x; P
|[a]| a?y:Int; Q, where y takes the value of x); value-matching
(a!x; P |[a]| a!y; Q, which is executable only if x and y have
the same value); or value-negotiation (a?x; P |[a]| a?y; Q,
where the two parallel behaviors synchronize on the receiving
actions and a random value z is generated and copied in both
parameters x and y). LOTOS synchronous communication is
similar to the hand-shaking of two processes connected by a

■ FIGURE 6. Structure of a formal specification in LOTOS

specification System:noexit
behavior (* system declaration*):

ProcessA[gatesA](actual_parametersA)
|[common_gatesAB]|
ProcessB[gatesB](actual_parametersB)

where
process ProcessA [formal_gatesA](formal_parametersA):noexit:=(*definition*)
(*list of actions ending with a recursive instantiation of the same process*)

list_of_actions; ProcessA[gatesA](expr(formal_parametersA)]
(*or, alternatively, declaration of the process as a composition of sub-processes*)

subprocessA1[gatesA1](actual_parsA1 or expr(formal_parsA))
|[gatesA1-2]|
subprocessA2[gatesA2](actual_parsA2 or expr(formal_parsA))

endproc
endspec
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rendezvous channel in Spin. In practice, in LOTOS more than
two processes can be synchronized within a single communica-
tion action, given that the synchronizing actions are unam-
biguously characterized by a compatible format, that is, same
channel name, same values or type of exchanged values.

The asynchronous method of communication implies the
insertion between communicating instances of message
queues that implement a FIFO algorithm. The complexity of
the specification is the main drawback of this formal method,
balanced by its generality and implementation independence.

Another useful concept is abstraction of internal behavior:
LOTOS provides an operator (hide) to conceal the details of
the specification. In this way, internal actions lose their identi-
ty but maintain their operative functions, thus enabling more
efficient state-space generation, simplification of the model,
and verification  of the correctness of the observable behavior,
that is, through the equivalence with the service specification.
Table 3 summarizes the basic syntax of LOTOS.

EXAMPLE OF SPECIFICATION

Figure 7 shows the specification of the ARQ GBN protocol.
The service rendered by the protocol to the higher layers is
the ordered delivering of data packets and is formally speci-
fied in Fig. 8.

The protocol specification consists of the parallel composi-
tion of the processes Transmitter and Receiver, which are syn-
chronized on gates Pdu and Ack, representing successful
signal reception, and Pdu_l, Ack_l, representing corrupted
messages. When the sender is not in a stalling condition (i.e.,
when the transmission window ns-nr equals 2), it is stimulated
by the (spontaneous) handling of Data_req service primitives.
Conversely, the receiver issues a Data_ind primitive for each
correctly and orderly received PDU.

The peer entities communicate according to a LOTOS-spe-
cific synchronous model. Instead of specifying an asyn-
chronous and unreliable channel between the processes
Transmitter and Receiver, the unreliability of the transmission

is described as a non-deterministic choice
between the two executable actions.

Every message can be received either correctly
(actions Pdu and Ack) or can be lost (actions
Pdu_l and Ack_l). With respect to PDU transmis-
sion, Pdu!ns; ReceiveAck [ ] Pdu_l;… and
Pdu!x:Int;…[ ] Pdu_l;… are the choices for the
processes Transmitter and Receiver, respectively.

Depending on the synchronizing actions and
the current value of internal parameters (ns, nr,
and ns2), the behavior of the process Transmitter
is described by the process ReceiveAck, which
specifies the successful or failed reception of the
acknowledgment message; the process Update,
which decreases the window size by updating the
counter nr; and the process Repeat, which exploits
the integer variable ns2 to keep count of retrans-
mitted PDUs. The process Receiver has a simpler
behavior, as it enters the Send_Ack process when
Pdus are received, and it loops in the case of syn-
chronization with Pdu_l action.

Since standard LOTOS does not support the
definition of constant values, the maximum
sequence number N and the maximum window
size W are replaced by their numerical values (4
and 2, respectively).

Finally, it shall be observed that all signals are
hidden (with the hide operator), with the excep-
tion of the service primitive Data_Ind. This mod-

eling choice makes it possible to isolate the observable
behavior of the protocol layer, which shrinks to the activation,
within the receiver entity, of gate Data_Ind with its associated
numerical values. With the aid of LOTOS-based tools, it is
possible to verify the conformance of the protocol specifica-
tion with the service specification, which is illustrated in Fig. 8
as the ordered delivery of PDUs with progressive sequence
numbers (Data_Ind!n, with n cycling from 0 to 3).

TOOL SUPPORT

Due to its textual format, its strong abstraction, and the origi-
nal synchronous evolution of concurrent behaviors without
time support, LOTOS requires greater effort than SDL to be
profitably employed in industrial environments. Nevertheless,
some software packages for system design have been devel-
oped. The most complete is the Caesar/Aldebaran Develop-
ment Package (CADP) [44]. Its most interesting features are
parsing and simulation of LOTOS specification, generation of
graphical FSM from textual specifications for deeper analysis,
model minimization (for the analysis of complex systems),
model comparison based on the equivalence of observable
behaviors (bisimulation), model-checking with efficient algo-
rithms, verification of logical temporal formulas, test case gen-
eration, and compilation of abstract data type libraries. The
package includes a large set of examples, which encompass a
decade of case studies developed within LOTOS research pro-
jects.

Some effort has been devoted to support specification and
animation in graphical LOTOS, but so far no mature product
has been developed.

For simulation and performance analysis purposes, some
promising tools are available (PEPA [45] and TIPPtool [46]).
Both of these tools adopt a stochastic extension of LOTOS
notation, namely, the timed action (a,l ), which occurs after an
exponentially distributed temporal interval of mean value 1/l .
TIPPtool supports also the probabilistic branching, expressed
as the choice between alternative behaviors weighed with a

■ Table 3. Basic syntax of LOTOS.

P[a,b] || Q[b,c] Parallel composition of processes

P[a,b,c] |[a,b,c]| Q[a,b,c] Synchronized composition

P[a,b] |[a]| Q[b,c] Partially synchronized composition

P [ ] Q [ ] R Competitive choice among behaviors

[expr] -> P [ ] Enabling condition (usually combined with [ ]
with other alternative behaviors)

P[a,b](formal_pars):= Process declaration with re-labeling and data
…; P[b,a](expr{pars}) manipulation

a; P Immediate action

tau; P Immediate internal action

a!x; P Immediate action with sending

a?x:int; P Immediate action with receiving

a!x; P |[a]|a?y:int; Q Synchronization through value passing (par y
assumes value x)

a!x; P |[a]| a!y; Q Synchronization through value matching
(executable if x=y)

a?x; P |[a]| a?y; Q Synchronization through value negotiation (x and
y take the same randomly generated value)

hide a, … in P Abstraction
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discrete probability distribution (process P: =
[p1] P1[ ] [p2] P2…). In addition, TIPPtool pro-
vides a default integer data type for parameters
and communication through single-value pass-
ing, which makes the specification task easier,
although the capability of structured data and
message handling provided in standard LOTOS
is not yet available. The operational model of
such stochastic PA is easily translated into a
discrete or continuous-time Markov chain
(MC), the reference theoretical model for sys-
tem performance analysis.

In the formal framework provided by pro-
cess algebras, systems can be modeled in their
temporal and dynamical behavior, verified  for
absence of deadlocks and loops, reduced with
the minimization algorithms available for pro-
cess algebras (thus extending the level of com-
plexity that can be handled), and finally
evaluated in their performance. Performance
measures, which are automatically evaluated,
are expressed as probability of a state or a set
of states, throughput of timed actions, and
mean values of process parameters.

EXAMPLES OF APPLICATIONS

LOTOS has been used in the scope of some
projects intended to prove the validity of the
formal approach in development (specification,
verification, and testing) and implementation
(automatic code generation) of real communi-
cation systems. The Proceedings of the PSVT
(Protocol Specification, Validation and Test-
ing) symposia, starting from [47], and of
FORTE (FORmal Description TEchniques for
Distributed Systems and Communication Pro-
tocols) are a good source of references. Inter-
esting recent applications are validation and
testing of GPRS systems [48], specification [49]
and performance analysis [50] of multimedia
networks, and validation of security protocols [51], a key issue
in computer networks and an application domain where FMs
are gaining increasing relevance.

CRITICAL EVALUATION

LOTOS’s compositional approach to system specification,
high abstraction, and support of model reduction with respect
to observational equivalence are extremely useful when coping
with large communication systems. As proof, in [15] SDL

specification (meant for implementation) and, with some
more effort, SDL-specific asynchronous communication have
been translated into LOTOS to make thorough model-check-
ing possible. This experience hints at the possibility of going
through LOTOS specifications for complete validation of
complex prototypes, at least according to the validation capa-
bilities currently offered by FDT.

As for performance analysis, the formal approach based on
stochastic process algebras effectively supports theoretical
investigations, because it provides an effective notation to
model queuing systems with a high level of abstraction and
powerful tools to automatically solve the correspondent per-
formance models.

The main drawback of this formalism is the distance
between the specification style of the technical documents,
which adopt a FSM-like language in describing the system
behavior, and LOTOS’s high-level approach, based on PA for-
malism, an operational model that is far less implementation-
oriented and which requires extreme thoroughness in dealing
with synchronization aspects. Another rather disagreeable fea-
ture is the cumbersome declaration of data types within the
system specification. Type definitions can be collected in
libraries that shall be included in the specification body in
order to be comprised of model-checking and validation, but
this shortcut has not been sufficient to grant LOTOS a pre-
dominant position among industrial users of formal methods

■ FIGURE 7. LOTOS specification of the go-back-N protocol.

specification go_back_N [Data_Ind]: noexit
library NATURAL,BOOLEAN endlib

behaviour
hide Data_Req,Pdu,Pdu_1,Ack,Ack_]in

(  Transmitter [Data_Req,Pdu,Pdu_1,Ack,Ack_1](0,0,0)
|[Pdu,Pdu_1,Ack,Ack_1]|

     Receiver [Data_Ind,Pdu,Pdu_1,Ack,Ack_1](0)   )
where

process Transmitter [Req,Pdu,Pdu_1,Ack,Ack_1] (ns,nr,ns2:Nat) : noexit :=
[((ns-nr)mod 4) It 1]-> Req!ns;(Pdu!ns; Receive_Ack[...]((ns+1)mod 4,...)[]

Pdu_1; Transmitter[...]((ns+1)mod 4,...) )[]
[((ns-nr)mod 4) eq 1]->Req!ns;(Pdu!ns; Receive_Ack[...]((ns+1)mod 4,...) []

Pdu_1; Repeat [...]((ns+1)mod 4,...) ) []
[((ns-nr)mod 4) eq 2]->Repeat [...](ns,nr,ns2)
where

process Receive_Ack [Req, Pdu,Pdu_1,Ack,Ack_1](ns,nr,ns2:Nat) : noexit:=
Ack?y:Nat; Update[...](ns,nr,ns2,y) []
Ack_1; Transmitter [...](ns,nr,ns)
where

process Update[Req,Pdu,Pdu_1,Ack,Ack_1](ns,nr,ns2,y:Nat) : noexit:=
[y eq nr]-> Transmitter [...](ns,nr,nr) []
[y ne nr]-> Update [...](ns,(nr+1)mod 4,ns2y)

endproc
endproc
process Repeat [Req,Pdu,Pdu_1,Ack,Ack_1](ns,nr,x: Nat) : noexit:=

[((x+1)mod 4)eq ns]-> (Pdu!x; Receive,Ack[...](ns,nr,nr) []
Pdu_1; Repeat[...](ns,nr,nr)  ) []

[((x+1)mod 4)ne ns]-> (Pdu!x; Receive,Ack[...](ns,nr,(x+1)mod4) []
Pdu_1; Repeat[...](ns,nr,(x+1)mod 4) )

endproc
endproc

process Receiver [Ind, Pdu,Pdu_1,Ack,Ack_1](nr:Nat) : noexit :=
Pdu?ns:Nat; (   [ns eq nr]-> Ind!ns; Send_Ack[...] ((nr+1) mod 4) []

[ns  ne nr]-> Send_Ack[...] (nr) ) []
Pdu_1; Receiver [...] (nr)

where
process Send_Ack[...] (nr:Nat) : no exit :=

Ack!nr; Receiver [...] (nr) []
Ack_1; Receiver [...] (nr)

endproc
endproc

endspec

■ FIGURE 8. Specification of the service offered by the GBN proto-
col.

specification go_back_N [Data_Ind] : no exit
library

NATURAL, BOOLEAN
endlib

behaviour
ARQ[Data_Ind](0, 4)

where
process ARQ [Ind] (n, N : Nat) : noexit :=

Ind!n; ARQ[Ind]((n+1)mod N,N)
endproc

endspec
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for communication protocols, as shown by the scarcity of
LOTOS commercial tools for system design.

PETRI NETS

Petri Nets (PN) are a formal modeling technique for the
description of concurrent and distributed system behavior.
Since their introduction in the 1960s they have impressively
evolved. Currently, several versions of this graphical modeling
language exist, which find widespread application in specifica-
tion, verification, and performance analysis of distributed par-
allel systems, communication protocols included.

SYNTAX

A traditional PN is a collection of places (represented by
ellipses or circles), transitions (straight bars), edges (oriented
arcs), and tokens, which are the marker of a place. Each edge
connects a place to a transition or vice versa. Places can be
considered as conditions on the system control states and
transitions as actions. When a condition is verified, that is,
when one or more tokens fill all input places, a transition can
fire and carry the enabling token to the places of destination,
which now become active. When more than one transition are
simultaneously enabled (non-deterministic behavior), in the
validation phase all the possible execution sequences are
explored, whereas during simulation the execution step can be
chosen randomly or interactively.

The initial marking of a PN determines the execution
sequence: if for any initial assignment of tokens the behavior
of the net does not stall, the net is called “life.” Otherwise,
through model-checking, it is possible to find the “safe” mark-
ings that do not lead to blocking conditions.

There are many variants of the generic PN mentioned
above, from the simplest one (boolean/integer token PN) to
the high-level token PN, where tokens are structured values
that, by traversing the net, enable an effective communication
between parts of the system. For each class there is a set of ad
hoc software tools. The relation between high-level and ordi-
nary PN is analogous to the relation between high-level pro-
gramming languages and assembler code: the modeling
capabilities should be the same, but the superior abstraction
of the high-level specification simplifies the design phase.
From a model-checking perspective, instead, high-level nets
are equivalent to huge transition systems, difficult to cope
with without the aid of partial analysis or reduction tech-
niques.

A powerful dialect of high-level PN are the Colored Petri
Nets (CPN) [52], a specification formalism that employs PN
features to model parallel behavior and high-level program-
ming languages to define data types (namely, the “colors” of

the tokens), functions, and computation on data.
Beside structured data values, tokens carry, as a
timestamp, the deterministic or randomly distributed
temporal length of the transition they enable. A time
consuming transition, then, increments the delay
associated to the timed token it processes, which can
be consumed by the following transitions only when
such delay has elapsed.

COMMUNICATION

Communication is represented by token exchange
between different parts of the net, which embody sep-
arate communication entities. Token “reception” can
be conditioned by explicit guard conditions appended

on the arcs entering the transition and on the transition itself.
Based on the current value of the token, which is copied in a
locally bound variable, a transition is blocked or enabled and
different values for the output tokens can be delivered to the
final states.

The graph depicted in Fig. 9 contains all basic concepts of
CPN syntax and semantic. The simple transition Transition1
fires when the values i and j (extracted from the tokens that
mark starting states Place1 and Place2) satisfy the guard condi-
tion i < j. Depending on which tokens are consumed first
from input places, one or two firings of the transition can take
place. The final marking of Place3 can be, respectively, one
token with value 5 or two tokens with values 3 and 7. With
respect to temporal behavior, the timed tokens in Place1 are
active after two temporal units have elapsed. The one or two
transitions they give rise to increment the token delays, so
that the timestamp of the output tokens is 4.

EXAMPLE OF SPECIFICATION

Figure 10 shows an example of a hierarchically structured
CPN specification, representing a sender and a receiver com-
munication on an unreliable channel through the ARQ GBN
protocol.

The two communicating processes are described at the
same hierarchical level in the same graph. They are identified
as the collection of the states, respectively, above and below
the transitions CH1 and CH2. More precisely, the sender enti-
ty comprises the states Sender, seq_num, window, and Acks,
whereas the receiver is embodied by the state seq_num. It can
be observed that there are a couple of states with the same
identifiers (buffer, Packets). They are distinguished states with
similar function, that act as interfaces among protocol entities
and channels.

The unidirectional channels CH1 and CH2 are two
instances of the same substitution transition Channel, whose
behavior is specified at a lower hierarchical level, in a sepa-
rate page. The unreliability of the generic channel behavior is
described as a substitution transition in a separate diagram.
Within the execution of the transition loss, the global variable
loss extracts from (and gives back to) state Loss one of the
two tokens of the marking. If the value that has been copied is
0, a token (of color Packet) is forward from place Data_in to
place Data_out. Otherwise, the token is consumed. The
matching between the states (Packets and buffer) connected to
the channels and the input and output ports appearing in the
sub-page is determined by the flow and the colors of the
tokens. The deterministic delay related to packet delivery is
associated with the transition loss.

Declarations of colors (types) and variables are collected in
a declaration area, which is local to the main graph represent-
ing the GBN ARQ protocol.

■ FIGURE 9. CPN graph with a timed transition and a guard condition.
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TOOL SUPPORT

Many freeware and commercial tools to handle
modeling, animation, and validation of low and
high-level PNs have been developed. In
telecommunication topics, Design/CPN [53] is
one of the most elaborate and successful. It
supports hierarchical description by means of
transition refinements, model-checking for stat-
ic and dynamic properties, formal analysis
methods (places’ and transitions’ invariance
verification) and simulation (automatic as well
as interactive with feedback information and
several debugging options). Validation of timed
graphs is not yet supported; this compels devel-
opers to turn to the untimed version to apply
model-checking routines. For the analysis of
complex models, a highly efficient simulation
engine has recently been developed, which dra-
matically speeds up automatic simulation runs.
An announced library supporting MSC tracing
will further increase the pertinence of the tool
to the field of communication protocols and the
equivalence with other design approaches.

The software package and reference guides
are distributed free of charge to all types of
users, including commercial companies; in fact,
the tool has been exploited in several industrial
projects.

EXAMPLES OF APPLICATIONS

Typical applications of CPN are in the field of
communication protocols, telecommunication
networks, and software engineering. The pro-
ceedings of the annual CPN Workshops com-
prise a selection of real-life case studies.

We have exploited this approach to the mod-
eling and performance analysis of the GPRS
radio interface, giving a detailed representation
of the physical layer and thus proving the appli-
cability of this description method to any layer
of the OSI architectural model [27]. A recent
example of the application of CPNs to software
engineering is given in [54], where the software
architecture of a mobile phone family has been modeled in
CPN and analyzed in both time and space (buffer size require-
ments) performance. The complexity of the prototype has hin-
dered full validation and required abstraction of
implementation details to be carried out in an automatic way.

CRITICAL EVALUATION

Despite a modeling philosophy that is not easy to be acquired,
Petri Nets, thanks to their appealing graphical notation that is
similar to the more familiar FSM, are a powerful modeling
language to describe and investigate communicating and
resource-sharing processes. High-level PN, and colored PNs in
particular, by combining the rigorousness of the basic formal-
ism and the effectiveness of the programming language for
computational details and communication aspects, enable the
creation of compact but accurate system models taking into
account temporal and stochastic issues.

Despite the richness of the graphical notation (which is
usually balanced by lower analysis capabilities), the pertinence
of this formal method to validation and performance analysis
is high thanks to the availability of powerful tools.

Similar to other graphical FDTs, embedding user-defined

functions into the specification is an interesting possibility to
avoid heavy graphical descriptions of deterministic calcula-
tions. In Design/CPN this requires some effort to gain an ade-
quate knowledge of the functional language (Standard ML)
supported by the tool, which is not a typical implementation
language. Thus, user-defined routines cannot be immediately
reused in code production.

UPPAAL

UPPAAL is a toolbox for modeling, simulation, and verifica-
tion of Timed Automata (TA), which has been developed
jointly by the University of Uppsala and Aalborg [55]. Being
devoted to concurrent non-deterministic systems with limited
internal control structures, it is well suited to the research
area of communication protocols, where aspects related to
temporal constraints are often crucial. Thanks to the commit-
ment devoted to simplifying as much as possible the tool
usage, UPPAAL has been provided with a graphical, plat-
form-independent interface, being written in Java.

■ FIGURE 10. Example of a hierarchically structured Colored Petri Net represent-
ing the GBN ARQ protocol.
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SYNTAX

UPPAAL specification language is based on the theory of
Timed Automata [56], which can be interpreted as an exten-
sion of FSMs by means of timers. Continuous-timed systems
possess infinite execution sequences due to the dense nature
of time. The functional equivalent of so called temporal
regions makes it possible to convert the unbounded behavior
into a finite state space, thus enabling a quantitative approach
to temporal properties. The system model is formed by a
finite number of processes (instances of automata templates,
which can depend on formal parameters) in parallel execu-
tion, each characterized as a communicating FSM that is able
to manage global and local variables and temporal counters
(timers).

Each state of the process is marked by properties on vari-
ables and/or timers, which must hold as long as the state is
active, otherwise a dynamic error (deadlock or, more precise-
ly, timelock) is detected. Transitions are guarded by conditions
on timers or data values which, once satisfied, enable the exe-
cution of the actions that are appended to each transition: sig-
nal exchange, assignment on data variables, or set/reset of
timers. The instant of execution is selected in a non-determin-
istic manner within the period of validity of the guard condi-
tion. The numerical analysis addresses all the execution
sequences this random start can give rise to, hence the results
represent only hard constraints on the execution timing.
When tasks performed in consecutive transitions cannot be
interleaved with transitions in other automata, the intermedi-
ate states are declared committed and treated as an atomic
action.

COMMUNICATION

Communication between processes is
implemented as an exchange of unstruc-
tured control signals on bidirectional syn-
chronous channels. A sending action
within an enabled transition is executable
only if there is in the system a hanging
receiving action to mach it, similar to
Spin synchronous communication on
zero-length channels. The transmission of
structured messages can rely on global
variables, once assured that no undesir-
able collision occurs between writing and
reading tasks.

Message exchange can be time-con-
suming, if it is associated with the reset of
a timer or interleaved with the contempo-
rary execution of other time-consuming
actions within the system. On the con-
trary, when the communication must be
executed instantaneously and with higher
priority, the correspondent channel is
declared urgent.

EXAMPLE OF SPECIFICATION

Many of the modeling concepts previous-
ly described are exploited in the specifica-
tion of the GBN protocol (Fig. 11). The
system specification is given by three in-
stances of process templates, Tx, Rx, and
Ch, which use no formal parameters. Pro-
cess Tx (Rx) communicates with the unre-
liable channel through signal t x_c h

(r x_c h), which is directed to the channel, and signal c h_t x
(ch_rx), which is received from the channel. Since no numeri-
cal value can be transferred through communication actions,
the global variables ns and nr are used to convey the sequence
numbers associated with the exchanged messages.

To avoid collision between reading and writing of such
global data, Tx and Rx exploit respectively the local variables
l_nr and l_ns to store temporarily the sequence numbers asso-
ciated with signal reception.

In state s1, when the transmission window is full (win==W)
and the clock T has reached its default value 1 (T==1), the
sender entity resets the timer and the transmission window
((T:=0; win:=0) and starts the retransmission of pending
packets from sequence number l_nr. Before the timeout con-
dition (T<1), Tx can receive a signal from the peer entity
(ch_tx?), which triggers the updating of variables l_nr and ns.

Process R x behaves without temporal references: when a
signal from the peer entity is received (c h_r x?), a signal is
sent to the channel (r x_c h!). The updating of the expected
sequence number nr is based on the comparison between nr
and the received sequence number (l_ns:=ns). To avoid pos-
sible collision due to interleaved executions, this critical task
shall be performed as an atomic action, labeling the interme-
diate states as committed.

The unreliability of the channel is rendered as the alterna-
tive non-deterministic choice between correct signal forward-
ing (with respect to the transmission from Tx to Rx, transition
to state s3 tx_ch? and back to s1 ch_rx!) and silent signal con-
sumption (transition tx_rx?, remaining in the same state s1).

■ FIGURE 11. Time Automata specification of the GBN ARQ protocol.
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TOOL SUPPORT

UPPAAL supports graphical system specifi-
cation, simulation through animation of the
prototypes, and validation of user-defined
temporal properties, formulated as temporal
logic formulas. Alternatively, validation can
be executed by introducing in the system
specification observer or watchdog process-
es, which are synchronized on undesired
behaviors. When the latter occur, a timelock
is detected and a guided simulation can be
performed to resolve inconsistencies in the
specification.

Simulation helps in the initial design
phase and in random verification when no
thorough analysis is possible due to memory
constraints.

EXAMPLES OF APPLICATION

As some examples in the literature suggest
[57, 58], UPPAAL can be used to determine
under what rigid bounds a temporal proper-
ty is satisfied, that is, the threshold value of
the timer controlling a retransmission proto-
col or the maximum sustainable jitter in the
input signal of a decision block. Perfor-
mance or probabilistic behaviors are ban-
ished from this context. Quantitative results
assume the form of a minimum guaranteed
time interval during which the requirements on the system
still hold.

CRITICAL EVALUATION

UPPAAL can be useful in investigating the impact of timer
values on real-time communication protocols. In some cases,
the high modularity of protocol behavior makes it possible to
isolate the temporal aspects and evaluate the correct values
almost by hand. On the contrary, when dealing with several
independent timer instances ruling data transfer within the
same communication session, automatic validation with
UPPAAL can be extremely useful in fixing the range of timer
values that satisfies temporal requirements and guarantees
functional correctness.

As for performance testing, research on stochastic automa-
ta and specification and analysis of soft-time constrained sys-
tems is fervent and tools are expected to follow.

OTHER NOTATIONS IN SHORT

MSC
Message Sequence Chart is a graphical language for describ-
ing the interactions between components of real-time systems,
in particular telecommunication switching systems. MSCs are
a standard ITU-T notation for the specification of require-
ments, conventional behavior, simulation output, and test
cases [59].

MSC syntax provides notations for message exchange, pro-
cess activation, timer handling, generic tasks, and conditions.
Conditions can be used to associate partial execution
sequences in a unique MSC representing the entire system
behavior.

Object-oriented features are MSC types, which are instan-
tiated by declaring the actual message names, and virtual
MSC, which can be redefined to particularly suit operating

conditions. Figure 12 collects simplified MSCs of data trans-
mission procedures and the MSC roadmap of the GBN ARQ
protocol.

Some MSC editors exist; for textual to graphical format
conversion, LaTeX macro packages are also available.

UML

UML (Unified Modeling Language) is the most important
graphical notation for object-oriented software systems, whose
standardization is coordinated by the Object Management
Group (OMG) [60]. UML specifications are collections of
diagrams. Each diagram supports a specific phase of the
development process by capturing a particular abstraction of
the system behavior (analysis of the requirements, architec-
tural and functional design, HW/SW partition, etc.). Some
features of UML have been included in SDL2000 to enrich
SDL software architecture description capabilities.

The following diagrams are useful for protocol specifica-
tion:
• Sequence diagram, similar to standard MSC.
• Class diagram, a graph of abstract elements (classes) con-

nected by static relationships: hereditary, aggregation,
association, and so on.

• Statechart diagram, a graph that illustrates the dynamic
behavior of classes representing event-driven processes.
UML notation is derived from statecharts, a powerful
FDT that extends the finite state machine models with
parallel decomposition of states and transversal commu-
nication between different hierarchical levels of the spec-
ification [61].

• Object diagram, which collects the class instances
(objects) implementing the actual system.
In UML, processes are modeled with classes, local vari-

ables with private or public attributes, internal procedures
with private methods, input signals with public methods, mes-
sages, and information elements with methods’ parameters.

■ FIGURE 12. MSC of process interaction in the GBN ARQ protocol.
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Classes communicate through the invocation of other class-
es’ methods, which triggers an internal reaction and, possibly,
a response. Figure 13 presents a class diagram and Fig. 14
presents a statechart diagram of a simplified version of the
GBN ARQ protocol. In order to support syntactic and seman-
tic verification, UML includes OCL (Object Constraint Lan-
guage), a formal language to specify invariant conditions and
well-formedness rules on the system model. As for the exten-
sion of the modeling language to realtime systems (Real-Time
UML), a sound mathematical foundation is still under investi-
gation.

There are dozens of commercial and freeware tools for
UML, ranging from simple graphical editors to complete
CASE packages.

CONCLUSIONS

With the steady increase in the complexity and diffusion of
information processing systems, software vulnerability to
errors becomes more and more crucial. Traditionally, error
checking is carried out with simulation, testing, and code
inspection; if a fault is detected, the entire design process may
have to be reviewed, thus increasing costs and lengthening
time to market.

Formal methods offer a complementary approach to the
reliability problem by enforcing the system requirements on a
mathematical model, whose correctness can be automatically
proved. Formal methods can support all relevant phases of
software development, from specification through validation,
test generation, and performance testing.

This article provides a tutorial description of formal meth-
ods and tools for design and implementation of communica-
tion protocols. It introduces the main formalisms by explaining

the basic syntax and exemplifying it with the help of a com-
mon case study, the specification of the go-back-N ARQ
protocol. Based on the available tool support and on the
applications to real-life case-studies, some critical conclu-
sions are formulated on the utility of the various FDTs. A
synthesis of the evaluations on the various techniques is pre-
sented in Table 4 and is here briefly summarized.

Among the notations devoted to system specification,
SDL has achieved widespread success for its friendly graphi-
cal notation, its conformance to the idiom adopted by stan-
dardization institutes, and its support for other popular
notations such as ASN.1, MSC, and TTCN. Spin outper-
forms SDL-based commercial tools because it can check,
besides static and dynamic properties, the consistency of the
system’s temporal behavior in all execution sequences. This
makes Spin the most successful freeware tool for large-sys-
tem validation by both academic and industrial users.
Although formally equivalent to the other FMs and similarly
based on FSM, Estelle is worth mentioning basically for his-

torical reasons, as it has evolved poorly in usability and tool
support.

Another interesting FM is the process algebra LOTOS,
which can handle very complex systems by exploiting the
notions of abstraction from internal details (i.e., the hide
operator) and reduction of state space (observational equiva-
lence). In addition, because LOTOS-timed systems are
semantically close to Markovian processes, a quantitative
analysis of performance can be easily obtained starting from
LOTOS synthetic specifications of communication systems.
However, its complex and strict syntax limits widespread diffu-
sion in real-life industrial projects and confines most of the
research activity to academia. Petri nets, on the contrary,
adopt a friendly (although unconventional) graphical notation
to address several aspects of the development process: formal
modeling, model-checking, and efficient simulation of high-
level prototypes. Timed automata analyze temporal properties
of non-deterministic timed systems, verifying the correctness
of the specification and calculating temporal hard bounds on
the system performance. This kind of check is indispensable
for safety-critical real-time systems, in whose development this
FM finds a most appropriate application.

Finally, it is observed that the evaluation of each method
shall take into account, besides theoretical concerns, the time
and resources the user requires to become familiar with the
method; the learning curve is strongly connected with the
maturity of languages and tools. However, the “cost” of the
learning phase can be moderated when the acquired know-
how can be reused in all future projects. Therefore, once the
critical steps of protocol development have been selected to
introduce a formal approach, the choice of the most suitable
technique implies a tradeoff between abstraction, large system
handling capabilities, friendliness of the notation, possibility
of knowledge reuse, and cost of the tool. There are several
different approaches to modeling system behavior (synchro-
nization, communication, data manipulation, real-time issues)
which often do not offer a general-purpose solution. However,
in the several steps of the development of a telecommunica-
tion system, it is possible to identify the formal techniques
that best suit each particular phase. Some commercial pack-
ages gather many notations to cope with the entire develop-
ment process. This integrated solution, not yet based on a
common semantic of the different formalisms, offers a doubt-
fully optimal, yet surely expensive solution. Integration of tra-
ditional structural development and automatic FM-based tools
is seen as a promising alternative, and research is working
toward a unified mathematical framework for system specifi-
cation and enhanced CASE tool support [62–64].

■ FIGURE 13. Class diagram of the GBN ARQ protocol.

private ns: Int
private nr: Int
private l_nr: Int
private win: Int

Sender

Medium

SAP1 SAP2

public Ack(Int):void

private nr: Int
private I_ns: Int

Receiver

public
Data(BitString,Int):void

public Data(BitString,Int):void
public Ack(Int):void

■ FIGURE 14. Simplified Statechart diagram of the Receiver class.
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