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Promoting the Use of End-to-End Congestion
Control in the Internet
Sally Floyd, Senior Member, IEEE,and Kevin Fall

Abstract—This paper considers the potentially negative impacts
of an increasing deployment of non-congestion-controlled best-
effort traffic on the Internet. 1 These negative impacts range from
extreme unfairness against competing TCP traffic to the potential
for congestion collapse. To promote the inclusion of end-to-end
congestion control in the design of future protocols using best-
effort traffic, we argue that router mechanismsare needed to
identify and restrict the bandwidth of selected high-bandwidth
best-effort flows in times of congestion. The paper discusses
several general approaches for identifying those flows suitable for
bandwidth regulation. These approaches are to identify a high-
bandwidth flow in times of congestion asunresponsive, “not TCP-
friendly,” or simply using disproportionate bandwidth. A flow
that is not “TCP-friendly” is one whose long-term arrival rate
exceeds that of any conformant TCP in the same circumstances.
An unresponsive flow is one failing to reduce its offered load
at a router in response to an increased packet drop rate, and
a disproportionate-bandwidth flow is one that uses considerably
more bandwidth than other flows in a time of congestion.

I. INTRODUCTION

T HE end-to-end congestion control mechanisms of TCP
have been a critical factor in the robustness of the

Internet. However, the Internet is no longer a small, closely
knit user community, and it is no longer practical to rely on
all end-nodes to use end-to-end congestion control for best-
effort traffic. Similarly, it is no longer possible to rely on
all developers to incorporate end-to-end congestion control
in their Internet applications. The network itself must now
participate in controlling its own resource utilization.

Assuming the Internet will continue to become congested
due to a scarcity of bandwidth, this proposition leads to
several possible approaches for controlling best-effort traffic.
One approach involves the deployment of packet scheduling
disciplines in routers that isolate each flow, as much as
possible, from the effects of other flows [30]. This approach
suggests the deployment ofper-flow scheduling mechanisms
that separately regulate the bandwidth used by each best-effort
flow, usually in an effort to approximate max-min fairness.
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A second approach, outlined in this paper, is for routers to
support the continued use ofend-to-end congestion controlas
the primary mechanism for best-effort traffic to share scarce
bandwidth, and to deployincentivesfor its continued use.
These incentives would be in the form of router mechanisms
to restrict the bandwidth of best-effort flows using a dispro-
portionate share of the bandwidth in times of congestion.
These mechanisms would give a concrete incentive to end
users, application developers, and protocol designers to use
end-to-end congestion control for best-effort traffic.

A third approach would be to rely on financial incentives or
pricing mechanismsto control sharing. Relying exclusively on
financial incentives would result in a risky gamble that network
providers will be able to provision additional bandwidth and
deploy effective pricing structures fast enough to keep up with
the growth in unresponsive best-effort traffic in the Internet.

These three approaches to sharing, of per-flow schedul-
ing, incentives for end-to-end congestion control, and pricing
mechanisms, are not necessarily mutually exclusive. Given
the fundamental heterogeneity of the Internet, there is no
requirement that all routers or all service providers follow
precisely the same approach.

However, these three approaches can lead to different con-
clusions about the role of end-to-end congestion control for
best-effort traffic, and different consequences in terms of the
increasing deployment of such traffic in the Internet. The
Internet is now at a cross-roads in terms of the use of
end-to-end congestion control for best-effort traffic. It is in
a position to actively welcome the widespread deployment
of non-congestion-controlled best-effort traffic, to actively
discourage such a widespread deployment, or, by taking no
action, to allow such a widespread deployment to become a
simple fact of life. We argue in this paper that recognizing the
essential role of end-to-end congestion control for best-effort
traffic and strengthening incentives for using it are critical
issues as the Internet expands to an even larger community.

As we show in Section II, an increasing deployment of
traffic lacking end-to-end congestion control could lead to
congestion collapsein the Internet. This form of congestion
collapse would result from congested links sending packets
that would only be dropped later in the network. The essential
factor behind this form of congestion collapse is the absence
of end-to-end feedback. Per-flow scheduling algorithms supply
fairness with a cost of increased state, but provide no inherent
incentive structure for best-effort flows to use strong end-to-
end congestion control. We argue that routers need to deploy
mechanisms that provide an incentive structure for flows to
use end-to-end congestion control.
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The potential problem of congestion collapse discussed in
this paper only applies to best-effort traffic that does not
have end-to-end bandwidth guarantees, or to a differentiated-
services better-than-best-effort traffic class that also does not
provide end-to-end bandwidth guarantees. We expect the net-
work will also deploy “premium services” for flows with
particular quality-of-service requirements, and that these pre-
mium services will require explicit admission control and
preferential scheduling in the network. For such “premium”
traffic, packets would only enter the network when the network
is known to have the resources required to deliver the packets
to their final destination. It seems likely (to us) that premium
services with end-to-end bandwidth guarantees will apply only
to a small fraction of future Internet traffic, and that the Internet
will continue to be dominated by classes of best-effort traffic
that use end-to-end congestion control.

Section II discusses the problems of extreme unfairness and
potential congestion collapse that would result from increasing
levels of best-effort traffic not using end-to-end congestion
control. Next, Section III discusses general approaches for
determining which high-bandwidth flows should beregulated
by having their bandwidth use restricted at the router. The
most conservative approach is to identify high-bandwidth
flows that are not “TCP-friendly” (i.e., that are using more
bandwidth than would any conformant TCP implementation
in the same circumstances). A second approach is to identify
high-bandwidth flows as “unresponsive” when their arrival rate
at a router is not reduced in response to increased packet
drops. The third approach is to identify disproportionate-
bandwidth flows, that is, high-bandwidth flows that may be
both responsive and TCP-friendly, but nevertheless are using
excessive bandwidth in a time of high congestion.

As mentioned above, a different approach would be the use
of per-flow scheduling mechanisms such as variants of round-
robin or fair queueing (FQ) to isolate all best-effort flows at
routers. Most of these per-flow scheduling mechanisms prevent
a best-effort flow from using a disproportionate amount of
bandwidth in times of congestion, and therefore might seem
to require no further mechanisms to identify and restrict the
bandwidth of particular best-effort flows. Section IV compares
the approach of identifying unresponsive flows with alternate
approaches, such as per-flow scheduling or relying on pricing
structures as incentives toward end-to-end congestion control.
In addition, Section IV discusses some of the advantages of
aggregating best-effort traffic in queues using simple FCFS
scheduling and active queue management along with the mech-
anisms described in this paper. Section V gives conclusions
and discusses some of the open questions.

The simulations in this paper use the NS simulator, available
at [25]. The scripts to run these simulations are available
separately [7].

II. THE PROBLEM OF UNRESPONSIVEFLOWS

Unresponsive flows are flows that do not use end-to-end
congestion control and, in particular, that do not reduce
their load on the network when subjected to packet drops.
This unresponsive behavior can result in both unfairness and

Fig. 1. Simulation network.

congestion collapse for the Internet. The unfairness is from
bandwidth starvation that unresponsive flows can inflict on
well-behaved responsive traffic. The danger of congestion
collapse stems from a network busy transmitting packets
that will simply be discarded before reaching their final
destinations. We discuss these two dangers separately below.

A. Problems of Unfairness

A first problem caused by the absence of end-to-end conges-
tion control is illustrated by the drastic unfairness that results
from TCP flows competing with unresponsive UDP flows for
scarce bandwidth. The TCP flows reduce their sending rates in
response to congestion, leaving the uncooperative UDP flows
to use the available bandwidth.

Fig. 2 graphically illustrates what happens when UDP and
TCP flows compete for bandwidth, given routers with FCFS
scheduling. The simulations use the scenario in Fig. 1, with
the bandwidth of the R2-S4 link set to 10 Mb/s. The traffic
consists of several TCP connections from node S1 to node
S3, each with unlimited data to send, and a single constant-
rate UDP flow from node S2 to S4. The routers have a single
output queue for each attached link, and use FCFS scheduling.
The sending rate for the UDP flow ranges up to 2 Mb/s.

Definition: goodput. We define the “goodput” of a flow as
the bandwidth delivered to the receiver, excluding duplicate
packets.

Each simulation is represented in Fig. 2 by three marks,
one for the UDP arrival rate at router R1, another for UDP
goodput, and a third for TCP goodput. The-axis shows the
UDP sending rate, as a fraction of the bandwidth on the R1-
R2 link. The dashed line shows the UDP arrival rate at the
router for the entire simulation set, the dotted line shows the
UDP goodput, and the solid line shows the TCP goodput, all
expressed as a fraction of the available bandwidth on the R1-
R2 link. (Because there is no congestion on the first link, the
UDP arrival rate at the first router is the same as the UDP
sending rate.) The bold line (at the top of the graph) shows
the aggregate goodput.

As Fig. 2 shows, when the sending rate of the UDP flow
is small, the TCP flows have high goodput, and use almost
all of the bandwidth on the R1-R2 link. When the sending
rate of the UDP flow is larger, the UDP flow receives a
correspondingly large fraction of the bandwidth on the R1-R2
link, while the TCP flows back off in response to packet drops.
This unfairness results from responsive and unresponsive flows
competing for bandwidth under FCFS scheduling. The UDP
flow effectively “shuts out” the responsive TCP traffic.

Even if all of the flows were using the exact same TCP
congestion control mechanisms, with FCFS scheduling the
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Fig. 2. Simulations showing extreme unfairness with three TCP flows and one UDP flow, with FCFS scheduling.

Fig. 3. Simulations with three TCP flows and one UDP flow, with WRR scheduling. There is no unfairness.

bandwidth would not necessarily be distributed equally among
those TCP flows with sufficient demand. [8] discusses the
relative distribution of bandwidth between two competing TCP
connections with different round-trip times. [11] analyzes this
difference, and goes on to discuss the relative distribution of
bandwidth between two competing TCP connections on paths
with different numbers of congested gateways. For example,
[11] shows how, as a result of TCP’s congestion control
algorithms, a connection’s throughput varies as the inverse
of the connection’s round-trip time. For paths with multiple
congested gateways, [11] further shows how a connection’s
throughput varies as the inverse of the square root of the
number of congested gateways.

Fig. 3 shows that per-flow scheduling mechanisms at the
router can explicitly control the allocation of bandwidth among
a set of competing flows. The simulations in Fig. 3 use the
same scenario as in Fig. 2, except that the FCFS scheduling
has been replaced with weighted round-robin (WRR) sched-
uling, with each flow assigned an equal weight in units of
bytes/s. As Fig. 3 shows, with WRR scheduling, the UDP flow
is restricted to roughly 25% of the link bandwidth. The results
would be similar with variants of FQ scheduling.

B. The Danger of Congestion Collapse

This section discusses congestion collapse from undelivered
packets, and shows how unresponsive flows could contribute
to congestion collapse in the Internet.

Informally, congestion collapse occurs when an increase in
the network load results in a decrease in the useful work done
by the network. Congestion collapse was first reported in the

mid 1980’s [24], and was largely due to TCP connections
unnecessarily retransmitting packets that were either in transit
or that had already been received at the receiver. We call
the congestion collapse that results from the unnecessary re-
transmission of packetsclassical congestion collapse. Classical
congestion collapse is a stable condition that can result in
goodput that is a small fraction of normal [24]. Problems with
classical congestion collapse have generally been corrected by
the timer improvements and congestion-control mechanisms
in modern implementations of TCP [14].

A second form of potential congestion collapse,congestion
collapse from undelivered packets, is the form of interest
to us in this paper. Congestion collapse from undelivered
packets arises when bandwidth is wasted by delivering packets
through the network that are dropped before reaching their
ultimate destination. We believe this is the largest unresolved
danger with respect to congestion collapse in the Internet
today. The danger of congestion collapse from undelivered
packets is due primarily to the increasing deployment of open-
loop applications not using end-to-end congestion control.
Even more destructive would be best-effort applications that
increasedtheir sending rate in response to an increased packet
drop rate [e.g., using an increased level of forward error
correction (FEC)].

We note that congestion collapse from undelivered pack-
ets and other forms of congestion collapse discussed in the
following section differ from classical congestion collapse in
that the degraded condition is not stable, but returns to normal
once the load is reduced. This does not necessarily mean
that the dangers are less severe. Different scenarios can result
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Fig. 4. Simulations showing congestion collapse with three TCP flows and one UDP flow, with FCFS scheduling.

Fig. 5. Simulations with three TCP flows and one UDP flow, with WRR scheduling. There is no congestion collapse.

Fig. 6. Simulations with one TCP flow and three UDP flows, showing congestion collapse with FCFS scheduling.

in different degreesof congestion collapse, in terms of the
fraction of the congested links’ bandwidth used for productive
work.

Fig. 4 illustrates congestion collapse from undelivered pack-
ets, where scarce bandwidth is wasted by packets that never
reach their destination. The simulation in Fig. 4 uses the
scenario in Fig. 1, with the bandwidth of the R2-S4 link set to
128 kb/s, 9% of the bandwidth of the R1-R2 link. Because the
final link in the path for the UDP traffic (R2-S4) is of smaller
bandwidth compared to the others, most of the UDP packets
will be dropped at R2, at the output port to the R2-S4 link,
when the UDP source rate exceeds 128 kb/s.

As illustrated in Fig. 4, as the UDP source rate increases
linearly, the TCP goodputdecreasesroughly linearly, and
the UDP goodput is nearly constant. Thus, as the UDP flow
increases its offered load, its only effect is to hurt the TCP
(and aggregate) goodput. On the R1-R2 link, the UDP flow

ultimately “wastes” the bandwidth that could have been used
by the TCP flow, and reduces the goodput in the network as
a whole down to a small fraction of the bandwidth of the
R1-R2 link.

Fig. 5 shows the same scenario as Fig. 4, except the router
uses WRR scheduling instead of FCFS scheduling. With the
UDP flow restricted to 25% of the link bandwidth, there is
a minimal reduction in the aggregate goodput. In this case,
where a single flow is responsible for almost all of the wasted
bandwidth at a link, per-flow scheduling mechanismsare
reasonably successful at preventing congestion collapse as well
as unfairness. However, per-flow scheduling mechanisms at
the router can not be relied upon to eliminate this form of
congestion collapse in all scenarios.

In Figs. 6 and 7, where a number of unresponsive flows are
contributing to the congestion collapse, per-flow scheduling
does not completely solve the problem. In these scenarios, a
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Fig. 7. Simulations with one TCP flow and three UDP flows, showing congestion collapse with WRR scheduling.

Fig. 8. Congestion collapse as the number of UDP flows increases.

different traffic mix illustrates how some congestion collapse
can occur for a network of routers using either FCFS or WRR
scheduling. In these scenarios, there is one TCP connection
from node S1 to node S3, and three constant-rate UDP con-
nections from node S2 to S4. Fig. 6 shows FCFS scheduling,
and Fig. 7 shows WRR scheduling. In Fig. 6 (high load) the
aggregate goodput of the R1-R2 link is only 10% of maximum,
and in Fig. 7, the aggregate goodput of the R1-R2 link is 35%
of maximum.

Fig. 8 shows that the limiting case of a very large number of
very small bandwidth flows without congestion control could
threaten congestion collapse in a highly-congested Internet
regardless of the scheduling discipline at the router. For the
simulations in Fig. 8, there are ten flows, with the TCP flows
all from node S1 to node S3, and the constant-rate UDP flows
all from node S2 to S4. The-axis shows the number of UDP
flows in the simulation, ranging from one to nine. Theaxis
shows the aggregate goodput, as a fraction of the bandwidth
on the R1-R2 link, for two simulation sets: one with FCFS
scheduling, and the other with WRR scheduling.

For the simulations with WRR scheduling, each flow is
assigned an equal weight, and congestion collapse is created by
increasing thenumberof UDP flows going to the R2-S4 link.
For scheduling partitions based on source-destination pairs,
congestion collapse would be created by increasing the number
of UDP flows traversing the R1-R2 and R2-S4 links that had
separate source-destination pairs.

The essential factor behind this form of congestion col-
lapse is not the scheduling algorithm at the router, or the
bandwidth used by a single UDP flow, but the absence of end-

to-end congestion control for the UDP traffic.The congestion
collapse would be essentially the same if the UDP traffic
(somewhat stupidly) reserved and paid for more than 128 kb/s
of bandwidth on the R1-R2 link, in spite of the bandwidth
limitations of the R2-S4 link. In a datagram network, end-
to-end congestion control is needed to prevent flows from
continuing to send when a large fraction of their packets are
dropped in the network before reaching their destination. We
note that congestion collapse from undelivered packets would
not be an issue in a circuit-switched network where a sender
is only allowed to send when there is an end-to-end path with
the appropriate bandwidth.

C. Other Forms of Congestion Collapse

In addition toclassical congestion collapseand congestion
collapse from undelivered packets, other potential forms of
congestion collapse includefragmentation-based congestion
collapse, congestion collapse from increased control traffic,
and congestion collapse from stale packets. We discuss these
other forms of congestion collapse briefly in this section.

Fragmentation-based congestion collapse[16], [29], con-
sists of the network transmitting fragments or cells of packets
that will be discarded at the receiver because they cannot be
reassembled into a valid packet. Fragmentation-based conges-
tion collapse can result when some of the cells or fragments
of a network-layer packet are discarded (e.g. at the link layer),
while the rest are delivered to the receiver, thus wasting
bandwidth on a congested path. The danger of fragmentation-
based congestion collapse comes from a mismatch between
link-level transmission units (e.g., cells or fragments) and



FLOYD AND FALL: END-TO-END CONGESTION CONTROL IN THE INTERNET 463

higher layer retransmission units (datagrams or packets), and
can be prevented by mechanisms aimed at providing network-
layer knowledge to the link-layer or vice versa. One such
mechanism is Early Packet Discard [28], which arranges that
when an ATM switch drops cells, it will drop a complete
frame’s worth of cells. Another mechanism is Path MTU
discovery [17], which helps to minimize packet fragmentation.

A variant of fragmentation-based congestion collapse con-
cerns the network transmitting packets received correctly by
the transport-level at the end node, but subsequently discarded
by the end-node before they can be of use to the end user [32].
This can occur when web users abort partially completed TCP
transfers because of delays in the network and then re-request
the same data. This form of fragmentation-based congestion
collapse could result from a persistent high packet drop rate
in the network, and could be ameliorated by mechanisms
that allow end nodes to save and re-use data from partially
completed transfers.

Another form of possible congestion collapse,congestion
collapse from increased control traffic, has also been dis-
cussed in the research community. In this case, as a result
of increasing load and therefore increasing congestion, an
increasingly-large fraction of the bytes transmitted on the
congested links belong to control traffic (packet headers for
small data packets, routing updates, multicast join and prune
messages, session messages for reliable multicast sessions,
DNS messages, etc.), and an increasingly-small fraction of
the bytes transmitted correspond to data actually delivered to
network applications.

A final form of congestion collapse,congestion collapse
from stale or unwanted packets, could occur even in a scenario
with infinite buffers and no packet drops. Congestion collapse
from stale packets would occur if the congested links in
the network were busy carrying packets that were no longer
wanted by the user. This could happen, for example, if data
transfers took sufficiently long, due to high delays waiting
in large queues, that the users were no longer interested in
the data when it finally arrived. Congestion collapse from
unwanted packets could occur if, in a time of increasing load,
an increasing fraction of the link bandwidth was being used
by pushweb data that was never requested by the user.

D. Building in the Right Incentives

Given that the essential factor behind congestion collapse
from undelivered packets is the absence of end-to-end conges-
tion control, one question is how to build the right incentives
into the network. What is needed is for the network architec-
ture as a whole to include incentives for applications to use
end-to-end congestion control.

In the current architecture, there are no concrete incentives
for individual users to use end-to-end congestion control, and
there are, in some cases, “rewards” for users that donot use it
(i.e. they might receive a larger fraction of the link bandwidth
than they would otherwise). Given a growing consensus among
the Internet community that end-to-end congestion control
is fundamental to the health of the Internet, there are some
unquantifiable social incentives for protocol designers and

software vendors not to release products for the Internet that
do not use end-to-end congestion control. However, it is not
sufficient to depend only on social incentives such as these.

Axelrod in “The Evolution of Cooperation” [1] discusses
some of the conditions required if cooperation is to be main-
tained in a system as a stable state. One way to view congestion
control in the Internet is as TCP connectionscooperatingto
share the scarce bandwidth in times of congestion. The benefits
of this cooperation are that cooperating TCP connections can
share bandwidth in a FIFO queue, using simple scheduling
and accounting mechanisms, and can reap the benefits in that
short bursts of packets from a connection can be transmitted
in a burst. (FIFO queueing’s tolerance of short bursts reduces
the worst-case packet delay for packets that arrive at the
router in a burst, compared to the worst-case delays from per-
flow scheduling algorithms [3]). This cooperative behavior in
sharing scarce bandwidth is the foundation of TCP congestion
control in the global Internet.

The inescapable price for this cooperation to remain stable is
for mechanisms to be put in place so that users do not have an
incentive to behave uncooperatively in the long term. Because
users in the Internet do not have information about other users
against whom they are competing for scarce bandwidth, the
incentive mechanisms cannot come from the other users, but
would have to come from the network infrastructure itself.
This paper explores mechanisms that could be deployed in
routers to provide a concrete incentive for users to participate
in cooperative methods of congestion control. Alternative ap-
proaches such as per-flow scheduling mechanisms and reliance
on pricing structures are discussed later in the paper.

Section III focuses on mechanisms for identifying which
high-bandwidth flows are sufficiently unresponsive that their
bandwidth should be regulated at routers. The main function of
such mechanisms would be to reduce the incentive for flows to
evade end-to-end congestion control. There are no mechanisms
at a single router that are sufficient to obviate the need for end-
to-end congestion control, or to prevent congestion collapse in
an environment that is characterized by the evasion of end-to-
end congestion control. There are only two ways to prevent
congestion collapse from undelivered packets: to succeed,
perhaps through incentives at routers, in maintaining an en-
vironment characterized by end-to-end congestion control; or
to maintain a virtual-circuit-style environment where packets
are prevented from entering the network unless the network
has sufficient resources to deliver those packets to their final
destination.

III. I DENTIFYING FLOWS TO REGULATE

In this section, we discuss the range of policies a router
might use to identify which high-bandwidth flows to regulate.
For a router with active queue management such as RED [9],
the arrival rates of high-bandwidth flows can be efficiently
estimated from the recent packet drop history at the router [6].
Because the RED packet drop history constitutes a random
sampling of the arriving packets, a flow with a significant frac-
tion of the dropped packets is likely to have a correspondingly
significant fraction of the arriving packets. Thus, for higher
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bandwidth flows, a flow’s fraction of the dropped packets can
be used to estimate that flow’s fraction of the arriving packets.
For the purposes of this discussion, we assume that routers
already have some mechanism for efficiently estimating the
arrival rate of high-bandwidth flows.

The router only needs to consider regulating those best-
effort flows using significantly more than their “share” of the
bandwidth in the presence of suppressed demand (as evidenced
by packet drops) from other best-effort flows. A router can
“regulate” a flow’s bandwidth by differentially scheduling
packets from that flow, or by preferentially dropping packets
from that flow at the router [18]. When congestion is mild (as
represented by a low packet drop rate), a router does not need
to take any steps to identify high-bandwidth flows or further
check if those flows need to be regulated.

The first two approaches in this section assume that a
“flow” is defined on the granularity of source and destination
IP addresses and port numbers, so each TCP connection is
a single flow. The approach discussed in Section III-C, of
identifying flows that use a disproportionate share of the
bandwidth in times of congestion, could also be used on
aggregates of flows. This use of aggregation is most likely to
be attractive for routers in the interior of the network with
a high degree of statistical multiplexing, where each flow
uses only a small fraction of the available bandwidth. For
such a high-bandwidth backbone router, flow identification and
packet classification on a fine-grained basis is not necessarily
a viable approach.

The approaches discussed in this section are designed to
detect a small number of misbehaving flows in an environment
characterized by conformant end-to-end congestion control.
They would not be effective as a substitute for end-to-end
congestion control, and are only useful as an incentive to limit
the benefits of evading end-to-end congestion control. The only
effective substitute for end-to-end congestion control would be
a virtual-circuit-style mechanism that prevented packets from
being sent on the first link of a path unless sufficient resources
were guaranteed to be available for that packet along all hops
of the end-to-end path.

Additional issues not addressed further in this paper are
that practices such as encryption and packet fragmentation
could make it more difficult for routers to classify packets
into fine-grained flows. The practice of packet fragmentation
should decrease with the use of MTU discovery [21]. The
use of encryption in the IP Security Protocol (IPsec) [15]
could prevent routers from using source IP addresses and port
numbers for identifying some flows; for this traffic, routers
could use the triple in the packet header that defines the
Security Association to identify individual flows or aggregates
of flows.

The policies outlined in this section for regulating high-
bandwidth flows range in the degree of caution. One policy
would be to only regulate high-bandwidth flows in times
of congestion when they are known to be violating the
expectations of end-to-end congestion control, by being either
unresponsive to congestion (as described in Section III-B) or
exceeding the bandwidth used by any conformant TCP flow
under the same circumstances (as described in Section III-A).

In this case, an unresponsive flow could either be restricted to
the same bandwidth as a responsive flow (the more cautious
approach) or be givenlessbandwidth than a responsive flow
(the less cautious but more powerful approach.) The second
response would provide a concrete incentive for the use of end-
to-end congestion control, but would also include the danger
of incorrectly throttling flows that are in fact using conformant
end-to-end congestion control.

Another policy would be to regulate any flows determined
to be using a disproportionate share of the bandwidth in a time
of congestion (as described in Section III-C). Such flows might
be unresponsive to congestion, or might simply be using con-
formant congestion control coupled with a significantly smaller
round-trip time or larger packet size than other competing
flows. The most appropriate response to a flow identified as
using a disproportionate share of the bandwidth is to use the
more cautious approach of simply restricting that flow to the
same bandwidth seen by other responsive flows. This response
essentially constitutes a modified and limited form of per-flow
scheduling that is only invoked for high-bandwidth flows in
times of congestion.

The following sections discuss issues in detecting flows
that are unresponsive, not TCP-friendly, or simply using
disproportionate bandwidth in a time of congestion.

A. Identifying Flows That Are Not TCP-Friendly

Definition: TCP-friendly flows. We say a flow isTCP-
friendly if its arrival rate does not exceed the arrival of a
conformant TCP connection in the same circumstances. The
test of whether or not a flow is TCP-friendly assumes TCP
can be characterized by a congestion response of reducing
its congestion window at least by half upon indications of
congestion (i.e., windows containing packet drops), and of
increasing its congestion window by a constant rate of at
most one packet per round-trip time otherwise. This response
to congestion leads to a maximum overall sending rate for a
TCP connection with a given packet loss rate, packet size, and
round-trip time. Given a packet drop rate ofthe maximum
sending rate for a TCP connection isbytes/s, for

(1)

for a TCP connection sending packets of bytes, with a
fairly constant round-trip time, including queueing delays of
seconds. This equation is discussed in more detail in Appendix
B. To apply this test, for each output link, a router should know
the maximum packet size in bytes for packets on that link,
and a minimum round-trip time for any flows using that link.

The router can use its measurement of the aggregate packet
drop rate for each link output queue over a recent time interval
to estimate , the packet drop rate experienced by a particular
flow. Given the packet drop rate the minimum round-trip
time and the maximum packet size a router can use (1),
or the improved form of the equation given in [27], to easily
calculate the maximum arrival rate from a conformant TCP
connection in similar circumstances. Actual TCP connections
will generally use less than this maximum bandwidth because
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they have limited demand, a longer round-trip time, a window
size limitation, a smaller packet size, a less-aggressive TCP
implementation, a receiver that sends delayed ACK’s, or
additional packet drops from elsewhere in the network.

Given and (1) can reduce to a simple table at the
router: if the aggregate steady-state packet drop rate is “x,”
then the arrival rate of an individual flow should be at most “y,”
If a flow’s drop rate (the ratio of a flow’s dropped packets to its
arriving packets) is lower than the aggregate drop rate for the
queue, the router will overestimate the flow’s actual drop rate,
but at the same time will underestimate the flow’s arrival rate
in bytes/s. These effects tend to cancel, implying the estimates
should not lead to problems with incorrect identification of
unresponsive or unfriendly flows. This is confirmed by our
simulations to date.

The test of TCP-friendliness does not attempt to verify that a
flow responds to each and every packet drop exactly as would a
conformant TCP flow. It does, however, assume a flow should
not use more bandwidth than would the most aggressive con-
formant TCP implementation in the same circumstances. The
TCP protocol itself is subject to change, and the congestion
control mechanisms used to derive (1) could at some point be
changed by the Internet Engineering Task Force (IETF), the
responsible standards body. Nevertheless, the two limitations
on a TCP’s window increase and decrease algorithms have
been followed by all conformant TCP implementations since
1988 [14], and have an installed base in the end systems of
the Internet that will persist for some time, even if at some
point in the future changes might be proposed to the TCP
standards to allow more aggressive responses to congestion.
As long as best-effort traffic is dominated by such an installed
base of TCP, it would be reasonable for routers to restrict the
bandwidth of any best-effort flow with an arrival rate higher
than that of any conformant TCP implementation in the same
circumstances.

The TCP-friendly test does not attempt to detect all flows
which are not TCP-friendly. For example, the router might
know a lower bound on any flow’s round-trip time, but the
router does not know any flow’s actual round-trip time. For
routers with attached links with large propagation delays, the
TCP-friendly test of Eq. (1) gives a useful tool for identifying
flows which are not TCP-friendly. For routers with attached
links of smaller propagation delay, the TCP-friendly test of Eq.
(1) is less likely to identify any unfriendly flows. Such routers
cannot exclude the possibility that a conformant TCP flow
could receive a disproportionate share of the link bandwidth
simply because it has a significantly smaller round-trip time
than competing TCP flows.

Limitations of this Test: The TCP-friendly test can only be
applied to a flow at the level of granularity of a single TCP
connection.

It can be difficult to determine the maximum packet size
in bytes or a minimum round-trip time for a flow. An

individual flow whose arrival rate significantly exceeds the
maximum TCP-friendly arrival rate is either not using TCP-
friendly congestion control, or has larger packets or a smaller
round-trip time than assumed by the router. Close to 100%
of the packets in the Internet are 1500 bytes or smaller [31];

routers could detect those high-bandwidth flows that use larger
packets simply by observing the sizes of packets in the recent
history of dropped packets. However, there is no simple test
for a router to determine the end-to-end round-trip time of an
active connection.

The minimum round-trip time could be set to twice the
one-way propagation delay of the attached link; this would
limit the appropriateness of this test to those routers where the
propagation delay of the attached link is likely to be a signif-
icant fraction of the end-to-end delay of a connection’s path.

Care should be taken to only apply the TCP-friendly test
to measurements taken over a sufficiently large time interval.
The time period should not correspond to only one or two
flow round-trip times. If a very long round-trip time flow is
incorrectly identified as not TCP-friendly because of a short
measurement interval relative to its round-trip time, then the
router will notice the flow’s delayed response to congestion a
short time later, and can respond accordingly (e.g. by removing
bandwidth restrictions it may have applied, see below).

Another consideration in applying (1) is the prevalence of
packet drops from buffer overflow. Equation (1) only applies
for nonbursty packet drop behavior, where a flow receives at
most one packet drop per window of data, and therefore each
packet drop corresponds to a separate indication of congestion
to the end nodes. In particular, when congestion is high and
there is significant buffer overflow, multiple packets dropped
from a window of data are likely to be fairly common.

Response by the Router: Our proposal is that routers
should freely restrict the bandwidth of best-effort flows de-
termined not to be TCP-friendly in times of congestion. Such
flows are “stealing” bandwidth from TCP-friendly traffic and,
more seriously, are contributing to the danger of congestion
collapse. Any such flow should only have its bandwidth
restriction removed when there is no longer any significant
link congestion, or when it has been shown to reduce its arrival
rate appropriately in response to congestion.

Example Test: a TCP-friendly test. One possibility for a
TCP-friendly test that we explored in simulations would be to
identify a high-bandwidth best-effort flow as not TCP-friendly
if its estimated arrival rate is greater than
for the maximum packet size in bytes, twice the
propagation delay of the attached link, and the aggregate
packet drop rate for that queue. A flow’s restriction would be
removed if its arrival rate returns to less than
for the new packet drop rate.

B. Identifying Unresponsive Flows

The TCP-friendly test is based on the specific congestion
control responses of TCP, and many routers may not want
to use such a “TCP-centric” measure. The TCP-friendly test
is also of limited usefulness for routers unable to assume
strong bounds on TCP packet sizes and round-trip times. A
more general test would be simply to verify that a high-
bandwidth flow wasresponsive(i.e., its arrival rate decreases
appropriately in response to an increased packet drop rate).

Equation (1) shows that for a TCP flow with persistent
demand, if the long-term packet drop rate of the connection
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increases by a factor of then the arrival rate from the source
should decrease by a factor of roughly . For example, if
the long-term packet drop rate increases by a factor of four,
than the arrival rate should decrease by a factor of two. This
suggests a test for identifying unresponsive flows if the drop
rate is changing. If the steady-state drop rate increases by a
factor and the presented load for a high-bandwidth flow
does not decrease by a factor reasonably close to or
more, then the flow can be deemed not to be using congestion
control (unresponsive). Similarly, if the steady-state drop rate
increases by a factor and the presented load for aggregated
traffic does not decrease by a factor reasonably close toor
more, then either the mix of the aggregated traffic has changed,
or the traffic as an aggregate is not using congestion control,
and can be categorized as unresponsive.

Applying this test to a flow (or to an aggregate) requires
estimates of a flow’s arrival rate and packet drop rate over
several long time intervals. The flow’s arrival rate could be
estimated from the history of packet drops maintained by ac-
tive queue management, and the flow’s packet drop rate could
be estimated using the aggregate packet drop rate at the queue.

This test does not attempt to detect all flows that are not
responding to congestion, but is only applied to the high
bandwidth flows. When the packet drop rate remains relatively
constant, no flows will be identified as unresponsive. In
addition, the router has limited information about the flow’s
responses to congestion. The primary congestion indications
experienced by a flow might be coming from elsewhere in
the network. In addition, the arrival rate seen by a router is a
result not only of the sending rate, but also of the drop rate
experienced by a flow at a congested link earlier on its path.

An additional refinement of this “responsiveness” test would
be to distinguish three separate subcases: flows with an in-
creasing or relatively constant average arrival rate (as indicated
by the drop metric) in the face of an increasing packet drop rate
at the router; a flow whose average arrival rate generally tracks
longer term changes in the packet drop rate at the router; and a
flow whose average arrival rate seems to change independently
of changes in the router’s packet drop rate.

Limitations of this Test: As discussed in the previous
section, care should be taken when applying this test. In
particular, a test for unresponsiveness is less straightforward
for a flow with a variable demand. In addition to possible
end-to-end congestion mechanisms such as senders adjusting
their coding rates or receivers subscribing and unsubscribing
from layered multicast groups, the original data source itself
could beON/OFF,or otherwise have strong rate variations over
time. If a high-bandwidth flow is restricted because it has
been identified as unresponsive, and is later determined to be
responding to congestion by reducing its arrival rate, then the
restriction is removed.

If the only tests deployed along a path were tests for
responsiveness, this could give flows an incentive to start
with an overly-high initial bandwidth. Such a flow could then
reduce its sending rate in response to congestion, and still
receive a larger share of the bandwidth than competing flows.

Response by the Router: The router should freely restrict
the bandwidth of best-effort flows determined to be unre-

sponsive in times of congestion. Such flows are “stealing”
bandwidth from responsive TCP-friendly traffic, and, more
importantly, increasing the danger of congestion collapse.

Instead of applying the test passively by observing how
the flow’s arrival rate changes in response to changes in the
packet drop rate, another possibility would be to apply the
test actively. This could be done by purposefully increasing
the packet drop rate of a high bandwidth flow in times of
congestion, and observing whether the arrival rate of the flow
on that link decreases appropriately.

Example Test: a test for unresponsiveness. One possibility
for an unresponsiveness test is to identify a high-bandwidth
best-effort flow as unresponsive if the packet drop rate in-
creases by more than a factor of four, but the flow’s arrival
rate has not decreased to below 90% of its previous value.
Restrictions would be removed from an unresponsive flow
only if, after an increased packet drop rate, its arrival rate
returns to at most half of its arrival rate when it was restricted.

C. Identifying Flows Using Disproportionate Bandwidth

A third test would be simply to identify flows that use
a disproportionate share of the bandwidthin times of high
congestion, where a disproportionate share is defined as a
significantly larger share than other flows in the presence of
suppressed demand from some of the other flows. A router
might restrict the bandwidth of such flows even if the flows
are known to be using conformant TCP congestion control.
A conformant TCP flow could use a “disproportionate share”
of bandwidth under several circumstances: if it was the only
TCP with sustained persistent demand, or the only TCP using
large windows, or the only TCP with a significantly smaller
round-trip time or larger packet sizes than other active TCP’s.

Let be the number of flows with packet drops in the
recent reporting interval. The most obvious test to check if a
flow was using a disproportionate share of the bandwidth in
times of congestion would be to test if the flow’s fraction
of the aggregate arrival rate was greater than some small
constant times when the aggregate packet drop rate
was greater than some preconfigured threshold deemed as an
unacceptable level of congestion. Our test is a modification of
this approach that, instead of using a preconfigured threshold
for the acceptable packet drop rate, simply allows for greater
skewedness in the distribution of best-effort bandwidth when
packet drop rates are lower. The goal is only to prevent flows
from using a highly disproportionate share of the bandwidth
when there is likely to be “sufficient” demand from other
best-effort flows.

The first component of the disproportionate-bandwidth test
is to check if a flow is using a disproportionate share of the
bandwidth. We define a flow as using adisproportionate share
of the best-effort bandwidth if its fraction of the aggregate
arrival rate is more than for the natural
logarithm. We chose this fraction because it is close to one
(i.e., 0.9) for equal to two, and grows slowly as a multiple
of .

The second component of our test takes into account the
level of congestion itself, as reflected in the aggregate packet
drop rate . We define a flow as having a high arrival
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rate relative to the level of congestionif its arrival rate is
greater than Bps for some constant. This definition
is motivated by our characterization in Section III-A of the
relationship between the arrival rate and the packet drop rate
for conformant TCP. For our simulations we setto 12,000,
which is close to for bytes and

s.
Limitations of this Test: Gauging the level of unsatisfied

demand is problematic. For a large round-trip time TCP flow
with persistent demand, a single packet drop can represent
a significant suppressed demand. For a short bursty web
transfer, a single packet drop might not mean much in terms
of unsatisfied demand.

Response by the Router: A conservative approach would
be to limit the restriction of a high-bandwidth responsive
flow so that over the long run, each such flow receives as
much bandwidth as the highest bandwidth unrestricted flow.
In restricting the bandwidth of a high-bandwidth flow that
has not been identified as either unresponsive or not TCP-
friendly, care should be taken not to “punish” it by restricting
its bandwidth too severely.

Example Test: a disproportionate-bandwidth test. Let be
the aggregate packet drop rate for the unrestricted best-effort
traffic, and let be the number of flows with packet drops in
the most recent interval. One possibility for a disproportionate-
bandwidth test would be to identify a best-effort flow as
using disproportionate-bandwidth if the estimated arrival rate
is greater than and the arrival rate is also greater
than a fraction of the best-effort bandwidth. The
restriction would be removed when one of these conditions is
no longer true.

IV. A LTERNATE APPROACHES

An alternative to the use of the router mechanisms pro-
posed in this paper would be the ubiquitous deployment, at
all congested routers in the Internet, of per-flow scheduling
mechanisms such as round-robin or fair-queueing scheduling.
In general, per-flow scheduling algorithms separately schedule
packets from each flow, dividing the available bandwidth
among the various flows and providing isolation between them.
Per-flow scheduling mechanisms at routers would indeed take
care of many of the fairness issues concerning competing best-
effort flows. With per-flow scheduling, it might also seem that
there is no need for further mechanisms to identify and restrict
the bandwidth of best-effort flows that do not use appropriate
end-to-end congestion control. In this section we argue that: 1)
even routers with per-flow scheduling mechanisms still need
additional mechanisms as an incentive for best-effort flows
to use end-to-end congestion control and 2) FCFS scheduling
has some advantages for best-effort traffic that are apart from
issues of implementation efficiency or incentives regarding
end-to-end congestion control.

As we have seen in Section II, per-flow scheduling can-
not, by itself, prevent congestion collapse from undelivered
packets. To what extent would the use of per-flow scheduling
mechanisms encourage end-to-end congestion control for best-
effort traffic? Recommendations for the ubiquitous deployment
of per-flow scheduling for best-effort traffic are based on an

assumption that in a heterogeneous world, best-effort flows
cannot be relied upon to be responsive to congestion, and
therefore they should be isolated from each other. In some
sense, per-flow scheduling has incentives in the wrong direc-
tion, encouraging flows to make sure that “their” queue in the
congested router never goes empty (so that they never lose
“their” turn at scheduling).

An advantage of simple FCFS scheduling over per-flow
scheduling is that FCFS scheduling is more efficient to im-
plement. Implementation efficiency can be a concern as link
speeds and the number of active flows per link both increase.
Apart from considerations of implementation efficiency, how-
ever, FCFS scheduling is in many ways the optimal scheduling
algorithm for a class of traffic where the long-term aggregate
arrival rate is restricted by either admission controls or, in the
case of best-effort traffic, by compatible end-to-end congestion
control procedures. In comparison to FQ [4] or Round Robin
scheduling, FCFS scheduling reduces the tail of the delay
distribution [3]. In particular, FCFS scheduling allows packets
arriving in a small burst to be transmitted in a burst, rather than
having the packets “spread out” and delayed by the scheduler.

In some sense, FCFS scheduling and per-flow FQ or Round
Robin scheduling are two ends of a spectrum. The middle
ranges of the spectrum would include not only FCFS schedul-
ing enhanced by mechanisms for the differential treatment of
unresponsive flows, but could also include relaxed variants
of per-flow scheduling that allow for small bursts to be
transmitted by each flow and include additional incentives
for end-to-end congestion control. This middle range would
also include FCFS scheduling with differential dropping for
flows using a disproportionate share of the bandwidth [18], or
scheduling mechanisms such as class-based queueing (CBQ)
[10] or stochastic fair queueing (SFQ) [20] that can operate
on levels of granularity between the two extremes of either a
single flow or the entire aggregate of best-effort traffic.

The differential treatment of unresponsive flows can
consist of preferentially dropping packets from unresponsive
flows while keeping those packets in the same queue, or of
reclassifying packets from unresponsive flows to a separate
queue or queues. Another choice concerns the granularity at
which regulation should be applied. The approach outlined
in Section III-A of identifying unfriendly flows can best
be applied to the level of granularity of a single flow; the
sending rate for an aggregate of flows is quite different
from the sending rate of a single flow. In contrast, the
approaches outlined in Sections III-B and III-C, of identifying
unresponsive flows or flows using disproportionate
bandwidth, could also be applied to aggregates of flows. As
with any scheduling or packet-dropping mechanism applied
to an aggregate, there is a fundamental question of the
relative allocation of scarce network resources to the various
aggregates. This issue remains problematic even at the level
of granularity of single flows: an application can open
separate flows to the same destination instead of one, for
example,2 or frequently change port numbers for active flows.

2This particular form of evasion of end-to-end congestion control would
be reduced by the development of mechanisms for shared congestion control
among flows with the same source and destination [13].
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A more speculative issue is whether min-max fairness
is the ideal fairness metric to use for best-effort traffic at
a specific router. Min-max fairness has the advantage of
being simple to define at a router; indeed, it is the basis
for our approach in this paper for defining flows using
a disproportionate share of the link bandwidth. However,
instead of considering the network as a whole, themin-max
definition of fairness restricts attention separately to each
isolated component. A more appropriate fairness metric for
recognizing each flow’s equal access to the scarce resources
of the Internet would take into account such global factors
as the number of congested links on each flow’s path.

Another alternative to the router mechanisms described in
this paper might be the deployment ofpricing structures
sensitive to the behavior of each flow in the global Internet that
would elicit the desired behavior. Although pricing structures
that provide an incentive for applications to use end-to-end
congestion control could be envisioned, the state required by
such a pricing scheme would be nontrivial.

In contrast, router mechanisms that detect and restrict the
bandwidth of uncooperative flows could be deployed in-
crementally, without requiring global knowledge or global
consistency in the network infrastructure, to provide a con-
crete incentive to flows to use appropriate congestion control
mechanisms. Such mechanisms could be deployed at a con-
gested router, using information from packet drops (or other
congestion indications) generated at the router itself.

In a network engineered so that the typical case is one
of sufficient bandwidth for the demand, distinctions between
the various scheduling algorithms and incentive mechanisms
would become less important. Similarly, in such a network
the possibility of congestion collapse due to congested links
carrying packets that would later be dropped in the network
would become more remote. It is hard to predict, however,
when or if the scenario of sufficient bandwidth for the demand
is likely to be achieved.

V. CONCLUSIONS AND FUTURE WORK

We have argued in this paper on the need for end-to-end
congestion control, and further, on the need for mechanisms
in the network to detect and restrict unresponsive or high-
bandwidth best-effort flows in times of congestion. Such
mechanisms would provide an incentive in support of end-
to-end congestion control for best-effort traffic.

Clearly, there is substantially more work still to be done
in developing and investigating the approaches outlined in
this paper. We have not yet outlined a specific proposal
for mechanisms for identifying and controlling unresponsive
flows. We believe the most important issue is not the precise
functioning of the mechanisms to restrict the bandwidth of un-
responsive best-effort flows, but simply that such mechanisms
be deployed. Mechanisms such as these would go a long way
to making concrete the essential role played by congestion
control for best-effort traffic in the Internet.

APPENDIX A
ONE TCP CONNECTION OR MANY

This section discusses the negative impact on the network of
breaking a single TCP connection into multiple connections at

the application level to increase throughput. In particular, we
show that while the use of concurrent connections increases
throughput for those applications that break a TCP connection
into multiple connections (relative to those applications that
do not do this), it also increases the packet drop rate shared
by all of the best-effort traffic (see also [2]). Breaking a single
TCP connection into multiple connections is one example of
a possible spiral of increasingly aggressive TCP congestion-
control behaviors that leads to increasing packet drop rates in
the Internet.

For a TCP connection that has been separated into
different TCP subconnections, a single packet drop results
in one of the subconnections, receiving -th of the
aggregate bandwidth, having its throughput cut in half. Thus,
a single packet drop causes the aggregate arrival rate to be
dropped to a fraction of its previous value.
Then, because each TCP subconnection continues to increase
its congestion window by one packet per RTT for those
TCP subconnections that have not yet reached the receiver’s
advertised window, the aggregate TCP connections together
increase their arrival rate by up to packets per RTT. This
is much more aggressive congestion control that would lead
to a correspondingly-larger steady-state packet drop rate in
the Internet. A router could detect a TCP connection that
had been separated into different TCP subconnections by
defining the granularity of a “flow” by source and destination
IP addresses only.

APPENDIX B
CHARACTERIZING TCP-FRIENDLY FLOWS

Since congestion control was introduced to TCP in 1988
[14], TCP flows in the Internet have used packet drops as an
indication of congestion, and have responded by reducing their
offered load by half for each window of data experiencing a
packet drop. For a responsive flow with persistent demand,
increasing the packet drop rate for a flow at a router should,
after a short delay, result in a decreased arrival rate from
that flow at that router. In this section, we give an upper
bound on the arrival rate from any single conformant TCP
connection at a router, given a steady-state packet drop rate
at the router, an upper bound on the TCP packet size, and a
lower bound on the TCP connection’s round-trip time. Using
this characterization, routers can characterize selected flows as
using more bandwidth than would any TCP flow in the same
circumstances.

In this section, we explore the relationship between through-
put and the packet drop rate for aconformantTCP connection
[11], [26], [22], [23]. By a conformantTCP connection, we
mean a TCP connection where the TCP sender follows the
following two essential components of today’s TCP congestion
control. First, the TCP data sender interprets any packet drop in
a window of data as an indication of congestion, and responds
by reducing the congestion window at least in half. Second,
during the congestion avoidance phase in the absence of
congestion, the TCP sender increases the congestion window
by at most one packet per round-trip time (or more precisely,
by at most one packet per window of data). These two
components lead to a simple relationship between the “steady-
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state” packet drop rate received by a TCP connection, and the
“steady-state” average throughput achieved by that connection.

There are many reasons why conformant TCP implemen-
tations might respond to congestion less aggressively than
allowed by the limits of congestion control described above.
TCP connections have potentially long delays due to retrans-
mit timeouts; at times, TCP senders invoke slow-start in
responding to congestion; TCP connections may be limited by
maximum bounds on the window size, imposed by buffering
or lack of window scaling at either at the sender or receiver;
for TCP connections where the receiver only sends an ACK
packet for every two data packets, the TCP sender increases
the congestion window by less than one packet per round-trip
time.

We assume asteady-statemodel of TCP as introduced in
Section V of [11]. For the purposes of heuristic analysis, we
assume a single packet is dropped from a TCP connection each
time the congestion window is increased to packets (and
never when the congestion window is below packets). The
steady-statemodel assumes a nonzero but nonbursty average
packet drop rate of where an individual TCP connection has
at most one packet drop in a window of data. The TCP sender
responds to a packet drop by cutting the congestion window
at least in half. After a packet is dropped, the TCP sender
increases its congestion window by at most one packet each
round-trip time, until the congestion window again reaches
its old value of packets (and, in steady state, the TCP
connection receives another packet drop). The assumption in
this model of a deterministic and repeatable pattern, although
admittedly unrealistic, leads to results verified by simulations
in this section and by independently derived and more rigorous
analysis in [26], [19], [27]. The equation that results from this
steady-state model has also been proposed as a basis for new
congestion-control mechanisms [22].

We consider a TCP connection sending packets (or more
precisely, segments) of bytes, with a fairly constant round-
trip time, including queueing delays, of seconds. Each time
a packet is dropped, the TCP sender has a congestion window
of packets.

By decreasing its window by at least half for each packet
drop and increasing its window by at most one per round-trip
time afterwards, the TCP sender transmits at least

(2)

packets for each packet dropped. The fractionof the sender’s
packets that are dropped is then bounded by the reciprocal of
that value

(3)

From (3)

(4)

For our steady-state model assuming a link with steady-state
packet drop rate (4) gives the maximum congestion window

of a TCP connection when a packet is dropped. In the

Fig. 9. Simulation network.

steady-state model where the congestion window is increased
by one packet per round-trip time, the average congestion
window over a single cycle of the steady-state model is

The maximum sending rate for a TCP connection over
a single cycle of the steady-state model is thusbytes/s, for

Substituting for from (4), we get

(5)

This upper bound on TCP’s average sending rate applies for
any conformant TCP that decreases its congestion window
by at least half, and, after the congestion window has been
decreased by half, increases the congestion window by at
most one packet per round-trip time.3 Thus, this upper bound
also applies to a TCP restricted by the receiver’s advertised
window, or by TCP variants such as Vegas TCP which
sometimes refrain from increasing the congestion window
during the congestion avoidance phase. Assuming a steady-
state packet drop rate of and thus, in the steady-state
model, that the TCP connection gets to send packets
between packet drops, clearly the TCP connection maximizes
its average throughput by increasing its congestion window by
the maximum allowed amount each round-trip time.

This might at first seem counter-intuitive. However, the
purpose of the steady-state model in this section is to explore
the relationship between the steady-state packet drop rate and
the steady-state arrival rate from the TCP connection. Certainly
in a specific scenario with all else being equal, a TCP that
refrains from increasing its congestion window from time to
time might increase its own throughput by decreasing the
aggregate packet drop rate. This does not change the fact that
the inequality in (1) still describes the relationship between
the packet drop rate and the arrival rate for that connection.

For TCP connections where the data receiver sends at most
one ACK for every two packets, we could show a stronger
upper bound on the sending rate. For a TCP connection with
a delayed-ACK receiver, the sender receives one acknowledg-
ment for every two packets, and increases its window more
slowly that a TCP connection that receives an ACK for every
packet. With a delayed-ACK receiver, the fraction of that
connection’s arriving packets that are dropped is

(6)

This gives an upper bound on the arrival rate of

(7)

3The same result was derived by [26], using a more rigorous model, with
a constant of 1.3 instead of 1.22(�1:5 2=3).
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(a)

(b)

Fig. 10. TCP-friendly bandwidth for a 60-ms round-trip time and 1460-byte packets.

Although the language in this paper refers only to packet
drops, proposals have been made to add explicit congestion
notification to TCP/IP [12], [29]. If explicit congestion no-
tification were deployed, then instead of dropping a packet
to provide feedback about congestion, a router could sim-
ply “mark” packets by setting the the Explicit Congestion
Notification bit in packet headers.

Limitations of the Model: Equations (5) and (7) do not
take into account TCP delays due to waiting for retrans-
mit timers to time out. Thus, (5) drastically overestimates
the bandwidth for steady-state scenarios when the conges-
tion window is less than four packets when a packet is

dropped. From (4), this occurs when the packet drop rate
is 16% or higher. (If the congestion window is four or
higher, the TCP connection can recover from a single packet
drop using Fast Retransmit, after receiving several duplicate
acknowledgments. If the congestion window is smaller, then
the TCP connection generally has to wait for a retransmit
timeout [5].) In the extreme case, for a packet drop rate
of 100%, our steady-state model would assume that the
TCP connection stubbornly sends one packet every round-
trip time, and (5) (because it used an approximation in (2))
gives a TCP sending rate of slightly over one packet per
round-trip time. Incorporating the notion of retransmit timer
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Fig. 11. TCP bandwidth versus steady-state drop rate, for SACK TCP with a delayed-ACK receiver, a 60-ms round-trip time and 512-byte packets.

backoff in the model, as in [27], gives a much more realistic
result.

A. Simulations Verifying the “TCP-Friendly”
Characterization

In this section we use simulations to loosely verify the
“TCP-friendly” characterization in (5). This equation has also
been verified with simulations and experiments in [23].

Fig. 9 illustrates the simulation topology used to evaluate
the “TCP-friendly” characterization. The solid line in the top
graph of Fig. 10 shows the TCP-friendly bandwidth from (5)
as a function of the packet drop rate. This is also shown in
the straight line in the bottom graph. The curved solid line
in the bottom graph shows the revised equation from [27].
Fig. 10 assumes a TCP connection with minimum round-trip
time of s and a maximum packet size of
bytes. The -axis shows the fraction of arriving packets
that are dropped, and theaxis shows the upper bound on
TCP arrival rate in kbytes/s. The bottom graph repeats the top
graph on a log-log scale.

Each dashed line in Fig. 10 shows the results from a single
simulation set. Each simulation consists of two competing
connections, one TCP and the other UDP, from node S1 to
node S4. For each simulation set the sending rate of the
UDP flow ranges from zero up to the available bandwidth
of the congested link. The router uses FCFS scheduling and
RED queue management. The RED packet drop mechanisms
are generally able to prevent both the FIFO buffer from
overflowing and RED’s average queue size from exceeding
its maximum threshold. The TCP connection sees a round-trip
time, including queueing delay, of roughly 60 ms.

Each simulation is represented by a number in Fig. 10. The
simulations in a simulation set differ from each other only
in the sending rate of the UDP flow. Numbers “1” through
“3” show simulations where the TCP connection uses 1460-
byte packets. Numbers “4” through “6” show simulations with
512-byte packets. Simulation sets “2” and “5” use Tahoe TCP,
and the others use SACK TCP. Simulation sets “3” and “6”
use data receivers with delayed ACK’s (sending one ACK
to acknowledge two data packets), and the others use single
ACKS (sending an ACK for every data packet). For all of
the simulations, the TCP clock granularity is 100 ms. The-
axis in Fig. 10 shows the fraction of the TCP connection’s

arriving packets that are dropped, and the-axis shows the
TCP connection’s sending rate.

For the SACK and Tahoe simulations with 1460-byte pack-
ets and single-ACK receivers (simulation sets “1” and “2”),
the simulation results are a reasonable match to the computed
TCP-friendly bandwidth. For drop rates lower than 2%, the
SACK and Tahoe TCP’s receive more than the computed TCP-
friendly bandwidth. Examining the output traces shows that in
these simulations, it is not uncommon for two packets to be
dropped from a single window of data in a congestion epoch.
When this happens, the two packet drops constitute a single
indication of congestion to the end nodes.

For packet drop rates greater than 5%, Fig. 10 shows that
the TCP-friendly bandwidth greatly overestimates the arrival
rate of a TCP connection. As mentioned earlier, this is because
the version of the steady-state model used in this paper does
not take into account delays due to retransmit timers.

Simulations with 512-byte packets closely match (5) using
512-byte packets. As seen in Fig. 10, the more aggressive the
TCP congestion control (i.e. a TCP with 1460-byte packets is
more aggressive than TCP with 512-byte packets), the higher
the steady-state packet drop rate needed to sustain the same
per-connection bandwidth. A spiral of increasingly aggressive
congestion control would lead to a matching spiral of an
increasingly high steady-state packet drop rate, in the context
of a fixed available bandwidth.

Fig. 11 shows the results for SACK TCP with a delayed-
ACK receiver with the simulated topology of Fig. 9. For
a fixed throughput, a TCP connection with a delayed-ACK
receiver should receive half the packet drop rate of a TCP
connection that receives an ACK for every packet. The top
solid line shows the analytical results for an immediate-ACK
receiver, and the bottom solid line shows the analytical results
for an delayed-ACK receiver. For a given packet drop rate, a
TCP connection with a delayed-ACK receiver will receive less
throughput than a TCP connection with an immediate-ACK
receiver.

ACKNOWLEDGMENT

This paper results, in part, from a long collaboration with
V. Jacobson. It also results from a long history of discussions
and disagreements in the IETF Transport Area Directorate,
the Internet End-to-End Research Group, and elsewhere. We



472 IEEE/ACM TRANSACTIONS ON NETWORKING, VOL. 7, NO. 4, AUGUST 1999

are particularly indebted to H. Balakrishnan, G. Minshall, L.
Zhang, and the anonymous reviewers from SIGCOMM ’97
and from IEEE/ACM TRANSACTIONS ON NETWORKING for
feedback on this paper, to K. Tieu who worked with us on
the related issue of using RED packet drops to detect high-
bandwidth flows, and to J. Bolot, B. Braden, J. Mahdavi,
M. Mathis, and S. Shenker for discussions of some of these
matters.

REFERENCES

[1] R. Axelrod,The Evolution of Cooperation. New York: Harper Collins,
1984.

[2] H. Balakrishnan, V. N. Padmanabhan, S. Seshan, S. Stemm, and
R. H. Katz, “TCP behavior of a busy internet server: Analy-
sis and improvements,” inProc. Conf. Computer Communica-
tions (IEEE INFOCOM), Mar. 1998. [Online]. Available HTTP:
http://www.cs.berkeley.edu/˜hari/papers/infocom98.ps.gz

[3] D. D. Clark, S. Shenker, and L. Zhang, “Supporting real-time ap-
plications in an integrated services packet network: Architecture and
mechanism,” inProc. SIGCOMM Symp. Communications Architectures
and Protocols, 1992, pp. 14–26.

[4] A. Demers, S. Keshav, and S. Shenker, “Analysis and simulation of
a fair queueing algorithm,”Internetworking: Research and Experience,
vol. 1, pp. 3–26, 1990.

[5] K. Fall and S. Floyd, “Simulation-based comparisons of Tahoe, Reno,
and Sack TCP,”ACM Comput. Commun. Rev., pp. 5–21, July 1996.
[Online]. Available HTTP: http://www-nrg.ee.lbl.gov/nrg-papers.html

[6] S. Floyd and K. Fall. (1997). Router mechanisms to support
end-to-end congestion control[Online]. Available HTTP: http://www-
nrg.ee.lbl.gov/floyd/papers.html

[7] S. Floyd and K. Fall, “Promoting the use of end-to-end congestion
control in the internet,” submitted for publication. [Online]. Available
HTTP: http://www-nrg.ee.lbl.gov/floyd/end2end-paper.html

[8] S. Floyd and V. Jacobson, “On traffic phase effects in packet-switched
gateways,”Internetworking: Research and Experience, vol. 3, no. 3, pp.
115–156, Sept. 1992.

[9] S. Floyd and V. Jacobson, “Random early detection gateways for con-
gestion avoidance,”IEEE/ACM Trans. Networking, vol. 1, pp. 397–413,
Aug. 1993. [Online]. Available HTTP: http://www-nrg.ee.lbl.gov/nrg-
papers.html

[10] , “Link-sharing and resource management models for packet
networks,” IEEE/ACM Trans. Networking, vol. 3, pp. 365–386, 1995.
[Online]. Available HTTP: http://www-nrg.ee.lbl.gov/nrg-papers.html

[11] S. Floyd, “Connections with multiple congested gateways in packet-
switched networks part 1: One-way traffic,”ACM Comput. Commun.
Rev., vol. 21, no. 5, pp. 30–47, Oct. 1991. [Online]. Available HTTP:
http://www-nrg.ee.lbl.gov/nrg-papers.html

[12] , “TCP and explicit congestion notification,”ACM Comput.
Commun. Rev., vol. 24, no. 5, pp. 10–23, Oct. 1994.

[13] . (1999).Multiplexing, TCP, and UDP: Pointers to the discussion
[Online]. Available HTTP: http://www.aciri.org/floyd/tcp_mux.html

[14] V. Jacobson, “Congestion avoidance and control,” inProc. SIGCOMM
Symp. Communications Architectures and Protocols, 1988, pp. 314–329.
[Online]. Available FTP: ftp://ftp.ee.lbl.gov/papers/congavoid.ps.Z

[15] S. Kent and R. Atkinson, “Security architecture for the internet proto-
col,” RFC 2401, Internet Engineering Task Force, Nov. 1998.

[16] C. Kent and J. Mogul, “Fragmentation considered harmful,” inProc.
SIGCOMM Symp. Communications Architectures and Protocols, Aug.
1987, pp. 390–401.

[17] C. Kent, K. McCloghrie, J. Mogul, and C. Partridge, “IP MTU discovery
options,” RFC 1063, Internet Engineering Task Force, July 1988.

[18] D. Lin and R. Morris, “Dynamics of random early detection,” inProc.
SIGCOMM Symp. Communications Architectures and Protocols, 1997,
pp. 127–136.

[19] T. V. Lakshman and U. Madhow, “The performance of TCP/IP for
networks with high bandwidth-delay products and random loss,”

IEEE/ACM Trans. Networking, vol. 6, pp. 336–350, June 1997. [Online].
Available HTTP: http://www.ccrc.wustl.edu/ton/jun97.html#Lakshman

[20] P. McKenney, “Stochastic fairness queueing,” inProc. Conf. Computer
Communications (IEEE INFOCOM), pp. 733–740, 1990.

[21] J. Mogul and S. Deering, “Path MTU discovery,” RFC 1191, Internet
Engineering Task Force, Nov. 1990.

[22] J. Mahdavi and S. Floyd. (1997) TCP-friendly uni-
cast rate-based flow control [Online]. Available HTTP:
http://www.psc.edu/networking/papers/tcp_friendly.html

[23] M. Mathis, J. Semke, J. Mahdavi, and T. Ott, “The macroscopic behavior
of the TCP congestion avoidance algorithm,”ACM Comput. Commun.
Rev., vol. 27, no. 3, pp. 67–82, July 1997.

[24] J. Nagle, “Congestion control in IP/TCP internetworks,” RFC 896,
Internet Engineering Task Force, Jan. 1984.

[25] (1995).NS (network simulator)[Online]. Available HTTP: http://www-
mash.cs.berkeley.edu/ns

[26] T. Ott, J. Kemperman, and M. Mathis. (1996).The stationary distri-
bution of ideal TCP congestion avoidance[Online]. Available HTTP:
http://networks.ecse.rpi.edu/natun/papers/tcp-equn.ps

[27] J. Padhye, V. Firoiu, D. Towsley, and J. Kurose, “Modeling
TCP throughput: A simple model and its empirical validation,”
in Proc. SIGCOMM Symp. Communications Architectures and
Protocols, Aug. 1998, pp. 303–314. [Online]. Available HTTP:
http://www.acm.org/sigcomm/sigcomm98/tp/abs_25.html

[28] A. Romanow and S. Floyd, “Dynamics of TCP traffic over ATM
networks,”IEEE J. Select. Areas Commun., vol. 13, pp. 633–641, 1995.
[Online]. Available HTTP: http://www-nrg.ee.lbl.gov/nrg-papers.html.

[29] K. K. Ramakrishnan and S. Floyd, “A proposal to add explicit conges-
tion notification (ECN) to IP,” RFC 2481, Jan. 1999.

[30] S. Shenker, “Making greed work in networks: A game-theoretic analysis
of switch service disciplines,” inProc. SIGCOMM Symp. Communica-
tions Architectures and Protocols, Aug. 1994, pp. 47–57.

[31] K. Thompson, G. Miller, and R. Wilder, “Wide-area internet traffic
patterns and characteristics,”IEEE Network, vol. 11, pp. 10–23, Nov.
1997.

[32] G. Varghese, “On avoiding congestion collapse,” viewgraphs, Washing-
ton Univ. Workshop Integration of IP and ATM, Nov. 19, 1996.

Sally Floyd (S’86–M’88–SM’98) received the B.A.
degree in sociology, with a minor in mathematics,
from the University of California (UC) at Berkeley
in 1971. She received the M.S. and Ph.D. degrees in
computer science from the UC at Berkeley in 1987
and 1989, respectively.

From 1975 to 1982, she worked on computer
systems for Bay Area Rapid Transit, CA. From 1990
to 1999, she was a member of the Network Research
Group at Lawrence Berkeley National Laboratory,
Berkeley, CA. Since February 1999, she has been a

member of the AT&T Center for Internet Research at ICSI (ACIRI), at the
International Computer Science Institute, Berkeley, CA. Her research interests
include congestion control in computer networks and the analysis of network
dynamics.

Kevin Fall received the B.A. degree in computer science from the University
of California at Berkeley in 1988. He received the M.S. and Ph.D. degrees
in computer science from the University of California (UC) at San Diego in
1991 and 1994, respectively.

From 1995 to 1998, he was a member of the Network Research Group at
Lawrence Berkeley National Laboratory, Berkeley, CA. Since 1998, he has
been with the Computer Science Division, UC at Berkeley, as a Research
Computer Scientist and Adjunct Assistant Professor. He is also a co-founder
of NetBoost Corporation, Mountain View, CA. His research interests include
simulation, network protocol architecture, and performance analysis.


