PARSEC User Manual
For PARSEC Release 1.1
Revised in September 1999

Manual written by Richard A. Meyer ariglajive Bagrodia

PARSEC was developed by members of the UCLA Parallel Computing Laboratory
Mineo Takali, Jay Martin, Richard Meyer, Brian Park, Ha Yoon Song

http://pcl.cs.ucla.edu/
parsec@cs.ucla.edu

(c) Copyright 1991-1998

PARSEC

Authored by members of the Parallel Computing Laboratory

The PARSEC Parallel Simulation software is not in the public domain. However, it is freely available
without fee for education, or research, or to non-profit agencies. No cost evaluation licenses are available
for commercial users. By obtaining copies of this and other files that comprise PARSEC, you, the
Licensee, agree to abide by the following conditions and understandings with respect to the copyrighted
software:

1.

Permission to use, copy, and modify this software and its documentation for education, research, and
non-profit purposes is hereby granted to Licensee, provided that the copyright notice, the original
author's names and unit identification, and this permission notice appear on all such copies, and that
no charge be made for such copies. Any entity desiring permission to incorporate this software into
commercial products or to use it for commercial purposes should contact:

ProfessoRajive Bagrodia

University of California, Los Angeles
Department of Computer Science
Box 951596

3532Boelter Hall

Los Angeles, CA 90095-1596
rajive@cs.ucla.edu

NO REPRESENTATIONS ARE MADE ABOUT THE SUITABILITY OF THE SOFTWARE FOR
ANY PURPOSE. IT IS PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY.

Neither the software developers, the Parallel Computing Lab, UCLA, or any affiliate of the UC
system shall not be liable for any damages suffered by Licensee from the use of this software.

For more information on the PARSEC simulation language and related projects, please visit the
Parallel Computing Laboratory web paae http://pcl.cs.ucla.edul/.

1 INTRODUCTION oottt r ettt ere e e e e e e e e et s e e et e e e e e s s sabbr s mmenn e neees 1

1.1 ORGANIZATION ...ttt e eitt e ettt e ettt e e e e et e e e e et e eeeeta e e e eaaeataaeesan e esansasesansasmnnsesansasatanaasesnsaeensnnnnnnaarernns 1
1.2 N O T ATION. ..t ee it e e e e et ee e et e ettt e e e e et e e e et aaeeta e e eeaa e e e st e eesan e mmneetanaaeesasassnnnsasstaannnseeesnnnaaesnnn 1
2 THEPARSEC LANGUAG E ..ottt ee ettt e et e e e e e e et een e e e e st e e e e e e eebanes 2
2.1 TYPES ANDKEYWORDS. ... cctuuiiiitiieiite e et etaeet e e eat e e ettt e eee st e s e e tanaaeesanasasanasetanannseeesnneerstnaaersnnsaaes 2
2.2 NI TP PRPPPRN 2
P2 R = 0111 Y D= {1 1o PR 2
P A = 1111 Y O (=T 1 (o] PRSP 3
2.2.3 ENItY TEIMINALION.ciiiiitiii ettt e et e e e ekttt e e e s ame e e e e snbae e e e annbeeeeenane 4
S = 1Y o o (0T ox 1 o 1= 5
2.3 MESSAGECOMMUNICATION ...otuueiiitieeitieees et e ema e esettaeesetaeeeetaaesstaeasanaesstaaesatnseessnnnsemnneestnseersnnaeesrnns 5
2.3. 1 SENAING MESSAGES. ... eeetiiieeiiiaiititee ettt et e e e e e et et et e e eeeeeeaaeaa s e e bbb beeeeeaaeeaaaaaeeeaaaannbbeeeeeaaeeaeaannnn 6
2.3.2 RECEIVING 8 MESSAGEL.cc ettt ea ettt e e e e e e eee ettt e e e e e e e e s ebebmmsa b e eeeeeaaeeeesnnnebeees 8

P TR T €10 - 1o [SR TORRR 9

D T 10 0 1= To T | P TPUTPPR 10
e TS T = o] [0 I S) v (=T =T o PSSR 11
2.3.6 NON-DIOCKING RECEIVE.ccoiiiiiiii e et rnb e e e 11
2.3.7 Advanced Message ReCeIVE CONSIIUCES.........uiiiiiiiieiiieeiiiee ettt ee e sbeee e reemnree e e s sbreeeessebeeeeeans 11
2.3.8 Compound ReSUME CONAItIAMNS........uuiieiiiiieeeiietiee et ee et e e et n et e e e sbbe e e e s sebeeeessbmnreeeeeanes 12
2.4 THE DRIVER ENTITY ettt et e ettt eeee ettt e e ettt e et e et ese et e e st e st e e aaeeta s esanemnnsbnsesnaransassarsneestnnns 12
2.5 PROGRAM TERMINATION 11 tttuueitteetteieteeetetesaeaueesteesneesnrestesssesnnesssessneesteesneestnsesnannssneresnressneesnseres 12
2.6 (O ol @ == N 510] NS T 13
2.7 ENTITY SCHEDULINGtitueeiitt e ettt e e e teeet e e e et e e e et e e e et e e s meeeta e e eeaa e s saansesstnsann e eesanaaeesnnaeennnnaeernn 13
2.8 L Y 1= = 15
2.8.1 SIEVE Of EFAlOSINENES. . .uuu ettt e e et e e e e e e e et e e s e e e s eeaneeesestaa e eeeeeeesranns 15
2R S I o] o Jo] [0 To |V Of £ Y- 11 (o] 1 ST PPTTTP TP 15

3 THE PARSEC PROGRAMMING ENVIRONMENT ..ottt e e 19
3.1 USING THECOMPILERL. ... cctuuieeittieeeite e et e aae st e e e e et e e e at e eeettn e ama e s taaaeetasasasnnsasstnaannseaesnnnsassnnaaessnnares 19
0 0 R O o 1T £ PSPPI PTPPP 19
3.1.2 Separate COMPIIALION.ciiiiiiiiii ittt e et st e e eee e s sbeee e e anbbeeee e e 20
3.2 PARALLEL COMPILATION AND EXECUTION.uuiiituueiitteeeiet e s eeetieeeeetaeesesaeesstaeeensesessneeesssaeessnneees 20
3.3 DEBUGGINGPARSEC FROGRAMSeuiiiiiteeeiti et eeee e e et e e e ete e e et e e e e e aee st e e s st eeestn e sessnssmnersnnsen 21
3.3.1 Diagnosing COMPIIET EITOIS.......coiiiiiiiieiitiiteeeee sttt e ettt e ettt e e s see s sebae e e e snbbe e e e s sabbeeeeaeessnbeeeeeans 21
3.3.2 Source Level DEDUGQING........ooiiiiiiii et a e 21
3.3.3 CommonN PARSEC RUNUME EITOLS......ciiiiiiiiiiie ettt eee et s e e e e e e aaban s e e e e e e 22
3.3.4 Conservative PARSEC RUNIIME EITOLS.......uuiiiiiiiieicc ettt 23

4 PARALLEL SIMULATIO N REQUIREMENTSciiiiiiiiiiiiiieeeeee ettt e e e e eee e 25
4.1 L 1 L[1 0] £ T 25
4.2 Y I] 1] 25
4.3 REQUIREMENTS FORCONSERVATIVE SIMULATION ...uuiitiieeeetieeeetieeseeeeeteeeeeaeeesaanaeesatnaemnnesesnneeeesannns 25
4.3.1 CommUNICALION TOPOIOGY: ... teeiitiiiieiiiiie ettt e ee e e e s anneeeas 26

N B W0 1o] €= (Y- [28
4.4 REQUIREMENTS FOROPTIMISTIC SIMULATION ..tuuuuiieeetitiitieeeeesesteaeeeestannaeeessessnnnnsesnnnaseaesenssnnnaeees 29
APPENDIX A: PARSEC LIBRARY REFERENCEoovtiiiieeeeeee ettt ee e 31
AL CLOCK OPERATIONSuu ittt eetet e ettt e e e e ea e e e e e e e et e e e e e st e eeanes st e eeetaseessaanesaraessnseeessnneeesanaeeestnenneeees 31
A.2 CONSERVATIVE SIMULATION FUNGCTIONS.......cittiiiiiii i ei et e e et eee e e s et e e e et e e e eaa s e mmm e eetaaeeeaan s eeanan e eernannnnnns 31
A.3 RANDOM NUMBER GENERATORS ... itttueetttteetttieetaaeeatnesetunaeeettnaaeeatnannsetetaaaeetnaerennaesstanntneerennaeeesnns 31
YA Y s = I N =T T S 31

APPENDIX B: NEW THINGS IN PARSECooiiiiiii et 33

Bl PERFORMANCE.ttt eeeett e ettt e e e eeeet e e e e et e e e s aa e e e e et emn e s e aaaeeeebaeeeaan s e aaesanseeaanesssnnesstansnnnsssnnnseseran 33
SR Y [= N 22 33
B.3 IMPLEMENTATION CHANGES......ituiittiitteiti et et eesaettaesst e saa ettt san st taasstassstssta s ssaensssbasesnsaransasseres 33
B4 SYNTAX CHANGES ... cttuiittiititite ittt ettt sst e et etba e taetaa st ba e st staa s st taasstssnn s sansssbasesasssbassssestannssstnsees 33
APPENDIX C: MODIFICATIONS REQUIRED FOR COMPATIBILITY e 34
(O3 S = N Y N 3 (=T = V7 =T 34
C.2 RECEIVEMESSAGEV ARIABLES ARE CONSTANT ..uutiittiiiteittttttetttsmestsstatesssssaestnstsnsnssstersnesstaersnassranes 34
C.3 ANSI C STYLE ENTITY DECLARATIONS ..euuittuitetntieueettntesaemeeasetaesansssnetansssssnnssassteneestrseneesteresennssenes 35
C.4 RANDOM NUMBER GENERATORS. ... utttttttnttttettasetunsmn st sesastantestetansstarn et stsneesn sttt taeeeseteresserrnns 35
C.5 VE S S AGED ECLARATIONS. .. ttutttt ittt sttt setntesaeenettasesaetaa e st taa s sresesan sttt eantesasess s ensetaresnaseansesansrenns 35
C.0 FRIEND FUNCTIONS . ..ttt ettt ettt ettt et e et et e ettt e e s e e e et e e sa e e et s e ea e s e b emn e ea e s ane e st ssenssbasesnennsernns 36
C.TENDSIM AND FINALIZE ..euuituuieitntttueeets et s e et seaasetasa st e saass st smm st st aa s eta s eassba e saeam s ebnseenesansesneransssnnnnss 36
C.8 LIBRARY FUNCTION CHANGES. .. .cttutitunittteteee et et e sete e et ss s s eta e sansan et se st stan e et sensetarn s saneastseeneerrnss 37
C.9 MAISIE FEATURES WHICH HAVE NOT BEEN IMPLEMENTED{YET) ...utettttteeaiaarntieeeeeeeeeeeeeaaeesaananbreneeeeaaeseaaneas 37
C.10 INCOMPATIBILITIES BETWEENPARSECVERSIONSL.OAND 1.1 ... iiuiiiiiiiiii i ieee e e e e 37
APPENDIX D: TROUBLESHOOTING oottt e e e et eem e e et e e s et e e s st e s s s amaeaaeesebasas 38
D1 STACKSIZE PROBLEMS.....uuiitiiiitiii et eea et et e ettt e e e et e e s eaa et e b e eta e s b e ettt e san s e tasestassanesstnsssnsstnsnnnns 38
D.2 BUG REPORT ANDSY STEM SUPPORT ... ittuiittiittititsttiisaesnesstaeetntestneestersnsnnttaeraetsntesttsstesetsransrstessrnne 38
APPENDIX E: GETTING PARSECoe ettt ettt et e e e e e et e e et e e e et e e s see st e s saaaeesaaas 39

1 Introduction

PARSEC (for PARallel Simulation Environment for Complex systems) is a C-based discrete-event
simulation language. It adopts the process interaction approach to discrete-event simulation. An object
(also referred to as a physical process) or set of objects in the physical system is represented by a logical
process. Interactions among physical processes (events) are moddlatebiamped message exchanges
among the corresponding logical processes.

One of the important distinguishing features of PARSEC is its ability to execute a discrete-event
simulation model using several different asynchronous parallel simulation protocols on a variety of
parallel architectures. PARSEC is designed to cleanly separate the description of a simulation model from
the underlying simulation protocol, sequential or parallel, used to execute it. Thus, with few

modifications, a PARSEC program may be executed using the traditional sequential (Global Event List)
simulation protocol or one of many parallel optimistic or conservative protocols.

In addition, PARSEC provides powerful message receiving constructs that result in shorter and more
natural simulation programs. Useful debugging facilities are available.

The PARSEC language is derived frolhaisie, but with several improvements, both in the syntax of the
language and in its execution environment. Appendix “C” contains information about converting existing
Maisie programs into PARSEC.

1.1 Organization

The next section describes the PARSEC language, defining especially the two main enhancements that
PARSEC makes to C -- constructs for defining and creating (simulation) entities, and constructs for
message communication. Section 3 contains information about the PARSEC programming environment,
including instructions for using the compiler, and debugging support for PARSEC. Section 4 lists the
additional requirements for running PARSEC simulations in parallel. Appendix A includes a list of all the
PARSEC library functions which are available to the programmerAppendix C contains important
information about upgrading existing programs to use the new system. Appendix D includes
information about limitations and common problems in executing PARSEC programs. Appendix E
contains the latest information on how to get and install PARSEC.

1.2 Notation

The reader is assuméd be familiar with the C programming language, according to the ANSI standard.
The syntax of PARSEC statements is given in BNF using the following symbols and conventions:

Terminals . terminal symbols are given in boldface style

Nonterminals : nonterminal symbols are in italic style

ident : a C identifier (see Appendix 2.2 for identifiersserved by PARSEC)
1] : symbolsoccuring within brackets are optional

0... : symbols may be repeated 0 or more times

| . alternative.

2 The PARSEC Language

The PARSEC language is based on C, but introduces several new features. PARSEC programs consist of
entities, which exchangemessagesrThe following sections introduce these two features and describe
how to construct a program from them.

2.1 Types and Keywords

PARSEC defines the following types and keywords, which are described in much greater detalil
subsequently:

clocktype . an abstract numeric type for representing time
ename . an entity identifier

message . a structure defining the contents of a message
PARSEC Reserved Words
after at clocktype driver ename entity
finalize in message new or receive
self send stacksize timeout to when

Appendix A contains a comprehensive list of built-ifiunctions which are available to the user. These
functions may also lead to nameonflicts, and PARSEC also reserves all function and variable names
prefixed with “MC_" or “pc_" for its internal functions.

2.2 Entities

A PARSEC program is a collection of C functions and entity definitions. An entity definition (or an entity
type) describes a class of objects. Instances of an entity type may be created to model object(s) in the
physical system. For instance, an entity typ&ervermay be defined to model server objects; specific
instances of th&Serverentity type are created to model server objects in the physical system. Henceforth
we will use the term entity to mean an entity instance.

2.2.1 Entity Definition

The definition of an entity type is similar to the definition of a C function. The syntax is as follows:

entity- def = entity ident ([parameters])[stacksize (size_expr)] body
parameters = A C parameter list

size_expr = A unary integer expression (see Remarks below)

body = { a series of PARSEC and C statements [finalize_st 1}
finalize_st = finalize { aseries of C statements }

The entity heading is similar to an ANSI C function heading; it specifies a name for the entity type and
gives a list of typed parameters. The entity body is a compound statement, possibly terminated with a
finalize block, that describes the actions executed by an entity Hipefinalize block includes a set of C
statements describing what to do when an entity terminates. It is described further in Section 2.2.3. The

2

first example below gives the heading for an entity type Managerwith one integer parameter
max_printers The second example shows an entity typeSortthat includes a finalize statement and
declares two formal parameters: an integand an array with a fixed size of 20.

Examples:
entity Manager(int max_printers {
int units

}

entity Sort(int n, int a20]){

finalize {

}
}

Remarks:
1. An array parameter must be declared with an explicit size because arrays are passedhluein
PARSEC. (This is because the creating entity may be located on a different processoif) xlis
an entity parameter,int X[];" is illegal as its type declaration. Furthermore, the array size must be a
constant expression.

2. staticvariables declared in an entity body are no different from other local variables because each
entity-instance maintains a different copy of the variable. This is different from a function
definition in which differentallsto the function share the same copy of ¢iaticvariable.

3. The stacksizekeyword is used in the following way. Each entity instance is executed in a semi-
private address space with its own stack pointer. This stack must be large enough to handle
recursive function calls and the local variables of the entity. The default size is 200KB. Please see
Appendix D.1 for more information about using stacksizespecifier.

4. Entities must be declared before they are used, in much the same way that C functions must be
declared.

2.2.2 Entity Creation

PARSEC supports dynamic and recursive entity creation. A PARSEC entity is created by usingptine
statementyhich has the following syntax:

new- st = [ename-expr =] new ident([arg]...) [at node-no]
ename-expr = an expression of type ename

arg = C argument expression

node-no = a positive integer-valued expression

The following example creates a new instance of the Managerentity type (defined in the previous
section) and saves the unique identifier assigned to the entity in variaibte An entity may refer to its
own identifier by using keywordelf.

Example:

ename ml1

ml = new Manager (10);

By default, the new entity executes on the same processor as its creator entity.ridve statement may
optionally includeanat clause to specify a different processor (node) for execution of the new eftiy.
node-nan the new statement may be an arbitrary positive integer; it is mapped to a specific node on the
parallel architecture as follows: the actual number of nodesNsanged in an execution of the program is
specified as a command line argument (see Section 3). ib@e-nan a new statement is interpreted as
node-no modulo No determine the target processor. Although entity placement is automatically done
modulo the number of nodes, the functionpc_numnodeg) is provided which returns the number of
nodes being used for a particular executibime at clause is ignored for sequential implementations of the
program.

Example:
{
ename c[10] ;
fi).r (i=0; i <10; I++)

c[i] newClient() at |;

}

Execution of anew statement returns a unique identifier of typeame This is a new type introduced by
PARSEC; variables of this type are used only to refer to entities. Very few operations are defined on
variables of typename: they may be passed as entity or message parameters and may be assigned a value
by a new statement. In addition, a functioaname_cmp(el,e2) is defined by the runtime library, where

el ande2 are of typeename The function returns anon-zerovalue if and only if the two variables are

identical.

As mentioned before, an entity may include array parameters. However, unlike C functions, the array
parameters are passed by value. In the following example, the driver entity demonstrates how to
instantiate entitysort(defined in the previous section).

Example:
entity driver 01
ename S1;
int X[20];

sl= new Sort(20, X);

2.2.3 Entity Termination

PARSEC entity may terminate itself in any of the following ways: by executing a C return statement, by
“falling off the end” of the entity-body. All entities still active at the end of a simulation will be
terminated by the runtime system.

If an entity definition includes afinalize statement, the body othe finalize statement will be executed
upon a normal termination of each instance of that entity tydée finalize statement is most useful for
collecting the results of a program at its conclusion.

2.2.4 Friend Functions

Friend functions are provided for backward compatibility withMaisie. However, we have discovered

from experience that programs with friend functions are difficult to debug and less efficient than ordinary
functions; we recommend that you use them sparingly or not aL.atial data of an entity is inaccessible

by any function that is called by the entity. It is, however, possible to allow a function to access local
variables of the calling entity, without explicitly passing the variable as a parameter to the function by
declaring friend functions. (Friend functions are very similar to C++ class methods.) In both its
declaration, which must precede the associated entity's definition, and in its definition, the function name
must be prefixed with the entity-name, and the function definition nabbw the entity definition in the

same file. Friend functions must be compiled with the - ff command flag. The following example
illustrates the use of friend functions.

Example:
entity Sort (int, int);
void Sort :: sorting (void);

entity Sort (int n, int aJ20]){

sorting ();

}

/* the friend function can access the parameter a defined in the Sort entity */
void Sort :: sorting () {
int i, t;
for(t = a[0], =1, i<n; i ++){
if(ali tlt)

}

2.3 Message Communication

Entities communicate with each other via buffered message passing. A unique message buffer is
associated with each entity. Asynchronous send and receive primitives are provided to respectively
deposit and remove messages from the message buffer of an enfite receiveprimitive may also be
used to advance the simulation clock.

PARSEC uses typed messages. A message-type consists of a name and a parameter list. The following
syntax is used to define a message-type:

message- def
declarations
type

message ident { declarations } [ident]...
[type ident][, ident]... 1
ename| clocktype | message ident| any C type declaration

Message definition is syntactically similar to the declaration of a €ruct Message parameters may be
viewed as fields defined withinstruct and are referenced using the same ‘.’ operator as used to reference
fields within a struct A message-type with an empty parameter-list is used to define signals (e.g,
acknowledgments). Message type declarations are treated as global (even if declared within an entity
body), so it is standard to declare all message types at the head of the file, or in a separate header file.

5

As with entity parameters, message parameters can include arrays, but they must be given explicit sizes,
and they will be passduly value

It is also possible to use pointers as message parameiatst is very dangerous, and not recommended
at all! On a distributed memory parallel architecture, the pointer values will be meaningless on remote
processors. Even oa shared memory architecture or ani-processor, using pointers correctly requires
expert care. Otherwise, their use may lead to incorrect results, because messages at different entities
might not be accepted in the order you expect.

In the following example, we elaborate the entity typeManagerto include definition of two message
types: Releasavith an integer parameter, andRequeswith two parameters:id of type ename and an
integer parameter calledunits The local variable oldrequesis declared to store messages of type
Request

Example:

message Done{};

message Releasg
int units

2

message Request

int units
enameid;

kh

entity ~ Manager (int max_printery{
int units
message Requestoldrequest

}

Remarks:

1. Message types must be globally unique within a program, and should be declared globally. Using
the same identifier for two different message types (i.e. with a different set of parameters) in the
same program will be treated as an error.

2. For parallel programming, one should avoid using pointers as parameters in message types. While
such declarations are legal, pointer values will have no meaning when sent to another processor.

2.3.1 Sending Messages

An entity sends a message to another by usisgnalstatement. This statement has the following syntax:

send- st = send msg-expr to ename-expr [after time- expr] ;

ename-expr = an expression of type ename

msg-expr = msg-type { [arg].. } | msg-ident

time- expr = an integer expression whose value is >0

arg = array- param | C expression

array- param = a pointer expression [:: a positive integer-valued
expression]

msg-type = a message type defined for entity ename-expr

msg-ident = a variable of type msg-type

The sendstatement performs an asynchronous send: the sending entity copies the message parameters
into a memory block, delivers the message to the underlying communication network, and resumes
execution. Every message is implicitiymestamped with the current value of the simulation clock. The

6

programmer may specify a different timestamp by using the optionalafter time-expt' attribute--this
causes the timestamp of the message to be set to the current simulation timeplus time-expr. (In a
simulation, theafter clause is used to model transmission delay, i.e. the message leaves herg but
arrives there aftetime-exprtime units.) A message is delivered to the destination buffer at the simulation
time specified by its timestamp.

The following examples demonstrate several ways of sendiRgguesinessage to entitgl, an instance

of the entity type Managerdefined previously. The first statement specifies the message parameters
explicitly; the second specifies that the message be copied from vasldbdguest The last example will

cause the Request message to be delivered to the message buffer of the destination entity five time units
from the simulation time of the sending entity.

Example:

message Requestoldrequest; /* initialize oldrequest */
send Requesto, self } to SI

send oldrequest to SI;

send oldrequest to S1 after 5;

Remarks:

1. Messages are received by an entity in their timestamp order. Messages of a single type with the
same timestamp from a common source are received in the order they are sdmwever no a
priori ordering can be assumed for messages with the same timestamp received from multiple
sources.

Array Parameters : A message may include array parameters that are passelly value. If a formal
parameter of a message is declared as an array, the corresponding actual parameter will be treated as an
array. The actual parameter may specify an array slice by specifying the position of the first element
followed by an optional size that specifies the number of bytes to be transmitted. When specifying the
size, you generally specify the number of elements multiplied by the size of an element, as in the
following example. If the size is omitted, it will default to the size declared for the corresponding formal
parameter. The following example passes a message value with elefd®htg[14] to entitysl

Example:

message value { int count int a10];};
In sending entity:

int X[20];

/* Send 5 integers from X[10].. X[14]*

send value{5,& X[10]::5*sizeof(int) } to S1;
Remarks:

1. If the formal array parameter has size N, then by default, N contiguous pieces of data will be
copied from the actual parameter.

2. Ifthe actual parameter is larger than the formal parameter, only a portion the size of the formal
parameter will be copied into the message.

3. Ifthe actual parameter is smaller than the formal parameter, the user must specify a slice the size
of the actual parameter. Otherwise, there is the possibility of a crash when the system copies past
the end of the array.

4. If the user specifies a slice larger than the size of the formal parameter, it will be reported as an
error.

2.3.2 Receiving a Message

An entity accepts messages from its message-buffer by executingeceive statement, which has the
following syntax:

receive- st
resume-clause
timeout-resume

resume-clause [or timeout-resume]
receive (msg-list) [when (guard)] statement
receive- st | timeout- st

timeout- st = timeout after | in (delay-time) statement
msg-list = msg-type mvar [, msg-list]

delay-time = a C expression of type clocktype

guard = a C expression without side-effects

mvar = a variable of type msg-type

statement = Any C or PARSEC statement

The receive statement consists of one or more resume clauses, and possibly a timeout clause. Each resume
clause consists of a read-only message variable, and an optian#rdfollowed by a statement. If the

message buffer contains exactly one enabling message, the message is removed from the buffer and
delivered to the entity in variablenvar. The variablemvaris a read-only variable, and its scope extends

only to the statement that is part of the resume clause. The timeout clause specifies a waittimnend

may specify eithetimeout-firstor timeout-lassemantics, using than and after keywords, respectively.

Timeout semantics will be discussed subsequently.

When a message is received, the internal clock of the entity will advance to the greater of 1) the time
specified on the timestamp of the message, or 2) the current time of the entity. Thus, the entity's clock
moves monotonically forward.

The following code segment shows two simple examples. The firsaisimple receive statement with a
single clause. The entity will block until a message of type Request arrives. That message is then copied
into the reqvariable. The second statement is more complex, having two resume clauses and a timeout
clause, only one of which will be executed. If either a Request or a Release message arrives tisfere
units, it will be accepted. If either arrives, the one with the earliest time stamp will be accepted. If they
have the same time stamp, one will be chosen non-deterministically. If neither a Request nor Release
message arrives befobeime units have passed, the timeout clause will be executed.

Example:
message Request req ;
int units ;

/* simple receive */

receive (Requestr){
req = r;

}

/* complex receive */
receive (Requestr){

req = r;

} .

or receive (Releaser){
units = r.units

}

or timeout in (5)({

Note that when the Request message is received, the entire message is copied into a local variable, but
when the Release message is received, only the valusitsis copied. Bothusages are acceptable.

Remarks:
1. Receive statements can occur in functions as well as in entities.

2. Each message type can appear in only one clause of a receive statement.

2.3.3 Guards

The guard is a side-effect free expression. If omitted, the guard is assumed to be theolean constant
true. A guard is said to blcal if it can be evaluated using only entity variables.

A resume clause with message typeand guard; is said to beenabledf the message buffer contains a
message of typen, and b; evaluates tdrue. (b; is evaluated only if the buffer contains a message of type
m;) The corresponding message is calledemabling messagén general, the buffer may contain many
enabling messages.

Example:
receive (Requestr) when (r.units <5){
req = r;
}

or receive (Releaser){
units = r.units
}

The following example illustrates simple receive statements with a single resume clause. The first receive
statement is enabled if the message-buffer contairRemjuesimessage (as defined in entitlanagerat

the beginning of this section). The second receive statement is enabled only if the buffer contains a
Requesmessage whose paramateitsis not greater than the entity variahigits.

receive (RequesteQ){..}
receive (Requesteq) when (req units<= unit9{..} [* First-Fit */

If two or more resume clauses ira receive statement are enabled, the timestamps on the corresponding
enabling messages are compared and the message with the earliest timestamp is removed and delivered to
the entity. If the message timestamps are equal, and neither one of the messages is a timeout, an enabling
message is selected non-deterministically for delivery to the entity (timeouts are discussed subsequently).
Consider the Manager entity type in Figute The entity receives messages of tyiRequesand Releasg

and sends a message of typ®one all of which were defined earlier. Both resume conditions in the

receive statement of the entity will be enabled if the buffer contaiRelaasanessagand also &Request
message that satisfies the corresponding guard.

An entity is said to besuspended none of its resume clauseare enabled. A suspended entity resumes
execution if it receives an enabling message. If an entity executes a receive statement that includes only
local guards and all guards evaluate falsg the runtime system will print a warning message, and skip

the corresponding receive statement.

2.3.4 Timeout

If a receive statement executed by an entity includes a timeout clause with wait tingxecution of the
statement schedules a timeout for the entity. PARSEC supportsimetbut-firstandtimeout-last

entity Manager (int max_printers) {
int units = max_printers ;
for (;:)
receive (Request req) when (req.units <= units){
units -= reg.units
send Done{} to req.id

or receive (Release rel){
units += rel.units ;

Figure 1. A Resource Manager

semantics through the use of thein and after keywords. These are two different ways of handling
simultaneous events. Timeout-first is much more efficient, and is recommended in almost all cases, while
timeout-last is more powerful, but cannot always be guaranteed. In the following two examples, assume
that the statements are issued at time 0.

Example 1:

receive (Ackack {
[* process acknowledgement... */
}

or timeout in (10)({
/* resend the message */
}

Example 2:

receive (Ackack {
[* process acknowledgement... */
}

or timeout after (10){
/* resend the message */
}

In example 1, thesystem will timeout in 10 time units (i.e., at time 10)pbeforeany Ack messages with
timestamp 10 are accepted. In example 2 system will timeoutafter any Ack messages with timestamp

10 are accepted. Another way to look at it is that in example 1, the system will timeout even if there is an
Ack message with timestamp 10, but example 2 will timeout only if there are ncAck messages with
timestamp 10.

From a modeling perspective, both semantics can be useful. For example, timeout-first semantics can be
used to model a wireless radio transmission - if no interference is detected during an interval, the message
is successful, messages arriving at the end of the interval do not interfere. Timeout-last semantics can be
used to collect a set of simultaneous events and execute them together.

10

2.3.5 Hold Statement

In order to suspend an entity unconditionally for a specified duration to simulate activities like servicing a
request, thérold statement has been introduced. This statement has the following syntax:

hold- st = hold(del ay-ti ne);
delay-time = a C expression of type clocktype
For example:
hold(5);

The statemertiold(delay-tim@; will advance the simulation clock of the entity dglay-timetime units.

2.3.6 Non-blocking Receive

When an entity executes a receive statementt may be suspended if its buffer does not contain an
enabling message. If the delay-time in the timeout clause of a receive statement is specifiedGptbe
entity will resume execution at the current simulation time. In the following example, if the message
buffer of the entity does not contain anyRequesimessage, a timeout message will be delivered to the
entity with the current simulation time. This ensures that the entity will not be blocked indefinitely.
Notice that the example uses thiameout after form of the timeout clause. This is the only case where
timeout-last semantics aabsolutely necessary.

Example:

receive (Request){
process-this-message;
}

or timeout after (0){ I* Requesinessage unavailable */
do-something-else;
}

2.3.7 Advanced Message Receive Constructs

Qhead): Inaresume clause with message typend guardy, if b\ references message parameters (as
in the Requesimessage in Figure), the corresponding resume clause is enabled if any message of type
in the buffer satisfies the guard. In particular if the first message in the buffer requests a large number of
units, it is possible that it may never be satisfied while smaller subsequent requests are serviced
continuously. The first receive statement in the following fragment illustrates this situation. Alternately, it
is sometimes desirable to define the resume condition such that it is enabled only if the first message of
type m in the buffer is an enabling message, and is disabled otherwise. Among other things, this may be
used to prevent the kind of starvation scenarios outlined in the preceding situation. PARSEC provides a
function calledgheadm) where parametem is a message type. The function returns a copy of the first
message of typey in the message buffer; if the buffer does not contain emynessages, the return value

is undefined. The second resume clause in the following fragment uses function ghead) to serve
incomingRequesimessages in the order of their arrival.

receive (Requesteq when (reg units<= unitg{...} I* first-fit *
receive (Requesteqg) when ((ghead (Requeg). units<= unity{.}/* FCFS¥/

Qempty(): Note that the guard in the preceding resume clause will be evaluated only if the message
buffer contains aRequesimessage. PARSEC also provides a function callggmpty(m). The function
returnstrue if the buffer does not contain angn, messages, and returfalseotherwise. For instance, the

11

following receive statement gives higher priority Releasenessages--it receivé®equesiessages only
when noReleasanessages are available.

receive (Requesteg) when (gempty (Releasg&& req units<= unit9 {

}
or receive (Releaserel){

units+= rel. units
}

Qlength(): PARSEC also provides a function callgtength(m,). The function returns the number of;
messages currently in the input queue (with timestamp <= to the entity's current simulation time). It might
be used to balance service between two types of messages, as shown in the following example.

receive (Requesteq) when (glength (Releasg<= glength (Reques}{

}
or receive (Releaserel) when (glength (Requegk= glength (Releasy {

}

2.3.8 Compound Resume Conditions
In its most general form, a resume statement may include resume conditions associated with multiple
message types as follows:

receive (M, mvar,, M , mvary, ..., M, mvar,)
statement

Compound resume conditions have not been implemented, and probably won't be unless seafigone
wants them ($$%5).

2.4 The Driver Entity

Every PARSEC program must include an entity caltirilver . This entity serves a purpose similar the

main function of a C program. Execution of a PARSEC program is initiated by executing the first
statement in the body of entitgriver . Thedriver entity takes the samargc andargv parameters as the

C main function (except thaargv must be declaredhar** argvbecause oPARSEC's requirement that
array parameters have a constant size). Parameters recognized by the PARSEC runtime system will be
removed fromargc andargv before the driver is invoked.

2.5 Program Termination

A PARSEC simulation terminates in one of the following ways:
» The simulation clock exceeds the maximum simulation time specifgdrbgxclock).
» All entities are suspended and no messages (including timeouts) are in transit.
* An entity executes axit() or pc_exit()statement.

When a termination condition is detected, each entity's (optional) finalize statement will be called. The
entity may take appropriate actions before termination, including printing accumulated statistical data.

12

2.6 Clock Operations

In order to allow simulations to be executed over longedurations with fine grained clock values, the
PARSEC system clock is implemented as a large integral type calleclocktype. All clock operations
make use of clocktype variables. The following functions are provided to manipulate the simulation
clock:

» simclock{oid): This function returns the value of the current simulation clock as aclocktype
value.

» setmaxclockglocktype): This function sets the maximum simulation time to the value specified in
the clocktype parameter The simulation is terminated when the simulation clock exceeds this
value.

» atoc(char*, clocktype*): Places theclocktype value represented by the string in thiocktype

parameter.
» ctoa(clocktype, char*): Like sprintf, it prints the value of thelocktype parameter into the string
parameter.
Example:

clocktype time =(clocktype) 100000000;
setmaxclock (time); /* set maximum simulation time to 100,000,000 */

The value CLOCKTYPE_MAX is predefined to contain the maximum valuglatktype. The default C
type forclocktypeis unsigned long, &2 bit integer. The programmer may specify a larger type by using
the compiler’s —clock flag.

The example in Figure 2 illustrates the typical use of theimclocK) function. The example shows the
PARSEC code for a simplereemptible priority servarhich serves two types of jobklighJob- the high
priority job, and LowJob- the low priority job. The server needs to sample the value of current clock
whenever the service of a low priority job starts (line 25), is preempted (line 15), or re-starts (line 19).
This is so the remaining service time of the low priority can be correctly computed whenever it is
preempted by a high priority job.

2.7 Entity Scheduling

In a PARSEC program, an arbitrary number of entities may be mapped to a single processor. The
execution of these entities is interleaved by the PARSEC scheduler. Entities are scheduled for execution
based on the timestamps of their enabling messages.

An entity can be in one of four states: idle, ready, active, or terminated. An entity that has been terminated
does not participate any further in the program. An entity that has not been terminated is said to be idle if
its message buffer does not contain any enabling message. An entity whose buffer contains an enabling
message is said to be ready; at any given point, multiple entities on a processor may be in the ready state.
The scheduler selects the ready entity with the earliest enabling message foexecution which then
becomes active. An active entity relinquishes control to the scheduler only if it is terminated, or if it
executes a hold orreceive statement. In the latter case, if its buffer contains an enabling message it
transits to the ready state (and is hence eligible to become active immediately); if not, it transits to the idle
state. It is important to note that an active entity is self-scheduled: the scheduler cannot force it to
relinquish control. In particular, an active entity that never executesreceive (or hold) statement, will

never relinquish control to the scheduler.

13

message Highjob {
int no_served,;
b
message LowdJob {
int no_served;
b
entity Server() {
message LowJob lowjob;
clocktype start_time, remaining_time;
int busy = 0;
remaining_time = CLOCKTYPE_MAX;
for (5;) {
receive (HighJob highjob) {
if (busy)

© 0N O~ WNPRF

remaining_time -= simclock() - start_time);
hold ((clocktype) expon());
send HighJob{highjob.no_served+1} to next;
if (busy)

start_time = simclock();

}

or receive (LowJob 1j) when ('busy) {
lowjob = 1j;
lowjob.no__served++;
busy =1;
start_time = simclock();
remaining_time = (clocktype) expon();
}
or timeout in (remaining_time) {
send lowjob to next;
busy =0;
remaining_time = CLOCKTYPE_MAX;

Figure 2: Priority Server

In the following example, the driver entity creates another entity cdilst, sends 50,000 messages to it,
and then terminates. Since the entity does not exeeuteceive (or hold) statement, all 50,000 messages
will be generated and delivered to entityirst, before any of them can be processed by the destination
entity.

entity driver(int argc, char** argv) {
int i
ename first;
first= new Sieve();
for(i=0; i < 50000; ++ i)

send Number{ i} to first;

}

Programs such as this one can cause problems if they overflow system buffers, so programmers should
take care when writing programs to avoid “source” entities like this.

14

2.8 Examples

2.8.1 Sieve ofEratosthenes

Constructs:messageenameentity, new, send (2 forms), receivel his example programs the Sieve of
Eratosthenes to generate all prime numbers less than 1000. The first instanc&mtbentity is created

by the driver and subsequent instances are created recursively such that the first number received by a
new instance is a prime number. Subsequently the entity discards all multiples of its prime number and
sends others to the next sieve in the pipeline. What follows is a PARSEC program to do this.

#include < stdio.h>

message Number {
int number;
It

entity Sieve(intid) {
ename next_sieve;
int myprime;

receive (Number n) {
myprime = n.number;

printf("Sieve number %d is for prime number % d\n", id, myprime);

next_sieve = new Sieve(id + 1) at (id + 1);
for (3;)
receive (Number n) {
if (n.number % myprime)
send n to next_sieve;

}

entity driver() {
int i;
ename first;

first = new Sieve(2) at (1);
for (i=3; i <=1000; ++
send Number{ i} to first;

2.8.2 Topology Creation

Constructs: hold, setmaxclockWe present a series of examples that demonstrate the types of
communication topologies that are commonly used in PARSEC programs. The examples use a simple
entity type calledDelay. The entity simply receives until it receives a message of Bipg. On receipt of

the message, it suspends itself for a randomly distributed interval (in simulation time) and then forwards
the message to one of its communication partners. The functigpused in the code returns a truncated
value sampled from a random exponential distribution with the given mean value.

The first example demonstrates communication between a p2glafentities.

15

#include < stdio.h>

message Init {
ename id;
I

message Ping {
int originator;
int trips;

h

entity Delay(int myno, int mean_time) {
ename next;
message Ping p1;

receive (Init i){
next = i.id;

}

while (1)

receive (Ping p) {
pl=p;
if (p1.originator == myno) {

printf("\n Message No", myno,
"Number of round trips completed", p1.trips);
pl.trips++;

}
hold(exp(mean_time));
send pl to next;

}

}

entity driver() {
ename el, e2;

el = new Delay(1,10);
e2 = new Delay(2,10);
send Init{e2} to el;
send Init{el1} to e2;
send Ping{1,0} to e1;
send Ping{2,0} to e2;

The next example sets up a ring containiriggdelay entities, where each entity knows the identity of its
successor entity. The code for the entity is not changed; ratbely the driver is changed to modify the

communication topology. (Exercise: modify the program such that each entity knows the identity of both
its predecessor and successor entities.)

16

entity driver() {

ename prev;
ename next;
ename first;

first = new Delay(0,10);
prev = first;

for (i=1; i<5;i++) {
next = new Delay(i,10);
send Init{next} to prev;
prev = next;
}
send Init{first} to prev;
send Ping{0,0} to first;

We now generalize the definition of a delay entity to allow multiple communication partners. The
following entity called Delay-Forkis connected toN entities. On receiving a Ping message, the entity
forwards this message to any one of the N neighbors with equal probability. The identities of the
communication partners of thBelay-Forkentity are sent to it using anlnit-setmessage. This message
has two parametersount,which refers to the number of communication partners for the entity; and array

id-setthat contains their identifiers. The declaration of the aitlegetrestricts the entity to a maximum of
10 communication partners.

message Init-Set {

int count;
ename id-set[10];

nlwessage Ping {

h

int hops;

entity Delay-Fork(int myno, int mean_time) {

ename next[10];
int i, N;

receive (Init-Set init) {
N = init.count;
for(i=0; i <N; i++)
next[i]= initid-set[

}

while (1)
receive (Ping p) {
printf("\n Message No %d Number of hops completed %d",
myno, p.hops);
hold(exp(mean_time));
send Ping{p.hops+1} to next[urand(1,N)];
}

The driver entity to set up a fully connected networlbafelay-fork entities is as follows:

17

entity driver() {
ename eids[5];
int i;

for (i=0;1<5;i++)
eids[i] = new Delay-Fork(i,10);

for (i=0;1<5;i++)
send Init-Set{5, eids} to

setmaxclock(10000);

eids|

18

il;

3 The PARSEC Programming Environment
This section describes the fundamentals of writing, compiling, and executing PARSEC programs.

3.1 Using the Compiler

The PARSEC compiler, callgacg accepts all the options supported by the C compilad also supports
separate compilation. C programs (files with .c suffix) and object files (files with .o suffican also be
compiled and linked with PARSEC programs. PARSEC programs are usually gpeex&ension.

3.1.1 Options
PARSEC compiler also supports the following options:

- protocol Specify one of the synchronization algorithms:
mpc Message-passing C: ignores message timestamps
cons Conservative
opt Optimistic (not implemented yet)
-C Generate ".0" and ".pi" files.
-E Generate ".c" and ".pi" files.
-P Inhibit line number translation. (Normally, the PARSEC
compiler inserts line numbers into the intermediate C file
so that compiler and runtime errors report
the correct line in the PARSEC file.)
- env Show environment names set for pcc.
PCC_DIRECTORY - installation directory for PARSEC.
PCC_CC - C compiler for PARSEC to use.
PCC_LINKER - linker for PARSEC to use.
PCC_CC_OPTIONS - options to pass to the C compiler.
PCC_PP_OPTIONS - default options for the PARSEC compiler.
PCC_LINKER_OPTIONS — default options for C linker.
- pcc _directory - use specified PCC_DIRECTORY.
- pcc _cc - use specified C compiler.
- pcc _linker - use specified linker.
- pcc _pp_options — use these options for preprocessing.
- pcc _cc_options — use these options for compiling.
- pcc _linker_options — use these options for linking.
- ini Save the auto-generated initialization file.
- ff Enable compilation of friend functions.
- stack Change the default stack size for entities.
- help Show compiler options.

- v Verbose compilation.
-V Show the version number of the compiler.
- user _main Rename the main function to parsec_main, and link with user’s main
function.

- shared _lib Rename the main function to parsec_main and create a shared library.

- clock Set the default representation for clocktype. Valid options are:
unsigned unsigned long, a 32 bit integer type (default)
longlong long long, a 64 bit integer type

The following examples illustrate how to compile PARSEC programs on a sequential architecture.
% pcc -0 examplexample.pc

This generates an executable ileampldn the current working directory.
% pccexample.pc

19

This generates an executable fil®utin the current working directory.
% pcc -0 examplexample.pxxx.cyyy.o

This generates an executable file cakble@mplean the current working directory. The filexampldas
compiled and linked witkxx.c andyyy.o.

3.1.2 Separate Compilation

PARSEC supports separate compilation of entities. Entities defined in one file and used in a second file
must be declaredxternin the second file.

The following example illustrates the use of enfiigrtas an extern entity:
Example:
filel:

entity Sort(int n, int a[20])

file2:
extern entity Sor{int, int[20]); /* This declaration cannot be omitted */

entity driver 01
ename S1
int X[20];

sl= new SoOrqo, x;
}

Compiling separate files is as easy as this:
% pccclient.pcserver.pc

This compiles two PARSEC filesclient.pc andserver.pc - and generate®utas the executable. (One
of these files must contain the driver entity.)

Remarks:

1. Besides a .o file, the PARSEC compiler creates a .pi file for each source file. The .pi file contains
information about the message types used in the file and must be visible to the compiler at the
link stage, unless all the message types in it are also used in other files.

3.2 Parallel Compilation and Execution

In order to produce an executable that can be run on a parallel architecture, the PARSEC program needs
to be compiled with the '-sync protocol' flag. Currently supported protocols are cons-parallel
conservative,opt-parallel optimistic, mpc-parallel without synchronization. A parallel optimistic

protocol is in development. On shared memory architectures, the program will be made to use POSIX
threads. On distributed memory machines, such as the IBM SP2, MPI will be used for communication.
To use MPI, it first needs to be installed on the available parallel architecture (There are several public
domain implementations of MPI. One such implementation, MPICH, is available from
http://www.erc.msstate.edu/mpiMP| commands are used to execute the compiled PARSEC program on
the parallel architecture (see the documentation on the particular MPI implementation you are using).

20

Several different conservative algorithms are availalieluding a null message protocol (the default), a
conditional event protocol, a combined conditional event and null message protocol, and the Ideal
Simulation Protocol (ISP). ISP calculates a lower bound on the execution time of a parallel simulation by
first collecting a valid trace of a program run, then executing that program a second time with advance
knowledge of the order of message execution. It can then run a simulation without any overhead. The
conservative runtime library recognizes the following command line options for selecting a protocol, all
of which must follow a -- (double dash):

-np N create Nthreads

- null use the null mess age algorithm (this is the default)

—cond use the conditional event algorithm

- sync use a synchronous protocol

—anm use of combination of the preceding two algorithms

—trace collect a runtime trace of the simulation

- isp use the ISP protocol and th e tracefiles generated with - isp_trace
- barrier enable barrier synchronization for — cond, -sync, and - anm

- dest activate destination specific lookahead

% pcc -0 example -sync comxample.pc
% example --ap 8 cond

This generates an executable filexamplan the current working directory, and runs it with 8 threads
(distributed to 8 nodes of an SMP) using the conditional event protocol.

3.3 Debugging PARSEC Programs

Debugging support for PARSEC programs is provided through traditional source-level debuggers like
dbxor gdbavailable with UNIX to step through the PARSEC program. Some additional debugging
features available iMaisie haven't been implemented yet, but are described briefly here.

3.3.1 Diagnosing Compiler Errors

A PARSEC program is translated into a C program, which is then compiled using a C compiler. During
the translation process, the PARSEC compiler marks line numbers in the C file for use in the C compiler
and debugger. Sometimes those line numbers don't match perfectly because the PARSEC compiler
considers braces ({}) and semicolons to be terminals. A statement such as:

if (a)
a = false;

will be recorded as a single line. Some error messages will therefore be off by one line.

3.3.2 Source Level Debugging

A PARSEC program is translated into a C program, which is then compiled using a C compiler. It is
possible to debug at the level of PARSEC source using a standard Unix C debugger. The program needs
to be compiled using the '-g' flag. The entity parameters and local variables are renamed according to the
following conventions:

« Entity X =function™ MC_entity X. For example, in dbx, the command
““stop iINMC_entity X' enables a break point whenever an instance of eitityscheduled. (The
debugger will not distinguish between different instances of each entity type, but you can use its
local variable or parameter values to distinguish between instances.)

21

» Entity parameters and local variables X = * X". For example, in dbx, the command
“print X" prints the value oK to the terminal.

Below, we show a sample PARSEC program, and how it is compiled, executed, and debuggedhir a
session. As seen in the program, line 3 will cause the program execution to have segmentation violation
due to an incorrect array reference. Lines 20-23 show how paranzetéentity XX and local variableb

can be accessed directly.

[1] entity XX (inta) {
[2] int *b;

[3] bla]++;

(4]}

(5]

[6] entity driver() {

[7] new XX(5);

(81}

Figure 3. Debugging: the sample program

[9] % pcc-g sample.pc

[10] % a.out

[11] Segmentation fault

[12] % dbx a.out

[13] Reading symbolic information...
[14] Read 1482 symbols

[15] (dbx)run

[16] Running: a.out
[17] signal SEGV (no mapping at the fault address) in MC_entity XX ...
(18] 3 bfa]++;
[19] (dbx) printb
[20] b=0
[21] (dbx) printa
[22] a=5
Figure 4. Debugging usingdbx
Remarks:

2. In order to usedbx, cc must be the default C compiler. See Section 3.1 for details on settileg
default C compiler.

3.3.3 Common PARSEC Runtime Errors

Runtime errors/warnings are detected by PARSEC and appropriate messages aressiard Tde most
common errors are related to stack allocation. Please refer to the troubleshooting section (Appendix D)
for further information. Some of the other errors/warnings are:

« “Run out of memory for a messageMemory has been exhausted, possibly due to a deadlock, an
infinite loop, or an imbalance in message processing.

e “Error: Trying to send messages to remote entityX’sequential program is attempting to send a
message to a remote processor, probably indicating th&reme variable isininitialized or has
become corrupted.

e “Error: Trying to receive messages from remote entitgdme as above, but less common

e “Thread Local Storage Key Create ErrorError in creating Windows NT threads

22

3.34

“Fail to create NT thread.”Ditto.

“*+* PARSEC error. Failedin ...” Pthread setup error.

“** PARSEC error. Failed to create threads.Pthread setup error.

“Unrecognized option ... Ignored.Unrecognized command line option following the ‘--.

“Entity ‘type’ (node, id) did not fit the allocated stack space ... Specify bigger stack size for this
entity." The local data of the entity is too large to fit in the space allocated for it. A larger size
can be specified with thetacksizekeyword. There are several variations of this error message.

“Too many different types of messages. Recompile the runtime to support more message types.”
By default, the maximum number of message types the Parsec system can support is 64. The
number can be increased, but it has a detrimental impact on performance.

“Run out of memory in setting entity parametersApparently, the parameters for this entity are
HUGE.

“Wrong NEW_ENTITY_ACK."An error in creating a new entity has occurred. Please report this
to the Parsec development team.

“Unrecognized Remote MessageSomehow the message has become corrupted, possibly due to
memory mismanagement in the program.

“(Node xxx): terminating the execution.” Several types of errors generate this message, clock
overflow for example.

Conservative PARSEC Runtime Errors

The following errors may occur when using thenservative parallel synchronization algorithms. Many
of these errors concern mistakes in lookahgaetification which can lead to causality errors.

“Entity 'typ€ (node, ig tried to send a message to entitype (node, ig with timestamp {ime),
which is lower than the previous EOT valuet{me).” This is a causality error, the most likely
cause of which is a previous call $etlookaheadvith a too-large delta or ceiling

“Entity 'type' (node, id) reduced its EOT value for entity 'type' (node, id) from time to timari

entity has reduced its lookahead value without advancing its time by an equal amount. This error
means that the original lookahead value may have been too high, leading to a possible causality
error for the receiver.

“Entity 'type' (node, id) reduced its EOT value from time to time.” The entity has reduced its
lookahead, which may lead to one of the previous two error conditions. There are several
variations of this error message.

Entity 'type’ (node, id) tried to send a message to entity 'type' (node, id), which is not in the
destination set.”Each entity maintains a destination set of entities to which it sends mesdages.
this list is not accurate, the destination entity may execute messages out of order, or may become
deadlocked.

“Entity 'type' (node, id) received a message from entity 'type' (node, id), which is not in the
source set.” The converse of the previous error. Each entity must also have a correct and
complete source set, or it may process messages (from entities not listed in the source) in an
incorrect order.

23

“Sent a message to entity 'type' (node, id) with timestamp below the global EC@Téreas the

EOT messages shown earlier occur in the null message and accelerated null message protocols,
this happens in the conditional event protocol. It also results from a lookahegde which has

been set too high.

“Error in add sourcd€). The argument is incorrect.”"Most likely, the ename value has not been
initialized.

“Error in del_sourc€). The argument is incorrect.'Same as above.

“Error in add_desf). The argument is incorrect3ame as above.

“Error in del_desf). The argument is incorrect.3ame as above.

“Run out of memory to update a destination hash table. Try the conditional event protocol or
more nodes.” The processor ran out of memory trying to create space for an entity’s destination
set. The conditional event protocol does not require source and destination sets, so it may require
less memory.

“Run out of memory to update a source hash table. Try the conditional event protocol or more
nodes.” Same as above.

“Failed open a trace file ‘filename’.An error in running ISP.
“Failed reading ‘filename'.”"Unable to load an ISP tradie.

“No entity mapped on this node.” An ISP warning that your program doesn’t use all the
processors.

“Not enough memory for storing ISP dataDang!

“Error in ISP entity name file: filename.” A corrupt ISP trace file. Sometimes the exact record
number is reported.

“Error in ISP message event file: filename Similar to the above, the error is in the event listing
rather than the entity listing.

“Failed allocating memory for storing ISP data.Dang again!
“Failed making a trace file 'filename'."Couldn’t create the trace file. Permission problem?

“Failed writing a trace file 'filename'.” Couldn’t write to the trace file. Out of disk space? Out
of quota? ISP requires a lot of disk space.

24

4 Parallel Simulation Requirements

Note: The parallel PARSEC runtime object files are not included in the default distribution. This is
because parallel simulation is hard, very hard, and providing support for new users is very time-
consuming, especially forme, since | answer most of the questions. To acquire parallel PARSEC
usually requires that you first demonstrate proficiency in sequential PARSEC simulation, while
following the guidelines given here to ease parallelization. Please contact Dr. Bagrodia
(rajive@cs.ucla.eduo discuss upgrading to the full version.

PARSEC is currently implemented using several different synchronization algorithms - sequential (global
event list), parallel conservative (using null messages, conditional events, or a combination of these two),
and ISP (for Ideal Simulation Protocol). Several optimistic simulation protocols are under development
and should be ready soon. In principle, a PARSEC simulation program that is executed using a sequential
simulation algorithm will also execute correctly using a parallel algorithm. However, in practice, certain
guidelines must be followed while writing the sequential model to guarantee portability and efficient
execution in the parallel environment. This section gives some brief recommendations for maintaining
parallel compatibility and lists some functions provided by PARSEC for this purpose.

4.1 Restrictions

Parallel PARSEC programs must conform to the following restrictions. These restrictions apply to almost

any message-based parallel language and are not specific to PARSEC. The PARSEC compiler might not
generate errors or warnings for the following problems because they are legal sequential programs, but a
program violating these rules will most likely abort or produce incorrect results when run in parallel.

e Shared/Global Variables: A parallel PARSEC simulation should not use “global' variables. This
includes function and file scope static variables. Read-only variables initialized at the beginning
of the simulation can be global, but must be initialized separately on each processor (on a
distributed memory architecture). We cannot emphasize this enoug®.NOT USE GLOBAL
VARIABLES!

» Pointers cannot be passed in messages or entity initialization parameters. Note that this implies
that dynamic linked-list data-structures cannot be passed. Arrays must be used instead.

4.2 Partitioning

For parallel implementations, the simulation model must be partitioned by allocating entities among the
processors. PARSEC allows the programmer to specify the specific node on which an entity will be
created by usingheat option during entity creation. In general, the model should be partitioned such that
message communication between nodes is minimized, with balanced computation load.

4.3 Requirements for Conservative Simulation

There are two primary changes required to convert a PARSEC simulation for use with the conservative
protocols. First, the communication topology must be specified, and second, lookahead must be provided.
These concepts are explained in the following subsections.

25

4.3.1 Communication Topology

The runtime system needs to be informed about the communication topology between the entities in the
system. This information is used by the system to do the necessary synchronization. It is required for the
null message protocol (-null), the conditional event protocoldend), and the accelerated null message
protocol (.anm). The runtime system implicitly maintains asource-seind a destination-setor each
entity. For each entity, its source-seis the set of all the entities that send messages to it, and the
destination-seis the set of all the entities that it sends messages to. Every entity needs to inform the
runtime of the entities it wants to be part of its source or destination set. This is done by using the
following PARSEC system calls:

e add source§): Addenameeto my source set.

e del _sourceg): Deleteenames from my source set.

e add desté): Add enames to my destination set.

o del desté): Deleteenames from my destination set.
Exceptions:

« If an entity el creates entity e2, then at the time of entity creation, the runtime system
automaticallyplaces e2'ssname in el's destination set, and egisame in e2's source set. If this
link is not necessary for the given simulation, user can delete this link, by usihg]_dest in the
parent, anddel_source in the child, immediately following the entity creation.

* An entity does not need to add itself to its source or destination set, even if it intends to send
messages to itself.

Topology setup can be tricky. If one entity sends a message to a second entity before the second entity
has executedadd sourc€), an error will be reported because the second entity may have already

advanced its local clock beyond the timestamp of the incoming message. The easiest way to complete the
topology setup correctly is to use a third party entity (usually the driver) and a simple handshaking
procedure, as shown in the following example.

26

message InitDest { ename source; };
message InitSource { ename dest; };
message SetupComplete {};

message Start {};

entity Dest(ename creator) {
receive (InitDest init) {
add_source(init.source);

}

add_dest(creator);
send SetupComplete{} to creator;
receive (Start s);

del_dest(creator);

del_source(creator);

/* topology setup complete, start normal operation */

}

entity Source(ename creator) {
receive (InitSource init) {
add_dest(init.dest);
}
add_dest(creator);
send SetupComplete{} to creator;
receive (Start s);
del_dest(creator);

del_source(creator);

/* topology setup complete, start normal operation */

entity driver(int argc, char** argv) {

ename source, dest;

source = new Source(self);
dest =new Dest(self);

add_source(source);
add_source(dest);

send InitSource{ dest}to source;
send InitDest{source} to dest;

receive (SetupComplete sc); /* once from source */
receive (SetupComplete sc); /* and once from dest */

send Start{} to source;
send Start{} to dest;

[* topology setup complete, terminate */

27

4.3.2 Lookahead

Lookahead is the amount of time betwasw (the current time of an entity) and the time when the entity
will send its next message. For example, if an entity A is at timk0, and it won't send a message until
time 20, then its lookahead is 10. It also means that the entities in A's destination set can safely process
any message with a timestamp less than 20 because it won't get a new message from A until then. If
lookahead is large, the performance of the simulation will be better, because more events can be
processed in parallel. Lookahead must be specified in conservative PARSEC programs, and is normally
specified as the minimum time between the receipt of the next message, and the first messagassant
result. Consider the following PARSEC code:

receive (Job job){
hold(5);
send job to next;

In this code segment, the lookahead j$ecause the entity will not send a new message until 5 time units
after it receives a Job message.

Lookahead is set by using the two following PARSEC system calls:

» setlookaheadielta ceiling): sets the current lookahead value to deltaand sets ceiling as a
maximum value for lookahead.

» setdestlookahead(delta, ceilingdes): sets the lookahead for a particular member of the
destination set.

The setdestlookahead call is usedset different values of lookahead with respect to different destination
entities, and must be used in conjunction with thadestruntime parameter.The PARSEC runtime resets
the values of lookahead(to 0, CLOCKTYPE_MAX) after every hold statement.setlookahead and/or
setdestlookahead must be set before the first receive statement, and must be reset after each hold
statement, and whenever the lookahead changes.

To run the preceding code segment with a conservative algorithm, we must adddtieokahead call as
shown here:

setlookahead(5, CLOCKTYPE_MAX);
receive (Job job) {

hold(5);

send job to next;

The second parameter of theetlookahead function is a ceiling value. The ceiling value is used when a
receive statement contains a timeout clause, and is typically set to the current simulation time plus the
value of the timeout interval, as in the following example:

message LowJob lowjob;

setlookahead(5, simclock() + 10);
receive (HighJob highjob) {
hold(5);

send highjob to next;

28

or timeout in (10) {
send lowjob to next;
}

The lookahead value is used to compute the earliest time at which this entity might send a message. In the
preceding example, if aHighJob message arrives, the entity will not send a message ubttime units

later, so the lookahead is 5. Suppose that this receive statement is issued at time 0 an€ tina¢ units

pass without &lighJob message arriving. IfHighJob message arrives, a message will be sent at time 11,
but if no HighJob message arrivethe receive statement will timeout and a message will be sent at time

10. So the earliest time that this entity will send a message is time 10. The ceiling value is used to express
the timeout condition. The ceiling should be set to CLOCKTYPE_MAX whenever there is no timeout
clause ina receive statement (or if no message is sent immediately after the timeout).

For the most efficient, trouble-free execution, there should be non-zero lookahead for every masdage
after the timeout, as shown in the following example. Even the message after the timeout is sent only after
a delay ofl, and the ceiling is adjusted accordingly.

message LowJob lowjob;

setlookahead(5, simclock() + 11);
receive (HighJob highjob) {
hold(5);

send highjob to next;

or timeout in (10) {
send lowjob to next after 1;
}

A more complete example of a conservative program is shown in Figure 5. It is a refinement of the
priority server example given in Figure 2. Two things have been added, a small code segment for setting
up the topology, and some code for setting the lookahead. These two sections will be discussed in the
following paragraphs.

There is an additional message type calledhitialization, which is used to set up the communication
topology. ThePriorityServer entity is assumed to be in a network of servers, not necessarily all of them
priority servers. It can send/receive jobs to/from any of the servers. Thus, when it receives the
initialization messages, it adds each server to its source set and its destination set. The driver entity is
automatically added to the source set of each entity when the driver creates it, tRridhieyServer does
not send messages to the driver, so need not add it to its destination set.

In order to specify lookahead, we must employ a common trick. \fieecompute the service time of the

next job by running the random number generator before entering the receive statement, rather than after
receiving a message. (Compare the two figures.) This allows us to specify the service time of the next job
as the lookahead. The ceiling we place on the lookahead is the remaining service time of the previous low
priority job (if there is one), or CLOCKTYPE_MAX otherwise.

4.4 Requirements for Optimistic Simulation

The optimistic synchronization algorithm is not yet available for PARSEC.

29

message Initialization { ename servers[10]; };
message Highjob { int no_served; };
message LowJob { int no_served,; };

entity PriorityServer(int number_of_servers) {
clocktype remaining_time, service_time, start_time;
ename servers[10];
int busy, server;
message LowJob lowjob;

receive (Initialization init) {
for (server = 0; server < number_of_servers; server++) {
servers[server] = init.servers[server];
add_source(servers[server));
add_dest(servers[server]);

}
}

busy = false;
remaining_time = CLOCKTYPE_MAX;
service_time = expon(); /* precompute the service time */

for () {
setlookahead(service_time, remaining_time);

receive (HighJdob highjob) {
if (busy)
remaining_time -= simclock() - start_time;
hold(service_time);
service_time = expon(); /* precompute the next service time */
send HighJob{ highjob.no_served + 1} to servers[/*random choice*/];
if (busy)

}

or receive (LowJob [j) when ('busy) {
lowjob = |j;
lowjob.no_served++;
busy = true;
start_time = simclock();
remaining_time = service_time;
service_time = expon(); /* precompute the next service time */

start_time = simclock();

or timeout in (remaining_time) {
send lowjob to servers[/*random choice*/];
busy = false;
remaining_time = CLOCKTYPE_MAX;

Figure 5. Conservative Priority Server

30

Appendix A: PARSEC Library Reference

This section contains brief descriptions of the library functions provided for use in PARSEC programs.

A.1 Clock Operations

» simclock(void) This function returns the value of the current simulation clock as aclocktype
value.

» setmaxclockglocktype): This function sets the maximum simulation time to the value specified in
the clocktype parameter The simulation is terminated when the simulation clock exceeds this
value.itemhold(clocktype): advances the current simulation clock by the specified amount.

» atoc(char*, clocktype*): Places theclocktype value represented by the string in thiocktype
parameter.

» ctoa(clocktype, char*): Like sprintf, it prints the value of thelocktype parameter into the string
parameter.

A.2 Conservative Simulation Functions

» add_des#name) adds the specified entity to the destination set of the current entity

» add sourceéname) adds the specified entity to the source set of the current entity.

» del desténame) removes the specified entity from the destination set of the current entity.
» del sourceéname) removes the specified entity from the source set of the current entity.

» setlookaheadflocktype clocktype) sets the lookahead for the current entity.

» setdestlookaheadlocktype clocktype .ename) sets the lookahead for a specific destination.

A.3 Random Number Generators

PARSEC is based on ANSI C, and ANSI C doesn't include any (good) random number generation
functions, so these functions are provided. They use the same algorithm as the 48 bit equivalents
(erand48, etc.) on Sun Solaris, but are somewhat more efficient because they don't provide all the options
provided by Sun.

» doublepc_erand(unsigned short[3]yeturns a value in the range [0.0, 1.0)
 long pc_jrand(unsigned short[3])returns a value in the range [, 2*})

« long pc_nrand(unsigned short[3])returns a value in the range [023

A.4 Miscellaneous

e CLOCKTYPE_MAX a constantclocktypewhich contains the maximum value of thelocktype
type (whether it's represented as a float, a long, a ltowyg, or whatever).

* ENULL: a constantename variable used to designate a null valsames are not initialized by
default. They must be explicitly set to ENULL.

* int ename_cmmEname,ename) compares twoename variables and returns a non-zero value if
they are equal.

31

int ename_validéname) returns a non-zero value if thename is not ENULL.
int pc_num_nodes(returns the number of parallel processors being used for this program run.
setmaxclockglocktype) sets a limit on the length of execution.

pc_exit(nt): the normal exit() function causes problems in an MPI program. This is a safer
alternative.

pc_printf(char*,...): a parallel version ofrintf, it prepends the processor number to each string.
pc_fprintf(char*,...): a parallel version ofprintf.
entity_yield(} forces a context switch to a different entity with an earlier message, if one exists.

pc_print_runtime(): prints the execution time of the program (so far).

32

Appendix B: New Things in PARSEC

The PARSEC system is a major upgrade from the last versiaviaitie. The syntax has been changed to
create a more readable, intuitive, language. The redesign also makes the system more flexible, extensible,
and less error prone. This section briefly lists the differences betwWéaisie and PARSEC, and the next
section will give details on convertingaisie programs into PARSEC.

B.1 Performance

The PARSEC compiler is smaller and much faster than the Maisie compiler. Sequential PARSEC
simulations have been up to an order of magnitude faster than ideviticsie programs.

B.2 Availability

PARSEC has been implemented using a portable kerngbrks on Linux as well as most commercial
flavors of Unix, and has also been tested on Windows NT.

The parallel implementation dflaisie was not included in the normal distribution. Parallel PARSEC will
be part of the standard distribution.

B.3 Implementation Changes

Two major implementation changes have been made, which could have a significant effect on program
organization:

1. Entities are each given a private stack spadeéis allows users to pureceivestatements in any
ordinary function or friend function which makes the code much more modular, and easier to
evolve from simulation to application.

2. PARSEC uses an efficient one-pass compiler. This forces the syntax to be somewhat more
restrictive.

B.4 Syntax Changes

The most obvious differences are in the syntax. Instructions for converting Maisie programs into
PARSEC are available in the next section.

PARSEC uses ANSI style declarations for entities.

e Maisie'swait ... until syntax has been replaced wittceive

e invoke ... with has been replaced by send ... to

* Message variables in a PARSE€Zeivestatement are read-only.

* Message types must be declared globally in PARSEC, not just in the receiving entity.
» Friend Function declarations must appear before the entity definition.

« PARSEC adds finalize block at the end of the entity body.

 PARSEC fully supports nestegteivestatements.

33

Appendix C: Modifications Required for Compatibility

This section gives examples of the differences betwéaisie and PARSEC and the changes required for
conversion. The primary changes include the use of the ANSI C style, the replacemtr@ wivoke and
wait syntax with send and receive commands, and further restrictions on the order and placement of
declarations.

C.1Send and Receive

The syntax for sending and receiving messages has been revamped. We believe the new syntax is more
intuitive and more readabléJaisie'sinvoke ...with construct has been replaced PARSEC'ssend ...to
syntax, as shown here:

ename e;
message M{} m;

Maisie:
invoke e with M = m;
invoke e with M{};

PARSEC:

send mto e;
send M{} to e;

Similarly, Maisie's wait until syntax has been changed to PARSEC'simpler receivesyntax. The
keywordwhen replaces the keyworst to indicate a guard.

ename e;
message M{ int I;};

Maisie:
wait 5 until {
mtype(M) st(msg.M.i<10) {
or mtype(timeout) {
} .
}
PARSEC:

receive (M m) when (m.i<10){

or timeout in (5) {
} c.

(Note that a compoundMaisie wait statement required an enclosing block, but the PARSE@eceive
statement is structured like an if-else-if chain.)

C.2 Receive Message Variables are Constant

34

Message variables declared in a receive statement are constant, read-only variables. They can not be
modified by the program. In order to modify the variable, it must first be copied into another variable.
(This was done for efficiency in execution.)

Maisie:
wait until mtype (Ping) {
msg.Ping.trips ++;
invoke next with msg.Ping;
}
PARSEC:

message Ping ping;

receive (Ping p) {
ping = p;
ping.trips ++;
send ping to next;

}
C.3 ANSI C Style Entity Declarations

Entities are now declared in the ANSI C style, with full parameter specification for both extern entity
declarations and entity definitions and parentheses instead of braces.

Maisie:
extern entity Manager{};
entity Sort {n, a}

int n;
int a[20];
{...
PARSEC:
extern entity Manager(int);

entity Sort (intn, int a[20]) {

C.4 Random Number Generators

The switch to ANSI C has the consequence that the populamunix random number numbers, such as
erand48 and drand48, which are not included in the ANSI standard, must be explicitly declared in order to
be used. It is insufficient to include stdlib.h. We recommend using the random number generators
provided with PARSEC. See Section A.3.

Maisie:
#include < stdlib.h>

PARSEC:
extern double drand48();

C.5Message Declarations

In Maisie, only entities which received a message of say, typé\ needed to declare message typA.
Entities which sent, but did not receive, messages of Aygiel not need to declare iThis situation led to
a very common programming error wherein the sending and receiving entities either separately (and

35

differently) defined type A, or the sender (which didn't need to declare the message) sent the wrong
number of arguments or put them in the wrong order. In PARSEC, message types declarations must be
visible to both the sender and the receiver, and must be globally unique throughout the program. The
compiler verifies the number and type of arguments.
message M{};
entity A() {
send M{} to b;

}
entity B() {

receive (M m) ...
}

C.6 Friend Functions

Friend functions must now be declared before the entity body.

Maisie:
entity Sort{} {
int sorting();

}
int Sort::sorting() {
} .

PARSEC:
entity Sort();
int Sort::sorting();

entity Sort() {
} o

C.7 endsim and finalize

Maisie included a special message type cal@uisim,which was delivered automatically to each entity
when the maximum simulation time was reached. However, there was difficulty in writing correct
programs because every wait statement needed to also wa#ffidsim, and every hold statement had to

be replaced with an equivalent wait fendsim. PARSEC replacesmdsim with afinalize block which, if
present, is called for each entity when that entity exits. A representative example of the necessary change
is as follows:

Maisie:
wait until {
mtype (Request) {
} o
or mtype (endsim) {
/¥ print results */
}
}
PARSEC:

36

receive (Request req) {

}

finalize {
/¥ print results */
}

C.8 Library Function Changes

Maisie PARSEC
maxclock(char *) setmaxclockglocktype)

nnodes() pc_num_nodes()
print(char*, ...) pc_printfchar*, ...)

C.9 Maisie features which have not been implemented (yet)

» The trace facility andrace_msg.
* Theprint_msg command.
» Compound resume conditions.

* Thehisto andbasic_stats library entities.

C.10 Incompatibilities between PARSEC versions 1.0 and 1.1

» terminate()replaced bypc_exit()

* nnodes()andnum_nodes(yeplaced bypc_num_nodes()

» -syncsegremoved. Itwasn't necessary anyway, since it was the default.

» -archremoved. The choice is now automatic, based on the type of machine.
» ctoi() andctof() and all other clock functiong(ockadd, etc.) removed.

Please also read the readme.txt file that comes with the distribution for more information.

37

Appendix D: Troubleshooting

D.1 Stacksize Problems

Each entity is now given a privatgackspace, which is used to store the entity's local variables as well as
for making function calls. Creating a private stack space for each entity allows receive statements to
appear in functions. The defadtacksize for an entity is 200KB, but can be modified during compilation
with the -d flag.

There are two common problems with entity stack sizes, it is either 1) too large, or 2) too small. When the
stacksize is too large, the machine will run out of memory. When st&cksize is too small, the program
will report an error and abort.

The "too small" case occurs when an entity has a large amount of local data, such as a large
multidimensional array, or when it makes a series of deeply nested recursive function calls. In this case,
the programmer can specify a larger stack size for the problem entity, usistattiesizeoption on entity
definition.

Often in the "too large" case, the problem is not with the program, but with thanix shell. On Solaris
machines, for example, the system defaults t8 &B limit on stack space, which means only 40 entities
can be created. On Solaris and similar systems, the user can useutilgrit" shell command to remove
this limit. Onlinux, apparently only the root user canlimit stacksize without recompiling the kernel.

However, in large simulations with hundreds of fine-grained entities, it may be necessary to reduce the
minimum stack size for an entity. To do this requires modifying one or more preprocessor directives and
recompiling the runtime system. Since the source is not provided in the default distribution, this requires a
special request tparsec@cs.ucla.edThe current minimumstacksize is 20KB, and we have found it

very dangerous and unpredictable to go below this limit. The default stack size can also be adjusted with
the -stack compiler flag, but not below the 20KB limit.

D.2 Bug Report and System Support

We are able to answer questions about this software as our time allows. Please submit bug reports using
the bug reporting form on our web page - http://pcl.cs.ucla.edu/projects/parsec/, and feel free to submit
suggestions on the PARSEC bulletin board at the same web address.

38

Appendix E: Getting PARSEC
A registration form for downloading the latest version of PARSEC is available on the Parallel Computing

Laboratory web site at http://pcl.cs.ucla.edu/projects/parsec/. Installation instructions are included with
the distribution.

39

