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Abstract   

This document is a guide to understanding how the Linux kernel (version 2.2.14 specifically) implements 
networking protocols, focused primarily on the Internet Protocol (IP). It is intended as a complete 
reference for experimenters with overviews, walk-throughs, source code explanations, and examples. The 
first part contains an in-depth examination of the code, data structures, and functionality involved with 
networking. There are chapters on initialization, connections and sockets, and receiving, transmitting, and 
forwarding packets. The second part contains detailed instructions for modifiying the kernel source code 
and installing new modules. There are chapters on kernel installation, modules, the proc file system, and a 
complete example.  
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Chapter 1  
Introduction 

This is version 1.0 of this document, dated May 31, 2000, referencing the Linux kernel version 2.2.14.  

1.1  Background 

Linux is becoming more and more popular as an alternative operating system. Since it is freely available 
to everyone as part of the open source movement, literally thousands of programmers are constantly 
working on the code to implement new features, improve existing ones, and fix bugs and inefficiencies in 
the code. There are many sources for learning more about Linux, from the source code itself 
(downloadable from the Internet) to books to ``HOW-TOs'' and message boards maintained on many 
different subjects.  

This document is an effort to bring together many of these sources into one coherent reference on and 
guide to modifying the networking code within the Linux kernel. It presents the internal workings on four 
levels: a general overview, more specific examinations of network activities, detailed function walk-
throughs, and references to the actual code and data structures. It is designed to provide as much or as 
little detail as the reader desires. This guide was written specifically about the Linux 2.2.14 kernel (which 
has already been superseded by 2.2.15) and many of the examples come from the Red Hat 6.1 
distribution; hopefully the information provided is general enough that it will still apply across 
distributions and new kernels. It also focuses almost exclusively on TCP/UDP, IP, and Ethernet - which 
are the most common but by no means the only networking protocols available for Linux platforms.  



As a reference for kernel programmers, this document includes information and pointers on editing and 
recompiling the kernel, writing and installing modules, and working with the /proc file system. It also 
presents an example of a program that drops packets for a selected host, along with analysis of the results. 
Between the descriptions and the examples, this should answer most questions about how Linux performs 
networking operations and how you can modify it to suit your own purposes.  

This project began in a Computer Science Department networking lab at the University of New 
Hampshire as an effort to institute changes in the Linux kernel to experiment with different routing 
algorithms. It quickly became apparent that blindly hacking the kernel was not a good idea, so this 
document was born as a research record and a reference for future programmers. Finally it became large 
enough (and hopefully useful enough) that we decided to generalize it, formalize it, and release it for 
public consumption.  

As a final note, Linux is an ever-changing system and truly mastering it, if such a thing is even possible, 
would take far more time than has been spent putting this reference together. If you notice any 
misstatements, omissions, glaring errors, or even typos (!) within this document, please contact the person 
who is currently maintaining it. The goal of this project has been to create a freely available and useful 
reference for Linux programmers.  

1.2  Document Conventions 

It is assumed that the reader understands the C programming language and is acquainted with common 
network protocols. This is not vital for the more general information but the details within this document 
are intended for experienced programmers and may be incomprehensible to casual Linux users.  

Almost all of the code presented requires superuser access to implement. Some of the examples can create 
security holes where none previously existed; programmers should be careful to restore their systems to a 
normal state after experimenting with the kernel.  

File references and program names are written in a slanted font.  

Code, command line entries, and machine names are written in a typewriter  font.  

Generic entries or variables (such as an output filename) and comments are written in an italic font.  

1.3  Sample Network Example 

There are numerous examples in this document that help clarify the presented material. For the sake of 
consistency and familiarity, most of them reference the sample network shown in Figure 1.1.  



 

Figure 1.1: Sample network structure. 

This network represents the computer system at a fictional unnamed University (U!). It has a router 
connected to the Internet at large (chrysler ). That machine is connected (through the jeep  interface) 
to the campus-wide network, u.edu , consisting of computers named for Chrysler owned car companies 
(dodge , eagle , etc.). There is also a LAN subnet for the computer science department, cs.u.edu , 
whose hosts are named after Dodge vehicle models (stealth , neon , etc.). They are connected to the 
campus network by the dodge/viper  computer. Both the u.edu  and cs.u.edu  networks use 
Ethernet hardware and protocols.  

This is obviously not a real network. The IP addresses are all taken from the block reserved for class B 
private networks (that are not guaranteed to be unique). Most real class B networks would have many 
more computers, and a network with only eight computers would probably not have a subnet. The 
connection to the Internet (through chrysler ) would usually be via a T1 or T3 line, and that router 
would probably be a ``real'' router (i.e. a Cisco Systems hardware router) rather than a computer with two 
network cards. However, this example is realistic enough to serve its purpose: to illustrate the the Linux 
network implementation and the interactions between hosts, subnets, and networks.  

1.4  Copyright, License, and Disclaimer 

Copyright (c) 2000 by Glenn Herrin. This document may be freely reproduced in whole or in part 
provided credit is given to the author with a line similar to the following:  



Copied from Linux IP Networking, available at 
http://original.source/location.  
(The visibility of the credit should be proportional to the amount of the document reproduced!) 
Commercial redistribution is permitted and encouraged. All modifications of this document, including 
translations, anthologies, and partial documents, must meet the following requirements:  

1. Modified versions must be labeled as such.  
2. The person making the modifications must be identified.  
3. Acknowledgement of the original author must be retained.  
4. The location of the original unmodified document be identified.  
5. The original author's name may not be used to assert or imply endorsement of the resulting 

document without the original author's permission.  

Please note any modifications including deletions.  

This is a variation (changes are intentional) of the Linux Documentation Project (LDP) License available 
at:  

http://www.linuxdoc.org/COPYRIGHT.html  
This document is not currently part of the LDP, but it may be submitted in the future.  

This document is distributed in the hope that it will be useful but (of course) without any given or implied 
warranty of fitness for any purpose whatsoever. Use it at your own risk.  

1.5  Acknowledgements 

I wrote this document as part of my Master's project for the Computer Science Department of the 
University of New Hampshire. I would like to thank Professor Pilar de la Torre for setting up the project 
and Professor Radim Bartos for being both a sponsor and my advisor - giving me numerous pointers, 
much encouragement, and a set of computers on which to experiment. I would also like to credit the 
United States Army, which has been my home for 11 years and paid for my attendance at UNH.  

Glenn Herrin 
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Chapter 2  
Message Traffic Overview 

This chapter presents an overview of the entire Linux messaging system. It provides a discussion of 
configurations, introduces the data structures involved, and describes the basics of IP routing.  

2.1  The Network Traffic Path 

The Internet Protocol (IP) is the heart of the Linux messaging system. While Linux (more or less) strictly 
adheres to the layering concept - and it is possible to use a different protocol (like ATM) - IP is almost 
always the nexus through which packets flow. The IP implementation of the network layer performs 
routing and forwarding as well as encapsulating data. See Figure 2.1 for a simplified diagram of how 
network packets move through the Linux kernel.  



Figure 2.1: Abstraction of the Linux message traffic path. 

When an application generates traffic, it sends packets through sockets to a transport layer (TCP or UDP) 
and then on to the network layer (IP). In the IP layer, the kernel looks up the route to the host in either the 
routing cache or its Forwarding Information Base (FIB). If the packet is for another computer, the kernel 
addresses it and then sends it to a link layer output interface (typically an Ethernet device) which 
ultimately sends the packet out over the physical medium.  

When a packet arrives over the medium, the input interface receives it and checks to see if the packet is 
indeed for the host computer. If so, it sends the packet up to the IP layer, which looks up the route to the 
packet's destination. If the packet has to be forwarded to another computer, the IP layer sends it back 
down to an output interface. If the packet is for an application, it sends it up through the transport layer 
and sockets for the application to read when it is ready.  

Along the way, each socket and protocol performs various checks and formatting functions, detailed in 
later chapters. The entire process is implemented with references and jump tables that isolate each 



protocol, most of which are set up during initialization when the computer boots. See Chapter 3 for details 
of the initialization process.  

2.2  The Protocol Stack 

Network devices form the bottom layer of the protocol stack; they use a link layer protocol (usually 
Ethernet) to communicate with other devices to send and receive traffic. Input interfaces copy packets 
from a medium, perform some error checks, and then forward them to the network layer. Output 
interfaces receive packets from the network layer, perform some error checks, and then send them out 
over the medium.  

IP is the standard network layer protocol. It checks incoming packets to see if they are for the host 
computer or if they need to be forwarded. It defragments packets if necessary and delivers them to the 
transport protocols. It maintains a database of routes for outgoing packets; it addresses and fragments 
them if necessary before sending them down to the link layer.  

TCP and UDP are the most common transport layer protocols. UDP simply provides a framework for 
addressing packets to ports within a computer, while TCP allows more complex connection based 
operations, including recovery mechanisms for packet loss and traffic management implementations. 
Either one copies the packet's payload between user and kernel space. However, both are just part of the 
intermediate layer between the applications and the network.  

IP Specific INET Sockets are the data elements and implementations of generic sockets. They have 
associated queues and code that executes socket operations such as reading, writing, and making 
connections. They act as the intermediary between an application's generic socket and the transport layer 
protocol.  

Generic BSD Sockets are more abstract structures that contain INET sockets. Applications read from and 
write to BSD sockets; the BSD sockets translate the operations into INET socket operations. See 
Chapter 4 for more on sockets.  

Applications, run in user space, form the top level of the protocol stack; they can be as simple as two-way 
chat connection or as complex as the Routing Information Protocol (RIP - see Chapter 9).  

2.3  Packet Structure 

The key to maintaining the strict layering of protocols without wasting time copying parameters and 
payloads back and forth is the common packet data structure (a socket buffer, or sk_buff  - Figure 2.2). 
Throughout all of the various function calls as the data makes it way through the protocols, the payload 
data is copied only twice; once from user to kernel space and once from kernel space to output medium 
(for an outbound packet).  



 

Figure 2.2: Packet (sk_buff ) structure. 

This structure contains pointers to all of the information about a packet - its socket, device, route, data 
locations, etc. Transport protocols create these packet structures from output buffers, while device drivers 
create them for incoming data. Each layer then fills in the information that it needs as it processes the 
packet. All of the protocols - transport (TCP/UDP), internet (IP), and link level (Ethernet) - use the same 
socket buffer.  

2.4  Internet Routing 

The IP layer handles routing between computers. It keeps two data structures; a Forwarding Information 
Base (FIB) that keeps track of all of the details for every known route, and a faster routing cache for 
destinations that are currently in use. (There is also a third structure - the neighbor table - that keeps track 
of computers that are physically connected to a host.)  

The FIB is the primary routing reference; it contains up to 32 zones (one for each bit in an IP address) and 
entries for every known destination. Each zone contains entries for networks or hosts that can be uniquely 
identified by a certain number of bits - a network with a netmask of 255.0.0.0 has 8 significant bits and 
would be in zone 8, while a network with a netmask of 255.255.255.0 has 24 significant bits and would 
be in zone 24. When IP needs a route, it begins with the most specific zones and searches the entire table 
until it finds a match (there should always be at least one default entry). The file /proc/net/route has the 
contents of the FIB.  

The routing cache is a hash table that IP uses to actually route packets. It contains up to 256 chains of 
current routing entries, with each entry's position determined by a hash function. When a host needs to 
send a packet, IP looks for an entry in the routing cache. If there is none, it finds the appropriate route in 
the FIB and inserts a new entry into the cache. (This entry is what the various protocols use to route, not 
the FIB entry.) The entries remain in the cache as long as they are being used; if there is no traffic for a 



destination, the entry times out and IP deletes it. The file /proc/net/rt_cache has the contents of the 
routing cache.  

These tables perform all the routing on a normal system. Even other protocols (such as RIP) use the same 
structures; they just modify the existing tables within the kernel using the ioctl()  function. See 
Chapter 8 for routing details.  

Chapter 3  
Network Initialization 

This chapter presents network initialization on startup. It provides an overview of what happens when the 
Linux operating system boots, shows how the kernel and supporting programs ifconfig and route establish 
network links, shows the differences between several example configurations, and summarizes the 
implementation code within the kernel and network programs.  

3.1  Overview 

Linux initializes routing tables on startup only if a computer is configured for networking. (Almost all 
Linux machines do implement networking, even stand-alone machines, if only to use the loopback 
device.) When the kernel finishes loading itself, it runs a set of common but system specific utility 
programs and reads configuration files, several of which establish the computer's networking capabilities. 
These determine its own address, initialize its interfaces (such as Ethernet cards), and add critical and 
known static routes (such as one to a router that connects it with the rest of the Internet). If the computer 
is itself a router, it may also execute a program that allows it to update its routing tables dynamically (but 
this is NOT run on most hosts).  

The entire configuration process can be static or dynamic. If addresses and names never (or infrequently) 
change, the system administrator must define options and variables in files when setting up the system. In 
a more mutable environment, a host will use a protocol like the Dynamic Hardware Configuration 
Protocol (DHCP) to ask for an address, router, and DNS server information with which to configure itself 
when it boots. (In fact, in either case, the administrator will almost always use a GUI interface - like Red 
Hat's Control Panel - which automatically writes the configuration files shown below.)  

An important point to note is that while most computers running Linux start up the same way, the 
programs and their locations are not by any means standardized; they may vary widely depending on 
distribution, security concerns, or whim of the system administrator. This chapter presents as generic a 
description as possible but assumes a Red Hat Linux 6.1 distribution and a generally static network 
environment.  

3.2  Startup 

When Linux boots as an operating system, it loads its image from the disk into memory, unpacks it, and 
establishes itself by installing the file systems and memory management and other key systems. As the 
kernel's last (initialization) task, it executes the init program. This program reads a configuration file 
(/etc/inittab) which directs it to execute a startup script (found in /etc/rc.d on Red Hat distributions). This 
in turn executes more scripts, eventually including the network script (/etc/rc.d/init.d/network). (See 
Section 3.3 for examples of the script and file interactions.)  

3.2.1  The Network Initialization Script 

The network initialization script sets environment variables to identify the host computer and establish 
whether or not the computer will use a network. Depending on the values given, the network script turns 
on (or off) IP forwarding and IP fragmentation. It also establishes the default router for all network traffic 
and the device to use to send such traffic. Finally, it brings up any network devices using the ifconfig and 



route programs. (In a dynamic environment, it would query the DHCP server for its network information 
instead of reading its own files.)  

The script(s) involved in establishing networking can be very straightforward; it is entirely possible to 
have one big script that simply executes a series of commands that will set up a single machine properly. 
However, most Linux distributions come with a large number of generic scripts that work for a wide 
variety of machine setups. This leaves a lot of indirection and conditional execution in the scripts, but 
actually makes setting up any one machine much easier. For example, on Red Hat distributions, the 
/etc/rc.d/init.d/network script runs several other scripts and sets up variables like interfaces_boot  to 
keep track of which /etc/sysconfig/network-scripts/ifup scripts to run. Tracing the process manually is 
very complicated, but simple modifications of only two configuration files (putting the proper names and 
IP addresses in the /etc/sysconfig/network and /etc/sysconfig/network-scripts/ifcfg-eth0 files) sets up the 
entire system properly (and a GUI makes the process even simpler).  

When the network script finishes, the FIB contains the specified routes to given hosts or networks and the 
routing cache and neighbor tables are empty. When traffic begins to flow, the kernel will update the 
neighbor table and routing cache as part of the normal network operations. (Network traffic may begin 
during initialization if a host is dynamically configured or consults a network clock, for example.)  

3.2.2  ifconfig 

The ifconfig program configures interface devices for use. (This program, while very widely used, is not 
part of the kernel.) It provides each device with its (IP) address, netmask, and broadcast address. The 
device in turn will run its own initialization functions (to set any static variables) and register its interrupts 
and service routines with the kernel. The ifconfig commands in the network script look like this:  
ifconfig ${DEVICE} ${IPADDR} netmask ${NMASK} broad cast ${BCAST}   
(where the variables are either written directly in the script or are defined in other scripts).  

The ifconfig program can also provide information about currently configured network devices (calling 
with no arguments displays all the active interfaces; calling with the -a  option displays all interfaces, 
active or not):  

ifconfig   
This provides all the information available about each working interface; addresses, status, packet 
statistics, and operating system specifics. Usually there will be at least two interfaces - a network card and 
the loopback device. The information for each interface looks like this (this is the viper  interface):  
eth0  Link encap:Ethernet  HWaddr 00:C1:4E:7D:9E:25  
      inet addr:172.16.1.1  Bcast:172.16.1.255  Mas k:255.255.255.0 
      UP BROADCAST RUNNING MULTICAST  MTU:1500  Met ric:1 
      RX packets:389016 errors:16534 dropped:0 over runs:0 frame:24522 
      TX packets:400845 errors:0 dropped:0 overruns :0 carrier:0 
      collisions:0 txqueuelen:100 
      Interrupt:11 Base address:0xcc00 

A superuser can use ifconfig to change interface settings from the command line; here is the syntax:  
ifconfig  interface [aftype] options | address ...  
... and some of the more useful calls:  
ifconfig eth0 down  - shut down eth0  
ifconfig eth1 up  - activate eth1  
ifconfig eth0 arp  - enable ARP on eth0  
ifconfig eth0 -arp  - disable ARP on eth0  
ifconfig eth0 netmask 255.255.255.0  - set the eth0  netmask 
ifconfig lo mtu 2000  - set the loopback maximum transfer unit 
ifconfig eth1 172.16.0.7  - set the eth1  IP address  
Note that modifying an interface configuration can indirectly change the routing tables. For example, 
changing the netmask may make some routes moot (including the default or even the route to the host 
itself) and the kernel will delete them.  

3.2.3  route 



The route program simply adds predefined routes for interface devices to the Forwarding Information 
Base (FIB). This is not part of the kernel, either; it is a user program whose command in the script looks 
like this:  
route add -net ${NETWORK} netmask ${NMASK} dev ${DE VICE}  -or- 
route add -host ${IPADDR} ${DEVICE}  
(where the variables are again spelled out or defined in other scripts).  

The route program can also delete routes (if run with the del  option) or provide information about the 
routes that are currently defined (if run with no options):  

route   
This displays the Kernel IP routing table (the FIB, not the routing cache). For example (the stealth  
computer):  
Kernel IP routing table 
Destination   Gateway        Genmask         Flags Metric Ref Use Iface 
172.16.1.4    *              255.255.255.255 UH    0      0     0 eth0 
172.16.1.0    *              255.255.255.0   U     0      0     0 eth0 
127.0.0.0     *              255.0.0.0       U     0      0     0 lo 
default       viper.u.edu    0.0.0.0         UG    0      0     0 eth0 

A superuser can use route to add and delete IP routes from the command line; here is the basic syntax:  
route add  [-net|-host] target [option arg] 
route del  [-net|-host] target [option arg]  
... and some useful examples:  
route add -host 127.16.1.0 eth1  - adds a route to a host 
route add -net 172.16.1.0 netmask 255.255.255.0 eth 0 - adds a network 
route add default gw jeep  - sets the default route through jeep  
(Note that a route to jeep  must already be set up) 
route del -host 172.16.1.16  - deletes entry for host 172.16.1.16   

3.2.4  Dynamic Routing Programs 

If the computer is a router, the network script will run a routing program like routed or gated. Since most 
computers are always on the same hard-wired network with the same set of addresses and limited routing 
options, most computers do not run one of these programs. (If an Ethernet cable is cut, traffic simply will 
not flow; there is no need to try to reroute or adjust routing tables.) See Chapter 9 for more information 
about routed.  

3.3  Examples 

The following are examples of files for systems set up in three different ways and explanations of how 
they work. Typically every computer will execute a network script that reads configuration files, even if 
the files tell the computer not to implement any networking.  

3.3.1  Home Computer 

These files would be on a computer that is not permanently connected to a network, but has a modem for 
ppp  access. (This section does not reference a computer from the general example.)  

This is the first file the network script will read; it sets several environment variables. The first two 
variables set the computer to run networking programs (even though it is not on a network) but not to 
forward packets (since it has nowhere to send them). The last two variables are generic entries.  

/etc/sysconfig/network  

NETWORKING=yes 
FORWARD_IPV4=false 
HOSTNAME=localhost.localdomain 
GATEWAY=  



After setting these variables, the network script will decide that it needs to configure at least one network 
device in order to be part of a network. The next file (which is almost exactly the same on all Linux 
computers) sets up environment variables for the loopback device. It names it and gives it its (standard) 
IP address, network mask, and broadcast address as well as any other device specific variables. (The 
ONBOOT variable is a flag for the script program that tells it to configure this device when it boots.) 
Most computers, even those that will never connect to the Internet, install the loopback device for inter-
process communication.  

/etc/sysconfig/network-scripts/ifcfg-lo  

DEVICE=lo 
IPADDR=127.0.0.1 
NMASK=255.0.0.0 
NETWORK=127.0.0.0 
BCAST=127.255.255.255 
ONBOOT=yes 
NAME=loopback 
BOOTPROTO=none  
After setting these variables, the script will run the ifconfig program and stop, since there is nothing else 
to do at the moment. However, when the ppp  program connects to an Internet Service Provider, it will 
establish a ppp  device and addressing and routes based on the dynamic values assigned by the ISP. The 
DNS server and other connection information should be in an ifcfg-ppp file.  

3.3.2  Host Computer on a LAN 

These files would be on a computer that is connected to a LAN; it has one Ethernet card that should come 
up whenever the computer boots. These files reflect entries on the stealth  computer from the general 
example.  

This is the first file the network script will read; again the first variables simply determine that the 
computer will do networking but that it will not forward packets. The last four variables identify the 
computer and its link to the rest of the Internet (everything that is not on the LAN).  

/etc/sysconfig/network  

NETWORKING=yes 
FORWARD_IPV4=false 
HOSTNAME=stealth.cs.u.edu 
DOMAINNAME=cs.u.edu 
GATEWAY=172.16.1.1 
GATEWAYDEV=eth0 
After setting these variables, the network script will configure the network devices. This file sets up 
environment variables for the Ethernet card. It names the device and gives it its IP address, network mask, 
and broadcast address as well as any other device specific variables. This kind of computer would also 
have a loopback configuration file exactly like the one for a non-networked computer.  

/etc/sysconfig/network-scripts/ifcfg-eth0  

DEVICE=eth0 
IPADDR=172.16.1.4 
NMASK=255.255.255.0 
NETWORK=172.16.1.0 
BCAST=172.16.1.255 
ONBOOT=yes 
BOOTPROTO=none 

After setting these variables, the network script will run the ifconfig program to start the device. Finally, 
the script will run the route program to add the default route (GATEWAY) and any other specified routes 



(found in the /etc/sysconfig/static-routes file, if any). In this case only the default route is specified, since 
all traffic either stays on the LAN (where the computer will use ARP to find other hosts) or goes through 
the router to get to the outside world.  

3.3.3  Network Routing Computer 

These files would be on a computer that serves as a router between two networks; it has two Ethernet 
cards, one for each network. One card is on a large network (WAN) connected to the Internet (through yet 
another router) while the other is on a subnetwork (LAN). Computers on the LAN that need to 
communicate with the rest of the Internet send traffic through this computer (and vice versa). These files 
reflect entries on the dodge/viper  computer from the general example.  

This is the first file the network script will read; it sets several environment variables. The first two 
simply determine that the computer will do networking (since it is on a network) and that this one will 
forward packets (from one network to the other). IP Forwarding is built into most kernels, but it is not 
active unless there is a 1 ``written'' to the /proc/net/ipv4/ip_forward file. (One of the network scripts 
performs an echo 1 > /proc/net/ipv4/ip_forward  if FORWARD_IPV4 is true.) The last four 
variables identify the computer and its link to the rest of the Internet (everything that is not on one of its 
own networks).  

/etc/sysconfig/network  

NETWORKING=yes 
FORWARD_IPV4=true 
HOSTNAME=dodge.u.edu 
DOMAINNAME=u.edu 
GATEWAY=172.16.0.1 
GATEWAYDEV=eth1 
After setting these variables, the network script will configure the network devices. These files set up 
environment variables for two Ethernet cards. They name the devices and give them their IP addresses, 
network masks, and broadcast addresses. (Note that the BOOTPROTO variable remains defined for the 
second card.) Again, this computer would have the standard loopback configuration file.  

/etc/sysconfig/network-scripts/ifcfg-eth0  

DEVICE=eth0 
IPADDR=172.16.1.1 
NMASK=255.255.255.0 
NETWORK=172.16.1.0 
BCAST=172.16.1.255 
ONBOOT=yes 
BOOTPROTO=static   

/etc/sysconfig/network-scripts/ifcfg-eth1  

DEVICE=eth1 
IPADDR=172.16.0.7 
NMASK=255.255.0.0 
NETWORK=172.16.0.0 
BCAST=172.16.255.255 
ONBOOT=yes  
After setting these variables, the network script will run the ifconfig program to start each device. Finally, 
the script will run the route program to add the default route (GATEWAY) and any other specified routes 
(found in the /etc/sysconfig/static-routes file, if any). In this case again, the default route is the only 
specified route, since all traffic will go on the network indicated by the network masks or through the 
default router to reach the rest of the Internet.  

3.4  Linux and Network Program Functions 



The following are alphabetic lists of the Linux kernel and network program functions that are most 
important to initialization, where they are in the source code, and what they do. The SOURCES directory 
shown represents the directory that contains the source code for the given network file. The executable 
files should come with any Linux distrbution, but the source code probably does not.  

These sources are available as a package separate from the kernel source (Red Hat Linux uses the rpm 
package manager). The code below is from the net-tools-1.53-1 source code package, 29 August 1999. 
The packages are available from the www.redhat.com/apps/download web page. Once downloaded, root 
can install the package with the following commands (starting from the directory with the package):  

rpm -i net-tools-1.53-1.src.rpm 
cd /usr/src/redhat/SOURCES 
tar xzf net-tools-1.53.tar.gz   
This creates a /usr/src/redhat/SOURCES/net-tools-1.53 directory and fills it with the source code for the 
ifconfig and route programs (among others). This process should be similar (but is undoubtably not 
exactly the same) for other Linux distributions.  

3.4.1  ifconfig 

devinet_ioctl() - net/ipv4/devinet.c (398) 
  creates an info request (ifreq) structure and cop ies data from 
      user to kernel space 
  if it is an INET level request or action, execute s it 
  if it is a device request or action, calls a devi ce function 
  copies ifreq back into user memory 
  returns 0 for success 
 
>>> ifconfig main() - SOURCES/ifconfig.c (478) 
  opens a socket (only for use with ioctl function)  
  searches command line arguments for options 
  calls if_print() if there were no arguments or th e only argument 
      is an interface name 
  loops through remaining arguments, setting or cle aring flags or 
      calling ioctl() to set variables for the inte rface 
 
if_fetch() - SOURCES/lib/interface.c (338) 
  fills in an interface structure with multiple cal ls to ioctl() for 
      flags, hardware address, metric, MTU, map, an d address information 
 
if_print() - SOURCES/ifconfig.c (121) 
  calls ife_print() for given (or all) interface(s)  
      (calls if_readlist() to fill structure list i f necessary and 
      then displays information about each interfac e) 
 
if_readlist() - SOURCES/lib/interface.c (261) 
  opens /proc/net/dev and parses data into interfac e structures 
  calls add_interface() for each device to put stru ctures into a list 
 
inet_ioctl() - net/ipv4/af_inet.c (855) 
  executes a switch based on the command passed 
      [for ifconfig, calls devinet_ioctl()] 
 
ioctl() - 
  jumps to appropriate handler routine [= inet_ioct l()] 

3.4.2  route 

INET_rinput() - SOURCES/lib/inet_sr.c (305) 
  checks for errors (cannot flush table or modify r outing cache) 
  calls INET_setroute() 
 
INET_rprint() - SOURCES/lib/inet_gr.c (442) 
  if the FIB flag is set, calls rprint_fib() 
      (reads, parses, and displays contents of /pro c/net/route) 
  if the CACHE flag is set, calls rprint_cache() 
      (reads, parses, and displays contents of /pro c/net/rt_cache) 
 
INET_setroute() - SOURCE/lib/inet_sr.c (57) 
  establishes whether route is to a network or a ho st 



  checks to see if address is legal 
  loops through arguments, filling in rtentry struc ture 
  checks for netmask conflicts 
  creates a temporary socket 
  calls ioctl() with rtentry to add or delete route  
  closes socket and returns 0 
 
ioctl() -  
  jumps to appropriate handler routine [= ip_rt_ioc tl()] 
 
ip_rt_ioctl() - net/ipv4/fib_frontend.c (246) 
  converts passed parameters to routing table entry  (struct rtentry) 
  if deleting a route: 
    calls fib_get_table() to find the appropriate t able 
    calls the table->tb_delete() function to remove  it 
  if adding a route 
    calls fib_net_table() to find an entry point 
    calls the table->tb_insert() function to add th e entry 
  returns 0 for success 
 
>>> route main() - SOURCES/route.c (106) 
  calls initialization routines that set print and edit functions 
  gets and parses the command line options (acts on  some options 
      directly by setting flags or displaying infor mation) 
  checks the options (prints a usage message if the re is an error) 
  if there are no options, calls route_info() 
  if the option is to add, delete, or flush routes,  
      calls route_edit() with the passed parameters  
  if the option is invalid, prints a usage message 
  returns result of 
 
route_edit() - SOURCES/lib/setroute.c (69) 
  calls get_aftype() to translate address family fr om text to a pointer 
  checks for errors (unsupported or nonexistent fam ily) 
  calls the address family rinput() function [= INE T_rinput()] 
 
route_info() - SOURCES/lib/getroute.c (72) 
  calls get_aftype() to translate address family fr om text to a pointer 
  checks for errors (unsupported or nonexistent fam ily) 
  calls the address family rprint() function [= INE T_rprint()] 

Chapter 4  
Connections 

This chapter presents the connection process. It provides an overview of the connection process, a 
description of the socket data structures, an introduction to the routing system, and summarizes the 
implementation code within the kernel.  

4.1  Overview 

The simplest form of networking is a connection between two hosts. On each end, an application gets a 
socket, makes the transport layer connection, and then sends or receives packets. In Linux, a socket is 
actually composed of two socket structures (one that contains the other). When an application creates a 
socket, it is initialized but empty. When the socket makes a connection (whether or not this involves 
traffic with the other end) the IP layer determines the route to the distant host and stores that information 
in the socket. From that point on, all traffic using that connection uses that route - sent packets will travel 
through the correct device and the proper routers to the distant host, and received packets will appear in 
the socket's queue.  

4.2  Socket Structures 

There are two main socket structures in Linux: general BSD sockets and IP specific INET sockets. They 
are strongly interrelated; a BSD socket has an INET socket as a data member and an INET socket has a 
BSD socket as its owner.  



BSD sockets are of type struct socket  as defined in include/linux/socket.h. BSD socket variables 
are usually named sock  or some variation thereof. This structure has only a few entries, the most 
important of which are described below.  

• struct proto_ops *ops  - this structure contains pointers to protocol specific functions 
for implementing general socket behavior. For example, ops- > sendmsg  points to the 
inet_sendmsg()  function.  

• struct inode *inode - this structure points to the file inode that is associated with this socket.  
• struct sock *sk  - this is the INET socket that is associated with this socket.  

INET sockets are of type struct sock  as defined in include/net/sock.h. INET socket variables are 
usually named sk  or some variation thereof. This structure has many entries related to a wide variety of 
uses; there are many hacks and configuration dependent fields. The most important data members are 
described below:  

• struct sock *next, *pprev  - all sockets are linked by various protocols, so these 
pointers allow the protocols to traverse them.  

• struct dst_entry *dst_cache  - this is a pointer to the route to the socket's other side 
(the destination for sent packets).  

• struct sk_buff_head receive_queue  - this is the head of the receive queue.  
• struct sk_buff_head write_queue  - this is the head of the send queue.  
• __u32 saddr  - the (Internet) source address for this socket.  
• struct sk_buff_head back_log,error_queue  - extra queues for a backlog of 

packets (not to be confused with the main backlog queue) and erroneous packets for this socket.  
• struct proto *prot  - this structure contains pointers to transport layer protocol specific 

functions. For example, prot- > recvmsg  may point to the tcp_v4_recvmsg()  
function.  

• union struct tcp_op af_tcp; tp_pinfo  - TCP options for this socket.  
• struct socket *sock  - the parent BSD socket.  
• Note that there are many more fields within this structure; these are only the most critical and 

non-obvious. The rest are either not very important or have self-explanatory names (e.g., 
ip_ttl  is the IP Time-To-Live counter).  

4.3  Sockets and Routing 

Sockets only go through the routing lookup process once for each destination (at connection time). 
Because Linux sockets are so closely related to IP, they contain routes to the other end of a connection (in 
the sock- > sk- > dst_cache  variable). The transport protocols call the 
ip_route_connect()  function to determine the route from host to host during the connection 
process; after that, the route is presumed not to change (though the path pointed to by the dst_cache  
may indeed change). The socket does not need to do continuous routing table look-ups for each packet it 
sends or receives; it only tries again if something unexpected happens (such as a neighboring computer 
going down). This is the benefit of using connections.  

4.4  Connection Processes 

4.4.1  Establishing Connections 

Application programs establish sockets with a series of system calls that look up the distant address, 
establish a socket, and then connect to the machine on the other end.  
    /* look up host */ 
    server = gethostbyname(SERVER_NAME); 
    /* get socket */ 
    sockfd = socket(AF_INET, SOCK_STREAM, 0); 
    /* set up address */ 
    address.sin_family = AF_INET; 
    address.sin_port = htons(PORT_NUM); 



    memcpy(&address.sin_addr,server->h_addr,server- >h_length); 
    /* connect to server */ 
    connect(sockfd, &address, sizeof(address)); 

The gethostbyname()  function simply looks up a host (such as ``viper.cs.u.edu'') and returns a 
structure that contains an Internet (IP) address. This has very little to do with routing (only inasmuch as 
the host may have to query the network to look up an address) and is simply a translation from a human 
readable form (text) to a computer compatible one (an unsigned 4 byte integer).  

The socket()  call is more interesting. It creates a socket object, with the appropriate data type (a sock  
for INET sockets) and initializes it. The socket contains inode information and protocol specific pointers 
for various network functions. It also establishes defaults for queues (incoming, outgoing, error, and 
backlog), a dummy header info for TCP sockets, and various state information.  

Finally, the connect()  call goes to the protocol dependent connection routine (e.g., 
tcp_v4_connect()  or udp_connect() ). UDP simply establishes a route to the destination (since 
there is no virtual connection). TCP establishes the route and then begins the TCP connection process, 
sending a packet with appropriate connection and window flags set.  

4.4.2  Socket Call Walk-Through 

• Check for errors in call  
• Create (allocate memory for) socket object  
• Put socket into INODE list  
• Establish pointers to protocol functions (INET)  
• Store values for socket type and protocol family  
• Set socket state to closed  
• Initialize packet queues  

4.4.3  Connect Call Walk-Through 

• Check for errors  
• Determine route to destination:  

o Check routing table for existing entry (return that if one exists)  
o Look up destination in FIB  
o Build new routing table entry  
o Put entry in routing table and return it  

• Store pointer to routing entry in socket  
• Call protocol specific connection function (e.g., send a TCP connection packet)  
• Set socket state to established  

4.4.4  Closing Connections 

Closing a socket is fairly straightforward. An application calls close()  on a socket, which becomes a 
sock_close()  function call. This changes the socket state to disconnecting and calls the data 
member's (INET socket's) release function. The INET socket in turn cleans up its queues and calls the 
transport protocol's close function, tcp_v4_close()  or udp_close() . These perform any 
necessary actions (the TCP functions may send out packets to end the TCP connection) and then clean up 
any data structures they have remaining. Note that no changes are made for routing; the (now-empty) 
socket no longer has a reference to the destination and the entry in the routing cache will remain until it is 
freed for lack of use.  

4.4.5  Close Walk-Through 

• Check for errors (does the socket exist?)  
• Change the socket state to disconnecting to prevent further use  
• Do any protocol closing actions (e.g., send a TCP packet with the FIN bit set)  
• Free memory for socket data structures (TCP/UDP and INET)  



• Remove socket from INODE list  

4.5  Linux Functions 

The following is an alphabetic list of the Linux kernel functions that are most important to connections, 
where they are in the source code, and what they do. To follow function calls for creating a socket, begin 
with sock_create() . To follow function calls for closing a socket, begin with sock_close() .  
destroy_sock - net/ipv4/af_inet.c (195) 
  deletes any timers 
  calls any protocols specific destroy functions 
  frees the socket's queues 
  frees the socket structure itself 
 
fib_lookup() - include/net/ip_fib.h (153) 
  calls tb_lookup() [= fn_hash_lookup()] on local a nd main tables 
  returns route or unreachable error 
 
fn_hash_lookup() - net/ipv4/fib_hash.c (261) 
  looks up and returns route to an address 
 
inet_create() - net/ipv4/af_inet.c (326) 
  calls sk_alloc() to get memory for sock 
  initializes sock structure: 
    sets proto structure to appropriate values for TCP or UDP 
    calls sock_init_data() 
    sets family,protocol,etc. variables 
  calls the protocol init function (if any) 
 
inet_release() - net/ipv4/af_inet.c (463) 
  changes socket state to disconnecting 
  calls ip_mc_drop_socket to leave multicast group (if necessary) 
  sets owning socket's data member to NULL 
  calls sk->prot->close() [=TCP/UDP_close()] 
 
ip_route_connect() - include/net/route.h (140) 
  calls ip_route_output() to get a destination addr ess 
  returns if the call works or generates an error 
  otherwise clears the route pointer and try again 
 
ip_route_output() - net/ipv4/route.c (1664) 
  calculates hash value for address 
  runs through table (starting at hash) to match ad dresses and TOS 
  if there is a match, updates stats and return rou te entry 
  else calls ip_route_output_slow() 
 
ip_route_output_slow() - net/ipv4/route.c (1421) 
  if source address is known, looks up output devic e 
  if destination address is unknown, sets up loopba ck 
  calls fib_lookup() to find route in FIB 
  allocates memory new routing table entry 
  initializes table entry with source, destination,  TOS, output device, 
      flags 
  calls rt_set_nexthop() to find next destination 
  returns rt_intern_hash(), which installs route in  routing table 
 
rt_intern_hash() - net/ipv4/route.c (526) 
  loops through rt_hash_table (starting at hash val ue) 
  if keys match, put rtable entry in front bucket 
  else put rtable entry into hash table at hash 
 
>>> sock_close() - net/socket.c (476) 
  checks if socket exists (could be null) 
  calls sock_fasync() to remove socket from async l ist 
  calls sock_release() 
 
>>> sock_create() - net/socket.c (571) 
  checks parameters 
  calls sock_alloc() to get an available inode for the socket and 
      initialize it 
  sets socket->type (to SOCK_STREAM, SOCK_DGRAM...)  
  calls net_family->create() [= inet_create()] to b uild sock structure 
  returns established socket 
 
sock_init_data() - net/core/sock.c (1018) 



  initializes all generic sock values 
 
sock_release() - net/socket.c (309) 
  changes state to disconnecting 
  calls sock->ops->release() [= inet_release()] 
  calls iput() to remove socket from inode list 
 
sys_socket() - net/socket.c (639) 
  calls sock_create() to get and initialize socket 
  calls get_fd() to assign an fd to the socket 
  sets socket->file to fcheck() (pointer to file) 
  calls sock_release() if anything fails 
 
tcp_close() - net/ipv4/tcp.c (1502) 
  check for errors 
  pops and discards all packets off incoming queue 
  sends messages to destination to close connection  (if required) 
 
tcp_connect() - net/ipv4/tcp_output.c (910) 
  completes connection packet with appropriate bits  and window sizes set 
  puts packet on socket output queue 
  calls tcp_transmit_skb() to send packet, initiati ng TCP connection 
 
tcp_v4_connect() - net/ipv4/tcp_ipv4.c (571) 
  checks for errors 
  calls ip_route_connect() to find route to destina tion 
  creates connection packet   
  calls tcp_connect() to send packet 
 
udp_close() - net/ipv4/udp.c (954) 
  calls udp_v4_unhash() to remove socket from socke t list 
  calls destroy_sock() 
 
udp_connect() - net/ipv4/udp.c (900) 
  calls ip_route_connect() to find route to destina tion 
  updates socket with source and destination addres ses and ports 
  changes socket state to established 
  saves the destination route in sock->dst_cache 

Chapter 5  
Sending Messages 

This chapter presents the sending side of message trafficking. It provides an overview of the process, 
examines the layers packets travel through, details the actions of each layer, and summarizes the 
implementation code within the kernel.  

5.1  Overview 



 

Figure 5.1: Message transmission. 

An outgoing message begins with an application system call to write data to a socket. The socket 
examines its own connection type and calls the appropriate send routine (typically INET). The send 
function verifies the status of the socket, examines its protocol type, and sends the data on to the transport 
layer routine (such as TCP or UDP). This protocol creates a new buffer for the outgoing packet (a socket 
buffer, or struct sk_buff skb ), copies the data from the application buffer, and fills in its header 
information (such as port number, options, and checksum) before passing the new buffer to the network 



layer (usually IP). The IP send functions fill in more of the buffer with its own protocol headers (such as 
the IP address, options, and checksum). It may also fragment the packet if required. Next the IP layer 
passes the packet to the link layer function, which moves the packet onto the sending device's xmit  
queue and makes sure the device knows that it has traffic to send. Finally, the device (such as a network 
card) tells the bus to send the packet.  

5.2  Sending Walk-Through 

5.2.1  Writing to a Socket 

• Write data to a socket (application)  
• Fill in message header with location of data (socket)  
• Check for basic errors - is socket bound to a port? can the socket send messages? is there 

something wrong with the socket?  
• Pass the message header to appropriate transport protocol (INET socket)  

5.2.2  Creating a Packet with UDP 

• Check for errors - is the data too big? is it a UDP connection?  
• Make sure there is a route to the destination (call the IP routing routines if the route is not 

already established; fail if there is no route)  
• Create a UDP header (for the packet)  
• Call the IP build and transmit function  

5.2.3  Creating a Packet with TCP 

• Check connection - is it established? is it open? is the socket working?  
• Check for and combine data with partial packets if possible  
• Create a packet buffer  
• Copy the payload from user space  
• Add the packet to the outbound queue  
• Build current TCP header into packet (with ACKs, SYN, etc.)  
• Call the IP transmit function  

5.2.4  Wrapping a Packet in IP 

• Create a packet buffer (if necessary - UDP)  
• Look up route to destination (if necessary - TCP)  
• Fill in the packet IP header  
• Copy the transport header and the payload from user space  
• Send the packet to the destination route's device output funtion  

5.2.5  Transmitting a Packet 

• Put the packet on the device output queue  
• Wake up the device  
• Wait for the scheduler to run the device driver  
• Test the medium (device)  
• Send the link header  
• Tell the bus to transmit the packet over the medium  

5.3  Linux Functions 



The following is an alphabetic list of the Linux kernel functions that are most important to message 
traffic, where they are in the source code, and what they do. To follow function calls, begin with 
sock_write() .  
dev_queue_xmit() - net/core/dev.c (579) 
  calls start_bh_atomic() 
  if device has a queue 
    calls enqueue() to add packet to queue 
    calls qdisc_wakeup() [= qdisc_restart()] to wak e device 
  else calls hard_start_xmit() 
  calls end_bh_atomic() 
 
DEVICE->hard_start_xmit() - device dependent, drive rs/net/DEVICE.c 
  tests to see if medium is open 
  sends header 
  tells bus to send packet 
  updates status 
 
inet_sendmsg() - net/ipv4/af_inet.c (786) 
  extracts pointer to socket sock 
  checks socket to make sure it is working 
  verifies protocol pointer 
  returns sk->prot[tcp/udp]->sendmsg() 
 
ip_build_xmit - net/ipv4/ip_output.c (604) 
  calls sock_alloc_send_skb() to establish memory f or skb 
  sets up skb header 
  calls getfrag() [= udp_getfrag()]  to copy buffer  from user space 
  returns rt->u.dst.output() [= dev_queue_xmit()] 
 
ip_queue_xmit() - net/ipv4/ip_output.c (234) 
  looks up route 
  builds IP header 
  fragments if required 
  adds IP checksum 
  calls skb->dst->output() [= dev_queue_xmit()] 
 
qdisc_restart() - net/sched/sch_generic.c (50) 
  pops packet off queue 
  calls dev->hard_start_xmit() 
  updates status 
  if there was an error, requeues packet 
 
sock_sendmsg() - net/socket.c (325) 
  calls scm_sendmsg() [socket control message] 
  calls sock->ops[inet]->sendmsg() and destroys scm  
 
>>> sock_write() - net/socket.c (399) 
  calls socki_lookup() to associate socket with fd/ file inode 
  creates and fills in message header with data siz e/addresses 
  returns sock_sendmsg() 
 
tcp_do_sendmsg() - net/ipv4/tcp.c  (755) 
  waits for connection, if necessary 
  calls skb_tailroom() and adds data to waiting pac ket if possible 
  checks window status 
  calls sock_wmalloc() to get memory for skb 
  calls csum_and_copy_from_user() to copy packet an d do checksum 
  calls tcp_send_skb() 
 
tcp_send_skb() - net/ipv4/tcp_output.c (160) 
  calls __skb_queue_tail() to add packet to queue 
  calls tcp_transmit_skb() if possible 
 
tcp_transmit_skb() - net/ipv4/tcp_output.c (77) 
  builds TCP header and adds checksum 
  calls tcp_build_and_update_options() 
  checks ACKs,SYN 
  calls tp->af_specific[ip]->queue_xmit() 
 
tcp_v4_sendmsg() - net/ipv4/tcp_ipv4.c (668) 
  checks for IP address type, opens connection, por t addresses 
  returns tcp_do_sendmsg() 
 
udp_getfrag() - net/ipv4/udp.c (516) 
  copies and checksums a buffer from user space 
 



udp_sendmsg() - net/ipv4/udp.c (559) 
  checks length, flags, protocol 
  sets up UDP header and address info 
  checks multicast 
  fills in route 
  fills in remainder of header 
  calls ip_build_xmit() 
  updates UDP status 
  returns err 

Chapter 6  
Receiving Messages 

This chapter presents the receiving side of message trafficking. It provides an overview of the process, 
examines the layers packets travel through, details the actions of each layer, and summarizes the 
implementation code within the kernel.  

6.1  Overview 



 

Figure 6.1: Receiving messages. 



An incoming message begins with an interrupt when the system notifies the device that a message is 
ready. The device allocates storage space and tells the bus to put the message into that space. It then 
passes the packet to the link layer, which puts it on the backlog queue, and marks the network flag for the 
next ``bottom-half'' run.  

The bottom-half is a Linux system that minimizes the amount of work done during an interrupt. Doing a 
lot of processing during an interrupt is not good precisely because it interrupts a running process; instead, 
interrupt handlers have a ``top-half'' and a ``bottom-half''. When the interrupt arrives, the top-half runs 
and takes care of any critical operations, such as moving data from a device queue into kernel memory. It 
then marks a flag that tells the kernel that there is more work to do - when the processor has time - and 
returns control to the current process. The next time the process scheduler runs, it sees the flag, does the 
extra work, and only then schedules any normal processes.  

When the process scheduler sees that there are networking tasks to do it runs the network bottom-half. 
This function pops packets off of the backlog queue, matches them to a known protocol (typically IP), 
and passes them to that protocol's receive function. The IP layer examines the packet for errors and routes 
it; the packet will go into an outgoing queue (if it is for another host) or up to the transport layer (such as 
TCP or UDP). This layer again checks for errors, looks up the socket associated with the port specified in 
the packet, and puts the packet at the end of that socket's receive queue.  

Once the packet is in the socket's queue, the socket will wake up the application process that owns it (if 
necessary). That process may then make or return from a read  system call that copies the data from the 
packet in the queue into its own buffer. (The process may also do nothing for the time being if it was not 
waiting for the packet, and get the data off the queue when it needs it.)  

6.2  Receiving Walk-Through 

6.2.1  Reading from a Socket (Part I) 

• Try to read data from a socket (application)  
• Fill in message header with location of buffer (socket)  
• Check for basic errors - is the socket bound to a port? can the socket accept messages? is there 

something wrong with the socket?  
• Pass the message header with to the appropriate transport protocol (INET socket)  
• Sleep until there is enough data to read from the socket (TCP/UDP)  

6.2.2  Receiving a Packet 

• Wake up the receiving device (interrupt)  
• Test the medium (device)  
• Receive the link header  
• Allocate space for the packet  
• Tell the bus to put the packet into the buffer  
• Put the packet on the backlog queue  
• Set the flag to run the network bottom half when possible  
• Return control to the current process  

6.2.3  Running the Network ``Bottom Half'' 

• Run the network bottom half (scheduler)  
• Send any packets that are waiting to prevent interrupts (bottom half)  
• Loop through all packets in the backlog queue and pass the packet up to its Internet reception 

protocol - IP  
• Flush the sending queue again  
• Exit the bottom half  



6.2.4  Unwrapping a Packet in IP 

• Check packet for errors - too short? too long? invalid version? checksum error?  
• Defragment the packet if necessary  
• Get the route for the packet (could be for this host or could need to be forwarded)  
• Send the packet to its destination handling routine (TCP or UDP reception, or possibly 

retransmission to another host)  

6.2.5  Accepting a Packet in UDP 

• Check UDP header for errors  
• Match destination to socket  
• Send an error message back if there is no such socket  
• Put packet into appropriate socket receive queue  
• Wake up any processes waiting for data from that socket  

6.2.6  Accepting a Packet in TCP 

• Check sequence and flags; store packet in correct space if possible  
• If already received, send immediate ACK and drop packet  
• Determine which socket packet belongs to  
• Put packet into appropriate socket receive queue  
• Wake up and processes waiting for data from that socket  

6.2.7  Reading from a Socket (Part II) 

• Wake up when data is ready (socket)  
• Call transport layer receive function  
• Move data from receive queue to user buffer (TCP/UDP)  
• Return data and control to application (socket)  

6.3  Linux Functions 

The following is an alphabetic list of the Linux kernel functions that are most important to receiving 
traffic, where they are in the source code, and what they do. To follow functions calls from the network 
up, start with DEVICE_rx() . To follow functions calls from the application down, start with 
sock_read() .  
>>> DEVICE_rx() - device dependent, drivers/net/DEV ICE.c 
  (gets control from interrupt) 
  performs status checks to make sure it should be receiving 
  calls dev_alloc_skb() to reserve space for packet  
  gets packet off of system bus 
  calls eth_type_trans() to determine protocol type  
  calls netif_rx() 
  updates card status 
  (returns from interrupt) 
 
inet_recvmsg() - net/ipv4/af_inet.c (764) 
  extracts pointer to socket sock 
  checks socket to make sure it is accepting 
  verifies protocol pointer 
  returns sk->prot[tcp/udp]->recvmsg() 
 
ip_rcv() - net/ipv4/ip_input.c (395) 
  examines packet for errors: 
    invalid length (too short or too long) 
    incorrect version (not 4) 
    invalid checksum 
  calls __skb_trim() to remove padding 
  defrags packet if necessary 
  calls ip_route_input() to route packet 



  examines and handle IP options 
  returns skb->dst->input() [= tcp_rcv,udp_rcv()] 
 
net_bh() - net/core/dev.c (835) 
  (run by scheduler) 
  if there are packets waiting to go out, calls qdi sc_run_queues() 
      (see sending section) 
  while the backlog queue is not empty 
    let other bottom halves run 
    call skb_dequeue() to get next packet 
    if the packet is for someone else (FASTROUTED) put onto send queue 
    loop through protocol lists (taps and main) to match protocol type 
    call pt_prev->func() [= ip_rcv()] to pass packe t to appropriate 
        protocol 
  call qdisc_run_queues() to flush output (if neces sary) 
 
netif_rx() - net/core/dev.c (757) 
  puts time in skb->stamp 
  if backlog queue is too full, drops packet 
  else 
    calls skb_queue_tail() to put packet into backl og queue 
    marks bottom half for later execution 
 
sock_def_readable() - net/core/sock.c (989) 
  calls wake_up_interruptible() to put waiting proc ess on run queue 
  calls sock_wake_async() to send SIGIO to socket p rocess 
 
sock_queue_rcv_skb() - include/net/sock.h (857) 
  calls skb_queue_tail() to put packet in socket re ceive queue 
  calls sk->data_ready() [= sock_def_readable()] 
 
>>> sock_read() - net/socket.c (366) 
  sets up message headers 
  returns sock_recvmsg() with result of read 
 
sock_recvmsg() - net/socket.c (338) 
  reads socket management packet (scm) or packet by  
      calling sock->ops[inet]->recvmsg() 
 
tcp_data() - net/ipv4/tcp_input.c (1507) 
  shrinks receive queue if necessary 
  calls tcp_data_queue() to queue packet 
  calls sk->data_ready() to wake socket 
 
tcp_data_queue() - net/ipv4/tcp_input.c (1394) 
  if packet is out of sequence: 
    if old, discards immediately 
    else calculates appropriate storage location 
  calls __skb_queue_tail() to put packet in socket receive queue 
  updates connection state 
 
tcp_rcv_established() - net/ipv4/tcp_input.c (1795)  
  if fast path 
    checks all flags and header info 
    sends ACK 
    calls _skb_queue_tail() to put packet in socket  receive queue 
  else (slow path) 
    if out of sequence, sends ACK and drops packet 
    check for FIN, SYN, RST, ACK 
    calls tcp_data() to queue packet 
    sends ACK 
 
tcp_recvmsg() - net/ipv4/tcp.c (1149) 
  checks for errors 
  wait until there is at least one packet available  
  cleans up socket if connection closed 
  calls memcpy_toiovec() to copy payload from the s ocket buffer into 
      the user space 
  calls cleanup_rbuf() to release memory and send A CK if necessary 
  calls remove_wait_queue() to wake process (if nec essary) 
 
udp_queue_rcv_skb() - net/ipv4/udp.c (963) 
  calls sock_queue_rcv_skb() 
  updates UDP status (frees skb if queue failed) 
 
udp_rcv() - net/ipv4/udp.c (1062) 
  gets UDP header, trims packet, verifies checksum (if required) 



  checks multicast 
  calls udp_v4_lookup() to match packet to socket 
  if no socket found, send ICMP message back, free skb, and stop 
  calls udp_deliver() [= udp_queue_rcv_skb()] 
 
udp_recvmsg() - net/ipv4/udp.c (794) 
  calls skb_recv_datagram() to get packet from queu e 
  calls skb_copy_datagram_iovec() to move the paylo ad from the socket buffer 
      into the user space 
  updates the socket timestamp 
  fills in the source information in the message he ader 
  frees the packet memory 

Chapter 7  
IP Forwarding 

This chapter presents the pure routing side (by IP forwarding) of message traffic. It provides an overview 
of the process, examines the layers packets travel through, details the actions of each layer, and 
summarizes the implementation code within the kernel.  

7.1  Overview 

See Figure 7.1 for an abstract diagram of the the forwarding process. (It is essentially a combination of 
the receiving and sending processes.)  



 

Figure 7.1: IP forwarding. 



A forwarded packet arrives with an interrupt when the system notifies the device that a message is ready. 
The device allocates storage space and tells the bus to put the message into that space. It then passes the 
packet to the link layer, which puts it on the backlog queue, marks the network flag for the next ``bottom-
half'' run, and returns control to the current process.  

When the process scheduler next runs, it sees that there are networking tasks to do and runs the network 
``bottom-half''. This function pops packets off of the backlog queue, matches them to IP, and passes them 
to the receive function. The IP layer examines the packet for errors and routes it; the packet will go up to 
the transport layer (such as TCP or UDP if it is for this host) or sideways to the IP forwarding function. 
Within the forwarding function, IP checks the packet and sends an ICMP message back to the sender if 
anything is wrong. It then copies the packet into a new buffer and fragments it if necessary.  

Finally the IP layer passes the packet to the link layer function, which moves the packet onto the sending 
device's xmit  queue and makes sure the device knows that it has traffic to send. Finally, the device (such 
as a network card) tells the bus to send the packet.  

7.2  IP Forward Walk-Through 

7.2.1  Receiving a Packet 

• Wake up the receiving device (interrupt)  
• Test the medium (device)  
• Receive the link header  
• Allocate space for the packet  
• Tell the bus to put the packet into the buffer  
• Put the packet on the backlog queue  
• Set the flag to run the network bottom half when possible  
• Return control to the current process  

7.2.2  Running the Network ``Bottom Half'' 

• Run the network bottom half (scheduler)  
• Send any packets that are waiting to prevent interrupts (net_bh)  
• Loop through all packets in the backlog queue and pass the packet up to its Internet reception 

protocol - IP  
• Flush the sending queue again  
• Exit the bottom half  

7.2.3  Examining a Packet in IP 

• Check packet for errors - too short? too long? invalid version? checksum error?  
• Defragment the packet if necessary  
• Get the route for the packet (could be for this host or could need to be forwarded)  
• Send the packet to its destination handling routine (retransmission to another host in this case)  

7.2.4  Forwarding a Packet in IP 

• Check TTL field (and decrement it)  
• Check packet for improper (undesired) routing  
• Send ICMP back to sender if there are any problems  
• Copy packet into new buffer and free old one  
• Set any IP options  
• Fragment packet if it is too big for new destination  
• Send the packet to the destination route's device output function  



7.2.5  Transmitting a Packet 

• Put the packet on the device output queue  
• Wake up the device  
• Wait for the scheduler to run the device driver  
• Test the medium (device)  
• Send the link header  
• Tell the bus to transmit the packet over the medium  

7.3  Linux Functions 

The following is an alphabetic list of the Linux kernel functions that are most important to IP forwarding, 
where they are in the source code, and what they do. To follow the functions calls, start with 
DEVICE_rx().  
dev_queue_xmit() - net/core/dev.c (579) 
  calls start_bh_atomic() 
  if device has a queue 
    calls enqueue() to add packet to queue 
    calls qdisc_wakeup() [= qdisc_restart()] to wak e device 
  else calls hard_start_xmit() 
  calls end_bh_atomic() 
 
DEVICE->hard_start_xmit() - device dependent, drive rs/net/DEVICE.c 
  tests to see if medium is open 
  sends header 
  tells bus to send packet 
  updates status 
 
>>> DEVICE_rx() - device dependent, drivers/net/DEV ICE.c 
  (gets control from interrupt) 
  performs status checks to make sure it should be receiving 
  calls dev_alloc_skb() to reserve space for packet  
  gets packet off of system bus 
  calls eth_type_trans() to determine protocol type  
  calls netif_rx() 
  updates card status 
  (returns from interrupt) 
 
ip_finish_output() - include/net/ip.h (140) 
  sets sending device to output device for given ro ute 
  calls output function for destination [= dev_queu e_xmit()] 
 
ip_forward() - net/ipv4/ip_forward.c (72) 
  checks for router alert 
  if packet is not meant for any host, drops it 
  if TTL has expired, drops packet and sends ICMP m essage back 
  if strict route cannot be followed, drops packet and sends ICMP 
      message back to sender 
  if necessary, sends ICMP message telling sender p acket is redirected 
  copies and releases old packet 
  decrements TTL 
  if there are options, calls ip_forward_options() to set them 
  calls ip_send() 
 
ip_rcv() - net/ipv4/ip_input.c (395) 
  examines packet for errors: 
    invalid length (too short or too long) 
    incorrect version (not 4) 
    invalid checksum 
  calls __skb_trim() to remove padding 
  defrags packet if necessary 
  calls ip_route_input() to route packet 
  examines and handle IP options 
  returns skb->dst->input() [= ip_forward()] 
 
ip_route_input() - net/ipv4/route.c (1366) 
  calls rt_hash_code() to get index for routing tab le 
  loops through routing table (starting at hash) to  find match for packet 
  if it finds match: 
    updates stats for route (time and usage) 
    sets packet destination to routing table entry 



    returns success 
  else  
    checks for multicasting addresses 
    returns result of ip_route_input_slow() (attemp ted routing) 
 
ip_route_output_slow() - net/ipv4/route.c (1421) 
  if source address is known, looks up output devic e 
  if destination address is unknown, set up loopbac k 
  calls fib_lookup() to find route 
  allocates memory new routing table entry 
  initializes table entry with source, destination,  TOS, output device, 
      flags 
  calls rt_set_nexthop() to find next destination 
  returns rt_intern_hash(), which installs route in  routing table 
 
ip_send() - include/net/ip.h (162) 
  calls ip_fragment() if packet is too big for devi ce 
  calls ip_finish_output() 
 
net_bh() - net/core/dev.c (835) 
  (run by scheduler) 
  if there are packets waiting to go out, calls qdi sc_run_queues() 
      (see sending section) 
  while the backlog queue is not empty 
    let other bottom halves run 
    call skb_dequeue() to get next packet 
    if the packet is for someone else (FASTROUTED) put onto send queue 
    loop through protocol lists (taps and main) to match protocol type 
    call pt_prev->func() [= ip_rcv()] to pass packe t to appropriate 
        protocol 
  call qdisc_run_queues() to flush output (if neces sary) 
 
netif_rx() - net/core/dev.c (757) 
  puts time in skb->stamp 
  if backlog queue is too full, drops packet 
  else 
    calls skb_queue_tail() to put packet into backl og queue 
    marks bottom half for later execution 
 
qdisc_restart() - net/sched/sch_generic.c (50) 
  pops packet off queue 
  calls dev->hard_start_xmit() 
  updates status 
  if there was an error, requeues packet 
 
rt_intern_hash() - net/ipv4/route.c (526) 
  puts new route in routing table 

Chapter 8  
Basic Internet Protocol Routing 

This chapter presents the basics of IP Routing. It provides an overview of how routing works, examines 
how routing tables are established and updated, and summarizes the implementation code within the 
kernel.  

8.1  Overview 

Linux maintains three sets of routing data - one for computers that are directly connected to the host (via a 
LAN, for example) and two for computers that are only indirectly connected (via IP networking). 
Examine Figure 8.1 to see how entries for a computer in the general example might look.  



Figure 8.1: General routing table example. 

The neighbor table contains address information for computers that are physically connected to the host 
(hence the name ``neighbor''). It includes information on which device connects to which neighbor and 
what protocols to use in exchanging data. Linux uses the Address Resolution Protocol (ARP) to maintain 
and update this table; it is dynamic in that entries are added when needed but eventually disappear if not 
used again within a certain time. (However, administrators can set up entries to be permanent if doing so 
makes sense.)  



Linux uses two complex sets of routing tables to maintain IP addresses: an all-purpose Forwarding 
Information Base (FIB) with directions to every possible address, and a smaller (and faster) routing cache 
with data on frequently used routes. When an IP packet needs to go to a distant host, the IP layer first 
checks the routing cache for an entry with the appropriate source, destination, and type of service. If there 
is such an entry, IP uses it. If not, IP requests the routing information from the more complete (but 
slower) FIB, builds a new cache entry with that data, and then uses the new entry. While the FIB entries 
are semi-permanent (they usually change only when routers come up or go down) the cache entries 
remain only until they become obsolete (they are unused for a ``long'' period).  

8.2  Routing Tables 

Note: within these tables, there are references to variables of types such as u32  (host byte order) and 
__u32  (network byte order). On the Intel architecture they are both equivalent to unsigned int s and 
in point of fact they are translated (using the ntohl  function) anyway; the type merely gives an 
indication of the order in which the value it contains is stored.  

8.2.1  The Neighbor Table 

The Neighbor Table (whose structure is shown in Figure 8.2) contains information about computers that 
are physically linked with the host computer. (Note that the source code uses the European spelling, 
``neighbour''.) Entries are not (usually) persistent; this table may contain no entries (if the computer has 
not passed any network traffic recently) or may contain as many entries as there are computers physically 
connected to its network (if it has communicated with all of them recently). Entries in the table are 
actually other table structures which contain addressing, device, protocol, and statistical information.  

 

Figure 8.2: Neighbor Table data structure relationships. 

struct neigh_table *neigh_tables  - this global variable is a pointer to a list of neighbor 
tables; each table contains a set of general functions and data and a hash table of specific information 
about a set of neighbors. This is a very detailed, low level table containing specific information such as 
the approximate transit time for messages, queue sizes, device pointers, and pointers to device functions.  



Neighbor Table (struct neigh_table ) Structure - this structure (a list element) contains common 
neighbor information and table of neighbor data and pneigh data. All computers connected through a 
single type of connection (such as a single Ethernet card) will be in the same table.  

• struct neigh_table *next  - pointer to the next table in the list.  
• struct neigh_parms parms  - structure containing message travel time, queue length, 

and statistical information; this is actually the head of a list.  
• struct neigh_parms *parms_list  - pointer to a list of information structures.  
• struct neighbour *hash_buckets[]  - hash table of neighbors associated with this 

table; there are NEIGH_HASHMASK+1 (32) buckets.  
• struct pneigh_entry *phash_buckets[]  - hash table of structures containing 

device pointers and keys; there are PNEIGH_HASHMASK+1 (16) buckets.  
• Other fields include timer information, function pointers, locks, and statistics.  

Neighbor Data (struct neighbour ) Structure - these structures contain the specific information 
about each neighbor.  

• struct device *dev  - pointer to the device that is connected to this neighbor.  
• __u8 nud_state  - status flags; values can be incomplete, reachable, stale, etc.; also contains 

state information for permanence and ARP use.  
• struct hh_cache *hh  - pointer to cached hardware header for transmissions to this 

neighbor.  
• struct sk_buff_head arp_queue  - pointer to ARP packets for this neighbor.  
• Other fields include list pointers, function (table) pointers, and statistical information.  

8.2.2  The Forwarding Information Base 

Figure 8.3: Forwarding Information Base (FIB) conceptual organization. 

The Forwarding Information Base (FIB) is the most important routing structure in the kernel; it is a 
complex structure that contains the routing information needed to reach any valid IP address by its 
network mask. Essentially it is a large table with general address information at the top and very specific 
information at the bottom. The IP layer enters the table with the destination address of a packet and 
compares it to the most specific netmask to see if they match. If they do not, IP goes on to the next most 
general netmask and again compares the two. When it finally finds a match, IP copies the ``directions'' to 
the distant host into the routing cache and sends the packet on its way. See Figures 8.3 and 8.4 for the 



organization and data structures used in the FIB - note that Figure 8.3 shows some different FIB 
capabilities, like two sets of network information for a single zone, and so does not follow the general 
example.)  

struct fib_table *local_table, *main_table  - these global variables are the access 
points to the FIB tables; they point to table structures that point to hash tables that point to zones. The 
contents of the main_table  variable are in /proc/net/route.  

FIB Table fib_table  Structure - include/net/ip_fib.h - these structures contain function jump tables 
and each points to a hash table containing zone information. There are usually only one or two of these.  

• int (*tb_ functions)()  - pointers to table functions (lookup, delete, insert, etc.) that are 
set during initialization to fn_hash_ function() .  

• unsigned char tb_data[0]  - pointer to the associated FIB hash table (despite its 
declaration as a character array).  

• unsigned char tb_id  - table identifier; 255 for local_table , 254 for main_table .  
• unsigned tb_stamp   

Netmask Table fn_hash  Structure - net/ipv4/fib_hash.c - these structures contain pointers to the 
individual zones, organized by netmask. (Each zone corresponds to a uniquely specific network mask.) 
There is one of these for each FIB table (unless two tables point to the same hash table).  

• struct fn_zone *fn_zones[33]  - pointers to zone entries (one zone for each bit in the 
mask; fn_zone[0]  points to the zone for netmask 0x0000, fn_zone[1]  points to the zone 
for 0x8000, and fn_zone[32]  points to the zone for 0xFFFF.  

• struct fn_zone *fn_zone_list  - pointer to first (most specific) non-empty zone in the 
list; if there is an entry for netmask 0xFFFF it will point to that zone, otherwise it may point to 
zone 0xFFF0 or 0xFF00 or 0xF000 etc.  

Network Zone fn_zone  Structure - net/ipv4/fib_hash.c - these structures contain some hashing 
information and pointers to hash tables of nodes. There is one of these for each known netmask.  

• struct fn_zone *fz_next  - pointer to the next non-empty zone in the hash structure (the 
next most general netmask; e.g., fn_hash- > fn_zone[28]- > fz_next  might point to 
fn_hash- > fn_zone[27] ).  

• struct fib_node **fz_hash  - pointer to a hash table of nodes for this zone.  
• int fz_nent  - the number of entries (nodes) in this zone.  
• int fx_divisor  - the number of buckets in the hash table associated with this zone; there 

are 16 buckets in the table for most zones (except the first zone - 0000 - the loopback device).  
• u32 fz_hashmask  - a mask for entering the hash table of nodes; 15 (0x0F) for most zones, 0 

for zone 0).  
• int fz_order  - the index of this zone in the parent fn_hash  structure (0 to 32).  
• u32 fz_mask  - the zone netmask defined as ~((1<<(32-fz_order))-1) ; for example, 

the first (zero) element is 1 shifted left 32 minus 0 times (0x10000), minus 1 (0xFFFF), and 
complemented (0x0000). The second element has a netmask of 0x8000, the next 0xC000, the 
next 0xE000, 0xF000, 0xF800, and so on to the last (32d) element whose mask is 0xFFFF.  

Network Node Information fib_node  Structure - net/ipv4/fib_hash.c - these structures contain the 
information unique to each set of addresses and a pointer to information about common features (such as 
device and protocols); there is one for each known network (unique source/destination/TOS 
combination).  

• struct fib_node *fn_next  - pointer to the next node.  
• struct fib_info *fn_info  - pointer to more information about this node (that is shared 

by many nodes).  



• fn_key_t fn_key  - hash table key - the least significant 8 bits of the destination address (or 
0 for the loopback device).  

• Other fields include specific information about this node (like fn_tos  and fn_state ).  

Network Protocol Information (fib_info ) Structure - include/net/ip_fib.h - these structures contain 
protocol and hardware information that are specific to an interface and therefore common to many 
potential zones; several networks may be addressable through the same interface (like the one that leads 
to the rest of the Internet). There is one of these for each interface.  

• fib_protocol  - index to a network protocol (e.g., IP) used for this route.  
• struct fib_nh fib_nh[0]  - contains a pointer to the device used for sending or 

receiving traffic for this route.  
• Other fields include list pointers and statistical and reference data (like fib_refcnt  and 

fib_flags .  

Figure 8.4: Forwarding Information Base (FIB) data relationships. 

FIB Traversal Example:  

1. ip_route_output_slow()  (called because the route is not in the routing cache) sets up an 
rt_key  structure with a source address of 172.16.0.7, a destination address of 172.16.0.34, and 
a TOS of 2.  

2. ip_route_output_slow()  calls fib_lookup()  and passes it the key to search for.  
3. fib_lookup()  calls local_table- > tb_lookup()  (which is a reference to the 

fn_hash_lookup  function) to make the local table find the key.  
4. fn_hash_lookup()  searches the local table's hash table, starting in the most specific zone - 

24 (netmask 255.255.255.0 dotted decimal) (pointed to by the fn_zone_list  variable).  
5. fz_key()  builds a test key by ANDing the destination address with the zone netmask, 

resulting in a key value 172.16.0.0.  
6. fz_chain()  performs the hash function (see fn_hash() ) and ANDs this value with the 

zone's fz_hashmask  (15) to get an index (6) into the zone's hash table of nodes. 
Unfortunately, this node is empty; there are no possible matches in this zone.  

7. fn_hash_lookup()  moves to the next non-empty zone - 16 (netmask 255.255.0.0 dotted 
decimal) (pointed to by the current zone's fz_next  variable).  

8. fz_key()  builds a new test key by ANDing the destination address with this zone's netmask, 
resulting in a key value of 172.16.0.0.  

9. fz_chain()  performs the hash function and ANDs this value with the zone's fz_hashmask  
(15) to get an index (10) into the zone's hash table of nodes. There is a node in that slot.  



10. fn_hash_lookup()  compares its search key to the node's key. They do not match, but the 
search key value is less than that of the node key, so it moves on to the next node.  

11. fn_hash_lookup()  compares its search key to the new node's key. These do match, so it 
does some error checking and tests for an exact match with the node and its associated info 
variable.  

12. Since everything matches, fn_hash_lookup()  fills in a fib_result  structure with all the 
information about this route. (Otherwise it would continue checking more nodes and more zones 
until it finds a match or fails completely.)  

13. ip_route_output_slow()  takes the fib_result  structure and, assuming everything is 
in order, creates a new routing cache entry from it.  

8.2.3  The Routing Cache 

Figure 8.5: Routing Cache conceptual organization. 

The routing cache is the fastest method Linux has to find a route; it keeps every route that is currently in 
use or has been used recently in a hash table. When IP needs a route, it goes to the appropriate hash 
bucket and searches the chain of cached routes until finds a match, then sends the packet along that path. 
(See Section 8.2.2 for what happens when the route is not yet in the cache.) Routes are chained in order, 
most frequently used first, and have timers and counters that remove them from the table when they are 
no longer in use. See Figure 8.5 for an abstract overview and Figures 8.6 and 8.7 for detailed diagrams of 
the data structures.  

struct rtable *rt_hash_table[RT_HASH_DIVISOR]  - this global variable contains 256 
buckets of (pointers to) chains of routing cache (rtable ) entries; the hash function combines the source 
address, destination address, and TOS to get an entry point to the table (between 0 and 255). The contents 
of this table are listed in /proc/net/rt_cache.  

Routing Table Entry (rtable ) Structure - include/net/route.h - these structures contain the destination 
cache entries and identification information specific to each route.  

• union < struct dst_entry dst; struct rtable* rt_nex t) > u  - this is an 
entry in the table; the union structure allows quick access to the next entry in the table by 
overusing the rtable 's next field to point to the next cache entry if required.  

• __u32 rt_dst  - the destination address.  
• __u32 rt_src  - the source address.  



• rt_int iif  - the input interface.  
• __u32 rt_gateway  - the address of the neighbor to route through to get to a destination.  
• struct rt_key key  - a structure containing the cache lookup key (with src, dst, iif, oif, tos, 

and scope fields)  
• Other fields contain flags, type, and other miscellaneous information.  

Destination Cache (dst_entry ) Structure - include/net/dst.h - these structures contain pointers to 
specific input and output functions and data for a route.  

• struct device *dev  - the input/output device for this route.  
• unsigned pmtu  - the maximum packet size for this route.  
• struct neighbor *neighbor  - a pointer to the neighbor (next link) for this route.  
• struct hh_cache *hh  - a pointer to the hardware header cache; since this is the same for 

every outgoing packet on a physical link, it is kept for quick access and reuse.  
• int (*input)(struct sk_buff*)  - a pointer to the input function for this route 

(typically tcp_recv() ).  
• int (*output)(struct sk_buff*)  - a pointer to the output function for this route 

(typically dev_queue_xmit() ).  
• struct dst_ops *ops  - a pointer to a structure containing the family, protocol, and check, 

reroute, and destroy functions for this route.  
• Other fields hold statistical and state information and links to other routing table entries.  

Neighbor Link (neighbor ) Structure - include/net/neighbor.h - these structures, one for each host that is 
exactly one hop away, contain pointers to their access functions and information.  

• struct device *dev  - a pointer to device that is physically connected to this neighbor.  
• struct hh_cache *hh  - a pointer to the hardware header that always precedes traffic sent 

to this neighbor.  
• int (*output)(struct sk_buff*)  - a pointer to the output function for this neighbor 

(typically dev_queue_xmit() ?).  
• struct sk_buff_head arp_queue  - the first element in the ARP queue for traffic 

concerning this neighbor - incoming or outgoing?  
• struct neigh_ops *ops  - a pointer to a structure that containing family data and and 

output functions for this link.  
• Other fields hold statistical and state information and references to other neighbors.  



 

Figure 8.6: Routing Cache data structure relationships. 

 

Figure 8.7: Destination Cache data structure relationships. 

Routing Cache Traversal Example:  

1. ip_route_output()  (called to find a route) calls rt_hash_code()  with a source 
address of 172.16.1.1, a destination address of 172.16.1.6, and a TOS of 2.  

2. rt_hash_code()  performs a hash function on the source, destination, and TOS and ANDs 
the result with 255 to get an entry into the hash table (5).  



3. ip_route_output()  enters the hash table at index 5. There is an entry there, but the 
destination addresses do not match.  

4. ip_route_output()  moves to the next entry (pointed to by the u.rt_next  field of the 
last entry). This one matches in every case - destination address, source address, iif  of 0, 
matching oif , and acceptable TOS.  

5. ip_route_output()  updates the statistics in the newfound dst_cache  structure of the 
table entry, sets a pointer for the calling function to refer to the route, and returns a 0 indicating 
success.  

8.2.4  Updating Routing Information 

Linux only updates routing information when necessary, but the tables change in different manners. The 
routing cache is the most volatile, while the FIB usually does not change at all.  

The neighbor table changes as network traffic is exchanged. If a host needs to send something to an 
address that is on the local subnet but not already in the neighbor table, it simply broadcasts an ARP 
request and adds a new entry in the neighbor table when it gets a reply. Periodically entries time out and 
disappear; this cycle continues indefinitely (unless a route has been specifically marked as ARP 
permanent). The kernel handles most changes automatically.  

The FIB on most hosts and even routers remains static; it is filled in during initialization with every 
possible zone to route through all connected routers and never changes unless one of the routers goes 
down. (See Chapter 9 for details on IP routing daemons). Changes have to come through external 
ioctl()  calls to add or delete zones.  

The routing cache changes frequently depending on message traffic. If a host needs to send packets to a 
remote address, it looks up the address in the routing cache (and FIB if necessary) and sends the packet 
off through the appropriate router. On a host connected to a LAN with one router to the Internet, every 
entry will point to either a neighbor or the router, but there may be many entries that point to the router 
(one for each distant address). The entries are created as connections are made and time out quickly when 
traffic to that address stops flowing. Everything is done with IP level calls to create routes and kernel 
timers to delete them.  

8.3  Linux Functions 

The following is an alphabetic list of the Linux kernel functions that are most important to routing, where 
they are in the source code, and what they do.  
arp_rcv() - net/ipv4/arp.c (542) 
  checks for errors (non-ARP device, no device, pac ket not for host, 
      device type does not match, etc.) 
  check for operation - only understands REPLY and REQUEST 
  extracts data from packet 
  check for bad requests - loopback or multicast ad dresses 
  checks for duplicate address detection packet (se nds reply if necessary) 
  if the message is a request and ip_route_input() is true: 
    if the packet is a local one: 
      calls neigh_event_ns() to look up and update neighbor that sent packet 
      checks for hidden device (does not reply if h idden) 
      sends reply with the device address 
    otherwise: 
      calls neigh_event_ns() to look up and update neighbor that sent packet 
      calls neigh_release() 
      if necessary, calls arp_send() with the addre ss 
      otherwise calls pneigh_enqueue() and returns 0 
  if the message is a reply: 
    calls __neigh_lookup() 
    checks to see if multiple ARP replies have come  in; keeps only the 
        fastest (first) one 
    calls neigh_update() to update ARP entry 
 calls neigh_release() 
  frees the skbuffer and returns 0 
 
arp_send() - net/ipv4/arp.c (434) 
  checks to make sure device supports ARP 



  allocates an skbuffer 
  fills in buffer header information 
  fills in the ARP information 
  calls dev_queue_xmit() with the finished packet 
 
arp_req_get() - net/ipv4/arp.c (848) 
  calls __neigh_lookup() to find entry for given ad dress 
  copies data from neighbor entry to arpreq entry 
  returns 0 if found or ENXIO if address not in ARP  table 
 
fib_get_procinfo() - net/ipv4/fib_frontend.c (109) 
  prints header and results of main_table->fn_hash_ get_info() for proc FS 
 
fib_lookup() - include/net/ip_fib.h (153) 
  calls tb_lookup() [= fn_hash_lookup()] on local_t able and main_table 
  if either one has an entry, it fills in fib_resul t and returns 0 
  else returns unreachable error 
 
fib_node_get_info() - net/ipv4/fib_semantics.c (971 ) 
  prints fib_node and fib_info contents for proc FS  
 
fib_validate_source() - net/ipv4/fib_frontend.c (19 1) 
  tests incoming packet's device and address 
  returns error code if something is wrong 
  returns 0 if packet seems legal 
 
fn_hash() - net/ipv4/fib_hash.c (108) 
  performs a hash function on a destination address : 
    u32 h = ntohl(daddr)>>(32 - fib_zone->fz_order) ; 
    h ^= (h>>20); 
    h ^= (h>>10); 
    h ^= (h>>5); 
    h &= FZ_HASHMASK(fz);   // FZ_HASHMASK is 15 fo r almost all zones 
 
fn_hash_get_info() - net/ipv4/fib_hash.c (723) 
  loops through zones in a FIB table printing fib_n ode_get_info() for 
      proc FS 
 
fn_hash_lookup() - net/ipv4/fib_hash.c (261) 
  loops through the zones in the given table 
    loops through the nodes in each zone (starting at the hash entry) 
      if the netmasks (node and destination) match 
          checks the TOS and node status 
          calls fib_semantic_match() to check packe t type 
          fills in fib_result with success data and  returns 0 
  returns 1 if nothing matched 
 
fn_new_zone() - net/ipv4/fib_hash.c (220) 
  allocates memory (in kernel) for new zone 
  allocates space for 16 node buckets for zone (exc ept first zone - 
      0.0.0.0 [loopback] - which only gets one) 
  stores netmask (leftmost n bits on, where n is th e position of the 
      zone in the table) 
  searches for more specific zone in parent table 
  inserts zone into zone list (most specific zone i s head) 
  installs new zone into parent table 
  returns new zone 
 
fz_chain() - net/ipv4/fib_hash.c (133) 
  calls fn_hash() to get a hash value 
  returns the fib_node in the fib_zone at the hash index 
 
ip_dev_find() - net/ipv4/fib_frontend.c (147) 
  looks up and returns the device with a given addr ess in the local table 
 
ip_route_connect() - include/net/route.h (140) 
  calls ip_route_output() to get a destination addr ess 
  returns if the call works or generates an error 
  otherwise clears the route pointer and try again 
 
ip_route_input() - net/ipv4/route.c (1366) 
  calculates hash value for address 
  runs through table (starting at hash) to find con nection match 
      (source, destination, TOS, and IIF/OIF) 
  if there is a match, updates stats and returns ro uting entry 
  else calls ip_route_input_slow() 
 



ip_route_input_slow() - net/ipv4/route.c (1097) 
  creates a routing table cache key 
  checks for special addresses (like loopback, broa dcast, or errors) 
  calls fib_lookup() to find route 
  allocates memory for new routing table entry 
  initializes table entry with source, destination,  TOS, output device, 
      flags 
  calls fib_validate_source() to test packet source  
  printks message and returns error if source is ba d 
  calls rt_set_nexthop() to find next destination ( neighbor) 
  returns rt_intern_hash(), which installs route in  routing table 
 
ip_route_output() - net/ipv4/route.c (1664) 
  calculates hash value for address 
  runs through table (starting at hash) to find con nection match 
      (source, destination, TOS, and IIF/OIF) 
  if there is a match, updates stats and returns ro uting entry 
  else calls ip_route_output_slow() 
 
ip_route_output_slow() - net/ipv4/route.c (1421) 
  creates a routing table cache key 
  if source address is known, calls ip_dev_find to determine output device 
  if destination address is unknown, set up loopbac k 
  calls fib_lookup() to find route 
  allocates memory for new routing table entry 
  initializes table entry with source, destination,  TOS, output device, 
      flags 
  calls rt_set_nexthop() to find next destination ( neighbor) 
  returns rt_intern_hash(), which installs route in  routing table 
 
ip_rt_ioctl() - net/ipv4/fib_frontend.c (250) 
  switches on SIOCADDRT or SIOCDELRT (returns EINVA L otherwise) 
  verifies permission and copies argument to kernel  space 
  converts copied argument to an rtentry structure 
  if deleting a route, calls fib_get_table() and ta ble->delete() 
  else calls fib_new_table() and table->insert() 
  frees argument space and returns 0 for success 
 
neigh_event_ns() - net/core/neighbour.c (760) 
  calls __neigh_lookup() to find up address in neig hbor table 
  calls neigh_update() 
  returns pointer to designated neighbor 
 
neigh_update() - net/core/neighbour.c (668) 
  checks permissions to modify table 
  checks neighbor status if this is not a new entry  
  compares given address to cached one: 
    if null or device has no address, uses current address 
    if different, check override flag 
  calls neigh_sync() to verify neighbor is still up  
  updates neighbor contact time 
  if old entry was valid and new one does not chang e address, returns 0 
  if new address is different from old, replaces ol d with new 
  if new and old states match, returns 0 
  calls neigh_connect() or neigh_suspect() to make/ check connection 
  if old state was invalid: 
    goes through packets in ARP queue, calling the neighbor output() 
        function on each 
    purges the ARP queue 
  returns 0 
 
rt_cache_get_info() - net/ipv4/route.c (191) 
  prints header and all elements of rt_hash_table f or proc FS 
 
rt_hash_code() - net/ipv4/route.c (18) 
  uses source address, destination address, and typ e of service to 
      determine (and return) a hash value: 
    hash = ((daddr&0xF0F0F0F0)>>4)|((daddr&0x0F0F0F 0F)<<4); 
    hash = hash^saddr^tos; 
    hash = hash^(hash>>16); 
    hash = (hash^(hash>>8)) & 0xFF; 
 
rt_intern_hash() - net/ipv4/route.c (526) 
  puts new route in routing table 



Chapter 9  
Dynamic Routing with routed 

This chapter presents dynamic routing as performed by a router (as opposed to an end host computer). It 
provides an overview of how the routed program implements routing protocols under Linux, examines 
how it modifies the kernel routing tables, and summarizes the implementation code.  

9.1  Overview 

A normal host computer has very limited options for routing packets; a message is either for itself or 
another computer, and if it is for another computer there are a very limited number of options for sending 
it on. Usually such a host needs only to put a packet out on a LAN for a ``gateway'' computer (router) to 
pick up and send on its way. Linux usually does not maintain any metric (distance) information about 
routes, even though there are variables for storing it in the FIB. For simple end-host routing, the only 
important question is ``can I get there from here'', not ``which way is best?''  

However, a router must make decisions on where to send traffic. There may be several routes to a 
destination, and the router must select one (based on distance, measured in hops or some other metric 
such as the nebulous quality of service). The Routing Information Protocol (RIP) is a simple protocol that 
allows routing computers to track the distance to various destinations and to share this information 
amongst themselves.  

Using RIP, each node maintains a table that contains the distance from itself to other networks and the 
route along which it will send packets to that destination. Periodically the routers update each other; when 
shorter routes becomes apparent, the node updates its table. Updates are simply RIP messages with the 
destination address and metric components of this table. See Figure 9.1 for a diagram of an RIP routing 
table and an RIP packet.  

Figure 9.1: Routing Information Protocol packet and table. 



9.2  How routed Works 

routed is a widely available program for implementing RIP via UDP messages on POSIX computers. It is 
essentially a stand-alone program which uses ioctl()  calls to get information from and update routing 
tables on the host machine.  

9.2.1  Data Structures 

routed maintains two identical data tables - one for hosts and one for networks. Each is a hash table with 
ROUTEHASHSIZ (32) buckets of chains of routing entries. The entries contain the RIP information (but 
can also line up with a struct rtentry  so that routed can pass them to the kernel through ioctl()  
calls). Along with the basic destination, router, and metric information the entries store flags, state, and 
timer information.  

9.2.2  Initialization 

When routed begins, it performs various initialization actions and calls ioctl()  to get interface 
information from the kernel. Next it sends out a RIP/UDP message requesting routing information from 
all neighboring routers. Finally it enters an infinite loop in which it waits for traffic or timers to make it 
do something.  

9.2.3  Normal Operations 

When RIP messages arrive (via a UDP socket), routed parses them and either modifies its table (for 
response messages) or sends information back to the requesting router (for requests). Sending information 
is simply a matter of looking up a destination in its own table, putting that information into a RIP packet, 
and sending it out through a UDP socket. Updating its table may have no impact (if there is no change or 
the change makes no difference) or it may result in a routing change. If the update reveals a shorter route 
to a destination, routed will update its own table and then call ioctl()  to update the kernel's routing 
tables (the FIB).  

When the update timer expires, every TIMER_RATE seconds, routed goes through every entry in both 
tables and updates their timers. Entries which are out of date are set to a distance of infinity 
(HOPCNT_INFINITY) and entries which are too old are deleted (only from the RIP table, not from the 
kernel's FIB). Finally, it sends an update to its neighboring routers. This update contains the new table 
information (response messages) for any entries which have changed since the last update.  

routed leaves the actual routing to the normal kernel routing mechanisms; all it does is update the kernel's 
tables based on information from other routers and pass on its own routing information. The updates then 
change how the kernel routes packets, but routed itself does not actually do any routing.  

9.3  routed Functions 

The following is an alphabetic list of the routed program functions that are most important to routing, 
where they are in the source code, and what they do. The SOURCES directory shown represents the 
directory that contains the source code for the given network file.  

The routed source is available as a package separate from the kernel source (Red Hat Linux uses the rpm 
package manager). The code below is from the netkit-routed-0.10 source code package, 8 March 1997. 
This package is available from the www.redhat.com/apps/download web page; specifically this came 
from www.redhat.com/swt/src/netkit-routed-0.10.src.html. Once downloaded, root can install the package 
with the following commands (starting from the directory with the package):  

rpm -i netkit-routed-0.10.src.rpm 
cd /usr/src/redhat/SOURCES 
tar xzf netkit-routed-0.10.tar.gz   



This creates a /usr/src/redhat/SOURCES/netkit-routed-0.10 directory and fills it with the source code for 
the routed program. This process should be similar (but is undoubtably not exactly the same) for other 
Linux distributions.  
ifinit() - SOURCES/routed/startup.c (88) 
  opens a UDP socket 
  calls ioctl(SIOCFIGCONF) to get interface configu ration 
  loops through interfaces: 
    calls ioctl() to get flags, broadcast address, metric, and netmask 
    creates a new interface structure 
    copies info into interface structure 
    calls addrouteforif() to add routing entry for interface 
  sets supplier variable if necessary 
  closes socket 
 
process() - SOURCES/routed/main.c (298) 
  starts a continuous loop: 
    receives a packet (waits) 
    verifies that packet is correct size 
    calls rip_input() to handle (RIP) packet 
 
rip_input() - SOURCES/routed/input.c (60) 
  traces input if necessary 
  checks packet to make sure protocol and address a re supported 
  checks for RIP version (cannot be 0) 
  switch based on packet content -  
    if packet is a request: 
      checks request for validity 
      if request is for all entries, calls supply()  
      else looks up requested address, builds and s ends response packet 
    if packet is a trace on or off: 
      verifies request came from a valid port 
      if all is in order, sets trace to on or off 
    if packet is a response: 
      verifies response came from a router 
      updates timer for interface 
      loops through each entry in received packet: 
        parses route information 
        validates address family, host, and metric information 
        updates hop count (adds metric in message t o hop count to router 
            that send message, subject to HOPCNT_IN FINITY maximum) 
        calls rtlookup() to find address in routing  table  
        if this seems to be a new route: 
           calls rtfind() to look for an equivalent  route 
           if it really is new, calls rtadd() and r eturns 
        calls rtchange() to modify route if necessa ry (new route or 
           hopcount change) 
        updates route timers 
  if there were changes: 
    sends an update if neccessary 
    updates general update timer information 
 
>>> routed main() - SOURCES/routed/main.c (78) 
  opens routed log file 
  calls getservbyname() to get UDP router 
  sets up a UDP socket for RIP message traffic 
  runs through command line arguments to set flags 
  if not debugging, forks and runs program in new s ession (parent dies) 
  calls rtinit() to initialize data tables 
  calls ifinit() to fill in interface information 
  calls toall() to request info from all other rout ers 
  installs signal handlers for ALRM,HUP,TERM,INT,US R1,and USR2 
  starts a continuous loop: 
    if in need of update, sets up timer variables 
    calls select() to wait for traffic 
    if select() returns an error (other than EINTR) , logs it 
    if select() times out (time for update) 
        calls toall() to broadcast update 
        resets timer variables 
    if there is traffic waiting on the socket, call s process() 
 
rtadd() - SOURCES/routed/tables.c (138) 
  verifies address family is in proper range 
  calls family af_rtflags() function to set routing  flags 
  determines hash value for appropriate table (host  or net) 
  creates and fills in new rt_entry structure 
  calls insque() to add entry to table 



  calls rtioctl() to add entry to kernel table 
  if call fails: 
    if route should work, calls family af_format() to add destination 
        and gateway to kernel tables 
    if host is unreachable, removes and frees entry  
 
rtchange() - SOURCES/routed/tables.c (207) 
  determines if change necessitates adding or delet ing gateways 
  calls rtioctl() to add and/or delete routes 
 
rtfind() - SOURCES/routed/tables.c (100) 
  determines hash value for host table 
  loops through table; returns entry if addresses a re equal 
  determines hash value for net table 
  goes back to loop through table, this time return ing entry if a call 
      to family af_netmatch() function returns true  
  returns null (0) if no match 
 
rtinit() - SOURCES/routed/tables.c (336) 
  loops through the net hash table, setting forward  and back pointers 
  loops through the host hash table, setting forwar d and back pointers 
 
rtioctl() - SOURCES/routed/tables.c (346) 
  fills in rtentry structure from parameters 
  outputs trace actions if necessary 
  calls ioctl(SIOCADDRT or SIOCDELRT) to update ker nel table 
  returns result of ioctl() call (or -1 for erroneo us parameter) 
 
rtlookup() - SOURCES/routed/tables.c (65) 
  determines hash value for address 
  runs through host table looking for match 
  if unsuccessful at first, tries again with net ta ble 
  returns pointer to entry or null (0) 
 
sndmsg() - SOURCES/routed/output.c (77) 
  calls the appropriate family output function 
  traces the packet if necessary 
 
supply() - SOURCES/routed/ouput.c (91) 
  creates an RIP response message 
  loops through the routing host table 
    loops through the routing entries 
      checks to see if routing host needs the entry  
      if so, puts routing info into packet and send s it 
  goes back and does it again with the routing net table 
 
timer() - SOURCES/routed/timer.c (56) 
  updates timer variables 
  loops through the host table 
    updates timer information for each entry 
    deletes entry if it is too old 
    changes metric to infinity if it is getting old  
  goes back and does it again with net table 
  calls toall() if update is due 
 
toall() - SOURCES/routed/output.c (55) 
  loops through interfaces: 
    sets destination address to broadcast or specif ic address 
    calls passed function [sndmsg() or supply()] wi th address 

Chapter 10  
Editing Linux Source Code 

10.1  The Linux Source Tree 

Linux source code is usually in the /usr/src directory (if installed). There may be many versions in 
different directory trees (such as linux-2.2.5 or linux-2.2.14). There should be one soft link (linux) to the 
most current version of the code (i.e. linux → linux-2.2.14).  

This is an overview of the Linux source directory structure (not all branches are shown:  



/usr/src/linux/  

• arch - architecture specific code, by processor  
o i386 - code for Intel processors (including 486 and Pentium lines)  � boot - location of newly compiled kernels  

• drivers - code for drivers of all sorts  
o block - block device drivers (e.g., hard drives)  
o cdrom - CD ROM device drivers  
o net - network device drivers  
o pci - PCI bus drivers  

• fs - code for different file systems (EXT2, MS-DOS, etc.)  
• include - header files used throughout the code  

o asm → asm-i386 - processor dependent headers  
o config - general configuration headers  
o linux - common headers  
o net - networking headers  

• kernel - code for the kernel specific routines  
• lib - code for errors, strings, and printf  
• mm - code for memory management  
• modules - object files and references for the kernel to load as required  
• net - code for networking  

o core - protocol independent code  
o ipv4 - code specific to IPv4  
o packet - protocol independent packet code  
o sched - code for scheduling network actions  

10.2  Using EMACS Tags 

The Linux source is obviously very large and spread throughout many files. A TAGS file allows you to 
quickly maneuver to a specific file in search of a reference.  

10.2.1  Referencing with TAGS 

Inside a file, move the cursor to a keyword you would like to look up (e.g., ``sock''). Press ``ESC'' ``.'' - 
EMACS will prompt for the tag to find (defaulting to the word your cursor is on); hit ``ENTER''. The first 
time you use it, you will have to specify which TAGS file to use (e.g., /usr/src/TAGS). Next EMACS will 
automatically open the appropriate file (e.g., /usr/src/linux/include/linux/sock.h) in a new buffer and put 
the cursor on the definition of that struct, #define, or function. If the definition it brings up is not the one 
you were looking for, press ``CTRL-U'' ``ESC'' ``.'' to bring up alternate references.  

These tags work even as you make changes to the source files, though they will run slower as more and 
more changes are made. EMACS stores the tags in a file (defaulted to TAGS) with each reference, 
filename, and line number. If the tag is not at the stored line number, EMACS will search the file to find 
the new location.  

10.2.2  Constructing TAGS files 

If you need to start from scratch, follow the steps below.  

The command to make a tags file is:  

etags  filename  
The command to append new information onto a tags file is:  
etags -a  filename  
These put the new tags into the file TAGS in the current directory. Filenames are stored as given, so 
absolute references will always refer to the same files while relative references depend on the position of 
the TAGS file. (Read the man page for etags for more information).  



For example, to create a tags file for the ipv4 source files, enter:  

etags /usr/src/linux/net/ipv4/*.c   
To add the header files, enter:  
etags -a /usr/src/include/net/*.h   
The TAGS file will now contain quick references to all the C source code and header information in those 
directories.  

10.3  Using vi tags 

The vi editor also supports the use of tags files (and creates them with the gctags command, which works 
almost exactly like the etags command shown above).  

10.4  Rebuilding the Kernel 

(See the Linux-kernel-HOWTO for more detailed instructions.)  

This is a quick step-by-step guide to recompiling and installing a kernel from scratch.  

1. Go to the top of the source directory (/usr/src/linux). If there is not already a historical copy of a 
working .config file (such as the current one), MAKE ONE. Until you have enough experience 
that you no longer need this guide, do not overwrite anything until you have made sure there is a 
copy to which you can revert. (On the other hand, once you have a stable kernel version, there is 
no reason to keep old ones around. Even a development system should probably only have an 
original working version, a last known stable version, and a current version.  

2. Run make xconfig  (make config  and make menuconfig  also work, but xconfig is by 
far the user-friendliest). Configure the system as desired; there is help available for most options. 
The config file should default to the current settings, so you should only have to change the 
things you want to add or take out. As a general rule, select ``Y'' for essential or frequently used 
features (like the ext2 file system), ``M'' for things that are sometimes useful (like sound 
drivers), and ``N'' for things that do not apply (like amateur radio support). If in doubt, consult 
the help text or include something as a module.  

3. Run make dep  to make sure the options you heve selected will compile properly. This make 
take a few minutes as the computer checks all of the dependencies. If all goes well, the make 
program will simply exit; if there is a problem, it will display error messages and stop.  

4. Run make clean  to remove old object files IF you want to recompile everything. This 
obviously will make the compilation process take longer.  

5. Run make bzImage  to build the new kernel. (make zImage  and make boot  also build 
kernel images, but the bzImage will compile into the most compact file. If you are using one of 
these two methods for some reason, you may get a ``kernel too big'' error when you run lilo - try 
again with a bzImage .) This will take quite some time, depending on available memory.  

6. Run make modules  to build any modules (not included in the main kernel image).  
7. Rename the old modules if necessary:  

mv /lib/modules/2.2.xx /lib/modules/2.2.xx-old   

(Note that you will not have to do this if you are compiling a completely new version; the old 
ones will still be in /lib/modules/2.2.xx when you build version 2.2.yy.)  

8. Run make modules_install  to install the new modules. You must do this even if you built 
a monolithic kernel (one with no modules). (Note that there may be a Red Hat module-info text 
file or link in the boot directory; it is not terribly important and this does not update it.)  

9. Copy the new kernel to the /boot directory and change the kernel link (usually vmlinuz):  

cp arch/i386/boot/bzImage /boot/vmlinuz-2.2.xx  
ln -sf /boot/vmlinuz-2.2.xx /boot/vmlinuz   



10. Copy the new System.map file to the /boot directory and change the map link:  

cp System.map /boot/System.map-2.2.xx  
ln -sf /boot/System.map-2.2.xx /boot/System.map   

11. Create a new initrd file if there are any SCSI devices on the computer:  

/sbin/mkinitrd /boot/initrd-2.2.xx.img 2.2.xx   

12. Edit the file /etc/lilo.conf to install the new kernel; copy the block for the old kernel 
(image=vmlinuz ) and change the existing one to keep it as an option. For example, rename 
the image to vmlinuz-2.2.xx-old  and change the label to stable . This way you can 
always reboot to the current (presumably stable) kernel if your changes cause problems.  

13. Run /sbin/lilo  to install the new kernel as a boot option.  
14. Reboot the computer with the new kernel.  
15. If the new kernel does not work properly, boot the old kernel and reconfigure the system before 

trying again.  

10.5  Patching the Kernel Source 

Linux is a constantly changing operating system; updates can be released every few months. There are 
two ways to install a new kernel version: downloading the new source in its entirety or downloading 
patches and applying them.  

Downloading the entire source may be preferable to guarantee everything works properly. To do so, 
download the latest kernel source and install (untar) it. Note that this will (probably) be a complete 
distribution, not a machine-specific one, and will contain a lot of extra code. Much of this can be deleted, 
but the configuration Makefiles rely on some for information. If space is an issue, delete the *.c and *.h 
files in the non-i386 arch/ and include/asm-* directories, but tread lightly.  

Downloading patches may be quicker to do, but is somewhat harder. Because of distribution variations, 
changes you have made, or other modifications the patches may not quite work properly. You must apply 
patch files in order (to go from 2.2.12 to 2.2.14, first apply patch 2.2.13 then apply 2.2.14). Nevertheless, 
patches may be preferable because they work on an existing directory tree.  

Once you have downloaded a patch (and unzipped it, if necessary), simply put it in the directory above 
linux (e.g., /usr/src/) and run the patch program to install it:  

patch -Np0 -verbose -r rejfile < patch-2.2.xx  (where xx is the patch version)  
The -N  option ignores patches that are already applied, and the -p0  assumes the patch wants to apply 
itself to a source in a linux directory. The -r rejfile  option puts all the patch rejects into one file 
(rejfile) - which may or may not be what you want to do. If you have not kept the entire source 
distribution, you will have to skip many changes (for different processor architectures) by simply hitting 
``ENTER'' at the ``patch which file'' and ``ignore patch'' prompts. Once you are comfortable with the 
process, run it without the -verbose  and -r rejfile  options.  

Once you have a new kernel version, follow the instructions on rebuilding the kernel to actually start 
using it. You probably will not have to change any of the configurations options, but you will almost 
definitely want to run make clean  to remove any old object files.  

Chapter 11  
Linux Modules 

This chapter presents the Linux module system. It provides an overview of how modules work, describes 
how to install and remove them, and presents an example program.  



11.1  Overview 

Linux kernels more recent than 2.0 can be (and usually) are modularized. There is a portion of the kernel 
that remains in memory constantly (the most frequently used processes, such as the scheduler) but other 
processes are only loaded when needed. An MS-DOS file system for reading disks, for example, might be 
loaded only on mounting such a disk and then unloaded when no longer needed. This keeps the space the 
kernel requires at any one time small while allowing it to do more and more. It is still possible to put 
everything into one ``monolithic'' kernel that will not need modules, but that is usually done only for 
special purpose machines (where all the required processes are known in advance).  

Another advantage of modules is that the kernel can load and unload them dynamically (and 
automatically with the kerneld daemon). This means that a (super) user can load a module, test it, unload 
it, and debug it repeatedly without having to reboot the computer. This document assumes that the user 
has superuser access (you must be root  to install and remove modules) and the kernel is configured for 
modules. (With a monolithic kernel, it is possible to set configuration options not to even allow modules.)  

11.2  Writing, Installing, and Removing Modules 

11.2.1  Writing Modules 

Modules are just like any other programs except that they run in kernel space. As such, they must define 
MODULE and include module.h and any other kernel header files that define functions or variables they 
use. Modules can be quite simple (as the example shows) but they can also be quite complex, such as 
device drivers and entire file systems.  

This is the general module format:  

#define MODULE 
#include <linux/module.h> 
/* ... other required header files ...  */ 
 
/* 
 *  ... module declarations and functions ... 
 */ 
 
int init_module() { 
  /* code kernel will call when installing module * / 
} 
 
void cleanup_module() { 
  /* code kernel will call when removing module */ 
} 

Modules that use the kernel source must be compiled with gcc with the option -
I/usr/src/linux/include ; this ensures that the files included will be from the proper source tree.  

Note that not all kernel variables are exported for modules to use, even if the code declares them to be 
extern . The /proc/ksyms file or ksyms program display the exported symbols (not many of which are 
useful for networking). Recent Linux kernels export both the symbol and its version number using the 
EXPORT_SYMBOL(x) macro. For user created variables, use the EXPORT_SYMBOL_NOVERS(x) 
macro instead or the linker will not retain the variable in the kernel symbol table. Module writers may 
also want to use the EXPORT_NO_SYMBOLS macro; modules export all of their variables by default.  

11.2.2  Installing and Removing Modules 

Installing and removing modules is as simple as calling a program with the name of the compiled module. 
(You must be a superuser to install or remove a module.)  



The insmod program installs a module; it first links the module with the kernel's exported symbol table to 
resolve references and then installs the code in kernel space.  

/sbin/insmod  module_name  

The rmmod program removes an installed module and any references that it has exported.  

/sbin/rmmod  module_name  

The lsmod program lists all the currently installed modules:  

    /sbin/lsmod 
    Module       Size  Used by 
    cdrom       13368   0 (autoclean) [ide-cd] 
    3c59x       19112   1 (autoclean) 

11.3  Example 

This is a complete example of a very simple module.  

simple_module.c  

/* simple_module.c 
 * 
 * This program provides an example of how to insta ll a trivial module 
 *   into the Linux kernel.  All the module does is  put a message into 
 *   the log file when it is installed and removed.  
 * 
 */ 
 
#define MODULE 
#include <linux/module.h> 
/* kernel.h contains the printk function */ 
#include <linux/kernel.h> 
 
/************************************************** ************* init_module 
 * the kernel calls this function when it loads the  module */ 
int init_module() { 
  printk("<1>The simple module installed itself pro perly.\n"); 
  return 0; 
}  /* init_module */ 
 
/************************************************** ********** cleanup_module 
 * the kernel calls this function when it removes t he module */ 
void cleanup_module() { 
  printk("<1>The simple module is now uninstalled.\ n"); 
}  /* cleanup_module */ 

This is the Makefile:  

# Makefile for simple_module 
 
CC = gcc -I/usr/src/linux/include/config 
 
CFLAGS = -O2 -D__KERNEL__ -Wall 
 
simple_module.o: simple_module.c 
 
install: 
 /sbin/insmod simple_module 
 
remove: 
 /sbin/rmmod simple_module 

To use (must be root ):  



root# make 
root# make install 
root# make remove 
root# tail /var/log/messages 
... kernel: The simple module installed itself prop erly. 
... kernel: The simple module is now uninstalled. 

Chapter 12  
The proc File System 

This chapter presents the virtual proc file system. It provides an overview of how the file system works, 
shows how the existing network code uses the system, and details how to write and use proc entries from 
programs.  

12.1  Overview 

The proc file system is so named because it is found in the /proc directory on most Linux machines. NOT 
including the proc FS is a configuration option, but the system is a powerful tool of which many 
programs make frequent use. While designed to appear as a file system with directory structures and 
inodes, it is in fact a construct of registered functions which provide information about important 
variables.  

The proc directory has many subdirectories - one for each running process and others for subsystems such 
as file systems, interfaces, terminals, and networking (/proc/net). There are also many files in the main 
/proc directory itself - interrupts, ioports, loadavg, and version to name a few. Within each process 
subdirectory (named for the process number) are files that describe the process' command line, current 
working directory, status, and so on.  

The kernel traps proc file access and instead of executing ``normal'' file operations on them calls special 
(individually registered) functions instead. When a file in the /proc directory is ``created'', it is registered 
with a set of functions that tell the kernel what to do when the file is read from or written to. Most entries 
only allow reads and they simply print out the state of certain system variables for use by other programs 
or for perusal by knowledgeable users.  

The only tricky thing about using proc files is that the kernel calls the information generation function 
each and every time the file is read; subsequent reads of a changing file without copying and buffering the 
results may yield very different results. The best way to use a proc file is to read it into a PAGE_SIZE-
byte buffer. This will read the entire entry at once and the buffer will then allow consistent random 
accesses.  

12.2  Network proc Files 

This is a list of the most important files in the /proc/net/ directory, what they contain, and a reference to 
the function and file that creates them. Note that there are many other interesting proc entries, such as the 
/proc/sys files, /proc/ksyms, and /proc/modules to name only a few.  
arp  

displays the neighbor table (arp_tbl ); the IP and hardware addresses, hardware type, device, 
and flags. (arp_get_info()  : net/ipv4/arp.c 988)  

dev  
displays reception and transmission statistics for each registered interface  

dev_stat  
displays number of received packets dropped and throttle and FASTROUTE statistics 
(dev_proc_stats()  : net/core/dev.c 1228)  

netstat  
displays sync cookie, pruning, and ICMP statistics (netstat_get_info()  : net/ipv4/proc.c 
355)  

raw  



displays address, queue, and timeout information for each open RAW socket from struct 
proto raw_prot  (get__netinfo()  : net/ipv4/proc.c 165)  

route  
displays the FIB table (main_table ); the interface, address, gateway, flags, and usage 
information. (fib_get_procinfo() ) : net/ipv4/fib_frontend.c 109)  

rt_cache  
displays the routing cache (rt_hash_table ); the interface, address, gateway, usage, source, 
and other information. (rt_cache_get_info()  : net/ipv4/route.c 191)  

sockstat  
displays number of sockets that have been used and some statistics on how many were TCP, 
UDP, and RAW (afinet_get_info()  : net/ipv4/proc.c 244)  

tcp  
displays address, queue, and timeout information for each open TCP socket from struct 
proto tcp_prot  (get__netinfo()  : net/ipv4/proc.c 165)  

udp  
displays address, queue, and timeout information for each open UDP socket from struct 
proto udp_prot  (get__netinfo()  : net/ipv4/proc.c 165)  

12.3  Registering proc Files 

This section describes the simplest method for registering a read-only proc ``file'' entry (available only in 
Linux 2.0 and later releases). It is possible to create a more fully functional entry by defining 
file_operations  and inode_operations  structures. However, that method is significantly 
more complicated than the one presented here; look in the source code for details on implementing fully 
functional entry. The method described below - defining a function and then registering and unregistering 
the function - provides most of the functionality required for testing and tracking system resources. Only 
the kernel can register a proc file; users can do so by building and installing kernel modules (though only 
root  can install and remove modules). These procedures assume that the Linux source is installed and 
the kernel is compiled to use modules.  

12.3.1  Formatting a Function to Provide Information 

static int  read_proc_function(char *buf,char **start,off_t offset,int 
len,int unused)   

This is the function that the Linux kernel will call whenever it tries to read from the newly created proc 
``file''. The only parameter that is usually significant is buf  - a pointer to the buffer the kernel makes 
available for storing information. The others normally will not change. (read_proc_function is of course 
the name of the new function.)  

Typically this function prints out a header, iterates through a list or table printing its contents (using the 
normal sprintf  routine), and returns the length of the resulting string. The only limitation is that the 
buffer (buf ) is at most PAGE_SIZE bytes (this is at least 4KB).  

For an example of this kind of function, look at the fib_get_procinfo()  function beginning on line 
109 of net/ipv4/fib_frontend.c. This function displays the contents of the main FIB table.  

12.3.2  Building a proc Entry 

Because this is part of the file system, the entry needs an inode. This is easily constructed using a 
struct proc_dir_entry :  
#include <linux/proc_fs.h> 
struct proc_dir_entry new_proc_entry = { 
   0,                     // low_ino - inode number  (0 for dynamic) 
   5,                     // namelen  - length of e ntry name 
   "entry",               // name 
   S_IFREG | S_IRUGO,     // mode 
   1,                     // nlinks 



   0,                     // uid - owner 
   0,                     // gid - group 
   0,                     // size - not used 
   NULL,                  // ops - inode operations  (use default) 
   &read_proc_function    // read_proc - address of  read function 
                          // leave rest blank! 
} 

The contents of this block can be used as shown by simply replacing the namelen , name, and 
read_proc_function  fields with the desired values. Note that many of the kernel defined entries 
have predefined inode numbers (like PROC_NET_ROUTE, part of an enumeration defined in 
include/linux/proc_fs.h.  

For an example of this kind of entry, look at the __init_func()  function beginning on line 607 of 
net/ipv4/fib_frontend.c. This functions calls proc_net_register()  (described below) with a newly 
created proc_dir_entry  structure.  

12.3.3  Registering a proc Entry 

Once the read function and the inode entry are ready, all that remains is to register the new ``file'' with the 
proc system.  

int proc_register(struct proc_dir_entry *dir, struc t proc_dir_entry 
*entry)  
int proc_net_register(struct proc_dir_entry *entry)   

dir  is a pointer to the directory in which the entry belongs - &proc_root  and proc_net  (defined in 
include/proc_fs.h) are probably the most useful. entry  is a pointer to the entry itself, as created above. 
These two functions are identical except that proc_net_register  automatically uses the /proc/net 
directory. They return either 0 (success) or EAGAIN (if there are no available inodes).  

12.3.4  Unregistering a proc Entry 

When an entry is no longer needed, it should be deleted by unregistering it.  

int proc_unregister(struct proc_dir_entry *dir,int inode)  
int proc_net_unregister(int inode)   

dir  is the proc directory in which the file resides, and inode  is the inode number of the file. (The inode 
is available in the entry's struct proc_dir_entry.low_ino  field if it is not a constant.) Again, 
these functions are identical except that proc_net_unregister  automatically uses the /proc/net 
directory. They return either 0 (success) or EINVAL (if there is no such entry).  

12.4  Example 

This is a complete example of a module that installs a simple proc entry.  

simple_entry.c  

/* simple_entry.c 
 * 
 * This program provides an example of how to insta ll an entry into the 
 *   /proc File System.  All this entry does is dis play some statistical 
 *   information about IP. 
 */ 
 
#define MODULE 
#include <linux/module.h> 
/* proc_fs.h contains proc_dir_entry and register/u nregister prototypes */ 
#include <linux/proc_fs.h> 
/* ip.h contains the ip_statistics variable */ 



#include <net/ip.h> 
 
 
/************************************************** ********** show_ip_stats 
 * this function is what the /proc FS will call whe n anything tries to read 
 *   from the file /proc/simple_entry - it puts som e of the kernel global 
 *   variable ip_statistics's contents into the ret urn buffer */ 
int show_ip_stats(char *buf,char **start,off_t offs et,int len,int unused) { 
  len = sprintf(buf,"Some IP Statistics:\nIP Forwar ding is "); 
  if (ip_statistics.IpForwarding) 
    len += sprintf(buf+len,"on\n"); 
  else 
    len += sprintf(buf+len,"off\n"); 
  len += sprintf(buf+len,"Default TTL:  %lu\n",ip_s tatistics.IpDefaultTTL); 
  len += sprintf(buf+len,"Frag Creates: %lu\n",ip_s tatistics.IpFragCreates); 
  /* this could show more.... */ 
  return len; 
}  /* show_ip_stats */ 
 
/************************************************** ************** test_entry 
 * this structure is a sort of registration form fo r the /proc FS; it tells 
 *   the FS to allocate a dynamic inode, gives the "file" a name, and gives 
 *   the address of a function to call when the fil e is read  */ 
struct proc_dir_entry test_entry = { 
  0,                     /* low_ino - inode number (0 for dynamic)  */ 
  12,                    /* namelen - length of ent ry name          */ 
  "simple_entry",        /* name                                    */ 
  S_IFREG | S_IRUGO,     /* mode                                    */ 
  1,                     /* nlinks                                  */ 
  0,                     /* uid - owner                             */ 
  0,                     /* gid - group                             */ 
  0,                     /* size - not used                         */ 
  NULL,                  /* ops - inode operations (use default)    */ 
  &show_ip_stats         /* read_proc - address of read function    */ 
                         /* leave rest blank!                       */ 
}; 
 
/************************************************** ************* init_module 
 * this function installs the module; it simply reg isters a directory entry 
 *   with the /proc FS  */ 
int init_module() { 
  /* register the function with the proc FS */ 
  int err = proc_register(&proc_root,&test_entry); 
  /* put the registration results in the log */ 
  if (!err) 
    printk("<1> simple_entry: registered with inode  %d.\n", 
          test_entry.low_ino); 
  else 
    printk("<1> simple_entry: registration error, c ode %d.\n",err); 
  return err; 
}  /* init_module */ 
 
/************************************************** ********** cleanup_module 
 * this function removes the module; it simply unre gisters the directory 
 *   entry from the /proc FS  */ 
void cleanup_module() { 
  /* unregister the function from the proc FS */ 
  int err = proc_unregister(&proc_root,test_entry.l ow_ino); 
  /* put the unregistration results in the log */ 
  if (!err) 
    printk("<1> simple_entry: unregistered inode %d .\n", 
          test_entry.low_ino); 
  else 
    printk("<1> simple_entry: unregistration error,  code %d.\n",err); 
}  /* cleanup_module */ 

This is the Makefile:  

# Makefile for simple_entry 
 
CC = gcc -I/usr/src/linux/include 
 
CFLAGS = -O2 -D__KERNEL__ -Wall 
 
simple_entry.o: simple_entry.c 



 
install: 
 /sbin/insmod simple_entry 
 
remove: 
 /sbin/rmmod simple_entry 

To use (must be root ):  

root# make 
root# make install 
root# cat /proc/simple_entry 
Some IP Statistics: 
IP Forwarding is on 
Default TTL:  64 
Frag Creates: 0 
root# make remove 
root# tail /var/log/messages 
... kernel: simple_entry: registered with inode 436 5. 
... kernel: simple_entry: unregistered inode 4365. 

Chapter 13  
Example - Packet Dropper 

This sample experiment inserts a routine into the kernel that selectively drops packets to a given host. It 
discusses the placement of the code, outlines the data from an actual trial, presents a lightweight analysis 
of the results, and includes the code itself.  

13.1  Overview 

This program is implemented as a module that, while installed, compares each outgoing packet's 
destination address to a given target. If they match, it randomly drops a percentage of those packets. It 
does this for all IP traffic, no matter where it was generated and what transport protocol it uses. 
Implementing this requires a modification to the kernel (to allow a module access to the transmission 
functions) and a module that takes advantage of that modification.  

13.2  Considerations 

Code Placement  
This code could be built directly into the kernel or it could be designed as a module:  

• Kernel - this is conceptually much simpler; simply adding some code to the kernel is a 
fairly easy matter. However, it makes semi-permanent changes and takes a long time to 
debug, since the entire kernel must be recompiled, installed, and rebooted for every 
change.  

• Module - this is much safer and easier since the (super) user can install, remove, and 
debug modules quite painlessly. However, it requires access to the kernel that is not 
always available - even from a module. The kernel does not always export the variables 
that a module may need to access. (See the discussion on the ksyms program in 
Chapter 11.)  

• Both - this is the best method; by performing a few minor modifications to the kernel 
code to export necessary variables and make use of a module only if it is loaded, a user 
can recompile the kernel once and then perform tests and experiments with modules. 
This still has the disadvantage of opening potential security holes on a system, but since 
only the experimenter knows how they are implemented, this is a minimal risk.  

Protocol Level  
This code could be implemented at many levels:  



• Device Driver - this is a possibility since all traffic comes through the device. However, 
this breaks the layering protocols and requires hacking a (presumably) stable hardware 
driver.  

• Generic Device Functions - this is the best choice, since this is the lowest level through 
which all traffic travels (specifically the dev_queue_xmit()  and netif_rx()  
functions). It still violates the protocol layering, but all of the modifications can be 
made in one section of code.  

• IP Protocol - this is conceptually the right place to insert a special function, either in the 
input, routing, or output routines. However, this is unsuitable precisely because there 
are three different routines in the implementation that a packet might go through - 
ip_forward()  (forwarded packets), ip_queue_xmit()  (TCP packets), or 
ip_build_xmit()  (UDP packets). See the coding sections in Chapters 5 and 7 to 
see how these routines interact. These functions would be a good choice for inserting a 
special-purpose dropper, but not one that affects all traffic.  

• Transport Protocol - these routines would be appropriate for affecting specific traffic 
types (such as UDP only) but are not useful for this example.  

13.3  Experimental Systems and Benchmarks 

This example was implemented on two computers that are connected through a single router as shown in 
Figure 13.1; the router runs the modifed kernel and packet dropper module. In the general example, this 
represents traffic flowing between neon  and eagle , with dodge/viper  dropping packets for eagle .  

 

Figure 13.1: Experimental system setup. 

The switch is a Cisco Catalyst 2900 set up with Virtual LANs (VLANs) for each ``subnetwork'' (one for 
the source computer and one for the destination computer, with the routing computer acting as the router 
between the two. The switch operates entirely on the link level and is essentially invisible for routing 
purposes.  

The routing computer (dodge/viper ) is a Dell Optiplex GX1 with a Pentium II/350 processor and 
128M of RAM. It has three 3Com 3c59x Ethernet cards with 10Mbps connections to the switch.  

One host computer (neon ) is an AST Premmia GX with a Pentium/100 processor and 32M of RAM. It 
has an AMD Lance Ethernet card with a 10Mbps connection to the switch.  



The other host computer (eagle ) is a Dell Optiplex XL590 with a Pentium/90 processor and 32M of 
RAM. It has a 3Com 3c509 Ethernet card with a 10Mbps connection to the switch.  

All computers have the Red Hat 6.1 distribution of Linux; the source and destination computers have 
standard recompiled version 2.2.14 kernels, while the router uses either a standard (2.2.14) kernel or a 
slightly modified one as indicated.  

The first benchmark is a ``ping-pong'' test that establishes a TCP connection and then repeatedly sends 
packets back and forth. It returns a total transmission time (from start to finish, not including making and 
closing the connection); dividing the time by the number of iterations yields an average Round Trip Time 
(RTT). This test was run with 20,000 iterations of 5 byte packets and 5,000 iterations of 500 byte packets.  

The second benchmark is a ``blast'' test that establishes a TCP connection and then sends data from a 
source to a destination. It returns a total transmission time (from start to finish, not including making and 
closing the connection); multiplying the number of packets by the size of the packets and dividing by the 
time yields the throughput. This test was run with 50,000 5 byte packets, 5,000 500 byte packets, and 
1,000 1500 byte packets.  

The benchmarks were run on both machines (i.e., from neon  to eagle  and from eagle  to neon ), but 
in both cases only packets to eagle  were dropped. In each trial the blast test was run once with default 
settings (100 packets of 1 byte each) before running the performance tests ``for record'' to ensure that the 
routing cache and any protocol tables were in a normalized state. The complete suite was run ten times to 
capture variations between trials (the averages are presented here). None of the machines (including the 
router) were running any other user programs beyond a login shell and the appropriate module, client, or 
server programs (not even X Windows).  

13.4  Results and Preliminary Analysis 

13.4.1  Standard Kernel 

These are the reference standards; these routines were run with the two computers directly connected 
(NOT routed) and while the router had an unmodified Linux 2.2.14 kernel. The error rate on such a direct 
connection is near zero.  

ping-pong  

                           Mean Time (sec)     Aver age RTT (millisec) 
               Drop Rate   20K@5    5K@500         20K@5    5K@500 
Direct - 
 neon to eagle:   ---      17.24     28.98          0.86     5.80 
 eagle to neon:   ---      17.20     28.99          0.86     5.80 
Routed - 
 neon to eagle:  (0.0%)    24.53     48.59          1.23     9.72 
 eagle to neon:  (0.0%)    24.36     48.46          1.22     9.69 

blast  

                               Mean Time (sec)       Throughput (Mbits/sec) 
               Drop Rate   50K*5  10K*500  1K*1500   50K*5  10K*500  1K*1500 
Direct - 
 neon to eagle:   ---       0.56    3.19     1.89     3.55    6.26    6.36 
 eagle to neon:   ---       0.78    3.03     1.77     2.58    6.61    6.76 
Routed - 
 neon to eagle:  (0.0%)     0.56    3.19     1.92     3.60    6.27    6.26 
 eagle to neon:  (0.0%)     0.77    3.19     1.93     2.60    6.27    6.23 

13.4.2  Modified Kernel Dropping Packets 

These are the experimental results. The drop rate of 0.0% provides a reference for measuring the 
overhead of calling the test and random functions without dropping any packets.  



ping-pong  

                           Mean Time (sec)     Aver age RTT (millisec) 
               Drop Rate   20K@5    5K@500         20K@5    5K@500 
neon to eagle:    0.0%     25.55     49.12          1.28     9.82 
                  0.1%     29.87     51.11          1.49    10.22 
                  0.5%     44.78     58.07          2.24    11.61 
                  1.0%     65.37     68.77          3.27    13.75 
                  5.0%    245.51    160.09         12.28    32.02 
                 10.0%    506.03    290.77         25.30    58.15 
eagle to neon:    0.0%     25.53     49.21          1.28     9.84 
                  0.1%     29.08     50.92          1.45    10.18 
                  0.5%     45.87     59.21          2.29    11.84 
                  1.0%     66.19     68.66          3.31    13.73 
                  5.0%    235.68    156.94         11.78    31.39 
                 10.0%    519.61    297.02         25.98    59.40 

blast  

                               Mean Time (sec)       Throughput (Mbits/sec) 
               Drop Rate   50K*5  10K*500  1K*1500   50K*5  10K*500  1K*1500 
neon to eagle:    0.0%      0.55    3.19     1.91     3.64    6.26    6.27 
                  0.1%      0.55    3.07     1.93     3.62    6.51    6.21 
                  0.5%      0.55    2.95     1.76     3.64    6.77    6.82 
                  1.0%      0.55    2.87     1.75     3.65    6.96    6.87 
                  2.5%      0.59    3.36     2.04     3.38    5.59    5.90 
                  5.0%      0.63    4.63     2.71     3.19    4.31    4.43 
                 10.0%      1.06    7.08     5.11     1.89    2.83    2.35 
                 20.0%      3.43   30.35    18.55     0.58    0.66    0.65 
eagle to neon:    0.0%      0.79    3.21     1.93     2.53    6.23    6.23 
                  0.1%      0.77    3.22     1.89     2.59    6.20    6.35 
                  0.5%      0.80    3.24     1.88     2.51    6.17    6.39 
                  1.0%      0.77    3.24     1.91     2.60    6.17    6.27 
                  2.5%      0.79    3.17     1.90     2.53    6.31    6.33 
                  5.0%      0.78    3.17     1.91     2.57    6.31    6.29 
                 10.0%      0.81    3.85     2.51     2.48    5.20    4.78 
                 20.0%      2.02    4.06     2.51     0.99    4.92    4.78 

13.4.3  Preliminary Analysis 

What follows is an elementary examination of the results. It is NOT intended as an exhaustive analysis, 
and indeed the experiment was not extensive enough to provide hard data from which to draw definite 
conclusions. However, this does demonstrate the multitude of factors involved and the effects that a few 
lines of code can have on a network. Further analysis, if desired, is left as an exercise for the reader.  

 



Figure 13.2: Ping-pong benchmark results. 

 

Figure 13.3: Blast benchmark results. 

The kernel modifications and module insertion had a small but measurable impact on a TCP connection 
(measured by the increased RTT). For very small packets, this difference was approximately 0.05 msec; 
for large packets it was 0.10 msec. Why should there be a difference? Note that the direction of travel and 
packet size made a large difference on the throughput. This is an indication that processor speed and 
layering overhead are affecting the RTT; for a 1500 byte packet, 66 bytes of wrappers (20 for TCP, 20 for 
IP, and at least 26 for Ethernet) are not very significant - but for a 5 byte packet, that overhead is very 
large. Assume that the actual ``cost'' of inserting the module the delay for the larger packets, 0.10 msec.  

Dropping packets from a TCP connection resulted in a fairly linear drop in performance on the ping-pong 
test; see the graph in Figure 13.2. This is as expected; when either a packet or acknowledgement is lost, 
the sender pauses and then sends again. The RTT is also very close (certainly within the expected 
experimental error) no matter which machine is the ``source''; again this is because the benchmark tests 
the behavior of both machines at the same time.  

At low packet sizes, the throughput was very different depending on which way data was sent. This is 
because one machine (eagle ) was slower than the other. For a large number of very small packets, the 
chokepoint in the network is not the medium or the interface, but the speed at which the processor can 
build and send packets. However, for larger packet sizes, the throughput (for low error rate) for both 
sources is similar; in this case the network is the limiting factor, not the processor.  

The most surprising result is the apparent peak in throughput when the loss rate is approximately 1% - 
better even than no loss at all (for blasted data; loss of ACKs sent from the receiver to the source had little 
impact). This is a very counter-intuitive finding; why should losing packets speed up the throughput? A 
1% error might be just enough to prevent a TCP exponential back-off algorithm from slowing the traffic 
rate. The immediate ACK that the receiver sends when an out-of-sequence packet arrives might include 
window size information that keeps the sender from pausing. Interrupts caused by out-of-sequence 
packets might result in the scheduler running the benchmark process more frequently, emptying the buffer 
window and again keeping the sender from pausing. There are many potential causes; determining the 
real one would take much more study - but would be very interesting.  

13.5  Code 

13.5.1  Kernel 



The following code adds a trapdoor to the kernel. It creates a function that will be called (if it exists) from 
within the dev_queue_xmit()  function and exports it so that modules will be able to use it. These 
lines are added directly to the source code; the kernel then has to be recompiled. installed, and booted. 
Note that the kernel still functions normally (albeit with one extra comparison) while no test module is 
installed.  

net/core/dev.c (after line 579)  

... 
int *test_function(struct sk_buff *)=0;                  /* new */ 
 
int dev_queue_xmit(struct sk_buff *skb)... 
 
    ...struct Qdisc  *q; 
 
    if (test_function && (*test_function)(skb)) {        /* new */ 
        kfree_skb(skb);                                  /* new */ 
        return 0;                                        /* new */ 
    }                                                    /* new */ 
 
#ifdef CONFIG_NET_PROFILE... 

net/netsyms.c (after line 544)  

... 
extern int (*test_function)(struct sk_buff *);           /* new */ 
EXPORT_SYMBOL_NOVERS(test_function);                     /* new */ 
EXPORT_SYMBOL(register_gifconf);... 

13.5.2  Module 

The following is the code for the packet dropping module itself. On installation, it calculates a percentage 
cut-off and puts an address into the function pointer defined above. From then on, any packets sent 
through dev_queue_xmit()  will also pass through the packet_dropper  function, which 
compares the destination address to a hard coded one. If they match and a random number comes up 
below the calculated cut-off, it drops the packet; otherwise the packets pass through untouched. When the 
module is removed, it resets the function pointer to 0 (null ) again. (Note that this not very robust code 
depends on two byte short integers for simplicity. The function get_random_bytes()  is only 
accessible to the kernel - or modules, of course - and provides random numbers that are ``merely 
cryptographically strong''.)  

packet_dropper.c  

/* packet_dropper.c 
 * 
 * This program provides an example of how to insta ll a module into a 
 *   slightly modified kernel that will randomly dr op packets for a specific 
 *   (hard-coded) host. 
 * 
 * See linux/drivers/char/random.c for details of g et_random_bytes(). 
 * 
 * Usage (must be root to use): 
 *   /sbin/insmod packet_dropper 
 *   /sbin/rmmod packet_dropper 
 */ 
 
#define MODULE 
#define MAX_UNSIGNED_SHORT 65535 
 
#include <linux/module.h> 
#include <linux/skbuff.h>  /* for struct sk_buff */  
#include <linux/ip.h>      /* for struct iphdr */ 
 
extern int (*test_function)(struct sk_buff *);       /* calling function */ 
extern void get_random_bytes(void *buf, int nbytes) ; /* random function */ 
unsigned short cutoff;                               /* drop cutoff */ 
float rate   = 0.050;                                /* drop percentage */ 



__u32 target = 0x220010AC;                           /* 172.16.0.34 */ 
 
/************************************************** ********** packet_dropper 
 * this is what dev_queue_xmit will call while this  module is installed */ 
int packet_dropper(struct sk_buff *skb) { 
  unsigned short t; 
  if (skb->nh.iph->daddr == target) { 
    get_random_bytes(&t,2); 
    if (t <= cutoff) return 1;    /* drop this pack et */ 
  } 
  return 0;                       /* continue with normal routine */ 
}  /* packet_dropper */ 
 
/************************************************** ************* init_module 
 * this function replaces the null pointer with a r eal one */ 
int init_module() { 
  EXPORT_NO_SYMBOLS; 
  cutoff = rate * MAX_UNSIGNED_SHORT; 
  test_function = packet_dropper; 
  printk("<1> packet_dropper: now dropping packets\ n"); 
  return 0; 
}  /* init_module */ 
 
/************************************************** ********** cleanup_module 
 * this function resets the function pointer back t o null */ 
void cleanup_module() { 
  test_function = 0; 
  printk("<1> packet_dropper: uninstalled\n"); 
}  /* cleanup_module */ 

Chapter 14  
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Chapter 15  
Acronyms 

ARP  Address Resolution Protocol  
ATM   Asynchronous Transfer Mode (a protocol)  
BSD  Berkeley Software Distribution  
DHCP Dynamic Hardware Configuration Protocol  
DNS  Domain Name Server  
FIB   Forwarding Information Base  
GUI   Graphical User Interface  
ICMP   Internet Control Message Protocol  
INET   Internet  
IP  Internet Protocol  
ISP  Internet Service Provider  
LAN   Local Area Network  
LDP  Linux Documentation Project  
lo  Loopback (device or interface)  
MTU   Maximum Transfer Unit  
PPP  Point-to-Point Protocol  
RARP Reverse Address Resolution Protocol  
RIP  Routing Information Protocol  
RTT   Round Trip Time  
TCP  Transmission Control Protocol  
UDP  User Datagram Protocol  
UNH  University of New Hampshire  
VLAN  Virtual Local Area Network  
WAN   Wide Area Network  


