Bluetooth

FEUP MPR

BT 2

Acknowledgements

- Based on Jochen Schiller slides
- Supporting text
 - » Jochen Schiller, "Mobile Comunications", Addison-Wesley
 - » Section 7.5 Bluetooth

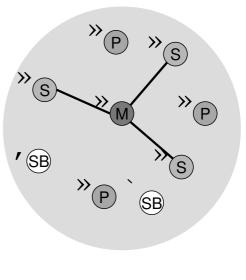
Bluetooth

- » Universal radio interface for ad-hoc wireless connectivity
- » Interconnecting computer and peripherals, handheld devices, PDAs, cell phones
- » Embedded in other devices, goal: 5€/device
- » Short range (10 m), low power consumption, license-free 2.45 GHz ISM
- » Voice and data transmission, approx. 1 Mbit/s gross data rate

One of the first modules (Ericsson).

BT 4

Characteristics

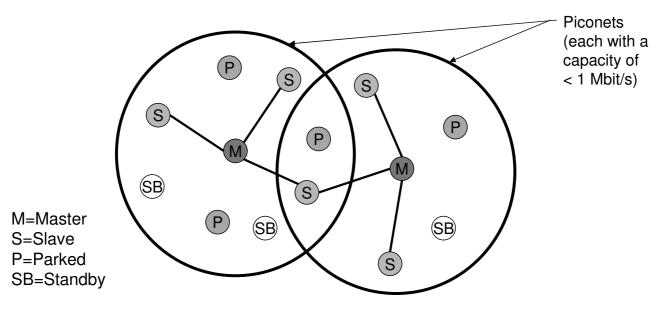

- 2.4 GHz ISM band, 79 RF channels, 1 MHz carrier spacing
 - Channel 0: 2402 MHz ... channel 78: 2480 MHz
 - G-FSK modulation, 1-100 mW transmit power

FHSS and TDD

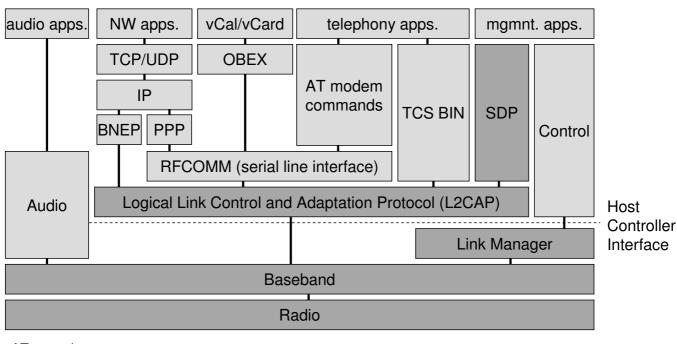
- Frequency hopping with 1600 hops/s
- Hopping sequence in a pseudo random fashion, determined by a master
- Time division duplex
- Voice link SCO (Synchronous Connection Oriented)
 - FEC, no retransmission, 64 kbit/s duplex, point-to-point, circuit switched
- Data link ACL (Asynchronous ConnectionLess)
 - Asynchronous, fast acknowledge, point-to-multipoint,
 - Up to 433.9 kbit/s symmetric or 723.2/57.6 kbit/s asymmetric, packet switched
- Topology
 - Overlapping piconets (stars) forming a scatternet

Piconet

- Collection of devices connected in an ad hoc
- One unit acts as master the others as slaves, for the lifetime of the piconet
- Master determines hopping pattern each piconet has a unique hopping pattern hopping pattern determined by device ID 48 bit, unique worldwide slaves have to synchronize



M=Master	P=Parked
S=Slave	SB=Standby

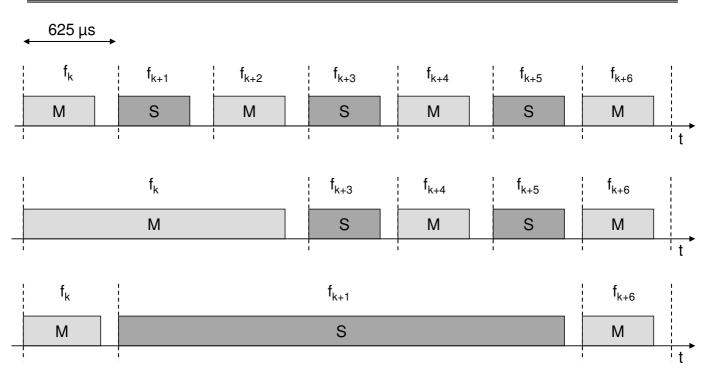

BT 6

Scatternet

 Linking multiple co-located piconets through the sharing of common master or slave devices

Bluetooth Protocol Stack

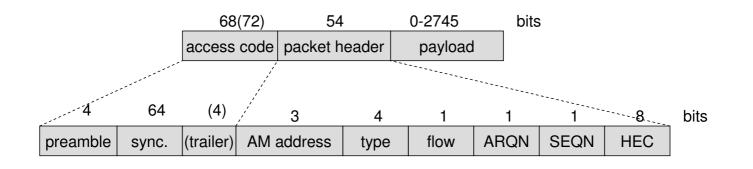
AT: attention sequence OBEX: object exchange


SDP: service discovery protocol RFCOMM: radio frequency comm.

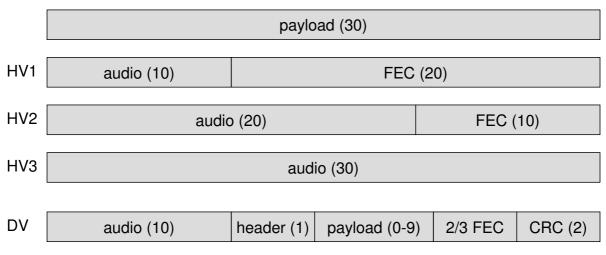
TCS BIN: telephony control protocol specification - binary

BNEP: Bluetooth network encapsulation protocol

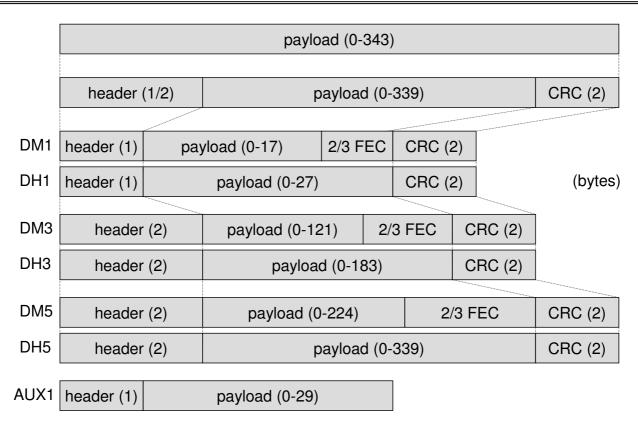
BT 8


Frequency Selection during Data Transmission

• Low-level packet definition


- » Access code
- » Packet header

1/3-FEC, active member address (broadcast + 7 slaves), link type, alternating bit ARQ/SEQ, checksum

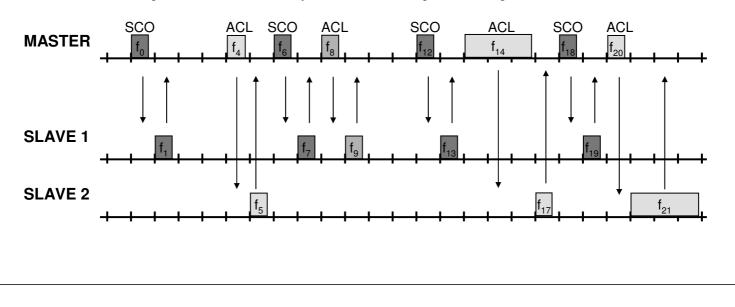

BT 10

SCO Payload Types

(bytes)

ACL Payload types

BT 12


Baseband Data Rates

ACL	Туре	Payload Header [byte]	User Payload [byte]	FEC	CRC	Symmetric max. Rate [kbit/s]	Asymmetri max. Rate ∣ Forward	
1 slot	DM1	1	0-17	2/3	yes	108.8	108.8	108.8
	DH1	1	0-27	no	yes	172.8	172.8	172.8
3 slot {	DM3	2	0-121	2/3	yes	258.1	387.2	54.4
	DH3	2	0-183	no	yes	390.4	585.6	86.4
5 slot {	DM5	2	0-224	2/3	yes	286.7	477.8	36.3
	DH5	2	0-339	no	yes	433.9	723.2	57.6
	AUX1	1	0-29	no	no	185.6	185.6	185.6
SCO {	HV1	na	10	1/3	no	64.0		
	HV2	na	20	2/3	no	64.0		
	HV3	na	30	no	no	64.0		
l	DV	1 D	10+(0-9) D	2/3 D	yes D	64.0+57.6 E)	

Data Medium/High rate, High-quality Voice, Data and Voice

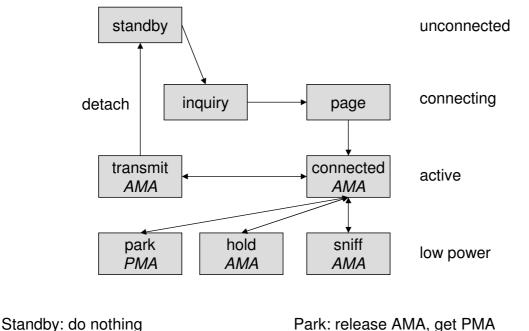
Baseband Link Types

- Polling-based TDD packet transmission 625µs slots, master polls slaves
- SCO (Synchronous Connection Oriented) Voice Periodic single slot packet assignment, 64 kbit/s full-duplex, point-to-point
- ACL (Asynchronous ConnectionLess) Data
 Variable packet size (1,3,5 slots), asymmetric bandwidth, point-to-multipoint

NAK

G

ACK

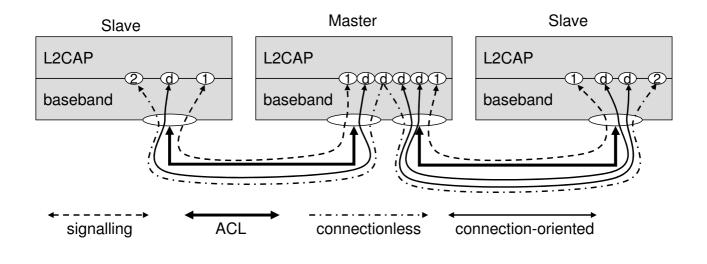

G

Robustness

SLAVE 2

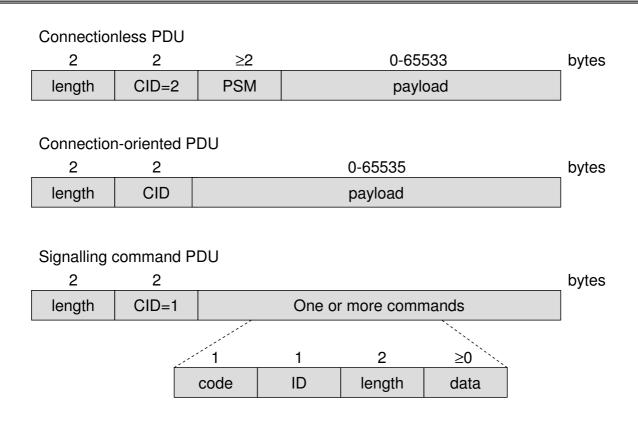
- Slow frequency hopping with hopping patterns determined by a master Protection from interference on certain frequencies Separation from other piconets Retransmission ACL only, very fast
- Forward Error Correction SCO and ACL
 MASTER
 A
 C
 C
 F
 H
 H
 B
 D
 E

Baseband States of a Bluetooth Device

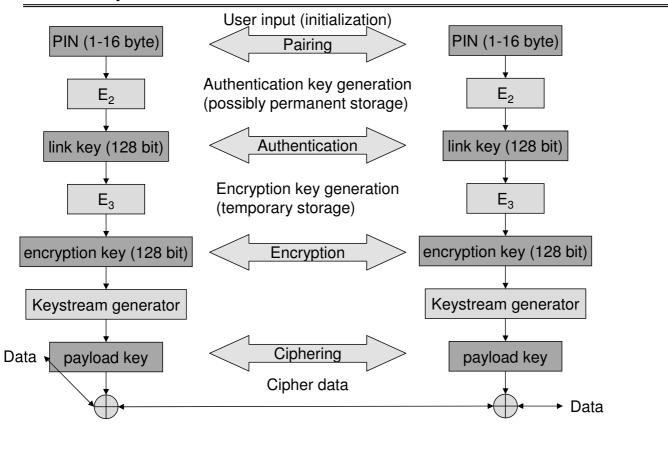

Inquire: search for other devices Page: connect to a specific device Connected: participate in a piconet Park: release AMA, get PMA Sniff: listen periodically, not each slot Hold: stop ACL, SCO still possible, possibly participate in another piconet

BT 16

L2CAP – Logical Link Control and Adaptation Protocol


- Simple data link protocol on top of baseband
- Connection oriented, connectionless, and signaling channels
- Protocol multiplexing RFCOMM, SDP, telephony control
- Segmentation & reassembly Up to 64kbyte user data
- QoS specification per channel delay, jitter, bursts, bandwidth
- Group abstraction
 - Create/close group, add/remove member

L2CAP logical channels



BT 18

L2CAP packet formats

Security

BT 20

Additional Protocols

- SDP Service Discovery Protocol
 - » Inquiry/response protocol for discovering services in radio proximity
 - » Adapted to dynamic environment
- RFCOMM
 - » Emulation of a serial port
- Telephony Control Protocol Specification (TCS)
 - » Call control (setup, release)
 - » Group management

- Data rate
 - » Synchronous, connection-oriented
 64 kbit/s
 - » Asynchronous, connectionless
 - 433.9 kbit/s symmetric
 - 723.2 / 57.6 kbit/s asymmetric
- Transmission range
 - -10 m
 - 100 m, with special transceivers
 - Frequency 2.4 GHz ISM-band
- Connection set-up time
 - Depends on power-mode
 - max. 2.56s, avg. 0.64s
- Quality of Service
 - guarantees, ARQ/FEC

BT 22

WPAN: IEEE 802.15 – future developments 1

- ♦ 802.15-2: Coexistance
 - Coexistence of Wireless Personal Area Networks (802.15) and Wireless Local Area Networks (802.11), quantify the mutual interference

• 802.15-3: High-Rate

- Standard for high-rate (20Mbit/s or greater) WPANs, while still low-power/low-cost
- Data Rates: 11, 22, 33, 44, 55 Mbit/s
- Quality of Service isochronous protocol
- Ad hoc peer-to-peer networking
- Security
- Low power consumption
- Low cost
- Designed to meet the demanding requirements of portable consumer imaging and multimedia applications

WPAN: IEEE 802.15 – future developments 2

• 802.15-4: Low-Rate, Very Low-Power

- Low data rate solution with multi-month to multi-year battery life and very low complexity
- Potential applications are sensors, interactive toys, smart badges, remote controls, and home automation
- Data rates of 20-250 kbit/s, latency down to 15 ms
- Master-Slave or Peer-to-Peer operation
- Support for critical latency devices, such as joysticks
- CSMA/CA channel access (data centric), slotted (beacon) or unslotted
- Automatic network establishment by the PAN coordinator
- Dynamic device addressing, flexible addressing format
- Fully handshaked protocol for transfer reliability
- Power management to ensure low power consumption
- 16 channels in the 2.4 GHz ISM band, 10 channels in the 915 MHz US ISM band and one channel in the European 868 MHz band

BT 24

RFID – Radio Frequency Identification (1)

- Data rate
 - » Transmission of ID only (e.g., 48 bit, 64kbit, 1 Mbit)
 - » 9.6 115 kbit/s
- Transmission range
 - » Passive: up to 3 m
 - » Active: up to 30-100 m
 - » Simultaneous detection of up to, e.g., 256 tags, scanning of, e.g., 40 tags/s
- Frequency
 - » 125 kHz, 13.56 MHz, 433 MHz, 2.4 GHz, 5.8 GHz and many others
- Security
 - » Application dependent, typ. no crypt. on RFID device
- Cost
 - » Very cheap tags, down to 1€ (passive)
- Availability
 - » Many products, many vendors

- Connection set-up time
 - » Depends on product/medium access scheme (typ. 2 ms per device)
- Quality of Service
 - » none
- Manageability
 - » Very simple, same as serial interface
- Special Advantages/Disadvantages
 - » Advantage: extremely low cost, large experience, high volume available, no power for passive RFIDs needed, large variety of products, relative speeds up to 300 km/h, broad temp. range
 - » Disadvantage: no QoS, simple denial of service, crowded ISM bands, typ. oneway (activation/ transmission of ID)

RFID – Radio Frequency Identification (2)

- Function
 - Standard: In response to a radio interrogation signal from a reader (base station) the RFID tags transmit their ID
 - Enhanced: additionally data can be sent to the tags, different media access schemes (collision avoidance)

Features

- No line-of sight required (compared to, e.g., laser scanners)
- RFID tags withstand difficult environmental conditions (sunlight, cold, frost, dirt etc.)
- Products available with read/write memory, smart-card capabilities
- Categories
 - Passive RFID: operating power comes from the reader over the air which is feasible up to distances of 3 m, low price (1€)
 - Active RFID: battery powered, distances up to 100 m

BT 26

RFID – Radio Frequency Identification (3)

Applications

- Total asset visibility: tracking of goods during manufacturing, localization of pallets, goods etc.
- Loyalty cards: customers use RFID tags for payment at, e.g., gas stations, collection of buying patterns
- Automated toll collection: RFIDs mounted in windshields allow commuters to drive through toll plazas without stopping
- Others: access control, animal identification, tracking of hazardous material, inventory control, warehouse management, ...

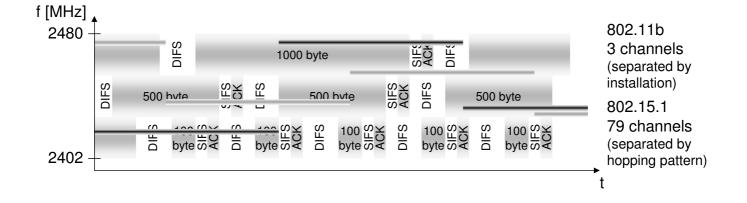
Local Positioning Systems

- GPS useless indoors or underground, problematic in cities with high buildings
- RFID tags transmit signals, receivers estimate the tag location by measuring the signal's time of flight

Many sources of interference

- Microwave ovens, microwave lightning
- 802.11, 802.11b, 802.11g, 802.15
- Even analog TV transmission, surveillance
- Unlicensed metropolitan area networks

Levels of interference


- Physical layer: interference acts like noise
 - ^u Spread spectrum tries to minimize this
 - ^u FEC/interleaving tries to correct

- MAC layer: algorithms not harmonized

^u E.g., Bluetooth might confuse 802.11

BT 28

802.11 vs. 802.15/Bluetooth

