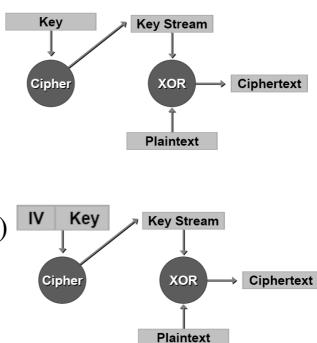
Security in IEEE 802.11

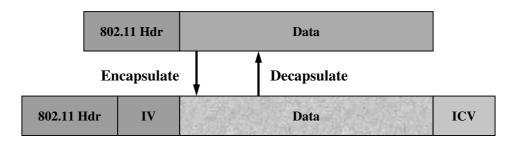
FEUP MPR

802.11 Sec 2

Introduction


- ◆ WEP
- ◆ 802.1x
- ♦ WPA

WEP


802.11 Sec 4

WEP - Wired Equivalent Privacy

- Based on the RC4 symmetric stream cipher
- 40 bit or 104 bit keys
 - Static, pre-shared
 - client and access point
- Initialization Vector (IV)
 - augments the key
 - Modifies the key stream

WEP Encapsulation

- Key stream
 - Per packet
 - Based on 24-bit IV and the pre-shared key
 - IV can be reused
- 24-bit IV transported in clear
- Data integrity provided in ICV field by a CRC-32
- Data and ICV encrypted

802.11 Sec 6

WEP Weaknesses

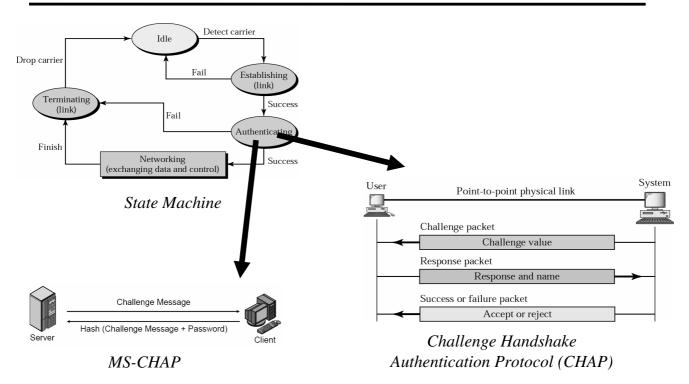
- Key management and key size are not appropriate
 - WEP key is changed rarely
 - WEP key size is small
- The InitializationVector (IV) is small
 - » 24 bits \pounds only 16M different KeyStreams for a WEP key
 - » If *packet1* and *packet2* are encrypted with the same KeyStream
 - They can be detected IV values are the same and transported in clear
 - From RC4: packet1 xor packet2 = encryptedPacket1 xor encryptedPacket2
 - KeyStream and WEP key can be retrieved!
- Authentication is not appropriate; messages can be forged
 - » The ICV algorithm is not appropriate; based on CRC-32
 - Used for detecting errors in transmission
 - Not for signing messages
 - » The well-done authentication of a message would consist of
 - Generating an hash value of the frame, and signing it by a symmetric or asymmetric key

802.1x

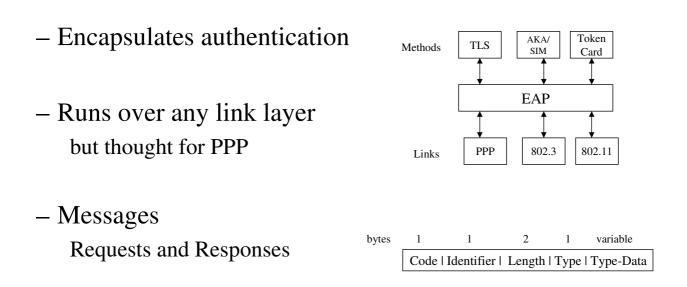
802.11 Sec 8

IEEE 802.1x

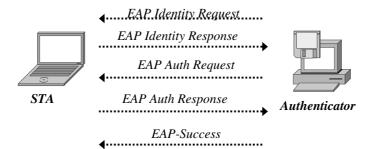
• IEEE 802.1x depends on PPP, EAP and 802.1x itself


• PPP defines also an authentication mechanism

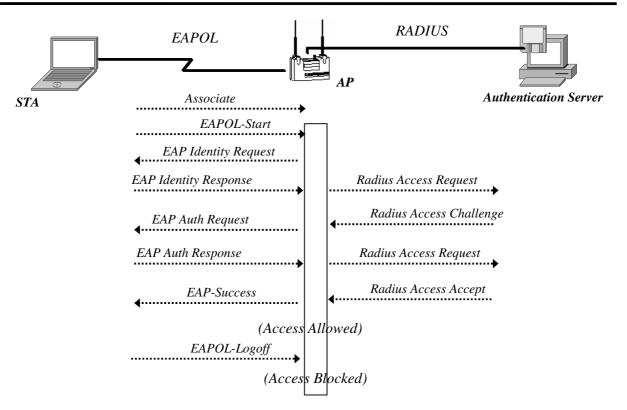
- to identify the user before giving him access (PAP, CHAP)
- more flexible security with the Extensible Authentication Protocol (EAP)


Extensible Authentication Protocol (EAP)

- part of the PPP authentication protocol
- provides generalized framework for multiple authentication methods
- Generic Request/Response messages
- ♦ IEEE 802.1x
 - transports EAP messages over wired or wireless LANs
 - > EAP messages sent over 802.3 (Ethernet) and 802.11, in place of PPP
 - > EAP encapsulation over LANs (EAPOL)
 - > Protocol messages: EAP + EAPOL-Start, EAPOL-Logoff, EAPOL-key
 - Authentication provided by an external equipment


PPP – Point to Point Protocol

EAP – Extensible Authentication^{2.11 Sec 10} Protocol



EAP – Extensible Authentication^{2.11 Sec 11} Protocol

802.11 Sec 12

IEEE 802.1x

IEEE 802.1x; EAP Authentication 13 Mechanisms

TLS

MD5

PPP

CHAP

TTLS

EAP

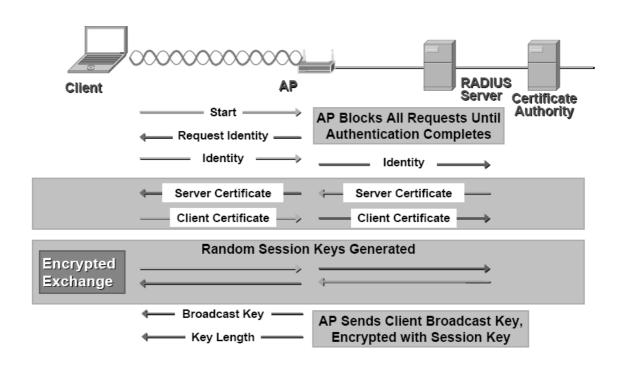
802.1X

PAP

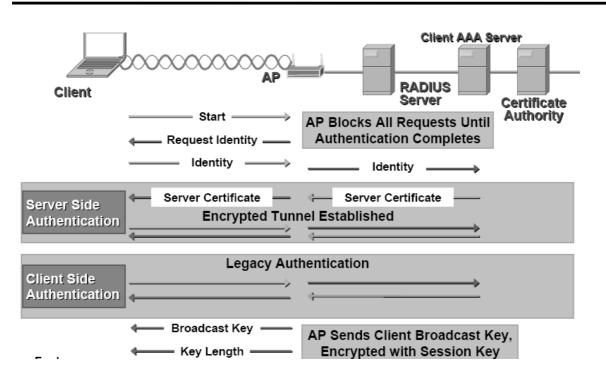
EAP

EAP

PEAP


802.11

- EAP-MD5 Username/Password
- EAP-TLSPKI certificates
- EAP-TTLS Username/Password
- MS-CHAPv2 Microsoft
 Username/Password
- PEAP tunnel safe transport of MS-CHAPv2


802.11 Sec 14

MS-CHAPv2

EAP-TLS Authentication

EAP-TTLS Authentication

802.11 Sec 16

Wi-Fi Protected Access (WPA)

- Promoted by the Wi-Fi Alliance; based on 802.11i
 - » Provides dynamic key encryption and mutual authentication
 - » Uses
 - Temporal Key Integrity Protocol (TKIP)
 - 802.1x authentication mechanisms
- Temporal Key Integrity Protocol (TKIP)
 - » uses RC4 to encrypt 802.11 frames similar to WEP
 - » uses 48-bit InitializationVectors reduce significantly IV reuse
 - » generates automatically and periodically
 - A new unique encryption key for each client
 - aimed at providing a unique key for each 802.11 frame
 - » introduces a new 8 byte Message Integrity Code (MIC)
 - just before the ICV field