Multicast

FEUP MPR

MULTICAST 2

Overview

- Multicast Service model, concept, examples
- Multicast addresses IPv4, IPv6, L2, mapping
- Group Management IGMP v1, v2, v3, MLD Switch broadcast and multicast, IGMP snooping, CGMP
- Multicast routing Source and shared trees Multicast forwarding PIM-SM, PIM-DM MBGP, MSDP

Multicast

Service model, concept, examples

MULTICAST 4

Multicast Service Models

- Principle
 - » Same data reaches multiple receivers
 - » Source avoids transmitting it for each receiver
- Implemented at
 - link, network, application layer
- ♦ xCast
 - » Broadcast
 - To all nodes on a (small) network
 - » Multicast
 - To a group
 - » Anycast Packet to 1of n hosts

Multicast Group Concept

- Group of receivers express
 - » interest in receiving a data stream
- The group
 - » does not have physical / geographical boundaries
 - » members can be located anywhere on the Internet
- An host interested in receiving the data
 - » must join the group
 - » then, it receives the data stream

MULTICAST 6

Examples of Multicast Applications

- Audio-video distribution
 1 N
- Audio-video conferences
 N N
- File distribution stock market quotes, software releases

Multicast addresses IPv4, IPv6, L2, mapping

MULTICAST 8

IPv4 Multicast Addresses

Model

network level: data packets remain the same; only address changes routers required to replicate and route packets

- Multicast address arbitrary group of IP hosts that have joined the group want to receive traffic sent to this group
- IP Multicast group addresses old class D range 224.0.0.0 - 239.255.255.255 used only as destination addresses of IP packets source address is always the unicast source address

Reserved IPv4 Multicast Addresses

- Reserved Link Local Addresses, <u>224.0.0.0 224.0.0.255</u>
 - » used by network protocols on a local network segment
 - » packets transmitted with time-to-live (TTL) of 1
 - 224.0.0.1 all systems on this subnet
 - 224.0.0.2 all routers on this subnet
 - 224.0.0.5 OSPF routers
 - 224.0.0.12- DHCP server/relay agent
- Globally Scoped Addresses, <u>224.0.1.0 238.255.255.255</u>
 - » Multicast data across the Internet
 - » Some are reserved (e.g. 224.0.1.1 is used by Network Time Protocol)
- Limited Scope Addresses, <u>239.0.0.0 239.255.255.255</u>
 - » Constrained to a local group or organization
 - » Enables address reuse

MULTICAST 10

IPv6 Multicast Addresses

- » RFC 3513 IPv6 Addressing Architecture (see also RFC 3956)
- » Flags 0|0|0|T
 - T = 0 permanently-assigned ("well-known") multicast address; defined by IANA
 - T = 1 non-permanently-assigned ("transient") multicast address
- » Scop: limits the scope of the multicast group
 - 1 interface-local scope
 - > single interface on a node; loopback transmission of multicast
 - 2 link-local scope; 5 site-local scope; E global scope
 - > Same scope as unicast
 - 4 admin-local scope; 8 organization-local scope
 - > administratively configured; organization-local: spans multiple sites
 - 6, 7, 9, A, B, C, D unassigned
 - > available for administrators to define additional multicast regions

MULTICAST 11

Layer 2 Multicast Addresses

	Octet 0 Octet 1		Octet 2		Octet 3		Octet 4		Octe	t 5		
	7	0	7 XXX00	0 KXXX	7	0 XXXX	XXXXXX	0	7 XXXX	0 XXX	7 XXXXXX	XXX
	Broadcast/multicast bit											
++	Locally administrated address bit											
ccccc0gcccccccc cccccccccmmmmmmmmmmmmmmm												
++ <u>00:C0:DF:08:D5:99</u>												
where "c" are the bits of the assigned company_id, "0" is the universal/local bit to indicate global scope, "g" is individu and "m" are the bits of the manufacturer-selected extension :	ə valı ıal/gı identi	ie rouj ifi	of t p bi er.	he t,								

- A network interface receives packets destined for its MAC address(es) and broadcast address (0xFFFF.FFFF.FFFF)
- IEEE 802.3 standard

bit 0, first octet, indicates group/broadcast/multicast frame

How can multiple hosts

receive the same packet and differentiate among multicast groups?

MULTICAST 12

Ethernet MAC Address Mapping

» IANA owns block of Ethernet MAC addresses

- Starting with 0x 01:00:5E
- Half of this block is allocated for multicast addresses
 23 bits

0x 01:00:5e:00:00:00 - 0x 01:00:5e:7f:ff:ff.

- » Lower 23 bits of the IP multicast group address are placed into these 23 Ethernet bits
- » 5 bits of the IP multicast address are dropped an L2 address is not unique; it serves 32 different multicast groups

IPv6 Multicast and Layer 2

- » IANA got new block of MAC addresses for IPv6 Multicast
- » Leading two bytes = 0x 33:33
- » Following 4 bytes/32bits available for address mapping from the last 32 bits of the 128 bit Multicast address

MULTICAST 14

Group Management IGMP v1, v2, v3, MLD Bridge broadcast and multicast, IGMP snooping, CGMP

IGMP - Internet Group Management Protocol

- IGMPv1, RFC 1112
- IGMP used to

dynamically register hosts in a multicast group on a particular LAN

• 2 type of IGMP v1 messages

- » Membership report
 - Host sends IGMP membership report to indicate that it is interested in joining the group
- » Membership query
 - Router periodically sends IGMP membership query
 - To verify that at least one host on the subnet is interested in receiving traffic
 - When there is no reply to 3 consecutive IGMP membership queries router stops forwarding traffic directed toward that group

IGMP v1 – Host State Machine,^{MULTICAST 16} RFC1112

IGMP v2 e v3

♦ IGMPv2

- » RFC 2236
- » 4 type of messages
 - > <u>Membership query</u>
 - > <u>V1 membership report</u>, <u>V2 membership report</u>
 - > <u>Leave group</u>
- » IGMPv2 works basically as IGMPv1. Main difference:
 - there is a leave group message
 - > Host can communicate to the local multicast router the intention to leave the group
 - > Reduces the leave latency compared to IGMP Version 1
- IGMPv3
 - » RFC 3376
 - » Enables host to receive only from specified sources
 - » New messages
 - Group-Source Report host describes which sources it wants (not) to receive data from
 - Group-Source Leave host defines what (source, group) it wants to leave

IGMP v2 – Host State Machine,^{MULTICAST 18} RFC2236

Group Management – IPv6

- Multicast Listener Discovery MLD
- MLD v1 **RFC 2710** Similar to IGMPv2
- MLD v2 **RFC 3810** Similar to IGMPv3

Bridges and LAN Switches – **MULTICAST 20 Broadcast and Multicast**

- Broadcast
 - frame forwarded towards the active ports other than the port from which the frame was received
- Multicast
 - host decides if it receives the frame » Same way
 - » Alternative 1
 - Take advantage of learning bridge property
 - Host belonging to a multicast group sends periodically a frame whose L2 source address is the L2 multicast address
 - » Alternative 2 switch snoops IGMP messages
 - Host sends Join/Leave messages to multicast routers through switch
 - Switch detects them and adds entry to the corresponding ports
 - » Alternative 3 Cisco Group Management Protocol (CGMP)
 - Layer 3 signalling between the router and the switch
 - Host informs de router (IGMP); router informs the switch (CGMP)

Multicast routing Source and shared trees Multicast forwarding PIM-SM, PIM-DM MBGP, MSDP

MULTICAST 22

Multicast Routing

- Internet multicast implemented over networks supporting hardware multicast/broadcast by extending routing and forwarding functions
- Based on the concept of distribution tree controls the paths of IP multicast traffic
- 2 types of multicast distribution trees source trees, shared trees

Source Tree

- The simplest multicast distribution tree
 - root source of the tree
 - leaves group receivers
 - Shortest Path Tree (SPT)
- Notation (S,G)
 - S is the IP address of the source
 - G is the multicast group address
- One tree – for each source sending to the group
- n sources Ł n trees

Host A Shortest Path Tree (192.1.1.1, 224.1.1.1)

Shared Tree

- Single common root
 the *rendezvous point (RP)*
- Sources send traffic to RP
- Then, traffic
 - is forwarded down shared tree,
 - and reaches all receivers
- Notation (*, G),
 - *, all sources
 - G, the multicast group

Shared Distribution Tree (*, 224.2.2.2)

MULTICAST 26

Multicast Trees

- Loop-free
- Messages replicated at routers, where the tree branches
- Members of multicast groups can join or leave at any time
- Distribution trees are dynamically updated
- Source tree
 - » optimal paths between source and receivers
 - » minimal network latency
 - » Routers must maintain path information for each source thousands of sources * thousands of groups scalability problem
- Shared tree
 - » minimum amount of state in each router
 - » paths between source and receivers might not be the optimal

Multicast Forwarding

- In unicast routing
 - » router sends data towards the destination address
 - » router scans through its routing table, and
 - forwards a single copy of the unicast packet
 - in the direction of the destination
- In multicast routing
 - » Router sends traffic away from the source
 - » If there are multiple downstream paths
 - the router replicates the packet
 - forwards the traffic down the appropriate downstream paths
 - » Reverse path forwarding
 - Unicast routing tables determine upstream and downstream neighbors
 - Router forwards a multicast packet only if it is received on the upstream interface
 - > distribution tree becomes loop-free

MULTICAST 28

Reverse Path Forwarding

- Router looks <u>source address</u> in the unicast routing table to determine if packet arrived through the best interface to the source
 - Correct interface

packet is forwarded

Uncorrect interface packet is dropped

IP Multicast Protocols

- Tree construction protocol
 Protocol Independent Multicast, Sparse Mode (PIM-SM)
 Protocol Independent Multicast, Dense Mode (PIM-DM)
- Advertise reverse paths towards sources
 Multiprotocol Border Gateway Protocol (MBGP)
- Disseminate information about sources
 - » Multicast Source Discovery Protocol (MSDP)

Protocol-Independent Multicast^{MULTICAST 30} (PIM)

IP routing protocol independent

- But uses information from unicast routing protocols
 - » to populate the unicast routing table
 - » including OSPF, BGP, static routes
- 2 modes
 - » PIM Dense Mode PIM (PIM-DM)
 - » PIM Sparse Mode (PIM-SM)

Protocol-Independent Multicast^{MULTICAST 31} (PIM)

• PIM Dense Mode PIM (PIM-DM)

- » Based on push model \pounds flood multicast traffic to every corner of the network
- PIM-DM initially floods multicast traffic throughout the network
 Routers that do not have any downstream neighbors prune back the tree
- » Supports only source trees
- » Efficient if there are active receivers on every subnet
- PIM Sparse Mode (PIM-SM), RFC 2362
 - » Based on pull model Ł only networks towards active receivers forward traffic
 - » Builds shared tree to distribute information from active sources
 - then, traffic can remain on the shared tree or switch to a source tree
 - » PIM-SM uses an Rendez-Vous Point (RP)
 - Administratively configured; root of the shared tree
 - Sources register with the RP; data is forwarded down the shared tree
 - Under high traffic conditions, routers may dynamically create source trees
 - » PIM-SM scales well

MULTICAST 32

MULTICAST 33

PIM-SM: Route Optimization

MULTICAST 34

Related Multicast Protocols

 Multiprotocol Border Gateway Protocol (MBGP) RFC 2283 Multicast routing between providers; interdomain routing management

Multicast Source Discovery Protocol (MSDP)
 Enables each domain to have an RP
 RPs of different domains exchange information

 – about themselves and the sources they know
 Inter ISP (RP) protocol