Mobile Communications

Ad-hoc and Mesh Networks

Manuel P. Ricardo

Faculdade de Engenharia da Universidade do Porto
What is an ad-hoc network?

What are differences between layer 2 and layer 3 ad-hoc networks?

What are the differences between an IEEE mesh network and an IETF MANET network?

What are the differences between a mobile network and a mobile terminal?

How to support a moving network?
♦ MANET – Ad-hoc Networks
 » AODV, OLSR

♦ Mesh networks
 » 802.11s

♦ Mobile Networks
 » IETF NEMO
 » MANET support for mobile networks
Basics on ad-hoc networks

♦ What is an ad-hoc network?

♦ What are the differences between and ad-hoc wireless network and a wired network?

♦ What are the characteristics of the most important ad-hoc routing protocols?
Ad-Hoc Network (Layer 3)

- Auto-configurable network
- Working over wireless links
- Nodes are mobile ➔ dynamic network topology
- Isolated network, or interconnected to Internet
- Nodes forward traffic
- Routing protocol is required
IETF MANET - Mobile Ad-hoc Networking

Mobile Router

Mobile Devices

Fixed Network

Manet

Mobile IP, DHCP

Router

End system
Route calculation in wired networks

- **Distance vector**
 - Messages exchanged periodically with neighbours
 - Message indicates reachable nodes and their distance
 - Algorithm takes long time to converge
 - Eg. RIP

- **Link state**
 - Router informs periodically the other routers about its links state
 - Every router gets information from all other routers
 - Lots of traffic
 - Eg. OSPF
Route calculation in Ad-Hoc Networks - Characteristics

Ad-hoc network

» Dynamic topology
 – Depends on node mobility

» Interference
 – Radio communications

» Asymmetric links
 – Received powers and attenuation unequal in the two directions
Routing in Ad-hoc Networks

♦ Conventional routing protocols
 – Built for wired networks → whose topology varies slowly
 – Assume symmetric links

♦ In Ad-hoc networks
 » Dynamic topology → information required to be refreshed more frequently
 – energy consumption
 – radio resources used for signaling information
 » Wireless node may have scarce resources (bandwidth, energy) …

♦ New routing strategies / protocols for ad-hoc networks
 – 2 type : reactive e pro-active
To think about

- How can we avoid a large signaling overhead (number of routing messages) in ad-hoc networks
AODV – A needs to send packet to B
AODV – A sends RouteRequest
AODV – B replies with RouteReply
AODV - Characteristics

» Decision to request a route
» Broadcast of *Route-request*
» Intermediate nodes get routes to node A
» *Route-reply* sent in *unicast* by same path
» Intermediate nodes get also route to node B
» Routes have *Time-to-live*, in every node
» Needs symmetric graph
Pro-active routing protocols

- Routes built using continuous control traffic
- Routes are maintained

- Advantages, disadvantages
 - Constant control traffic
 - Routes always available

- Example – OLSR (RFC 3626)
 - OLSR - Optimized Link-State Routing protocol
OLSR – Main functions

- Detection of links to neighbour nodes
- Optimized forwarding / flooding (MultiPoint Relaying)

Bits:	0	1	2	3	4	5	6	7	8	9	0	1	2	3	4	5	6	7	8	9	0	1
OLSR header:	Packet Length	Packet Sequence Number																				
Message:	Message Type	Vtime	Message Size																			
	Originator Address																					
Time To Live	Hop Count	Message Sequence Number																				
MESSAGE																						
Message:	Message Type	Vtime	Message Size																			
	Originator Address																					
Time To Live	Hop Count	Message Sequence Number																				
MESSAGE																						
OLSR – Detecting links to neighbour nodes

- Using *HELLO* messages
- All nodes transmit periodically *HELLO* messages
- *HELLO* messages group neighbour by their state
OLSR – MultiPoint Relaying (MPR)

- MultiPoint Relaying (MPR)
 - Special nodes in the network
 - Used to
 - Limit number of nodes retransmiting packets
 - Reduce number duplicated retransmissions

- Each node selects its MPRs, which must
 - Be at 1 hop distance
 - Have symmetric links

- MPR set selected by a node
 - Must be minimum
 - Must enable communication with every 2-hop-away nodes

- Node is MPR if it has been selected by other node
OLSR – Link State

- In wired networks, OSPF
 - Every node floods the network
 - With information about its links state

- OLSR does the same, using 2 optimizations
 - Only nodes associated to MPR are declared in link state message
 - Reduced message length
 - Only the MPR nodes send link state messages
 - Smaller number of nodes sending messages
OLSR – Link state, example

- Messages which declare the links state
 - “Topology Control Messages”
The IEEE 802.11 mesh networks

- How will the 802.11s Mesh Network work?
Note: This set of slides reflects the view of a 802.11s draft standard.
IEEE 802.11s - Main Characteristics

- Network topology and discovery
- Inter-working
- Path Selection and Forwarding
- MAC Enhancements
Elements of a WLAN Mesh Network

- **MP** - Mesh Point
 - establishes links with neighbor MPs
- **MAP** - Mesh AP
 - MP + AP
- **MPP** - Mesh Portal
- **STA** – 802.11 station
 - standard 802.11 STA
L2 Mesh Network - Emulates 802 LAN Segment

- **Broadcast LAN**
 - Unicast delivery
 - Broadcast delivery
 - Multicast delivery

Support for connecting an 802.11s mesh to an 802.1D bridged LAN
- Broadcast LAN (transparent forwarding)
- Learning bridge
- Support for bridge-to-bridge communications: Mesh Portal participates in STP
To think about

- Suppose A sends a frame to B (MAC layer). What MAC addresses are required for the frame transmitted between the two Ethernet switches?

- And what MAC addresses are required for the frame transmitted between the two MAPs? Why are the 2 cases different?

I) A — ethernet switch — ethernet switch — B

II) A — MAP — MAP — B
Mesh Data Frames

- Data frames
 - based on 802.11 frames - 4 MAC address format
 - extended with: 802.11e QoS header, and new Mesh Control header field

- Mesh Control Field
 - TTL – eliminates possibility of infinite loops (recall these are mesh networks!)
 - Mesh E2E Seq
Topology Formation

♦ Mesh Point discovers candidate neighbors
 » based on beacons, which contain mesh information
 – WLAN Mesh capabilities
 – Mesh ID

♦ Membership in a WLAN Mesh Network
 » determined by (secure) association with neighbors
Mesh Association

1. MP X discovers Mesh *mesh-A* with profile *(link state, …)*

2. MP X associates / authenticates with neighbors in the mesh, since it can support the Profile

3. MP X begins participating in link state path selection and data forwarding protocol

Capabilities:
Path Selection: distance vector, link state

One active protocol in one mesh but alternative protocols in different meshes
Interworking - Packet Forwarding

Destination inside or outside the Mesh?

- Portal forwards the message
- Use path to the destination
Hybrid Wireless Mesh Protocol (HWMP)

Combines

- on-demand route discovery
 - based on AODV

- proactive routing to a mesh portal
 - *distance vector routing tree* built and maintained rooted at the Portal
HWMP Example 1:

No Root, Destination Inside the Mesh

- Communication: MP4 → MP9
- MP4
 - checks its forwarding table for an entry to MP9
 - If no entry exists, MP4 sends a broadcast RREQ to discover the best path to MP9
- MP9 replies with unicast RREP
- Data communication begins
HWMP Example 3:

No Root, Destination Outside the Mesh

- Communication: MP4 → X
- MP4
 - first checks its forwarding table for an entry to X
 - If no entry exists, MP4 sends a broadcast RREQ to discover the best path to X
 - When no RREP received, MP4 assumes X is outside the mesh and sends messages destined to X to Mesh Portals

- Mesh Portal that knows X may respond with a unicast RREP

[Diagram of mesh network with nodes labeled 1 to 10 and routes marked with arrows indicating on-demand path.]
HWMP Example 2:

Root, Destination Inside the Mesh

- Communication: MP 4 → MP 9
- MPs learn Root MP1 through **Root Announcement** messages
- MP 4 checks its forwarding table for an entry to MP9
- If no entry exists, MP4 forwards message on the proactive path to Root MP1
- When MP1 receives the message, it forwards on the proactive path to MP9
- MP9, receiving the message, may issue a RREQ back to MP 4 to establish a path that is more efficient than the path via Root MP1
HWMP Example 4:

Root, Destination Outside the Mesh

- Communication: MP4 → X

- MPs learn Root MP1 through **Root Announcement** messages

- If MP4 has no entry for X in its forwarding table, MP4 may forward the message on the proactive path toward the Root MP1

- When MP1 receives the message, if it does not have an active forwarding entry to X it may assume the destination is outside the mesh

- Mesh Portal MP1 forwards messages to other LAN segments
Radio Aware OLSR (RA-OLSR)

- OLSR may be used in alternative to AODV
- RA-OLSR proactively maintains link-state for routing
MAC Enhancements for Mesh

- Intra-mesh Congestion Control
- Common Channel Framework (Optional)
Need for Congestion Control

- Mesh characteristics
 - Heterogeneous link capacities along the path of a flow
 - Traffic aggregation: Multi-hop flows sharing intermediate links

- Issues with the 802.11 MAC for mesh
 - Nodes blindly transmit as many packets as possible, regardless of how many reach the destination
 - Results in throughput degradation and performance inefficiency
Intra-Mesh Congestion Control Mechanisms

♦ Local congestion monitoring (informative)
 » Each node actively monitors local channel utilization
 » If congestion detected,
 notifies previous-hop neighbors and/or the neighborhood

♦ Congestion control signaling
 » Congestion Control Request (unicast)
 » Congestion Control Response (unicast)
 » Neighborhood Congestion Announcement (broadcast)
Common Channel

- Common channel
 - Unified Channel on which MPs jointly operate
 - Using RTX, the transmitter suggests a destination channel
 - Receiver accepts/declines the suggested channel using CTX
 - The transmitter and receiver switch to the destination channel
 - Data is transmitted
 - Then they switch back
Control Frames

- Request to Switch (RTX) Frame

<table>
<thead>
<tr>
<th>Frame Control</th>
<th>Duration/ID</th>
<th>RA</th>
<th>TA</th>
<th>Destination Channel Info.</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>

- Clear to Switch (CTX) Frame

<table>
<thead>
<tr>
<th>Frame Control</th>
<th>Duration/ID</th>
<th>RA</th>
<th>Destination Channel Info.</th>
<th>FCS</th>
</tr>
</thead>
<tbody>
<tr>
<td>2</td>
<td>2</td>
<td>6</td>
<td>2</td>
<td>4</td>
</tr>
</tbody>
</table>