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Abstract

The field of Multiagent Systems (MAS) is concerned with software solutions com-
posed of several autonomous elements (agents) that interact and communicate. The
scenarios these techniques apply to have special characteristics that bring about new
problems, but also provide new tools to develop adequate solutions. One of the re-
search fields that is evolving in parallel and adapting to this new type of paradigm is
Machine Learning (ML). Research in ML has been increasingly focused on the devel-
opment of solutions that can deal with the problems posed by MAS. The contribution
of ML to this field is of utmost importance since adaptability and learning are funda-
mental in increasing agents’ autonomy and flexibility.

This work presents a study concerning the relationship between communication
and learning in a certain type of MAS. We focus on problems where we have different
teams of agents, solving similar problems at different locations. Each of these teams
may use different learning algorithms or heuristic solutions. In the past, learning-agents
used solely the environment’s feedback as a source of information for learning. MAS
provide other sources of information that can increase agents’ learning capabilities.
Our goal is to determine how the communication of examples and reward information
can affect the learning process.

The hypotheses posed in this thesis are: That communication can improve agents’
learning performance for several learning algorithms in a specific type of problems; It
is possible to enhance the benefits of communication by: using of hybrid algorithms
to integrate information from different sources, using heterogeneous environments and
an adequate selection of information sources. These techniques are tested in three
application domains: a “toy-problem” (predator-prey), a simulation with synthetic data
(load-balancing) and one using real data (traffic-control).

During this study several variables that influence the performance of the exchange
of information during learning where identified, namely: use of batch or specific of
information; online or offline integration; number of advisors; use of heuristic advi-
sors; heterogeneity of the environment; type of algorithm used in the integration of
external information. Although not exhaustive, due to the large number of possible
combinations, our research tests the effects of several of these possibilities.

The initial expectations pointed towards the possibility of increasing the speed of
learning and the performance by exchanging information, particularly when using het-
erogeneous environments. It was verified that exchanging information is beneficial, in
terms of speed, performance and reliability. Contrary to our expectations the environ-
ments’ heterogeneity and other tested techniques did not show the desired effects. This
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fact is due, mainly, to the near-optimal performance of agents in most environments
where agents are allowed to communicate.

Even though there is still a long path to follow in the quest for adequate solutions,
this work provides, apart from the above mentioned contributions, a review of the main
difficulties found during this research that may be helpful for those that follow this path
in the future.

The ultimate goal of this line of research is to endow agents with the capability of
learning from more sources than just the environments’ feedback in a context where
information is abundant. This new perspective of learning in MAS can lead to the
development of new learning paradigms, specially suited for MAS, and take us one
step further in the construction of autonomous and intelligent agents.



Abstract

A investigação em Sistemas Multi-Agente (SMA) tem como objectivo o desen-
volvimento de soluções computacionais, baseadas em elementos autónomos (agentes)
que interagem e comunicam entre si. Os cenários a que estas técnicas se aplicam trazem
consigo um novo conjunto de problemas, mas também a possibilidade de desenvolver
novas soluções. Uma das áreas de investigação que se tem desenvolvido em paralelo é
a Aprendizagem Automática (AA). A pesquisa na área da AA foca, cada vez mais, o
desenvolvimento de soluções destinadas a lidar com os problemas postos pelos SMA.
A contribuição da AA neste campo é da maior importância dado que a capacidade de
adaptação é fundamental para melhorar a autonomia e flexibilidade dos agentes.

Este trabalho estuda a relação entre a comunicação e a aprendizagem em certo tipo
de SMA. Os problemas focados caracterizam-se pela existência de diversas equipas
de agentes, cuja tarefa é a resolução de problemas semelhantes em locais diferentes.
Cada uma destas equipas poderá utilizar diferentes mecanismos de aprendizagem ou
soluções heurı́sticas. No passado, a aprendizagem baseava-se apenas na informação
devolvida pelo ambiente. Com a introdução do conceito de SMA abrem-se novas pos-
sibilidades na utilização de outras fontes de informação. O objectivo deste trabalho é
determinar quais os efeitos que a troca de certo tipo de informação (exemplos e recom-
pensas) pode ter na aprendizagem.

As hipóteses postas nesta tese são: que a comunicação pode ser usada para melhorar
o desempenho de vários tipos de agentes durante a aprendizagem em determinado tipo
de problemas; É possı́vel realçar os benefı́cios da comunicação através do uso de:
algoritmos hı́bridos para a integração de informação de diferentes fontes, da utilização
de ambientes heterogéneos e de uma escolha adequada das fontes de informação. Estas
propostas são testadas em três problemas: o problema do “predador e a presa”, uma
simulação de distribuição de carga por servidores, e uma simulação de controlo de
tráfego baseada em dados reais.

Durante o estudo foi identificado um conjunto de variáveis que pode influenciar o
desempenho da troca de informação durante a aprendizagem, nomeadamente: trans-
missão em bloco ou caso a caso; integração imediata ou adiada; número de consel-
heiros; utilização de conselheiros pré-programados; ambientes homogéneos ou het-
erogéneos; modo de integração da informação. Embora não sendo exaustiva, devido
ao grande número de combinações possı́veis, a nossa pesquisa testa os efeitos de várias
combinações de valores para as variáveis acima mencionadas.

As expectativas iniciais apontavam para a possibilidade de aumentar a velocidade
e o desempenho com a troca de informação, em particular quando fossem utilizados
ambientes heterogéneos. Verificou-se que a troca de informação traz benefı́cios quer
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em termos de desempenho quer em termos de fiabilidade. Ao contrário das expectativas
iniciais a heterogeneidade do ambiente, bem como outras técnicas empregadas para
realçar o desempenho da troca de informação, não surtiram os efeitos esperados. Este
facto deve-se, principalmente, ao desempenho quasi óptimo dos agentes em ambientes
com troca de informação.

Embora haja ainda um longo caminho a percorrer na busca de soluções adequadas,
este trabalho contém, além das contribuições mencionadas, uma enumeração das difi-
culdades encontradas durante esta investigação que poderá ser útil para aqueles que se
futuramente dedicarem a este tema.

O objectivo último da linha de investigação prosseguida é a criação dos mecanismos
necessários para a utilização da informação disponı́vel em contextos onde esta é abun-
dante. Esta nova visão da aprendizagem em SMA poderá levar ao desenvolvimento
de diferentes paradigmas de aprendizagem, adequados às necessidades dos SMA, e ser
um passo mais no sentido de sistemas autónomos e inteligentes.



Abstract

La recherche dans le domaine des Systèmes Multi-Agents (SMA) à pour objectif le
développement de solutions informatiques basées sur des éléments autonomes (agents)
qui interagissent et communiquent entre eux. Ces caractéristiques portent un nouvel
ensemble de problèmes mais aussi la possibilité de développer des nouvelles solutions.
L’un des domaines de recherche qui s’est développé en parallèle est l’Apprentissage
Automatique (AA). La recherche dans le domaine la AA met en évidence de plus en
plus le développement de solutions destinées à travailler avec les problèmes présentés
par les SMA. La contribution de la AA dans cette domaine est de la plus grande impor-
tance vue que la capacité d’adaptation est fondamentale pour améliorer l’autonomie et
flexibilité des agents.

Ce travaille analyse la relation entre la communication et l’apprentissage en cer-
tains types de SMA. Les problèmes abordés se caractérisent par l’existence de diverses
équipes d’agents pour les quelles l’objectif est la résolution de problèmes identiques en
locaux différentes. Chaque une des équipes pourra utiliser des différents mécanismes
d’apprentissage ou des solutions heuristiques. Dans le passé, l’apprentissage s’est basé
uniquement sur l’information de retour fournie par l’environnement. Des nouvelles
possibilités dans l’utilisation d’autres sources d’information s’ouvrent avec l’introduc-
tion des SMA. L’objectif de cette étude est de déterminer les effets de la communication
des exemples et des récompenses sur l’apprentissage.

L’hypothèses proposées dans cet étude sont: que la communication peut améliorer
la performance des différents types d’agents durant l’apprentissage, dans certain pro-
blèmes; Est possible de rehausser les bénéfices de la communication avec l’usage: des
algorithmes hybrides pour l’intégration de la information de différents sources, la util-
isation des environnent hétérogènes, et une bonne choix de les sources d’information.
L’hypothèses son testées en utilisant trois problèmes: “prédateur et la proie”, une simu-
lation de distribution de charge par des serveurs, et une simulation de contrôle de trafic
basée sur les données réelles.

Durant cet étude, un ensemble de variables qui peuvent influencer la performance
des échanges d’information pendant l’apprentissage on été identifiées, comme par ex-
emple: transmission en bloque ou cas a cas; intégration immédiate ou stockage pour
intégration en bloque; nombre de conseillers; utilisation de conseillers préprogrammées;
environnements homogènes ou hétérogènes; mode d’intégration de l’information. Bien
quelle ne soit pas exhaustif a cause du très grand nombre de combinaisons possibles,
notre recherche teste les efforts de plusieurs combinaisons de valeurs pour des variables
ci-dessus présentées.
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Les expectatives initiales laissaient entrevoir la possibilité d’augmentation de la
vitesse et de la qualité résultant des échanges d’information particulièrement en util-
isations sur d’environnements hétérogènes. On a pu constater que l’échange d’infor-
mation apporte de bénéfices soit en termes de performance soit en termes de fiabilité.
Contrairement aux expectatifs initiales, l’hétérogénéité de l’environnement et d’outres
techniques utilisées, n’ont pas produit les effets espérés. Ce fait peut être due à la
performance quasi-optimale des agents quand ils échangent des informations.

Bien que cette recherche n’est pas finie on à énumérée les principales difficultés et
étudié des différents solutions.

L’objectif final de cette recherche est la création des mécanismes pour la utilisa-
tion de la information obtenue par touts les agents qui approche un problème. Cette
recherche pourra porter le développement des nouvelles méthodes de apprentissage
plus approprié aux besoins des SMA.
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The sooner you make your first 5000 mistakes
the sooner you will be able to correct them

in “The Natural Way to Draw”,
Kimon Nicolaides, 1941
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Definitions, Abbreviations and
Acronyms

The first item of the description, in parenthesis, is the section where the concept is
defined in the text.

Action (section 2.2) An agent’s decision that has consequences in the environment.

Action-dependent feature (section 6.2) A state feature that has a different value de-
pending on the action being considered. See also Action and State.

Adaptable Parameters (section 2.2) See Hypothesis Parameters.

Agent (section 1.1) An autonomous element of a MAS environment whose decisions
can affect state transitions. In this text all references to agent should be inter-
preted as Learning Agents.

Area (section 2.2) See Location.

Artificial Neural Network (ANN) (section 2.1.1) Evaluation function used mainly
with the Backpropagation algorithm. The name is also used to define a com-
puting paradigm that encompasses several types of functions, inspired by the
research on how human brain-cells work, as well as the learning algorithms that
apply to them.

Backpropagation (section 2.1.1) Supervised Learning Algorithm that adapts the pa-
rameters of an ANN to minimize the difference between the current response to
a given input and the desired response.

Connectionist Q-Learning (section 2.1.3) Adaptation of Q-Learning, used for large
search-spaces, that replaces the Q-table with an ANN.

Epoch (section 2.2) Period of time, consisting on a fixed number of turns. See also
Turn and Trial.

Environment (section 2.2) Virtual or physical space in which the agents are immersed.
See also Location.
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Evaluation Function (section 2.2) A function that maps states to actions and contains
adaptable parameters (called Hypothesis). The Evaluation Function can also be
referred to as adaptive function. See also Hypothesis Parameters and Hypothesis.

Evolutionary Algorithms (EA) (section 2.1.4) Stochastic search algorithms, inspired
by Darwin’s theory, that represent each hypothesis as a specimen in competi-
tion with others for survival. Performance is seen as a measure of fitness and
the fittest specimens are allowed to breed, so as to iteratively improve the best
specimen or a whole population. This, broad, definition is subdivided in several
sub-categories such as: Genetic Algorithms, Evolutionary Strategies and Genetic
Programming See also Genetic Programming.

Genetic Programming (GP) (section 2.1.5) A sub-category of Evolutionary Algori-
thms where the base structures can be interpreted as program trees. See also
Strongly Typed Genetic Programming.

Hypothesis (section 2.2) Set of parameters of an Evaluation Function that determines
the mapping of states to actions.

Hypothesis Parameters (section 2.2) Adaptable components of an Evaluation Func-
tion. See also Hypothesis.

Learning Algorithm (section 2.1) Process of change that affects the Hypothesis based
on acquired information and leads to an improvement of a certain measure of
quality with respect to a certain class of tasks.

Learning Parameters (section 2.2) Set of label-value pairs that influence how a cer-
tain Learning Algorithm will change the Hypothesis.

Location (section 2.2) A sub-component of the environment where a team of Agents
acts.See also Area.

Multiagent Systems (MAS) (section 1.1) Aggregation of autonomous computing en-
tities (agents) jointly working in the same environment to reach, both, individual
and collective goals. The name of a research area the focuses on problems where
distributed and autonomous software/hardware is used. See also Agent.

Nash equilibrium (section 3.2.2) Situation that refers to a given set of hypothesis,
where changes in one of the hypotheses alone will cause a decrease in perfor-
mance.

Policy (section 2.2) A policy is the mapping made by an Evaluation Function accord-
ing to a given Hypothesis See also Hypothesis and Evaluation Function.

Q-Learning (QL) (section 2.1.3) Reinforcement Learning algorithm based on the es-
timation of the quality associated with pairs of states and actions.



Reward (section 2.2) Scalar number, in this work always in [0, 1], that measures an
estimated quality of an action/state, or a sequence of actions/states.

Reward-based Learning (section 2.1) Class of learning algorithms in which the feed-
back information comes in the form of a quality evaluation. When given an ex-
ample (usually called state in this case) the agent chooses an action and gets a
reward (which may be delayed in time). The agent’s objective is to maximize
this reward, i.e. learn to choose actions that cause the environment to give high
rewards as feedback. This label is proposed by Panait and Luke (2003).

State (section 2.2) A snapshot of the values of certain characteristics of the environ-
ment.

Strongly Typed Genetic Programming (GP) (section 2.1.5) A class of Genetic Pro-
gramming algorithms where the nodes in the program trees have types. Mutation
and crossover are bound by the use of these types. See also Genetic Program-
ming.

Supervised Learning (section 2.1) Class of learning algorithms in which the feedback
information is in the form of a desired response for each presented example. The
agent’s job is to emulate, generalize (and in some cases, describe the underlying
rules that govern) the behavior represented by the example-response pairs.

Trial (section 2.2) A sequence of events consisting of a given number of epochs See
also Epoch and Turn.

Trust (section 4.2) In this thesis trust is a coefficient that is proportional to the esti-
mated efficiency of the advice given by a certain advisor.

Turn (section 2.2) Period of time between two observations of the environment, in
which the agent may issue one or more actions See also Epoch and Trial.

Unsupervised Learning (section 2.1) Class of learning algorithms where there is no
feedback information, the learning agent’s job is to divide a set of examples into
a certain number of classes according to a given measure (distance between ex-
amples in most cases). The evaluation of the results depends on the application,
although in most cases what is requested is that the learning agent finds a division
that results in a compact and well defined partition of the example space.



Symbols

One of the main concerns related to notation was to maintain the coherence of the
meaning for the symbols used, with the exception of chapters 2 and 3, “Background
Concepts” and “Related Work”, respectively, where notations followed, as much as
possible, the most common norms for each specific subject. In other chapters coher-
ence had to be balanced with other concerns such as: clarity, size of equations and
readability, which forced minor adjustments in different contexts. For these reasons,
the indexes and function parameters are sometimes omitted, whenever they are not rele-
vant for the current explanation. Even though all symbols are defined the first time they
are used in each section, here we list their default meaning through the text. Whenever
a symbol has a different meaning this will be explicitly defined.

Variables are uncapitalized, e.g. (x), vectors are indicated using a bar above the
name, e.g. x̄. The first letter of symbols representing sets is capitalized.

The indexes i,j and k are mainly used as the identifier of agents in a set. k is mainly
used as the identifier of an agent selected according to a certain criterium. t is always
used to define the time of a certain event or the index of a sequence of values for a
given variable.

The first item of the description, in parenthesis, is the section of the symbol’s first
appearance in the text.

Ai,t (section 2.2) The set of actions available for agent i at time t.

ai,t (section 2.2) Action take by agent i at time t. The action may also be represented
as a vector āi,t representing the adequacy or probability of choosing each possi-
ble action.

B (section 2.2) Set of learning parameters that control a certain learning function.

Ei,t (section 2.2) Previous experience obtained by agent i until a certain time t. Each
element of this set contains tuples with, at least, three values, namely: state,
action and reward.

Fk,i (section 2.2) Evaluation Function of type k used by agent i.
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Hi,t (section 2.2) Hypothesis in use by agent i at time t.

H∗i (section 2.2) Set of optimal hypothesis parameters for a given agent i considering
the current state and dynamics of the environment.

Ĥ∗i (section 2.2) Hypothesis with the best estimated performance found by agent i at
time t.

Li (section 2.2) Learning function that transforms the hypothesis’ values, based on
previous experience.

πi,t (section 2.2) Snapshot of the policy used by agent i at time t.

Φl (section 2.2) The set of all agents acting in location l.

Qt(s̄, a) (section 2.1.3) Estimated quality of taking action a at state s̄ at a given time
t.

Q̄t(s̄) (section 2.1.3) Estimated quality of taking each of the possible actions at state
s̄ and time t.

Rl,n (section 2.2) Reward achieved by the team controlling location l in epoch n.

ri,t (section 2.2) Reward achieved by agent i after issuing an action at time t.

rl,n (section 2.2) Reward achieved by a team of agents in location l at epoch n.

s̄i,t (section 2.2) State of the environment from the point-of-view of agent i at time t.

S̄l,t (section 2.2) State of the environment at location l and time t.

T (section 2.1.3) Temperature parameter for Boltzmann selection.

wn,ij (section 2.1.1) Weight of an ANN connecting unit i of layer n to unit j of layer
n+ 1.
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Chapter 1

Introduction

1.1 Motivation

In the past decades the concepts of decentralization and autonomy are currently
concentrating the attention of researchers in most areas of computational sciences. The
facts in favor of decentralized and autonomous software solutions are well known and
have been proved in practice by its growing use. The main factors that are usually
pointed out in favor of these solutions when compared to centralized ones, are:

• Better resistance to failure, e.g. distributed network management;
• More efficient access to decentralized resources, e.g. distributed Databases;
• Decrease in the number of critical bottlenecks/elements, e.g. distributed routing;
• A large number of small and cheap computational elements can overpower cen-

tralized processing solutions, e.g. SETI program (SETI, 2005);
• The ability to cope with situations where direct human/centralized control is not

possible, e.g. Mars Rover project (MarsRover, 2005);

Although centralized solutions still have — and will certainly keep — their place
in many areas, it is increasingly obvious that there are a number of problems where
decentralized software is a better option. In some cases it is the only option. It is im-
portant to notice that when speaking of these concepts we are, in most cases, referring
to “a certain degree of decentralization/autonomy” and that the efficient balance of this
degree is always a problem-dependent feature.

The field of Multiagent Systems (MAS) is currently the ground for most of the
research involving this type of software. We will not go into the discussion of “what
is an agent?”. This discussion has been a controversial one in the recent past. Now,
that the dust has settled, there are a certain number of characteristics that seem to be
consensual about this type of software, namely: a relative degree of autonomy in the
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decision process, the ability to, pro-actively, interact with the environment and other
agents and the fact that it is immersed in a “society”.

The MAS area merges the research from several other areas, some of which were
unrelated in the past. One of these is Machine Learning (ML) that was also faced with
the problems and advantages put forth by MAS. Some authors argue that true auton-
omy can only be achieved through adaptability and learning. But, complex MAS, add
several challenges to the, already difficult, problem of single-agent automated learning,
namely:

• Partial observability;
• Non-static environments, due to:

– Constant changes in other agents’ policies;
– External/Unpredictable events;

• Integration of, often conflicting, local solutions;
• Large search-spaces (when considering the information collected by all agents);

Of course most of these problems had already been approached, but they were usu-
ally tackled individually. Their appearance as an ensemble creates a new problem, for
which some of the proposed solutions are ineffective. Given the growth in popularity
of MAS the demand for adequate solutions is now higher than ever. The reviews of
Sen (1997), Weiss and Dillenbourg (1999) and Kazakov and Kudenko (2001) corrob-
orate this view, mentioning learning and cooperation between autonomous agents as
important subjects of research that deserve attention and are likely to become the main
features of this new generation of software.

Several approaches have been attempted for these problems, but none which con-
siders the possibility of joining the efforts of teams that use different learning algo-
rithms by exchanging information between them. The strength of diversity has been
proven in nature as in human societies. Communication was once the main break-
through in human evolution (some say, the main difference between humans and other
animals) and is now a key factor in the advance of science. Is learning in MAS an ex-
ception, or can these two concepts (communication and heterogeneity) be used to our
advantage in this problem too? This work will attempt to take us (and the reader) one
step further, however small it may be, towards an answer to this question.

1.2 Thesis Question

As we mentioned in the previous section there are several new problems but also
new advantages to explore in MAS. One of the main advantages is that there is more
information available in MAS than in traditional ML scenarios. Establishing if/how
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this additional information may be used advantageously to improve an agents’ learning
process is the main concern of this work.

As hinted above the question we strive to answer is: “(How) can heterogeneous
teams of learning agents benefit from exchanging information during the learn-
ing process?” or, rephrasing it as a working hypothesis: Can communication im-
prove agents’ learning performance, for several learning algorithms in a specific type
of problems? Is it possible to enhance the benefits of communication by: using hy-
brid algorithms to integrate information from different sources? using heterogeneous
environments and/or an adequate selection of information sources?

It is important to establish that when we speak of “heterogeneous teams” we mean
that each team may use different learning algorithms. We have not approached the
problems related to heterogeneity of learning algorithms within the group. There are
no restrictions in our proposals that preclude these scenarios, but no effort was done to
investigate or solve the particular problems posed by intra-team heterogeneity.

It is also important to define that our approach is in a middle ground between the
definitions of Concurrent Learning (MAS where each agent learns on its own) and
Team Learning (where teams learn as a whole). These definitions are proposed by
Panait and Luke (2003).

In the course of this research several questions were raised. This report will try to
guide the reader through the problems that emerged and propose a set of solutions that
will be evaluated and discussed. Some of the questions discussed in this work are:

• What information is useful to the learning task, other than the one directly pro-
vided by the environment?

• How can agents select the appropriate information source for a given situation?
• How can different types of information be integrated in an agent’s learning pro-

cess?
• What are the consequences of communication between agents that use different

learning algorithms in similar problems?

Much of the related work, focused on section 3 of this report, only considers parts
of the problem, specific instances of single-agent environments, the use of expert ad-
visors, or situations where all members of a team use similar learning algorithms. In
this work we have tried to broaden the spectrum of possible environments and agent
types. It is likely that specific solutions to some of our test-problems may show a better
performance than our approach. Nevertheless, this study is important and, to the best
of the author’s knowledge, original work.

The problems under scrutiny are related to many others and it is important at
this moment to “draw-the-line” on what is the focus of this research. This work is
not concerned with: explicit coordination protocols, ontologies, social behavior dy-
namics (except for learning-related behaviors), concurrence, synchronization, secu-
rity, non-cooperative/malicious agents, or the solution to the problems of any specific
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application-domain. The experiments were designed with the sole purpose of verifying
the quality of the approach we present in paradigmatic instances of problems in which
several teams of autonomous learning agents may be used to solve similar problems at
different locations.

1.3 Objectives and Approach

Our objective is to improve the efficiency of several teams of learning agents using
communication. We aim at results in which all teams achieve better performances in
scenarios where they are allowed to communicate than in those where this option is not
available.

We study the effects of exchanging of information between agents of different types
during the learning process. In the experiments we made, we use several different
learning algorithms as well as pre-programmed agents with fixed (heuristic) behaviors.
All teams will be attempting to solve similar problems and trying to use communication
with their peers to improve their skills.

In this work we experiment with one well known toy-problem and two simulated
application domains (load-balance and traffic-control), but the model is not restricted
by any particular feature of these application-domains. Other MAS applications can
also use our model, provided that: they learn from environment rewards, and there are
several communicating teams of learning agents, solving similar problems, at different
locations. In our experiments, we have chosen a few learning algorithms to demonstrate
how the concepts could be applied. The choice of these learning algorithms is related
to their adequacy in solving the type of problems we intended to address and with a
concern to cover different types of algorithms, which should lead to a more general set
of solutions. Even though the efficiency of some proposed solutions is algorithm and
problem-dependent, the same concepts can be applied to other problems and learning
algorithms.

Our approach can be used directly in a real environment as much as any learning
solution that depends on learning from errors. We believe, however, that validating this
model requires a cycle that includes simulation, testing and deployment phases. In the
first phase agents would learn in a simulated environment, that follows, as closely as
possible, the dynamics of the real system to which a solution is required. After gen-
erating a set of policies (and possibly using fixed adaptation parameters) the solutions
must be tested in a real environment under strict supervision, either human or auto-
matic or in a more detailed simulation. Finally, if tests prove the efficiency of the new
solutions, these can be deployed on a real situation and the changes in the environ-
ment’s dynamics propagated back to the simulation where a new learning phase would
start. This type of cycle is well known in software engineering but seldom considered
in the automatic employment of adaptable solutions. The evaluation cycle is hinted
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by our architecture although the impossibility of testing in real systems does not allow
us to complete the cycle and determine the efficiency of this solution when applied to
real-life problems. In the experiments reported here all phases run on simulated envi-
ronments, but a new project 1 related to traffic-control, which is currently in its startup
phase, may allow us to go one step further in this ideas.

Another important question related to this approach is its communication cost. We
have not been excessively concerned with this matter, although aware of it. The lim-
its considered for communication were thought of in the perspective of having as few
autonomy restrictions as possible, not in saving bandwidth. It is more important for
us that an agent does not depend on information sent by another to take its decision
than to reduce the total amount of information exchanged. Stone and Veloso (1997) ar-
gue that unrestricted communication between homogeneous agents leads to a scenario
where multiagent learning is similar to centralized learning. We agree with this point
of view, but it is important to make it clear that this is a different situation. The agents
considered in this research are heterogeneous in the sense that an agents’ policy is not
necessarily the best for another agent. A solution where all agents learn the same be-
havior is usually suboptimal and often even a disastrous one. In the situations focused
here each agent must preserve its autonomy and specialize in its own task, even though
there are common points in the agents’ tasks within the team or in different teams. This
is true even if, at first, any agent can fulfill any of the roles, or if the roles are not strictly
defined. In (Stone and Veloso, 1997) only the above-mentioned form of heterogeneity
is considered. In this work we have heterogeneity at different levels: not only are the
agents within a team required to have different policies, but also, each team may use
different learning algorithms. Throughout this text the word “ heterogeneous” will be
used in the broader sense.

1.4 Contributions

The main contributions of this work are: the extension of the results on the effec-
tiveness of communication to different environments, problems and learning algori-
thms; and a set of techniques that are aimed at enhancing the use of multiple sources
of information during learning.

In this work we report our study of the effects of communication between agents
that use different learning algorithms. Nearly all of the previous approaches to this type
of problems considered solely agents that use Q-Learning and/or have expert advisors.
Also, most of the related work focuses single-agent problems, as can be seen in chapter
3. We extend the study to teams that use different learning algorithms, and non-expert
advisors. Another important contribution is the definition of the foundations of an ar-

1The GRICES/CAPES Project, approved for funding in 2005
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chitecture that supports the integration of communication from different sources during
learning.

Along the way several minor contributions were added, namely: the development
of particular types of hybrid algorithms, specially suited for integrating different types
of information; the adaptation of Strongly Typed Genetic Programming/ID3 to real-
valued program trees; the use of other agent’s reward information for the adjustment of
learning parameters; and the exploration of the concept of learning-related trust.

During this study several variables that influence the performance of the exchange
of information during learning were identified and studied, namely: use of batch or spe-
cific of information; online or offline integration; number of advisors; use of heuristic
advisors; heterogeneity of the environment; type of algorithm used in the integration
of external information.

The initial expectations pointed towards the possibility of increasing the speed of
learning and the performance by exchanging information, particularly when using het-
erogeneous environments. It was verified that exchanging information is beneficial, in
terms of speed, performance and reliability for several types of learning agents, but,
contrary to our expectations, the environments’ heterogeneity and other tested tech-
niques did not show the desired effects. This fact is due, mostly, to the near-optimal
performance of agents in most environments where agents are allowed to communicate.

1.5 Reader’s Guide

In this thesis we have tried to present the subject in increasingly complex layers.
The reader will see the same subjects at several points of this discussion and their
descriptions will become increasingly more detailed. Even though it may appear repet-
itive, we believe that the top-down approach is easier to follow given the amount of
details present at the last level (which would, eventually, be the code itself).

Following these introductory notes, chapter 2 describes the standard versions of
the learning algorithms used in our approach and reformulates the learning problem to
enhance the special characteristics of learning in the type of MAS we are interested in
studying. The first section of chapter 2 can be skipped by those familiarized with the
algorithms described in it.

Chapter 3 contains a review of related work, both to give the necessary credits to
those “whose shoulders we stand on” and to situate the reader in terms of the research
conducted in the area in the past decade.

Chapter 4 contains an analysis of the problem, a set of proposals to deal with it
along with the arguments that led us to take these options rather than others. In chapter
5 we define the architecture of the MAS and the characteristics of the agents that com-
pose it. While doing this we present a more detailed explanation of the implementation
of the concepts discussed in chapter 4.



CHAPTER 1. INTRODUCTION 30

In chapter 6 we explain what kind of experiments were conducted, their objectives
and detailed descriptions. Chapter 7 presents and discusses the results achieved. Fi-
nally, in chapter 8, we present a summary of the conclusions and directions for future
work.

Appendix B contains details on the simulators’ design and construction. In Ap-
pendix C we present the full set of results and parameters used in the experiments.
Finally, Appendix D contains a critical review of (Whiteson and Stone, 2004) exposing
a flaw that originated a correction in the above-mentioned paper.

In this chapter we introduced the area of research, the type of problems we are
concerned with and provided the first hints concerning the type of solutions we propose.
We have clearly stated the question we address and summarized the main contributions
of this work. The following chapter is dedicated to an overview of some background
concepts related to Machine Learning and Multiagent Systems.



Chapter 2

Background Concepts

In this chapter we will take a closer look at the type of learning problems we will be
addressing and at some of the tools inherited from Machine Learning (ML) to deal with
these problems. In the first section we will present an overview of standard versions
of the learning algorithms that will be part of the integrated learning process described
in chapter 4. The following section analyses in detail the type of problems we are
attempting to deal with.

2.1 Overview of Learning Algorithms

The most common subdivision of learning algorithms is done according to the type
of feedback they need. When adopting this division we have three main categories:
Unsupervised, Supervised and Reward-based (a.k.a. Reinforcement). A similar divi-
sion can be done in the type of learning problems (although some problems can be
posed in different ways, falling in different categories). These categories are used here
to describe different types of learning algorithms. We use Reward-based to describe
algorithms that can learn from a qualitative feedback, and Reinforcement Learning to
mention a specific family of these algorithms, inspired by dynamic programming (Sut-
ton and Barto, 1987).

Unsupervised Learning: no feedback information, the learning agent’s job is to
divide a set of examples into a certain number of classes according to a given
measure (distance between examples in most cases). The evaluation of the results
depends on the application, although in most cases what is requested is that the
learning agent finds a division that results in a compact and well defined partition
of the example-space.

Supervised Learning: the feedback information is in the form of a desired re-
sponse for each presented example. The agent’s job is to emulate, generalize
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(and in some cases, describe the underlying rules that govern) the behavior rep-
resented by the example-response pairs.

Reward-based Learning: the feedback information comes in the form of a qual-
ity evaluation. When given an example (usually called state in this case) the
agent chooses an action and gets a reward (which may be delayed in time). The
agent’s objective is to maximize this reward, i.e. learn to choose actions that
cause the environment to give high rewards as feedback.

In the the next few chapters we will mention several types of well known learn-
ing algorithms, from two of the types discussed above: Supervised and Reward-based
Learning. We will describe (briefly) the standard versions of these learning algorithms,
so that later on, in chapter 4 we can focus on the changes that were made to integrate
these learning algorithms in our agent’s architecture. Readers that are familiarized with
these algorithms can skip this section.

2.1.1 Backpropagation

Backpropagation (BP) (Rumelhart et al., 1986) is, perhaps, the most well known
Supervised Learning algorithm. The concept is that for a given function (equation 2.2),
which contains a set of real-valued parameters (usually called weights) it is possible
to reduce the mean squared difference between the actual output, F (x̄), for a given
example x̄t, and a certain desired value, d̄, by changing the parameters. The function,
F (x̄), must be differentiable in relation to each of these parameters. This is done as
shown in equation 2.1, using, in this case, the squared difference as error function.

e = ‖d̄− F̄ (x̄)‖/2

∆wj = −α δe

δwj
, (2.1)

In equation 2.1 α represents the learning-rate parameter and δx/δy is the partial
derivative of x in relation to y. ∆wj is the amount added to parameter wj to bring
F̄ (x̄) closer to d̄. The learning-rate, α, is either fixed from the beginning the training
or reduced during training to ensure convergence.

Since, for most functions, it is not efficient to compute these derivatives, BP is
commonly associated with a type of functions for which this computation is efficient.
These functions were called Artificial Neural Networks (ANN), a name that is often
confused with the BP algorithm itself and its variants. ANN are (usually) organized
in layers of computational units that perform a non-linear function of the sum of the
activations of all incoming connections. Given an input x̄ the ANN calculates the
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Figure 2.1: ANN with three, fully connected, layers. Circles represent nodes that sum
their inputs an perform a non-linear transformation, while squares represent input and
output variables. Rectangles group a set of related variables or nodes (layer). The lines
represent links that carry the result of the lower nodes’ computation to the upper nodes
multiplying it by a weight factor.

output F̄ (x̄) in the following way:

y1,j = f(

M0∑

i=0

w1,ij · xi) (2.2)

yn,j = f(

Mn∑

i=0

wn,ij · yn−1,i), 1 < n ≤ N

Fj(x̄) = yN,j ,

where n is the layer number, i and j are the indexes defining a connection between
two nodes in consecutive layers and f(x) is a sigmoid function, of which the most
commonly used examples are: tanh(x) and 1/(1 + e−x). Mn is the number of nodes
in layer n and N is the number of layers of the ANN. The number of nodes in the first
layer (M0) is considered to be the dimension of the input vector x̄. For each node in
all but the first layer there is also a parameter called bias, which is often represented as
parameter 0 of that layer (wn,0j) and it is assumed to be associated to a permanently
activated node, i.e. yn−1,0 = 1, ∀n ∈ {1, 2, ..., N}).

Usually, the adaptation shown in equation 2.1 is not done for each example pre-
sented but accumulated for a set of examples before each change in the parameters.
This is usually referred to as “batch” or “offline” learning, by opposition to “online”
learning where each example-response pair triggers a change in the hypothesis param-
eters.
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Although it was a breakthrough at the time of its creation, the standard implemen-
tation of BP was still a relatively slow procedure, because it required many examples
to be repeatedly presented in order to achieve a reasonable approximation of the de-
sired function. One of the (many) processes found to reduce the training time was
labeled Adaptable Learning Rates (ALR) (Silva and Almeida, 1990). This method
proposes an adaptation, not only of the weights, but also of the learning-rates αj that
are, in this case, different for each of the hypothesis’ parameters. In summary, this
technique proposes that the learning rate is increased when two consecutive adapta-
tions of a parameter point in the same direction (i.e. the sign of ∆wj is the same) and
decreased otherwise. This technique also proposes backtracking and a drastic cut in the
learning-rates when the total error of the network increases during an epoch to avoid
overshooting a local minimum.

We will not go into further detail on BP or ANN here, since this is consolidated
work, but the interested reader is advised to lookup (Haykin, 1999) for an extensive
discussion of all subjects related to this type of learning algorithms.

2.1.2 ID3

The ID3 algorithm (Quinlan, 1986) was created having in mind the supervised
classification of examples composed of discrete-valued attributes. The extension to
continuous attributes was later proposed by Fayyad (1991). The information required
to execute this algorithm is a set of examples, each classified in one of N classes. We
will focus this explanation, for simplicity, in the example of just one class and consider
as positive examples those that belong to the class and the remaining as negative. Table
2.1 summarizes the main steps of ID3.

The main problem is to find the attribute that best classifies the set of examples
E. Each member of E is composed of a vector of values, one for every corresponding
attribute in a. This is equivalent to finding which partition of E into subsets has the
highest information gain. The information gain of partitioning E using attribute a is
defined by:

Gain(E, a) = Entropy(E)−
∑

∀vi

#Evi
#E

Entropy(Evi), (2.3)

where #E is the number of elements in E, Evi is the set of examples in which a
evaluates to vi, and the Entropy function is defined as:

Entropy(E) =
∑

∀c
−pc log2(pc), (2.4)

where c stands for each possible classification of an example from E and pc is the
proportion of elements in E that belong to class c.

Entropy can be seen as a measure of the amount of information contained in a
set. Consider a binary classification and a set in which we know the proportion of
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Table 2.1: Summary of ID3 Algorithm for binary classification, adapted from
(Mitchell, 1997). E stands for a set of examples classified as positive or negative
and A is a set of attributes that compose each example. Node+ stands for a positive
classification, Node− for a negative.

ID3(E, A)
Create new node: Root;
IF all e ∈ E positive, THEN return Root = Node+;
IF all e ∈ E negative, THEN return Root = Node−;
IF A = ∅ return Root = Nodelabel,

where label is the most common value (+ or −) for the examples in E;
LET a = Element of A that best classifies the examples in E (see equation 2.3);
Set decision attribute for the current node to a;
For each possible value (vi) of a:

Create new branch of Root, corresponding to the test a = vi;
Select Evi, the subset of E for which a = vi;
IF Evi = ∅ THEN branchvi = Nodelabel,

(most common classification for the examples in E);
ELSE branchvi = ID3(Evi, A− a);

Return Root

elements of each class it contains. If the set has elements of only one class (minimum
entropy) guessing the correct classification of a random element of the set is trivial.
But, if the elements of the set are evenly distributed through both classes (maximum
entropy), classifying a random element without analyzing it further is a random guess,
with equal chances of succeeding or failing. The objective of ID3 is to reduce the
problem to subsets with the least possible degree of entropy at each stage. The gain
is a measure of the reduction of entropy that can be achieved by partitioning the set
according to a certain attribute. Thus, the attribute a that is best suited to partition a
certain set E is the one with highest gain.

If we want to consider continuous attributes we will need to change the test a = vi

into a function f(a, vi) that returns a boolean value, e.g. f(a, vi) = (a > vi −K) ∧
(a < vi + K) with K > 0. The only restriction is that in all decisions there can be
only one i such that f(a, vi) = true.

2.1.3 Q-Learning

Q-Learning (QL) (Watkins, 1989) is the most commonly used learning algorithm
in the class of Reinforcement Learning which is a subclass of what we have labeled
Reward-Based learning. Its most simple form (one-level Q-Learning), is based on a
table that stores the estimated quality, Q(s̄, a), of performing action a at state s̄, for
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every possible state-action pair. When a reward rt is received, at time t, the value of
Qt(s̄, a) is updated as follows:

Qt+1(s̄t, a) = (1− α)Qt(s̄t, a) + α(rt + βQmax(s̄t+1)), (2.5)

where s̄t+1 is the state of the environment after performing action a at state s̄t, α ∈]0, 1[

is the learning rate and β ∈ [0, 1[ a discount factor applied to the estimated quality of
the next state, that is given by:

Qmax(s̄t+1) = max
a

(Q(s̄t+1, a)), (2.6)

for all possible actions awhen the system is in state s̄t+1. The learning rate α is usually
decayed during training. When prompted to choose an action for a given state the Q-
Learning algorithm will fetch the values of Qt(s̄, a) for all available actions a. There
are several strategies to chose an action given a set of Q-values. The main dilemma is
the exploration/exploitation tradeoff. One of the most used techniques to regulate this
compromise is Boltzmann selection. In this case an action a is selected with probability
p(a|s̄) that is given by a Boltzmann distribution,

p(a|s̄) =
e
Qt(s̄,a)

T

∑
i∈As

e
Qt(s̄,i)
T

(2.7)

where T is a temperature parameter, decayed during training, and As is the set of all
actions available from state s̄. This allows an emphasis on exploratory behavior when
T is high that gradually shifts to exploitation as T decreases.

It is often the case that the number of state-action pairs is too big to represent all
possible combinations explicitly. One of the most popular solutions to this problem is
Connectionist Q-Learning (ConnQL) (Lin, 1992). In this approach the table that stores
Q(s̄, a) is replaced by an approximation function that is trained to map state-action
pairs to its estimated quality. Usually an ANN encodes this mapping using standard
online Backpropagation (section 2.1.1) as an auxiliary learning algorithm. In this case
the update in equation 2.5 is replaced by the presentation of an example-response pair
to the ANN in which the input is the concatenation of the state and action vectors and
the desired output is set to:

d̄t = rt + βQmax(s̄t+1) (2.8)

2.1.4 Evolutionary Algorithms

Evolutionary Algorithms (EA) (Holland, 1975; Koza, 1992) are a well known set
of learning techniques inspired by the processes that rule the evolution of species in
nature. The hypothesis’ parameters are interpreted as a specimen (or a phenotype from
which a specimen can be generated), and its performance in a given problem as its
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fitness. After the evaluation of all the specimens, the ones with best fitness are selected
for breeding. The selected specimens are then mutated and crossed-over to generate a
new population. There are countless variations on the structure of the specimens the
crossover and mutation procedures. The type of EA chosen for our experiments was
inspired by the one used in (Glickman and Sycara, 1999). According to the definitions
in (Kantrowitz, 1997) this approach can fall in two different sub-categories, labelled
Evolutionary Programming and Evolutionary Strategies. Even though Glickman and
Sycara (1999) refer to this technique as a Genetic Algorithm (GA), the use of this term
to define the technique is debatable according to (Kantrowitz, 1997). We have adopted
the broadest category, Evolutionary Algorithms, to avoid possible misinterpretations.

An EA keeps a set of specimens (called population). In each step of its life cycle,
it evaluates all specimens. At the end of each cycle a given number of specimens is
selected for breeding. Glickman and Sycara (1999) use tournament selection. Tour-
nament selection consists in testing a small subset of the population in parallel and
selecting the one with highest fitness (highest accumulated reward) to pass to the next
generation. Tournaments are repeated until the required number of selected specimens
is achieved.

Breeding consists in applying mutation and/or crossover operators to one, or a pair
of, selected specimen(s) to generate a specimen for a new population. The specimens
in this case contain the weights of an ANN with fixed dimensions.

Mutation is done by adding a certain amount to the value of a parameter with a cer-
tain probability (mutation probability). The amount to be added is randomly generated
with normal distribution and zero average. The variance of the distribution will depend
on a learning parameter labelled mutation rate, that is, usually, decayed during training
to ensure convergence.

Crossover was not used by Glickman and Sycara (1999), but there are many strate-
gies to select the partitioning of the parameters in subsets for ANN. For a review on this
please refer to (Salustowicz, 1995; Yao, 1999). The description of our own approach
to crossover as well as other changes made to this approach will be detailed in section
5.2.3.

2.1.5 Strongly Typed Genetic Programming

Strongly Typed Genetic Programming (STGP) (Haynes et al., 1995a) relies on a
process that is very similar to the above description for EA. All steps down to the
mutation and crossover details are the same, but the underlying evaluation function is
different: a program tree. A program tree consists of a number of nodes, which contain
instructions (inner nodes) or class labels (leafs). When evaluated, the control flow
will follow an evaluation path consisting of selection instructions, gated by boolean
instructions leading to a leaf. The label of this leaf will determine to which class the
state belongs to.
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What is particular to STGP, when compared to other Genetic Programming (GP)
approaches, is the fact that it takes into account the input and output types of each
node of the program tree when mutation and crossover are applied. By enforcing these
restrictions it will always generate trees that can be evaluated for all possible input pat-
terns and reduce the search-space eliminating programs that may result either in invalid
or useless evaluations. Another interesting characteristic is that problem-specific func-
tions can be inserted into the instruction nodes. For example, if the designer thinks that
a certain combination of values of the state can be useful, he can code it and make it
available to the STGP algorithm. The algorithm will use it as it sees fit in the generation
of new programs. It is far easier to program, for example, the norm of a state vector,
than to expect a search mechanism to “discover” it on its own by random combination
of sums and multiplications.

The initial trees are randomly generated, respecting the restrictions posed by the
types and with a given (pre-set) probability of generation for each node type. The
root-node is always a selection instruction to avoid trivial trees (e.g. with a leaf as
a root node). The maximum depth can also be pre-set to restrict the complexity of
the generated trees. When maximum depth is reached the generation of a leaf node is
forced.

Trees are mutated by applying a mutation operator to each node. If a given random
number (uniform in [0,1]) is smaller than the current mutation probability the node will
suffer a mutation. The type of mutation will depend on the node it is applied to. Nodes
with subtrees can delete and regenerate them (using the same procedure as in random
initialization); Nodes containing data can change it, e.g. by disturbing a constant value
with a certain amount of noise; A node can also change the type of function it performs,
as long as the input and output types are maintained.

Crossover is usually done by selecting subtrees from different parents and pasting
them into a new tree, always respecting the nodes’ input and output types.

We have reviewed in this section some specific instances of algorithms used in the
past to deal with learning problems in different ways. Now we will focus our attention
in the type of problems we will study.

2.2 Learning in Multiagent Systems

The most concise, and broadly accepted, definition of learning in ML is:

“A computer program is said to learn from experience E with respect to
some class of tasks T and performance measure P , if its performance at
tasks in T , as measured by P , improves with experience E.”

in Machine Learning, by Tom M. Mitchell (1997)
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This definition, due to its generality, does not describe well enough the characteristics
of the learning problems we will be dealing with. We will now detail this definition
to highlight these characteristics and achieve a better understanding of the problem we
are facing.

The learning problem faced by an agent i is to maximize the average rewards
achieved in given time periods, by learning to map each observed state, s̄i,t, to an
action, ai,t. Time is measured in discrete units, which we will call turns. An epoch
contains a fixed number of turns. This can be generalizable to other types of learning
if we think of the state as an example, the action as a desired response and the reward
as a quantity that is inversely proportional to the error.

The mapping of states to actions is done according to a policy (πi). The snapshot
of a policy at a given time t, is a function:

ai,t = πi,t(s̄i,t), (2.9)

where ai,t is an element of Ai,t, the set of available actions at time t that may depend
on the current state.

But the function πi,t hides a few details. Each agent i, at a given time t contains
a set of adaptable parameters,Hi,t, called hypothesis and an evaluation function Fi()
that performs the mapping of states and hypotheses to actions:

πi,t(s̄i,t) = Fi(Hi,t, s̄i,t). (2.10)

Fi itself contains a set of parameters that are usually fixed throughout the learning
process, such as the size and structure of an ANN, or the step used to discretize the
state-space when building a Q-table. Some of these parameters may be interpreted
as a part of the hypothesis if the learning algorithm is allowed to alter its value. Fi
can also be a composition of several functions and it is not necessarily deterministic.
Many evaluation-functions return a vector (āi,t) that characterizes the adequacy of each
possible action as a response to state, s̄i,t. In general, an action is more adequate
than another if it can generate higher rewards or contribute to its generation in the
future. The choice of a particular action, ai,t, based on the information contained in
āi,t can range from simply selecting the action with maximum adequacy, making it a
deterministic choice, to considering the choice of all actions with a probability that is
proportional to their adequacy, as exemplified for Q-Learning in section 2.1.3.

The state, s̄i,t, is a subset of the global state, Sl,t, on a certain location, l. An envi-
ronment contains several locations. The subset of Sl,t that is taken into consideration
when calculating the observable state for agent i may be related to its role in the team,
its current geographical position, etc. Each location contains a team of agents, each
with its own view of the problem. We will refer to the agents in the same location as
partners and the agents in different locations as peers.

Sl,t+1 = T (Sl,t, Al,t,Ul,t). (2.11)
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The global state’s transition to Sl,t+1 depends on: the previous state, Sl,t; the actions
of all agents, Al,t = ∪aj,t, ∀j ∈ Φl, where Φl is the set of all agents acting in location
l; a set of external events, Ul,t. The external events are, for example the number of data
packets generated by the users of a system in a given time interval or the number of
cars entering a certain location in a given period of time.

The only restriction we pose to the structure of the state is that its features have
the same meaning for all agents, for example: the first feature represents the distance
to the closest partner in the upper-left quadrant of the agents’ sensing field. This is
essential to allow communication of state vectors between agents. This restriction can
be relaxed when using the concept of roles, defined in section 5.2.6. In this case, only
agents with the same role are required to have the same state-structure. The agent itself
can pre-process the state to adapt the data to its own learning algorithm, although when
communicating with others it must always respect the environment’s format.

Based on an evaluation of a subset of state Sl,t+1 (mainly, but not only, in the subset
s̄i,t+1) the environment will calculate the agents’ reward for each action.

The environment can also evaluate a team’s policy calculating the team reward
achieved by the team controlling location l. This is calculated based on a subset of Sl,t.
The subset of features used to calculate the team’s reward can differ from the union
of the subsets used to calculate the agents’ rewards, although they should be as highly
correlated as possible.

It is fundamental that the environment supports these two types of rewards so that
different types of learning algorithms can be used. While some algorithms use rewards
that are associated with a certain state (or state-action pair) and rely on their internal
structure to measure the long term effects of their actions, others measure only the
performance of full policies. The relative effectiveness of both techniques depends on
the problem, but since one of our main goals is to assert the possible benefits of different
approaches it is imperative that both types of rewards coexist. Panait and Luke (2003)
provide an interesting discussion of the consequences of using each of these types of
rewards.

The combined reward, at the end of epoch n, can be seen as a combination of
several components:

Ri,n = α1

tf∑

t=t0

ri,t/(tf − t0) + α2

tf∑

t=t0

rl,t/(tf − t0) + α3rl,n + α4ri,n, (2.12)

where t0 is the start-time of epoch n and tf its ending, and the reward components are:
the immediate-individual reward, ri,t; the immediate-team reward, rl,t; the long-term
individual reward, ri,n; the long-term team reward, rl,n. The αj parameters are the
weights of each component. But it is not always possible, or useful, to define all the
components of the reward. These components should be highly correlated and in most
cases this may allow a simplification of equation 2.12 loosing as little information as
possible.
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The easiest component to determine is, usually, rl,n because the designer knows
what is the long-term objective of the team, but this information alone often poses
difficulties to learning, specially for algorithms such as QL. It is important to have
some immediate information. If this information was also team-related we would have
a system in which agents were strictly bound to maximizing the teams’ reward, i.e.
with no possibility of acting in their own best interest even if that did not hurt the
team’s performance. We have adopted a balanced simplification of equation 2.12:

Ri,n = α

tf∑

t=t0

ri,t/(tf − t0) + βrl,n, (2.13)

where the weights α and β, whose sum is 1.0 if the magnitude of the components is
equal, control the relative importance of teamwork and long-term evaluation versus
immediate and individualistic behavior.

It may be important for the agent to know the value of each component of the
reward. When both terms of equation 2.13 increase consistently due to a change in
policy, the agent is definitely going in the right direction. Conversely if both terms
decrease the new policy is clearly worse. When the first term increases while the second
decreases, the agent is being greedy, either in terms of seeking immediate payoff or
by exploring its partners behavior. It is increasing its own immediate reward at the
expense of long-term rewards or its teams’ performance. In the opposite situation (first
term decreases and second term increases) the agent is sacrificing its individual reward
for the common good and/or to obtain better long-term performance. By ignoring
or changing the weights of the several reward components the systems’ designer can
decide what type of behaviors are more adequate.

In real systems it is common that a long-term evaluation of a a team’s performance
is easier (and more precise) than the evaluation of each agent’s individual response to
every state. This is specially true when actions may have long term consequences. It
is, for example, difficult to evaluate the impact of switching a traffic light to green for
a 20s period. It is easier to evaluate the performance of a control policy in a bounded
area over a fixed period of time, knowing that, during that period, the system was under
a certain load. In this problem there is a balance to be attained. Even though the global
reward is a more exact (less noisy) evaluation, the local reward is easier to learn from,
because it is more closely related to the state observed by the agent and its last action(s).

Considering unobserved elements of the global state in the computation of the re-
ward and state transition causes a problem known as partial observability, which is a
common feature of most real MAS. The main causes for this are:

• The need to keep some information private;
• The impossibility of dealing with all the variables that are relevant for state tran-

sition;
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• The impossibility to measure some variables directly, or even to know which of
them are relevant;

One of the main differences between this formulation and most others is that the
reward is calculated externally and not by a critic module inside the agent. This was
a natural consequence of calculating the rewards based on more than just the infor-
mation explicitly available to any given agent. The presence of an external evaluator
and team rewards may be considered a partial centralization but there may be good
reasons to keep the critic outside the agent’s scope, such as: ensuring the privacy of
some information used to calculate the reward or limiting the access to certain sensors.
In situations where no environment infrastructures are present, the individual reward
evaluation would necessarily be done by the agent itself and the team reward could be
estimated by communication with immediate neighbors. In this case, the need to syn-
chronize the gathering of rewards could cause the same autonomy problems that are
often criticized in semi-centralized solutions.

The problems caused by partial observability are similar to the consequences of
external events. These factors, from the agent’s point-of-view, cause the reward and
state transitions to be stochastic, turning their environment into a non-static world. In
other words, there is no guaranty that choosing a certain action in the presence of a
certain state will lead to the same reward as it did in a previous case. The agent can
only learn the reward distribution achievable for a certain observed state and not the
exact reward that it will achieve.

In non-static environments, agents, when starting from a certain state s̄i,t0 , will
have a certain probability p of getting each possible reward, by applying a given policy
πi, so the best policy π∗i is the one that maximizes an estimated reward R̂i,n in the
future:

R̂i,n(s̄i,t0, πi) =
∑

k

(R̂i,n,k · p(R̂i,n,k|s̄i,t0, πi)) (2.14)

π∗i = argmax
πi

(
∑

n≥n0

(λnR̂i,n(s̄i,t0, πi))) (2.15)

where k takes a different value for all possible rewards and λn is the discount applied
to future rewards.

When the action choice is deterministic π is a mapping of states to actions. In cases
where stochastic action selection is required π is a mapping of states to probability
distributions over possible actions.

The direct determination of p() (from equation 2.14), considering all these vari-
able conditions and the number of possibilities, is unthinkable, except for very simple
problems. It becomes specially difficult when R̂i,n is not discrete, which turns the
sum in equation 2.14 into an integral. Most learning algorithms abstract away many
of these components and concentrate on finding the direct mapping of state-action (or
state-policy) pairs to rewards.
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The learning algorithm changes the parameters (Hi,t) (Eq. 2.16), to find the set of
parameters (H∗i ) which lead to a behavior that collects the highest possible reward.

Hi,t+1 = Li(Bi,Hi,t, Ei,t). (2.16)

We will refer to the current best estimate of H∗i as Ĥ∗i . The learning function (Li)
changes the hypothesis, based on the current value of Hi,t, a set of learning parame-
ters (Bi), such as learning-rates, and on previous experience (Ei,t). Each element of
Ei,t includes the state, action and reward experienced at a given time in the past, i.e.
ei,t = {s̄i,t, ai,t, ri,t}. An experience tuple can be extended with further information,
such as: its source (because it could have been generated by a different agent than the
one that is using it), the epoch reward achieved when this action was used, the state
after a the action was completed, etc. We will go deeper into the possibilities of ex-
tending this information in chapter 4. The function Li needs not to be unique for each
agent, to be exact it should be represented as LK,i, where K represents the learning
algorithm used. Different learning functions can be used to change the same hypothe-
sis parameters, depending, for example, on the source or type of information they are
using. The interaction between different learning functions over the same hypothesis
requires some care, but there are many reports of successful integration of learning
functions in the literature, some of which are mentioned in chapter 3.

In order for cooperation to be possible it is important that all teams of agents are
facing similar problems. In this case we assume that the state-space, the possible ac-
tions and the reward functions are the same in all locations. What differs from one
location to the other are: initial conditions, state transitions and external events. These
variations, along with different partner behaviors, are the causes for the different dy-
namics of each location.

Notice that we have not made any assumptions regarding the convergence of agent’s
objectives. All we assume is that all agents that can be contacted are willing to share
their knowledge. In adversarial environments it would be likely that agents in the same
location would withhold information. This is only a problem if there are no other teams
in other locations, a scenario that contradicts our initial assumptions. In our environ-
ments there is a mix of cooperation and competition. The tasks require that all agents
work together and cooperate, but there is also a certain measure of competition for lim-
ited resources. An agent must make the best of the available resources to maximize its
performance, without causing its exhaustion, which usually leads to high penalties in
the team rewards.

We have not considered the possibility of malicious intents of some agents, al-
though the use of trust (see chapter 4 for details) can overcome this problem.

The elements of the language, used in agent’s communication, may be a simple
set of keywords that refer to the type of information that follows, for example, the
meanings of: Individual Average Reward and Team Reward must be understood by
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all agents in order to question the environment or other peers about ri,t and rl,t. The
matters related to the types of data to be exchanged will be discussed in chapter 4. We
will not, however, define an ontology or specific protocol since the requirements in
these aspects are very simple and most existing communication protocols meet these
requirements.

In this section we described the type of learning problems we are interested in, their
main difficulties and the assumptions we make regarding environments and agents. We
will proceed by analyzing in more detail the main difficulties this problem presents.

2.3 The Problems of Learning in MAS

It is apparent from the description in section 2.2 that learning in these environ-
ments presents several problems. From the agents’ point-of-view the environment is
non-static. This is caused by: partial observability; changes in partners’ policies; ex-
ternal events. These factors were examined in the previous section. In addition, there
are difficulties in policy coordination and transferring knowledge between different
learning algorithms. In this section we will discuss these problems in more detail.

2.3.1 Continuous Policy Changes

Learning requires continuous change in search of better policies. When this is done
by all agents in a team, simultaneously, it is defined as co-learning (Panait and Luke,
2003). In MAS this causes the environment’s dynamics to change from each agent’s
point-of-view. If we assume that observability is limited and agents are autonomous, it
is not possible for an agent to be aware of the state of its partners or of the changes in
their policies. For this to be true, the information necessary to make a decision would
be far too large and all agents would be trying to solve the whole problem, instead of
solving only their part.

The main consequence for learning is that the optimal policy is a moving target.
This can be dealt with in two ways, either restricting the possibility of changing the
policy in some agents, during certain times, to make the system more stable, or de-
signing systems that can quickly react to environment changes. Both solutions have
disadvantages, the first will limit the agent’s learning capabilities, its autonomy, and
will require a certain degree of synchronization, the second generates a very difficult
tradeoff. An agent should be stable enough to avoid changing its policy due to ab-
normal sequences of events that have a low probability of happening again, but still
react promptly to lasting changes in the environment or new opportunities to increase
the reward. It is, however, difficult to differentiate, in the short-term, situations where
agents will have to deal with new environment’s dynamics and those that are temporary
effects. The reaction time must be carefully chosen.
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2.3.2 Policy Coordination

Policy coordination is highly related to the problem we examined in the last section
and also to the type of MAS we are dealing with. MAS learning is often divided into
competitive and cooperative. If agents’ have conflicting interests and can only increase
performance by the loss of performance of others (as in zero-sum games) the task is
competitive. When the increase in one agent’s performance will lead to an increase in
the team’s performance the task is cooperative. However, in most situations (the ones
we consider here) there is a mix of interests. Without coordination the performance of
all agents will drop considerably but, to a certain extent, agents need to maximize their
use of the resources.

Tragedy Of the Commons

Let us see how this works in a practical situation. Consider an instance of a load-
balancing problem where we have two servers and two load-balancers. One of the
servers is relatively faster than the other but not fast enough to serve all requests made
by the two load-balancers. If both clients use the best server they will have lower per-
formance than if one was using the slower server. It is obvious that one of the agents
must sacrifice its performance or that both will need to balance the number of requests
they make to the faster server to reach a good performance. The key factor, in global
terms, is to use the full capacity of the faster server, but if the systems’ designer also
aims at fairness, this capacity must be used by both agents (either equally or propor-
tionally to their respective loads). This problem is known as the “Tragedy of the Com-
mons” (TOC) (Wiering et al., 1999). The TOC occurs when all agents are competing
for a limited resource and the optimal level of usage of this resource is lower than the
sum of their work. An individual policy that chooses to use only the best resource is
only good as long as the number of agents using the same policy is below the resource’s
capacity. If all agents choose the same “good” policy, they may overuse the resource
and be penalized. Still, self-interested agents should strive to acquire as much of the
resource as possible.

We may consider the problem of policy coordination similar to learning in a very
large state-space, if we see the team as a whole, but with an added difficulty: different
parts of the system may be pushing in different directions to optimize the individual
component of their rewards.

The solutions to this problems are mostly related to reward design. It is important in
these situations to share a global reward, or that the reward has global component, but it
is difficult to learn from this type of rewards because it has a low correlation with each
individuals’ states and actions. So a balance must be struck between the learnability of
local rewards and the ease of coordination that can be achieved with global rewards.

As we can see from the TOC example, it may be important that agents in a team
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have different policies, i.e. fill different roles in the team. The use of roles is another
tool to deal with the problems of policy coordination.

2.3.3 Knowledge Transfer

The problem of transferring knowledge from one agent to the other, regardless
of the learning algorithm used, has several difficulties. On the basis of these is the
different representation used for knowledge. Different types of representations (and
evaluation functions) have different capabilities and each type of learning algorithm is
more adapted to deal with certain types of data or rewards.

Evaluation Function Bias

In some situations, it may be nearly impossible to transfer knowledge from one
agent to the other. For a trivial, but elucidating, example consider the case of the
XOR problem. A table-based Q-Learning algorithm will easily learn to map pairs of
binary digits to the result of a XOR operation between them. An ANN may, depending
on its inner structure, not be able to represent this knowledge at all. This is a very
simple example that would easily be overcome by restructuring the ANN, but we have
found more complicated versions of this type of behavior. Some policies learned by
QL-agents, where neighboring states often require different actions, are very difficult
to model by knowledge structures that assume a certain degree of smoothness in the
mapping they are required to do. Conversely, in problems where there are vast regions
of the state-space where the best action is the same, ANN-based algorithms quickly
find good solutions, due to their generalization capabilities, while Q-Learning must
explore each and every possible state-action pair before a good mapping is learned.
This is both a problem and an opportunity.

Even though most learning algorithms use functions that are, in some way or an-
other, universal approximators (i.e. can approximate any function with an unlimited
degree of precision), this guaranty usually comes with a set of restrictions, such as
an unknown number of parameters, or the foreseen smoothness of the target function.
The more a function is biased to solve a particular type of problem, the less it will
be adaptable enough to approximate different target functions. Given a limited (finite)
number of parameters there are always limits to the representational capabilities of any
evaluation function. Again, having more information can be used to counter this effect.
If an agent has enough information and autonomy to change its learning parameters, it
can reduce some of these problems, for example, by changing the structure of its ANN
during training, or by replaying information from other sources to increase the number
of visited states (in the case of QL). Ultimately, an agent could even decide what learn-
ing algorithm it must use to deal with each problem based on information from other
sources, although we do not explore this path.



CHAPTER 2. BACKGROUND CONCEPTS 47

On the one hand we see that some agents could, in some cases, help others in their
exploration by transferring their generalizations but, on the other hand, we may find
situations where knowledge is not transferable at all.

Common Format

Storing knowledge in a common format, readable by all, is an interesting research
subject, but it is doubtful that a format exists that is easy to produce and integrate by
all learning algorithms. Even if it did exist its generation would introduce another bias
in the hypothesis. Nevertheless, if the agents have the appropriate structure, they can
send the best hypothesis’ parameters along with the information necessary to build an
evaluation function similar to that of the advisor. Then, they an use this “copy” of
the advisor’s function to generate the advice information and integrate it in their own
knowledge structure. This would significantly reduce communication and eliminate the
need for synchronization. Ultimately, an agent could switch between different evalua-
tion functions using the one best suited for each state, in a similar way to the approach
defined in (Powers and Shoham, 2005), and with similar disadvantages (see section
3.2.2 for details).

Specialization

Another problem in transferring knowledge is that the specialization acquired for
a certain location may not be adequate for another, i.e. the same policy can have dif-
ferent consequences when used at different locations. The selection of the source of
information is the key to overcome this problem. Another technique to minimize this
problem is to synchronize information requests between members of the same team.
This will limit the problems of learning a policy that does not match the other agents’
in this area, but it may also limit the emergence of new global solutions that combine
useful aspects of different advised policies.

As we can see there are many difficulties. Some are well known from previous work
in single-agent problems, others appear only when agents must work in a team, or when
they are endowed with the ability to communicate, others yet are a consequence of the
complexity of the environment they are facing. For every expansion of the complexity
of a learning system, new difficulties appear, but also more tools are available to deal
with these difficulties. Our purpose is to study how the use of some of these tools can
improve the ability of agents to cope with the new problems. This will be the subject
of chapter 4. But before that, in the next chapter, we will see how other authors dealt
with some of these problems.



Chapter 3

Related Work

In this chapter we summarize the research that focuses on learning using both, re-
ward and other sources of information. We also browse through some of the most inter-
esting concepts related to hybrid learning algorithms, team-learning, trust and online-
adaptation of learning parameters. This chapter is divided in two main sections, one
that covers closely related work in Q-Learning, dating from the early nineties, and an-
other that browses through current related work. Our work touches many points that
were previously subject of research on their own. A full review of each of these subjects
would be too long to include here. Therefore, in this chapter, we make a brief summary
and comment of the main related references, going a little deeper in the analysis of all
work where teams of agents learn from sources other than the environment’s reward.
Given the vast amount of related work the choice of what to focus on was a difficult
one. The main criteria, apart from its relation to our work, was the visibility (for the
most recent works) and its relevance (for the older works), which was estimated by the
number of citations seen in related papers.

The research subtopics that support this work range from hybrid learning to the
development of trust relationships between agents. Some of these subjects were ad-
dressed from different perspectives since the early days of ML research. Approaches
such as Bagging, (Breiman, 1996), Boosting, (Schapire, 1990; Freund and Schapire,
1996) and Cascade Generalization (Gama and Brazdil, 2000) tried to capture the ad-
vantages of having several different learning systems, usually called experts in this
context, dealing with the same problem (or with different parts of it). These techniques
proved often to be more successful than using a single expert. They were, however,
designed for supervised learning, which is not the case of the type of problems we are
facing here. Furthermore, the components are regarded as a single learning system, not
as a cooperating group of autonomous entities.

Hybrid approaches that mix different learning algorithms were also subject of re-
search: Counterpropagation Networks (Hecht-Nielsen, 1987) and Radial Basis Func-

48



CHAPTER 3. RELATED WORK 49

tions (Moody and Darken, 1988) mix supervised and unsupervised learning; Hybrids of
Backpropagation (BP) (Rumelhart et al., 1986) with Genetic Algorithms (GA) (Hol-
land, 1975; Koza, 1992) are also reported in many research works. For a review on
these the reader can refer to (Salustowicz, 1995; Yao, 1999). The great majority of this
work was, however, aimed at solving Supervised Learning problems.

The above mentioned techniques are related to parts of our work, but the first re-
search that clearly focus on using communication between autonomous learning agents
in reward-based scenarios appeared in close relation to Reinforcement Learning (RL)
(Sutton and Barto, 1987) and its most popular variant: Q-Learning (QL) (Watkins,
1989) (defined in section 2.1.3). In the early nineties several researchers made impor-
tant contributions in this direction. This will be the focus of the next section.

3.1 Early Related Work (1990-94)

The work on information exchange between QL-agents (agents that use QL as a ba-
sis for their learning skills) started with the contributions of (Whitehead, 1991; Clouse
and Utgoff, 1991, 1992; Lin, 1992) and (Tan, 1993).

Whitehead created two cooperative learning architectures labelled Learning with an
External Critic, (LEC) and Learning By Watching (LBW). In the first (LEC) the learner
uses the help of an expert agent to bias the search procedure. In normal Q-Learning
the values considered when deciding which action to take in a certain state s̄ are the
estimated qualities for all possible actions ai, Q(s̄, ai). In this case the agent considers
a sum of these values with a quantity, B(s̄, ai), called bias. This quantity is updated
using information sent by an expert teacher. When a certain action ai is advised by the
teacher, B(s̄, aj) is added a certain quantity +K if i = j, or −K otherwise, where
K is a fixed positive value. In the second architecture the agent learns by watching its
peers’ behavior (which is equivalent to sharing series of state, action, quality triplets).
In LBW an agent will use other agents’ episodes as if they were its own. This work
proves that the complexity of the search mechanisms of LEC and LBW is inferior to
that of standard Q-Learning (drops from exponential to linear) for an important class of
state-spaces. The state-spaces considered are required to be one-step-invertible (each
action has a reverse) and uniformly k-bounded (all states can be reached in, at most, k
steps). The main problem with LEC is that the expertise of the teacher agent is critical.
A suboptimal teacher may lead to worse learning performance than when no advice is
used. In the LBW architecture there are two major drawbacks: it requires that all agents
are engaged in exactly the same task and that there is full observability, or unrestricted
communication between teacher and student.

The results presented in (Clouse and Utgoff, 1991, 1992) are reviewed and ex-
panded in Clouse’s Ph.D. thesis (Clouse, 1997). This important contribution reports
the results of a strategy labeled Ask for Help (AH), in which QL-agents learn by asking
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their peers for suggestions and imitating the suggested actions. Clouse proposes two
different approaches for the problem of deciding when to ask for help: in the first ap-
proach the advisee asks for help, randomly, for a given percentage of the actions it has
to take; in a second approach the agent asks for help only when it is “confused” about
what action to take next. Confusion is defined as having similar quality estimates for all
possible actions that the agent can perform at a given stage. Several variants on the AH
architecture are tested in two types of problems: mazes and the “race track problem”.
Clouse concludes that the integration of QL and selective imitation achieves better re-
sults than each of its constituents separately. However, this solution uses only direct
imitation, and the advisee has no choice over different advisors. In the experiments it
was proved that AH is not sensitive to random suboptimal advice, up to a certain level,
but when getting advice from other agents, specially if advice is coming from a single
source, suboptimal advice is not randomly distributed. Consistent errors in a part of
the policy are likely to lead the system into a suboptimal response early in the training
and hinder exploration. There are two other important differences between AH and the
solutions proposed in this work: AH was employed in problems that can be solved by
a single agent and not by teams; AH can only be used by QL-agents, the extension of
this method to other learning algorithms is not foreseen in Clouse’s work.

The work presented by Lin (1992) uses an expert trainer to teach lessons to a QL-
agent that is starting its own training. Lin experimented with several architectures, the
most interesting for the current subject is QCON-T (Connectionist Q-Learning with
Teaching). This architecture records and replays both “taught” and “learned lessons”,
i.e. sequences of actions that led to a success. The “taught lessons” are given by
an expert trainer (human or automatic), while “learned lessons” are recorded by the
student agent as it explores the problem. The student will replay the actions backwards
to reduce the number of iterations necessary to propagate the influence of discounted
rewards. Among other things, this work reports that the ”advantages of teaching should
become more significant as the learning task gets more difficult” (Lin, 1992, section
6.4). Results in variants of the maze problem show that replay of taught and learned
lessons does improve learning performance in the harder task, although it seems to
have no effect on the performance of the agents on the easier task. As in the previous
case these methods were tested in single-agent problems and focus exclusively on Q-
Learners.

Tan (1993) addressed the problem of exchanging information between QL-agents
engaged in teamwork. This work reports the results of sharing several types of infor-
mation among agents that are working in the pursuit (a.k.a. predator-prey) problem. In
these experiments QL-agents shared policies (internal solution parameters), episodes
(series of state, action, quality triplets), and sensations (observed states). The conclu-
sions are: ”a) additional sensation from another agent is beneficial if it can be used
efficiently, b) sharing learned policies or episodes among agents speeds up learning at
the cost of communication, and c) for joint tasks, agents engaging in partnership can



CHAPTER 3. RELATED WORK 51

significantly outperform independent agents, although they may learn slowly in the
beginning” (Tan, 1993, in Abstract). The research directions followed in Tan’s work
are very similar to the ones in which this research is based, although Tan uses only
QL-agents with a comparatively simple architecture and it does not focus the problems
selecting the information to be used in each case.

The work on exchange of information between QL-agents continued in several
fronts. The following section will, briefly, point to some of these approaches.

3.2 Recent Contributions

3.2.1 Transfer of Knowledge from Different Problems

Thrun and Mitchell (1995) approached the problem of exchanging information dur-
ing learning in a general way. Their work, in the context of lifelong robot learning, aims
at transferring knowledge about generic problem solving strategies between learners.
The rationale is based on the fact that humans do at times generalize the solution to
a problem from just a few examples (or even from a single example), often based on
previous experience with other problems. This meta-generalization is extremely inter-
esting when considering an agent that has to learn a great variety of concepts during
its “lifetime”. Thrun uses Connectionist Reinforcement Learning (ConnRL), mapping
state-action pairs to quality with Explanation-Based Neural Networks (EBNN). Pre-
vious knowledge is used to bias the generalization in the training of EBNN and it
effectively reduces training times. The authors consider only single-agent learning and
the problem of choosing the most appropriate source for this knowledge, when several
possibilities are available, was not considered.

Taylor and Stone (2004) follow the same path. In their work they effectively trans-
fer knowledge between two reinforcement learners, reducing the training time when
compared to agents that do not use knowledge transfer. One agent (the teacher) has
learned to perform a certain task while the other (the student) is learning to perform a
similar task. In this case the state and action sets of teacher and student need not be the
same. Transfer is accomplished by defining a transfer function that was specifically
designed for a particular application (labelled Keep-away, a sub-task of Robotic Soc-
cer). The main drawback of this technique is the specificity of the transfer function,
which is relatively easy to design for the tasks used in this experiment, but may not be
in other situations.

3.2.2 Multiagent Reinforcement Learning

Multiagent Reinforcement Learning (MARL) has been a very active research area
in the recent past. Shoham et al. (2003) present an interesting discussion and critic



CHAPTER 3. RELATED WORK 52

view on some of these techniques. We will look into their opinions after summarizing
the main approaches to this problem.

A very broad review of Cooperative Multiagent Learning can be found in (Panait
and Luke, 2003). This survey is a good aid in identifying starting points for biblio-
graphical research in the several sub-areas covered.

The first reference to the concept of MARL is in the work of Littman (1994) where
QL-agents are used to solve (i.e. attain optimal equilibrium in) two-player, zero-sum,
games. This approach was labeled Minimax-Q and, even though it is still a reference,
it was soon challenged by other authors due to its restricted applicability and slow
convergence in empiric tests.

In (Claus and Boutilier, 1998) the authors define the concept of Joint-Action Learn-
ers (JAL). JAL are QL-agents that learn, each on its own, the quality of joint actions.
A joint action is composed of an agents’ own action plus the actions chosen by all its
partners at a given time. The main drawback of this approach is that it presupposes
full observability of the actions done by all agents in the team or the construction of a
model of other agents’ behavior. Also, as pointed out by Bowling and Veloso (2001),
the application of this technique in homogeneous MAS results in all agents multiplying
efforts to learn the same mapping.

Hu and Wellman (1998) proposed a different update rule for Multiagent Q-learners
labeled Nash Q-Learning in which the update of the quality values is made under the
assumption that all other agents will adopt an equilibrium strategy in all future actions.

Bowling and Veloso (2001) proposed an algorithm, Win or Learn Fast - Policy Hill
Climbing (WoLF-PHC), based on two characteristics that are, in the authors’ view,
desirable for a learning agent when in the presence of others, namely:

Rationality: Convergence to a policy that is the best response to other agents’
policies;

Convergence: All agents must necessarily converge to a stationary policy.

An interesting characteristic of WoLF-PHC is that agents are not required to ob-
serve the behavior of their counterparts as in JAL. WoLF-PHC attempts to learn fast
when loosing and slowly when winning, accomplishing this by changing the learning-
rates appropriately.

Also related to this research, is the work of Kapetanakis and Kudenko (2002) that
proposes an optimistic heuristic Frequency Maximum Q-Value (FMQ) that uses an ex-
tra term in the action selection, along with Q(s̄, a), that benefits actions that produce
a maximum reward with high frequency. As in (Bowling and Veloso, 2001) this algo-
rithm does not require full observability of other agents’ actions.

The term Joint Learning was used by Berenji and Vengerov (2000) when refer-
ring to agents that update concurrently the same quality values, in a similar way to the
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LBW approach referred above. These authors presented a study of a “fuzzy” variant of
multi-agent Q-Learning in which agents cooperate during learning by updating a com-
mon quality table. Their work provides theoretical and experimental evidence that, for
a wide class of problems, a group of cooperative learners will outperform independent
learners, i.e. N communicating agents achieve better results in M steps than one agent
will achieve with the same amount of experience (N ×M steps). Even though these
are interesting results, the update of a common quality table will prevent local special-
ization and severely hinder agent’s autonomy, not to mention the possibility of causing
a communication bottleneck.

Shoham et al. (2003) provide us with a good discussion of the directions taken in
the recent developments of Multiagent Q-Learning. The main argument is that, in the
authors’ opinion, too much attention is being dedicated to Nash equilibrium. Nash
equilibrium consists on having a set of policies, one for each agent in a team, such that:
if any agent would decide, individually, to change its own policy, while all other agents
maintain theirs, this decision would inevitably reduce its future reward. In this paper,
Shohoam et. al. advocate that the focus of the work in Multiagent Reinforcement
Learning should change to match the four agendas they propose, namely:

Human Agenda: How do humans learn in face of other learners?
DAI Agenda: What procedures should be used by a central designer when defin-

ing the (possibly adaptive) behavior of a group of agents?
Equilibrium Agenda: When does a vector of learning strategies form an equilib-

rium?
AI Agenda: What is the best strategy an agent can play for a fixed class of the

other agents in the game?

In the sequence of this work Powers and Shoham (2005) define a specific set of
criteria, which all learning systems should meet in order to be useful, and propose
a Meta Strategy approach. This approach consists (putting it simply) in switching
between different known strategies according to a number of pre-specified conditions.
The authors not only prove theoretically that the conditions they have put forth are met
by this Meta Strategy but also run an extensive set of tests on fully observable, two-
player, repeated games, matching their strategy against most of the other known fixed
strategies and learning algorithms. The results are surprisingly good in all respects
(even more so than the theoretical guarantees) overpowering all other strategies in a
vast majority of the cases. Future work points to the extension of this approach to
n-player games and eventually to any type of stochastic games. In our opinion this
extension will raise a question that was not approached in this work, and is possibly its
main flaw: the difficulty in creating a fixed set of rules that is efficient in a larger set of
problems.
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3.2.3 Advice by Humans and Automated Experts

Many researchers have focused on the use of human advice, or pre-programmed
teachers, to help QL-agents.

Gordon and Subramanian (1993) provide high-level, human, advice in the form
of rules that are later optimized by a Genetic Algorithm (GA). The technique was
tested with experiments in navigation problems. They concluded that, although the
combination of procedures did improve performance in some tests, its success was
highly dependent on how the advice biased the GA search.

Following a similar path, the work of Maclin and Shavlik (1996) uses connection-
ist QL with Knowledge Based Artificial Neural Networks (KBANN), (Fu, 1989). In
this case human advice is provided by the user, in the form of rules in a structured
high-level language. Rules are inserted into the KBANN by creating new nodes that
encode the knowledge. Experiments in game domain prove that advice does improve
the performance. An important conclusion is that an agent must be able to refine advice
so that general instructions can be assimilated and also to overcome the effects of bad
advice. Again, the tests were performed in single-agent tasks and group dynamics are
not considered.

Matarić (1996) shares sensory data and rewards between teams of robots that use
RL in a gathering task. This leads to effective learning of social behaviors such as
avoiding collisions by yielding to others when necessary (without causing deadlocks)
and following each others’ tips on the location of resources to be gathered. This work
focused on sharing raw information and using it, mostly, for coordination purposes.
Its most interesting characteristic is that data is exchanged locally (between robots
that are temporarily close to each other). In subsequent work (Nicolescu and Matarić,
2001) a robot is taught how to perform a task by demonstration, either by a human or
by another robot. 9 out of 10 of these experiments resulted in learning a structurally
correct set of rules and in an appropriate test behavior. The knowledge structure in
this case is based on rules that are triggered by state conditions. Atkeson and Schaal
(1997) follow a similar path in trying to teach a robot to swing-up a pendulum, but
in this case knowledge is encoded in the parameters of a control function and in a Q-
table. In their conclusions, they point out that mimicking is not enough to accomplish
this task and that learning is required. Model-based learning achieves a relative good
performance fast, but the parallel use of a non model-based approach compensates for
modeling errors and slow model learning. This is one of the few cases where two
different approaches are used in parallel, even if both approaches are related to the RL
family.

Still in this line, the work, reported by Sen and Kar (2002) is one of the few that
considers a form of heterogeneity. The Agent Teaching Agent (ATA) framework relies
on an expert to teach a student agent a certain concept by selecting the training exam-
ples to use on each epoch, based on the errors the student made in the previous epochs.
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Contrary to most work done in this area the task is supervised, i.e. information on the
correct classification of each example is available. The two most interesting issues of
this work are: the refinement of the choice, made by the teacher, of which examples to
present to the student, and the fact that both agents are using different learning algori-
thms. In this case the teacher uses instance-based learning (IB2), while the student uses
decision-tree learning (C4.5). Initial results are encouraging and further experiments
are undergoing. It is important to notice, however, that the teacher is not learning to do
the same task as its student, it already posses perfect knowledge on this, and its focus is
simply in helping the student. Also, the task is supervised and done by a single agent.

One of the most interesting recent works is (Price and Boutilier, 1999, 2000; Price,
2003) in which novice QL-agents learn by implicit imitation of pre-trained expert
agents. This work has some very interesting characteristics: the student agent has
no knowledge of the actions done by the expert, it can only observe its state transitions;
there is no explicit communication between the expert and the student; the goals and
actions of both agents can be different. The student agent uses an augmented Bellman
equation to calculate the utility of each state that incorporates the information regard-
ing the state transitions made by the expert. This technique was tested in several maze
problems with good results. Again, in this work the problems of heterogeneity and
teamwork are not focused.

3.2.4 Trust

Trust is an important concept to our work because agents need to acquire informa-
tion regarding the competence of others. This view of trust is slightly different from
most views found in the literature in which trust is associated with security or with
exchange of services between agents. There are however some definitions of trust that
point-out a competence-related component. When we speak of trust in this work, we
are in fact considering only this component that measures the competence of other
agents to provide help in a given situation. The same type of technique could be used
to disregard the information coming from agents with malicious purposes, but this is
not our main goal.

The research on trust relationships between agents that is most related to our own,
was developed by Sen’s research group (Sen, 1996; Biswas et al., 2000; Banerjee et al.,
2000). This series of works, and other related papers, focus on several aspects of learn-
ing to (dis)trust other agents, and dealing with agents that will not cooperate. The
above-mentioned papers are mostly concerned with the effects of different policies in
cooperation between agents. These policies range from malicious agents that try to
get others to perform their job without, in turn, giving them any assistance, to philan-
thropic agents that always help their peers. The results indicate that agents that take
decisions based on trust are able to cope with malicious agents. The development of
trust relationships improves the overall performance by enabling cooperation between
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the non-malicious agents and shutting out the others from the society by not cooperat-
ing with them. The use of trust in this series of works was never related to learning.
The focus is in the design of agent societies rather in how each agent can protect itself
against other agents’ malicious intentions or lack of expertise.

3.2.5 Adaptation of Learning Parameters

Apart from the, previously cited, work of Bowling and Veloso (2001) not many
authors used the available information to change the way the agent learns or automate
the evolution of the learning parameters.

One exception is the work of Weibull (1995) in evolutionary game theory, where
individuals growth-rate is set to be inversely proportional to the overall success of the
population. This allows the agents to change more quickly when performance is low
and explore in more detail a given area of the search-space when performance is high.
This rationale is similar to the one used in Bowling and Veloso (2001) to justify the
adaptation of learning rates.

Dorigo and Colombetti (1994b) use a trainer (that can be a human or another pro-
gram) to help a QL-agent in learning a certain task by giving it extra reinforcement.
They propose three development phases (labeled baby, young and adult) in which the
learning agent changes the way it relates to the trainer and its environment. In the
baby phase it gets a positive/negative feedback from the trainer for every action. This
strategy is highly related to the concept of shaping Dorigo and Colombetti (1994a).
In the young phase it learns solely from the environments’ reinforcement. When the
agent reaches the adult phase, the training is assumed to be complete and learning is
switched off.

In summary, the work reviewed in the previous sections is mostly devoted to Q-
Learning and there are relatively few examples that consider the effects of co-learning
within a team. None of these works addresses the effects of exchanging information
between different learning algorithms in team scenarios. Most approaches that involve
exchange of information use only expert advisors and not other agents that are also in
the process of learning. Although several proposals were made for integrating informa-
tion from other agents and users, these are all specific to a problem or algorithm and no
general procedure or architecture was ever proposed. None of these works uses exter-
nal information, both to tune the learning process and as extra information to improve
the current hypothesis. These are the gaps we intend to explore in our work.

3.3 Application-Domains

Although it is not the objective of our work to provide a specific solution to any
particular application, reference must be made to previous results on the application-
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domains we have selected to test our ideas. That will be the focus of this section. In
chapter 6 we will explain the reasons for choosing these problems and the variants we
have implemented.

3.3.1 Predator-Prey

Many researchers have used variations of the predator-prey problem (a.k.a. pursuit
problem). We will focus our attention in two of these references — (Tan, 1993) and
(Haynes et al., 1995b) — due to the close relation between the research presented in
these papers and our own. The full description of the scenario used in our experiments
can be found in section 6.1. Haynes et al. (1995b) present an interesting review of the
work on this problem to that date.

As mentioned in Stone and Veloso (1997) this problem has several variable param-
eters that change its type and difficulty level. According to these authors, the variable
parameters are:

• Definition of capture
• Size and shape of the world
• Legal moves
• Simultaneous or sequential movement
• Visible objects
• Sensing range
• Predator communication
• Prey movement

Using these parameters (and a few others that were found useful in this context), we
can summarize Tan’s scenario by table 3.1. In Tan’s experiments the state consists of
the coordinates of the prey’s position relative to the predator (2 integer inputs), plus the
partner’s relative position on cooperative trials. When the prey is not visible a “unique
sensation” is used. The reward structure is +1 on capture and -0.1 otherwise. Trials
are finished when a capture occurs or at the end of a maximum number of turns. The
agents that achieved a capture are randomly repositioned at the beginning of a new trial.
The conclusions of these experiments, as well as the learning approach, were already
mentioned in section 3.1. Tan’s results on sharing policies or episodes are based on a
10×10 arena with 2 predators and one prey and a visual range of 4. From the graphics
in section 6 we can conclude that the best performance in training was an average of
10 steps per catch, using expert advice, and around 12 when using peer advice.

In Haynes’ scenarios (summarized in table 3.3) the state consists only of the prey’s
position. Capture is achieved by surrounding the prey from all sides. When this is
achieved the prey is unable to move and if agents maintain their positions it will remain
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Table 3.1: Parameters for Tan’s predator-prey experiments.
Parameter Value

Definition of capture Individual: same position as prey
Cooperative: #predator in vicinity > 1

Size and shape of the world 10x10, bounded
Legal moves 4 (N, S, E, W)
Simultaneous/sequential moves simultaneous
Visible objects closest prey and predator
Visible range 2 - 4
Predator communication yes (of different types)
Prey movement random
Overlapping objects yes
Initial placement random
Number of predators/prey 2/1-4/2

Table 3.2: Average number of steps to individual capture in Tan’s Predator-Prey Exper-
iments (for 2 predators and 1 prey). In “mutual scouting” mode the agents have extra
information on the prey’s position sent by their partner.

Predator type Visual Range Avg. steps

Independent 2 24.0
Mutual scouting 2 24.5
Independent 3 16.0
Mutual scouting 3 12.9
Independent 4 11.5
Mutual scouting 4 8.8

locked-in for the remainder of the trial. When two predators try to move to the same
cell one is bounced off. The reward for epoch n is:

Ri,n =
∑

t∈n
g/dt (3.1)

where g is the grid width and dt is the distance between predator i and the prey at
time t. At the end of the trial predators that are close to the prey receive a bonus of
m · g (where m is the number of moves allowed) and when the prey is surrounded
(i.e. captured) all predators receive a bonus of 4mg. This is one of the few approaches
where a mixture of local/immediate and global/delayed rewards is used. The results
achieved are presented in table 3.4.
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Table 3.3: Parameters for Haynes’ predator-prey experiments.
Parameter Value

Definition of capture surround prey
Size and shape of the world 30x30, unbounded
Legal moves 4 (N, S, E, W)
Simultaneous or sequential movement simultaneous
Visible objects prey
Visible range unlimited
Predator communication no
Prey movement away from closest (90%),

random (10%)
Overlapping objects no
Initial placement prey on center
Number of predators/prey 4/1

Table 3.4: Average number of captures in test in 1000 random scenarios x 200 steps in
Haynes’ predator-prey experiments, using 4 predators and 1 prey.

Type of Prey Movement Average t-test 90%

Random prey moving first 100.4 +/- 13.23
Random prey simultaneous w/ predators 332 +/- 18.71
Escaping prey moving first 74.1 +/- 9.79
Escaping prey simultaneous w/ predators 162 +/- 10

3.3.2 Traffic-Control

Traffic-control has been approached by several researchers in different ways. Gold-
man and Rosenschein (1995) use the example of controlling the traffic-lights at an inter-
section to prove that learning can replace explicit coordination. In this case each traffic-
light controls one of the two roads in orthogonal directions. The purpose is learning
to synchronize red/green periods without explicit coordination. This is achieved by
having each agent in turn trying to teach the other agent when to set its traffic-light to
a given color (opposite to its own).

Thorpe (1997) performed an interesting set of experiments using SARSA (Singh
and Sutton, 1996) for traffic-lights control. The objective of these experiments was
twofold: establish that learned control is more effective than fixed control and study
how the use of different types of state structures can affect learning. The objectives
were partially achieved. It was verified that the learning performance is very dependent
on the type of information used and that, in some cases, the system is unable to learn.
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It was also reported that the differences between the best adaptive strategies and the
best results of tests with fixed-duration lights were relatively small. Thorpe performs
its experiments in a 4x4 grid of roads where intersections are set approximately 145m
apart. Each intersection contains 4 incoming roads, labeled North, South, East and
West according to their direction.

Several different state representations are tested, namely:

Count representation: Number of incoming vehicles each of the two approaching
directions (north-south and east-west) plus the elapsed time since the last light
change. The number of vehicles incoming from the north is summed with those
from the south, a similar operation is done for the east and west vehicles;

Fixed-distance representation: Registers the occupation (or not) of each 40m
partition of the incoming lanes. North and South information is combined us-
ing a boolean “or” for corresponding partitions, as is East and West. The elapsed
time since the last light change is also present in this representation;

Variable-distance representation: Similar to previous except in the size of the
partitions, which in this case is variable. The size of partitions increases with the
distance to the crossing;

Count-duration representation: Equal to the count representation plus the cur-
rent north-south light color and minimum light duration.

Each agent controls a crossing and its action is to set the color of the north-south
lights (and indirectly the east-west, which are automatically set to the opposing color).
The learning algorithm (SARSA) has differentiated eligibility traces for each crossing
but a common table of state-action values for all traffic-lights.

Car trajectories are pre-set before they enter the scenario by randomly selecting
their points of entry and exit. Tests consist in inserting 100, 500 or 1000 cars in the
system, with a uniform distribution over time, and allowing 1200 (first two cases) to
2400 time-steps (last case) for the system to clear the scenario.

The performance is measured along four different dimensions:

• Total number of steps taken for all cars to reach their destination.
• Average travel time.
• Total waiting time for all cars.
• Average waiting time.

The most important conclusions, from our point-of-view, were:

• Count-duration representation provides best results in terms of learnability.
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• Load-based control (attributing the green light to the road with more traffic)
achieved very poor results due to quick oscillation of the traffic lights when the
traffic in both directions is similar.

These conclusions were taken into account when deciding on the representation and
heuristics used in our own traffic simulation (described in section 6.3).

(Bazzan, 1997) proposes the use of Game Theory and Evolutionary Algorithms for
coordination in signal-plan selection. Results indicate that the approach is feasible and
learning can reduce or even eliminate the need for communication and negotiation, pro-
viding coordinated choice of signal-plans for groups of individually motivated agents.
The experiments were run on a traffic-control simulation with computer-generated
traffic-flows. One common differentiation between the types of traffic simulators is
in the detail level. When the simulation considers the movements of each individual
car separately it is labeled a micro-level simulation. Contrary to all other works refer-
enced in this section, the simulator used in these experiments does not use micro-level
traffic simulation. The simulation is based on flow density which is considered a meso
or macro-level simulation.

The work of Fernandes and Oliveira (1999) consists on the development of a multi-
layered architecture in which the first layer controls a single traffic-light, the second
layer (local decision-maker) a set of connected traffic-lights, and a third layer, labelled
cooperative-layer, was in charge of ensuring that different locations cooperated in the
management of traffic. This work proves that agent-based strategies are more success-
ful than fixed-time firing plans in maintaining high traffic flows and that coordinated
action plans can emerge from the interaction of independent decision-makers.

Brockfeld et al. (2001) evaluates several fixed strategies for synchronized traffic-
light control. One of the models for traffic flow used is the same as in our experiments
(Nagel and Shreckenberg, 1992), but contrary to our approach they keep the number of
cars in the system fixed by re-entering the vehicles in the beginning of the same lane
they exit. None of the approaches tested involves learning. Their findings were the
following:

• The efficiency of fixed-time cycles depends heavily on the chosen cycle time.
• Results indicate that two different models tested for vehicle movement cause

only slight differences in the results, thus this choice does not play an important
role in the simulators’ design.

• Two dimensional green-waves show better performance than fixed, synchro-
nized, cycles, although still dependent on the choice of the cycle time.

• The use of a random offset along with fixed-time cycles also shows better per-
formance than synchronized traffic-lights.

• Results with “inhomogeneous traffic” suggest that local decision taking at every
crossing should be able to outperform any of the global techniques tested in these
experiments.
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Montana and Czerwinski (1996) use Genetic Algorithms (GA) and Strongly Typed
Genetic Programming (STGP) (described in section 2.1.5) to control the timings of
traffic-lights. This is similar to (Bazzan, 1997), but over a micro-level simulation.
Montana considers that the information comes from two sensors, one that counts cars
leaving an intersection and the other that has a twofold purpose: counting inbound cars
and verifying if an incoming lane is full. Performance is inversely proportional to the
delay, which is defined as the time lost due to stopping at an intersection. Only fixed
traffic flows are considered, i.e. the probability of insertion of new cars is fixed in
each experiment. In a first experiment GA are used to evolve specimens that consist
simply on choosing the cycle time, split and offset for each intersection. The split is the
division of time between the N phases of a traffic-light set. Phases must follow a certain
sequence (e.g. phase one: green for north-south lanes, phase two: green for right turn
in north-south lanes, phase three: green for east-west lanes). In these experiments all
intersections have four phases. In subsequent experiments STGP evolves program trees
that take into consideration the sensor data in the decision of when to end the current
phase. Their findings are summarized by the following statements:

• The learning approach is superior to fixed-cycle control;
• It also generalizes well to situations with similar statistics.
• Performance is expected to drop if variations of the traffic flows are considered.
• Coordination was achieved both with and without communication.

The main problems with this approach, reported by the authors themselves, are: the
fact that traffic-flows were fixed for each experiment and that nothing can be said in
what regards its scalability.

Wiering et al. (2004) compare several different approaches in their “Green Light
District” simulator. Their original approach is based on a combination of the pre-
dictions made by each car. Cars try to predict what their waiting time will be if the
traffic-light ahead of them turns green or red and use these estimates to vote on their
preferred color for a given traffic-light. They argue against the use of fixed firing se-
quences based mostly on the fact that choosing which phase is used next is a more
flexible procedure. In one of the approaches tested cars also learn to choose their path
(this was labelled the co-learning approach). Their conclusions were that RL is more
efficient in controlling traffic than fixed controllers (even a simplified version of RL
can have good performances in certain situations); and co-learning can, in some situ-
ations, avoid overcrowding intersections, although in others it causes no difference in
performance.

The use of learning methods in traffic-control, as in other realistic application-
domains, is a delicate matter. All systems that must learn from their own mistakes
must be projected to learn offline, and its employment should be controlled by another
layer of software that must ensure that they operate within reasonable bounds. There
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may be, however, much to learn from traffic-control simulation, even though some
of the authors mentioned above report only residual improvements of using learning
strategies as opposed to fixed ones.

As we mentioned previously we do not aim at solving the problem of traffic-light
control in this work, we merely use it as a test case. Nevertheless, we believe that our
approach may point in some directions that can be useful when adaptive applications
are considered in this, as well as in other, real-life problems.

3.3.3 Load-Balancing

In (Schaerf et al., 1995) the authors present a very broad framework for the study
of computing load-balancing problems and an adaptive solution to this problem. This
solution is based on a very simple adaptation scheme, labeled: Best Choice Selection
Rule. In the first set of experiments agents use only local information. These experi-
ments prove that it is possible to design an adaptable system capable of executing the
task, based only on local information. The effect of varying the adaptable parameters
of their solution is also studied in these experiments. The second set of experiments
is related to heterogeneous systems (here heterogeneity means that different sets of
agents may have different policies). Some results show that, under certain circum-
stances, “parasitic” agents can take advantage of their peers’ flexibility and capacity
for adaptation. The third set of experiments regards sharing of historical information
between agents. It is proven that naive communication may have no effect, and can
even deteriorate, the overall systems’ performance.

The load-balance scenario used in the experiments – described in section 6.2 – was
inspired in (Whiteson and Stone, 2004). This work defines a simulation environment
for job routing and scheduling and compares a variation of Q-Routing (Boyan and
Littman, 1994) coupled with different types of schedulers, to other routing methods.
In the conclusions, the authors claim that: “The results presented here (...) provide
evidence of the value of combining intelligent, adaptive agents at more than one level
of the system”.

This is a typical scenario where communication between teams can be used, and
it was selected due to our interest in comparing the results of our approach to those
presented in the paper. When attempting to replicate the experiment, the discrepancy
between the results of our baseline experiments and those presented in (Whiteson and
Stone, 2004) led us to make a deeper analysis of their results. From this analysis we
concluded that either the results or the experiment description presented in the above-
mentioned paper were faulty 1. Appendix D presents the description of the experiments
in the initial version of the paper and our analysis that led to a revision of this work.

1It was later established that there was indeed a fault in the experiment’s description.
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3.3.4 Summary on related applications

We reviewed, in this last section, the main contributions related to the applications
we use for our tests. Several possibilities were never addressed in any of this work,
namely: None of these applications uses communication between teams of agents with
different learning algorithms; In traffic-control scenarios no learning approach ever
essayed the use of communication for other purposes than extending the state informa-
tion; In the load-balance scenarios the only form of cooperation attempted is by shar-
ing all past information. Our work will test new solutions to these problems by using
different learning algorithms and selective communication. The following chapter is
dedicated to an analysis of the problem and the explanation of our proposed solutions.



Chapter 4

Communication During
Learning

In this chapter we analyze the problem, propose solutions and justify the options
taken during this work. Some of these concepts were already mentioned in chapter 2 as
possible solutions to the problems we described. Some details are left out to maintain
a clear line of reasoning. These details will be fully covered in the following chapters.

4.1 Useful Information

The first question is: what useful information can be supplied by other agents facing
similar problems? Usually a learning agent selects an action by evaluating its own
evaluation function, (as seen in equation 2.10) but if we consider that there may be
other agents with whom it is possible to communicate and that they also have some
experience in the problem, there are other options. An agent can request information
concerning, for example: the best action for the current state; the policy other agents are
using; the results of choosing different actions at this state; the magnitude of rewards
achievable in the current situation.

If all agents used the same learning algorithm an advisee could simply request the
best solution’s parameters (Ĥ∗k,t) to an advisor (k) that reports a good performance.
But we are mainly interested in cases where agents use different learning algorithms,
in which case this solution is infeasible. It is also undesirable if we want our system to
search for solutions in different ways. Since using the hypothesis’ parameters acquired
by other agents is not an option, what other information can be useful?

As explained previously condensing the hypothesis’ information into a format that
can easily be produced and read by all learning algorithms is a difficult task, if at all
possible. This solution was not considered in this work, except in the sense that a set of

65
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examples can define a policy. Some efforts were made to aggregate subsets of examples
in order to achieve a more condensed set of information that would represent a given
policy. These efforts lead to a degradation of the performance and were abandoned
during the research (see chapter 8).

Since we are dealing with similar problems, in which the state and actions have the
same structure for all agents in all locations, it is possible to exchange the historical
information (Ei,t in equation 2.16) on which the current hypothesis is based. But the
repeated exchange of all the experiences by all agents in a, possibly large, group can
lead to vast amounts of communication and has obvious scalability problems. This is
not the only problem: the use of outdated information, its storage, and the different
types of information each agent needs, make it clear that we must focus on an inter-
esting part of the information produced. We must choose only a limited number of
sources and store only relevant parts of the information. The two most obvious crite-
ria for storing examples are: efficiency and recency. We have focused on storing and
exchanging examples of policies that have recently proved to be efficient.

The information that contains examples experienced by other agents is what we
refer to as advice. Advice is a tuple consisting of two mandatory elements: a state
(s̄i,t) and an advised action (ai,t) – or a vector defining the adequacy of each possible
action to that state (āi,t). Optionally it may include the source i, the time when was
issued t, the reward obtained when the situation occurred (ri,t), the state after the action
was performed and the reward obtained in the epoch where the action was used (rl,n).

ei,t = {s̄i,t, āi,t, [i, t, ri,t, s̄i,t+1, rl,n]} (4.1)

Asking a reputedly experienced agent k for the best action for a certain state was the
approach used in previous experiments (Nunes and Oliveira, 2003c, 2004, 2005a). We
have labeled this type of interaction specific-advice as opposed to requesting sub-sets
of historical information, batch-advice.

Specific advice has the advantage of not wasting resources on information requests
for situations the agent may never experience and also does not require the advisor to
store its previous experience, but it also has disadvantages:

• The advisee will not have information on the whole policy that led agent k to a
good reward, it will learn based on fragments of a policy;

• The advisor will be unable to inform on what was the result of using its policy
in that situation at a previous time because it is producing the advice on request,
based on its current best hypothesis, and may have never experienced the same
state itself;

• It may be difficult to evaluate the confidence in the information sent or the expe-
rience an agent has in a certain situation, due to the reasons stated above;

• When this information is intended for immediate use the advisee will have to
wait for the advisors’ reply before taking an action.
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When learning from a sequential set of examples, experienced by the advisor (batch
advice), the advisee will know exactly what was the result achieved previously with
that behavior. It will also have the advantage of training with a full sequence of states
that took the advisor from a given state to a goal. Still, the use of batch advice will
tend to generate more communication and may fail to respond to the special needs
of the advisee in particular situations. The tradeoff between using these two types of
information may also depend on the learning algorithm used, or the learning agent’s
expertise.

As mentioned above, the information may be requested to an agent that “reports
a good performance”. The knowledge of other agents’ performance will also involve
communication. Agents may request their potential advisors information regarding
their performance statistics in the form of a standing-request that will trigger an answer
when a certain situation occurs, e.g. surpassing the best score achieved in previous
epochs or completing a given number of validation epochs.

The statistical information on the performance of other agents can also be used
for other purposes than just finding the best advisor. An agent is able to know, for
example, how far it is from the best solution achieved this far to its problem and use
this knowledge to tune its learning parameters.

In summary, in this section we argue that:

• An agent may find it useful to know:

– Examples of others’ policies (batch);
– Examples of others’ response for a given situation (specific);
– The results achieved by choosing a certain action for a certain state;
– The rewards achieved during certain periods;
– The average performance of the best policies.

• The problem of having a large body of available information must be dealt with
by filtering this information according to certain criteria. These criteria can
moderate the amount of information exchanged keeping the solutions’ scalabil-
ity.

4.2 When and Where to Collect Information?

Humans ask for information in one of two situations: when they learn that someone
else seems able to solve the problem they are facing more efficiently, or when they
cannot tell which is the best course of action for a certain situation. This procedure can
be replicated by automated agents if they are aware of other agent’s performance and
if they can measure how certain they are of the action to take next. In the first case all
an agent will need is to know its peers’ average performance. For the second case an
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agent must be able to determine the confidence in each action or the level of experience
for a given state. The latter is easier for some agents than for others.

As noted by Dorigo and Colombetti (1994b) (see section 3.2), it may be useful to
divide the learning process in stages. Although we agree with the principle we disagree
with the proposed division. We believe that the initial phase (where most learning takes
place) can be subdivided in several different stages. The learning stage of an agent can
be used to change the way it learns and also to decide whether or not to ask for advice,
and, if so, in which form. Humans, when learning about a subject, go through different
stages:

1. First they need to acquire some basic knowledge on the subject;

2. After this phase they require a stream of detailed, sequential, information about
a solution. This is usually given by a single teacher;

3. Then, as their skills in solving the problem increase, the information needs de-
crease and become more flexible. Useful information can be collected from sev-
eral sources and may be specific for a certain sub-problem.

4. The ability to deal with conflicting information, to experiment new solutions,
and to pick up the best of several different ideas, arises when the solver is well
acquainted with the variants of the problem and with several different solutions.

In an attempt to mimic this behavior we have defined four learning stages:

Exploration: Initially the agent will not use external information and will explore
using only the environment’s feedback, to acquire some experience on the prob-
lem and assess its own capabilities in learning a solution;

Novice: After the exploration stage if an agent has a low performance, much worse
than the best performance in other teams, it will require detailed, and coherent,
information about the solution to its problem.

Intermediate: When the agent has a reasonable performance, although below the
level of the best agents, it may benefit from being exposed to different solutions.
This may lead it to combine parts of different solutions or use policies that are
more suited to its own problem, even though they may be reported as suboptimal
by other agents.

Expert: When the agent has learned a policy that is on a par with the best know
so far, it can devote more resources to exploration and to advise other its less
successful peers.

These will be our learning stages and they will determine how an agent decides
what type of advice to request and how to parameterize its learning algorithms.
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In what regards the “where” (to collect information), the obvious answer is: the
agent with best performance, – or even simpler, ask everyone and then decide – but
the similarity of the problem being solved, the capability of an agent to duplicate the
teacher’s solution and the advisors under use by its partners, can also be taken into
consideration. This may allow better decisions and limit communication.

An agent should seek information that is:

Efficient: Proved to have a good performance in a related situation;

Learnable: Can be integrated in the hypothesis using the tools available to this
particular agent;

Adequate for its problem: Matches the policies of the agents’ partners.

If an agent’s partners behave quite differently from its advisor’s partners then it is
likely that the advice is useless (or even harmful). An agent must choose its advisors
not only based on their performance but also on how useful is their advice.

Advisees must learn which of their peers provide more valuable information from
their own point-of-view. If a whole team asks for information to another team, in
synchrony, the problems related to inadequate advice may be mitigated. However, syn-
chronous advice from one team to another requires either dynamic or pre-established
agreements. The easiest form of establishing an agreement for synchronized informa-
tion requests is to trigger this advice based on the comparison of teams’ scores. One of
the solutions to prevent all agents from taking advice from the same peer is to define
roles. This can be done simply by attributing a different role to each team member and
establishing that advice can only be requested to agents that share the same roles.

After trying several types of strategies to distribute advisors, avoiding that two
members of a team ask advice to the same member of an expert team, we have settled in
a simple form of role assignment. This simple form of assigning sequential numbers to
the agents in a team, by order of creation, and restricting advice requests to agents with
the same team number (i.e. role). This method is simple and proved to be as effective
as more elaborate solutions (referred in (Nunes and Oliveira, 2003b) and in chapter
8). These solutions involved exchanging information between members of the same
team that would reduce the probability of sharing advisors. Another approach, that
also aims at solving the problem of different team dynamics, is the use of unsupervised
learning to create a set of representatives of the most common states for each agent.
Matching these representatives for a pair of agents would provide a measure of how
closely related were the problems they were attempting to solve. This way we could
group related agents allowing them to choose an advisor that experienced states that
were more closely related to its own experience. Neither of these methods obtained
better performance than the simple sequential numbering of agents. Nevertheless, these
methods may be useful when the problems each team is solving differ in more than just
the partners’ behavior and initial conditions.
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One possible use of external information, that we have not mentioned previously,
is in the parameterization of the learning process. Most learning parameters control
how much an agent learns from each example (or set of examples) and how much of
the available time is it willing to use for exploration of new policies. In this case, since
validation occurs in parallel (see chapter 5 for details) one could be tempted to say that
exploration should always be the most important factor, but there are drawbacks to this.
An excessive emphasis on exploration may prevent the test of coherent policies, since
an agents’ options may be constantly changing for the same state. Exploitation, in a
team scenario, is important, not only to take advantage of what was learned but also to
provide coherence in the choices and enable the fine-tuning of partners’ policies when
a low rate of exploration is used.

When an agent knows that there are better solutions (by getting performance infor-
mation from its peers) it is natural that it will maximize the learning-rates used in the
acquisition of knowledge from peers, while controlling its exploratory behavior (to test
the advised policies appropriately). After this stage there are two possible situations:
either the agent reaches a similar performance level to that of its advisor, or not. In
the first case, it is likely that the agent became an expert, having a score that is on a
par with the best. The acquired policy will be in continuous validation and the agent
can increase the exploration levels and stop information exchange (or reduce it signif-
icantly). If the advisee did not reach the advisors’ performance levels, this may have
occurred for two types reasons:

Internal: The advisee is unable to mimic the advisors’ solution due to limitations
of its learning algorithm or evaluation function, or

External: The advisors’ policy is not an adequate solution for its own problem, ei-
ther due to differences in the locations’ current dynamics, or because its partners
are not performing matching policies.

In both cases the agent should either try a new advisor, or increase the exploration
levels and learn more from its own experience than from advice. In case of internal
difficulties an agent could also increase the representational capabilities of its own
evaluation function, although we have not explored this path in this work.

These two types of failure in integrating the advisors’ policy are related to two
concepts that can also be measured.

• The first (internal causes) is related to what we have labeled as learnability. This
quantity represents the capacity to learn an advisors’ policy. It can be measured
as the inverse of the classification error that the advisee shows when comparing
its own options with those of its advisor.

• The second case (external causes) is related to the adequacy of the policy being
taught to the advisees situation. We have labeled this quantity trust and measure
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it as the quotient between the reward achieved with the advised actions and the
reward that the advisor claims to achieve with the same actions. Trust is used
here as a measure of the competence of a certain advisor.

In the previous paragraphs we have defined (informally) a set of rules to control
several learning parameters. These rules will be formally stated below in section 5.2.3.

As hinted during the introduction of learning stages, another important matter is the
the stability on the choice of an advisor. On the one hand it may be important to have
just one advisor for a long period so that its policy can be acquired without interfer-
ence. On the other hand, getting advice from several advisors enables the emergence
of policies that merge different aspects of advisors’ policies. Using too many advisors,
can, in some cases, prevent the agent from learning any of the policies if advisors give
conflicting advice. So, in certain situations, it may be important to select a standing-
advisor that will be the sole source of information for a specific period. This has two
advantages: it is easier to attribute the responsibility for the long-term result of using
advice and it is less likely to have inconsistent advice (it is not impossible because the
advisors’ policy may be stochastic). However, the use of multiple-advisors may con-
tribute to the emergence of policies that result from merging several different solutions.
It is important to establish in which situations is the use of only one advisor preferable
to using information from several available sources.

Even though some care is taken to restrict communication at all levels it should be
noted that the cost of communication is often non-linear (except when it is associated
with energy consumption and/or wireless access). The cost, in most cases, is virtually
null up to the band-width limit and very high when over that limit (if it can be surpassed
at all). This is similar to establishing a maximum band-width, which was our approach.
We have defined maximum numbers of examples to be exchanged per epoch, thus
simulating a limit band-width.

In summary, we can say that:

• An agent should ask for information either when it knows there is a better so-
lution than the one it is currently using, or when doubts arise in choosing an
action.

• Advisors should fulfill three requirements:

– Have a good performance;
– Their policy must be learnable by the advisee;
– The policy must be adequate for the advisees’ problem.

• Trying to acquire a teams’ policy as a whole may be adequate in certain stages
and this can be enforced by simple agreements that do not require agents to
(explicitly) synchronize or exchange any further information.
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• The failure to acquire a solution may be caused by internal or external factors.
This can be estimated by measuring how much was learned from an advisor and
how well does its policy adapt to the advisees’ current problem.

• The tradeoffs resulting from using single or multiple advisors must be consid-
ered.

4.3 Integrating Information

The way in which information is integrated is highly dependent on the learning
algorithm(s) used by an agent. The exact process of integration used for each type of
agent will be detailed in section 5.2.3. Here we will review the basic guidelines on how
to use information.

The main concept is to have two (or more) different learning functions working on
the same hypothesis. When reinforcement information arrives the hypothesis will be
changed by a learning function that uses the reward information. When advice infor-
mation arrives, another function can be used taking advantage of the extra information
in the advice. If an advisor is well chosen its advice can be interpreted as supervision
information.

Two difficulties are immediately apparent:

1. The interplay between two different learning methods may fail to respect the
particular convergence conditions of each method;

2. When the limitations are at the level of the evaluation function neither of the
methods will be able to solve the problem.

The first problem must be dealt with in the design process. In ML literature there
are quite a few successful works in the integration of different learning functions work-
ing on the same hypothesis (see chapter 3 for examples). In some of these, the problems
related to the convergence conditions are circumvented by alternating the use of both
learning algorithms, others simply prove empirically that the process does converge
and is effective on a number of practical cases. Considering that one of the character-
istics of the systems we are studying is the continuous change, it is appropriate that all
agents maintain a certain degree of adaptability which, in most cases, precludes con-
vergence to a static hypothesis. Given these facts, we have taken a pragmatic approach
to this first problem by choosing combinations of learning algorithms and evaluation
functions that proved to be applicable in the situations we have studied.

The problem of learnability can be attacked in two ways: by changing the parame-
ters of the evaluation function, or by simply ignoring parts of the state where the func-
tion does not perform well and keeping the information (advice or its source) necessary
to overcome these situations.
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There are several ways to integrate advice information in an hypothesis, depending
on the structure of the evaluation function. Advice can be used in one, or more, of the
following ways:

Imitation: The advisee performs the advised action and learns from the conse-
quences of this action. In this case, advice must be specific and used online. It
also requires that the advisee can learn from actions that it did not generate itself.
The advisee must send its current state to the advisor and wait for its reply.

Virtual Experience: Advice is interpreted as if the agent performed the action
itself but the reward information is the one received by the advisor when the
advice was recorded. In this case, advice must be collected in batch and the
advisee must be able to integrate information about others’ experiences. This
type of advice must contain information on the reward obtained by the advisor,
and possibly also the state of the environment after the action was performed.

Supervision: In this case, advice is interpreted as examples of the correct mapping
of states to actions. Only these two pieces of information must be transmitted.
The advisee must be able to perform supervised learning. This type of advice is
usually best suited for batch-offline learning, because a large set of examples is
usually required to learn a reasonable mapping of the advisors’ policy.

The information requested to an advisor can be used online (i.e. trigger a change
in the current hypothesis immediately upon arrival), or offline (i.e. be stored on arrival
and processed in batch later). Both methods have advantages and disadvantages, many
of which are related to the learning algorithm used and will be discussed in section
5.2. In general, only specific-advice can be used online. The only exception is when
the advisee finds an answer to its current problem in previously stored advice that may
have been received in batch.

The integration of information about others’ performance is done at a different
level. Reward information is mostly used for control purposes. In our experiments
we have used this information to: determine an agents’ learning stage, enable and dis-
able advice, select an advisor, decide which type of advice to use and change learning
parameters.

In summary:

• The integration of information requires that an agent is able to learn from rein-
forcement as well as from supervision information.

• Advice can be imitated, used as virtual-experience or as an example given by a
teacher.

• Information can be used immediately (i.e. online) or stored and used in offline.
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• Information on peers’ performance can be used for to control the learning pro-
cess.

As we can see from the previous sections, there are several ways in which informa-
tion from other peers can be useful, but there are also several tradeoffs that require our
study. Up to this point we identified the following options/tradeoffs: specific vs. batch,
online vs. offline and using all advisors vs. using a standing advisor. We also have
several possibilities regarding the way to use advice: imitation, virtual-experience or
supervised training.

Sections 5.2.1 and B.3 show how the several concepts are related. The first presents
an explanation of the response to all the events, the second presents an explanation in
pseudo-code of the reactions to the main events.

In this chapter we have analyzed the problem, explained the reasons that lead to our
main options and we have defined, informally, the main components of our approach.
We have also mentioned several directions that may prove interesting, but that we have
decided not to pursue to avoid overextending the focus of our research. In the following
chapters we will detail the design of the simulator, the specific implementation of these
ideas and the experiments we have devised to study the effects of these techniques.



Chapter 5

Simulator Architecture and
Agent’s Structure

We have discussed, in general terms, the possibilities and pitfalls of using informa-
tion provided by other agents. In this chapter we look at the structure of the agents and
environment. We will define the requirements they must fulfill to have the capabilities
discussed in the previous chapter.

In the following discussion we will assume that the agents are part of a software
environment. This implies the presence of environment Infrastructures (IS), such as
Directory Facilitators (DF), sensors, and reward evaluation modules. The application
of these methods in environments without these infrastructures would eliminate some
requests but would also require a more elaborate way to collect information on partners,
peers and rewards.

The objective of this work is to evaluate the impact of communication during learn-
ing. To do this we must simulate MAS problems that require agents with learning
skills. Initially the choice was either to implement a MAS using parallel processes,
which could run in different physical sites, or to simulate such a system. We chose the
simulation of this system in a single-threaded program for the following reasons:

• Learning is a processor and memory-intensive activity. The availability of the
required number of machines to deploy a true MAS in realistic conditions, during
long periods of time required to perform the experiments (several consecutive
weeks at times), was out of the question. It may be important at this point to say
that, despite the number of publications and the interest this work generated in
some members of the research community, the funding for a project related to
this work was only successful in its last few months.

• The simulator is required to run 100 to 1000 times faster than real-time (this
is specially significant in the traffic-control problem). The adaptations required

75
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to achieve this speed would necessarily lead to minimizing delays, including
communication and synchronization. This would require either the distribution
of the processes over a relatively large number of computers, or the concentration
of processes of the main parts of the system reducing communication delays.
These restrictions are mostly related to the simulation rather than the advice-
exchange or learning procedures.

• The pre-developed agent platforms, existent when development started, were rel-
atively slow and, in some cases, had limitations to agents’ behavior, linkage with
external code, or top-level language used. Most MAS simulators were closely
related to Java, a language that has gone through an enormous evolution dur-
ing these few years. Its efficiency, even though still not par with C/C++ related
languages, has improved greatly since this project started.

• The design and implementation, from scratch, of an agent platform was out of the
scope of our research and would require too many resources that were necessary
for other activities.

• Since synchronization of processes between learning agents is necessary only in
a very limited number of situations the problems that can derive from parallel
implementation are minimal.

• A distributed MAS that uses this architecture would require distribution only at
the validation level. Most learning could still be done offline in processes where
efficiency would be the most important issue and these would not require any
type of synchronization.

We have implemented a multi-level simulation with three different levels. The first
level (learning) quickly sorts out the bad policies from the promising candidates. At
a second level (test) the promising candidates are thoroughly tested in terms of long-
term adequacy and coordination with other agent’s policies. At a third level (valida-
tion) the best policies are under continuous validation and will only be replaced when
a test-policy proves to have better performance. The existence of the validation-level
can also allow us to determine when there are sudden changes in the environment’s
dynamics. In a real situation the first too levels would run offline in a simulated en-
vironment while the validation would be online acting on the problem. This type of
system requires continuous adaptation of the simulation to mimic as close as possi-
ble the real environment. In our simulation agents switch at fixed intervals between
different modes (learning, test and validation) to simulate the parallel execution of
these different levels. The predator-prey and load-balance problems have cycles of 200
epochs (100+80+20 for learning, test and validation, respectively). The Traffic prob-
lem has a cycle of 540 epochs (180+180+180). The difference in the partition and sizes
of the cycles is related to finding a comparable interval for each problem. In the traffic-
control problem 180 epochs correspond to a week and, given the daily oscillations, is
the minimum comparable interval.
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Local IS Environment IS

LocationLocal IS
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Figure 5.1: Environment’s structure. The Infrastructure (IS) modules may contain
Directory Facilitators (DF), as well as other services necessary to gather and distribute
information on a particular environment/location. Lines represent some of the possible
communications between elements in the environment.

5.1 Environment’s Structure

The main structural units of simulation software are: Environment, Location and
Agent, organized as depicted in figure 5.1. The Environment IS provides contact be-
tween different Locations. Each location provides agents with the following services:
addresses of other agents solving similar problems at different locations, state observa-
tions and rewards. State transitions are calculated at the location level.

There are several time scales in this environment. In the location-time an increment
corresponds to one state transition. Several local state transitions may occur between
two agent’s observations. All transitions occurred in the environment between two
observations will be perceived by the agent as a single transition.

Different environments may require a different number of actions per turn. In the
predator-prey problem we have one action per turn. In the traffic problem agents are
only required to act once every 12 turns (12s). The remaining turns are used to calculate
the evolution of the cars in the environment on a second by second basis. In the load-
balance problem each agent may route several jobs in each turn, so, in this case, several
actions take place in each turn.

At the agent level a time-step (or turn) is the interval between two state observa-
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tions. In real environments there are two types of critical timings, the response-time
(i.e. the time elapsed between the observation of a certain state and the production
of an action) and the adaptation-time (the number of observations an agent needs to
adapt to new environment conditions). The first is easily met, because the evaluation
process is computationally simple for the algorithms under study. The remaining tasks
required for learning could be performed in the idle-time between two observations,
or in an offline server. The second critical timing is the most important for our study,
therefore measurements are always taken in terms of the number of validation epochs
(which represent a fixed number of turns). The points where synchronization between
learning agents is necessary in a real system would be:

• During the initialization procedures.
• Waiting for online advice to produce an action.

The first is not critical since it happens only once at startup. The second is necessary
only in a few of the studied scenarios and could be surpassed by local implementation
of the advisors’ evaluation function, as described in section 2.3.3. We stress this point
because autonomy is a very important characteristic and it may be severely limited by
the need to synchronize.

It can be argued that using communication and receiving external data increases
the amount of information and thus it cannot be directly comparable to solutions where
there is no communication. This view is correct if we assume that an increase in the
amount of data leads to a proportional increase in the critical response times (as was
common in ML approaches). In MAS, agents often have idle time while waiting for the
state transitions to occur in the environment. Thus, using this idle time to acquire and
process external information will incur in no penalty, except for the communication
cost. For this reason we have concerned ourselves mostly with running-times and
amount of data exchanged and less with comparing performances for similar amounts
of information. Nevertheless we have made an analysis of these costs in the discussion
(chapter 7).

5.2 Agent’s Structure

From an agent’s point-of-view each turn is composed of four phases:

1. Sensing: In this phase all agents receive their own view of the environment’s
state. All sensing actions are considered to be simultaneous. This emulates a
standing request, from each agent to a location IS, for state information. This
information is broadcasted to all members of the team simultaneously.

2. Acting: Agents perform the action selected for the current state.
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3. State Transition: In this phase the location calculates the evolution of its state,
based on the previous state, the external events and the actions of all agents (as
explained in section 2.2, equation 2.11). During this time agents may be idle or
occupied with internal tasks.

4. Reward distribution: After the state transition each agent receives its own re-
ward (ri,t in equation 2.13). At fixed intervals the location IS sends a team-
reward (rl,n in equation 2.13) to all agents in its location.

An agent contains the following components (depicted in figure 5.2 and detailed in
sections 5.2.2 through 5.2.8):

Evaluation: This module contains the evaluation function (Fi in equation 2.10)
that maps states to actions according to the current policy or a previously saved
one, depending on the active set of parameters. Evaluation functions may be
required to keep certain temporary values used in some learning algorithms, e.g.
the derivative of the error used in BP.

Learning: The learning algorithm contains the LK,i functions that use rewards
and advice information to change the current hypothesis (equation 2.16, detailed
in section 5.2.3 for each type of algorithm used). Heuristic agents do not have
this module.

Control: The Control module takes decisions regarding: when to request advice,
how to filter and relay it to its Learning Algorithm. The calculations of trust,
learning stages and other concepts used in the decision of when and to whom
should information requests be made are also calculated here.

Parameter Stores: These stores contain several labeled hypotheses (i.e. parame-
ter sets) that can be saved and retrieved by the Learning Algorithm and Control
modules. The labels are: learning, test-candidate and validation.

Example Stores: This set of stores contains labeled sets of examples or advice di-
vided in epoch-size blocks. The stores have the following labels: current epoch,
last epoch, online adviceN , advisor-name validationN , where N stands for the
epoch number. In each case where a store keeps information regarding more than
one epoch, old information is discarded after a certain time, or the store is reset
when a certain event happens.

Communication: This module receives, interprets, and relays information. It also
keeps track of the peers addresses received from the Location-DF. In the case
of our simulation it merely keeps pointers to peers that enable an agent to call
another’s methods.

Reward Statistics: Receives reward information and keeps several sets of reward
statistics.
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Figure 5.2: Agent components.

In the current implementation the parameter stores, reward statistics and learning
algorithms are associated to the Algorithm class hierarchy, and all remaining modules
are associated to the Agent class hierarchy. Further details on the simulator design can
be found in Appendix B.

In the following sections we will describe each of the components of our learning
agents in more detail and give more precise definitions for some of the concepts debated
in sections 2.2, 2.3 and chapter 4.

5.2.1 Response to External Events

The agents’ parameters, on creation, will define what type of learning algorithms it
will use as well as other characteristics that will be mentioned in the following sections.
A summary of these parameters can be found in appendix B. On creation an agent will
issue a standing request for the addresses and identifications of other agents possibly
parameterized by its own role. On arrival of a peer’s address and identification it will
issue a standing request for validation-reward statistics, whenever these are updated.

Agents’ functions, except for initialization procedures, are triggered by the arrival
of new information. The following list describes the actions triggered by each of the
events. Section B.3 contains the pseudo-code for the main events described here.

Observed state: Evaluate the state, with the suitable parameters for the current
mode (i.e. learning, test or validation), and execute the selected action. If using
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specific advice, request advice. When imitating this process is suspended while
waiting for the advice reply.

Advice arrival: When new advice arrives the agent will process it, or store it for
offline usage. When an evaluation is suspended, waiting for advice information,
it will be resumed.

Standing-request for advice: Send all advice (i.e. examples of validation epochs
stored) that is currently available and matches the request; save the standing
request for future reference.

Advice request: Process the request using the current validation hypothesis and
send the requester the advised action.

Peer’s reward update: Update peer’s information. The arrival of this information
triggers a re-evaluation of all parameters that are related to peer’s rewards. When
the number of peers increases the information requests are restricted to the most
successful advisors.

End of validation epoch: Triggers the reply to all standing requests for rewards
and validation examples. When the validation policy changes it will signal this
event to all advisees with standing requests.

Peer’s reward request: These are usually standing requests, only issued during
initialization. They will be stored and re-evaluated at the end of validation
epochs.

Advisor’s change of policy: Triggers the process that clears the advice stores that
belong to that advisor.

Reward: Triggers the learning procedure, parameterized by the state and action
that correspond to this reward. Some learning algorithms may delay the learning
procedure until the arrival of the next observed state, whenever this information
is necessary for learning.

Epoch reward: Calculate combined reward for epoch n. Calculate each advisor’s
responsibility in this result (depending on the percentage of imitated actions or
on the classification accuracy of offline training) and update the trust coefficient
of each advisor. When offline advice is used, replay stored advice (EA and GP-
agents only use offline advice when a new-generation is created).

5.2.2 Reward Statistics

As discussed in section 2.2 an agent receives an individual reward for each action
issued and a team-reward for the performance in a given epoch. These are combined, as
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shown in equation 2.13, to produce a combined reward. The Reward Statistics module
calculates several indicators based on each type of reward. The following description
focuses (in terms of notation) on the combined reward (Ri,n), but can easily be extrap-
olated for other cases. In the following equations, i stands for the agent’s identification
and n is the current epoch.

• Infinite discounted reward (Ridi,n) provides a weighted reward in which the im-
portance of older rewards decays in time:

Ridi,0 = Ri,0, (5.1)

Ridi,n+1 = αRidi,n + (1− α)Ri,n+1, (5.2)

with α ∈ [0, 1];
• Absolute best reward (Rmaxi,n ) is the highest reward achieved this far:

Rmaxi,n = max
m<n

(Ri,m); (5.3)

• Decayed best reward (Rbesti,n ) is an adaptive estimate of the maximum reward
achieved in the recent past:

Rbesti,0 = 0, (5.4)

Rbesti,n+1 = max(βRbesti,n , Ri,n), (5.5)

with β ∈ [0, 1];
• Average reward (Ravgi (n0, d)) over a period d staring at epoch n0:

Ravgi (n0, d) = 1/d

n0+d−1∑

n=n0

Ri,n; (5.6)

• Average reward evolution (Revi (k, n0, d)) estimates the variation of the average
reward in k − 1 periods (k >= 2) of d 6= 0 epochs starting at epoch n0:

∆Ravgi (n0, d) = Ravgi (n0 + d, d)−Ravgi (n0, d) (5.7)

Revi (k, n0, d) = 1/(k − 1)
k−2∑

n=0

∆Ravgi (n0 + dn, d) (5.8)

Replacing d with suitable values we can have estimates of the short, mid and
long term evolution of the average reward.

All these statistics, are permanently updated by all agents and may be sent to any
other agent upon request. Several of these were used in previous experiments to decide
when to get advice or select an advisor although, currently, only Ravgi is used.
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5.2.3 Learning Algorithms and Evaluation Functions

The choice of the learning algorithms was based on two criteria: their applicabil-
ity to the type of problems we wanted to study and the differences in the way they
explore search-space. One of the main questions of our study is related to the effects
of cooperation between agents using different learning algorithms, therefore we made
all efforts to use learning algorithms with very different characteristics and exploration
strategies, to enforce heterogeneity. This allowed also a study of the common points in
the architecture that were useful to a broad spectrum of, reward-based, learning tech-
niques. In the first experiments (Nunes and Oliveira, 2002b) we used Q-Learning (QL),
Evolutionary Algorithms (EA) and Simulated Annealing (SA). SA was abandoned due
to the poor results registered in the initial trials. QL and EA showed interesting (and
different) behaviors in the initial experiments and were kept for that reason. In the final
stretch of this research it was found useful to have another algorithm with a radically
different knowledge structure from the other two. Strongly Typed Genetic Program-
ming (STGP) was chosen for this reason and also because it can produce knowledge in
a human-friendly format and incorporate domain knowledge, which is not the case of
EA or QL.

In the following subsections we will explain how each of these algorithms is used.
This explanation is based on the definitions presented in section 2.2 and will focus on
the differences between the standard implementations and our own.

QL-Agents

Upon observation of a new state (s̄t) a QL-Agent will evaluate it by calculating
Qj(s̄t, at,j) for available actions at,j (as explained in section 2.1.3) producing a vector
of Q-values (Q̄j(s̄t, āt,j)). This evaluation can be a simple extraction of a row of values
from a matrix, indexed by state-action pairs (in table-based QL), or the evaluation of
an ANN that is trained to perform this mapping (ConnQL). The majority of the QL-
agents used in our experiments use ANN to map state-action pairs to Q-values due to
the high dimensionality of the state-spaces. It was found useful to divide the mappings
of the different actions. We have one, independent, ANN for each action, which can be
interpreted as an ANN array or a single ANN with independent hidden layers for each
output, as depicted in figure 5.3. In this case the units in the last layer are linear, i.e. do
not use a sigmoid function to restrict the output to [0, 1].

The vector of Q-values Q̄(s̄t, āt) contains the estimated quality of performing each
possible action. The choice of which action will be executed may be done in one of
two ways: using the action with the highest Q-value, or, choosing a random action
with probability p(aj |s̄) calculated by Boltzmann selection as shown in equation 2.7.
The former is used in test or validation modes, while the latter is used learning mode.
When the choice of an action is stochastic the Q-values are normalized to unit sum and
p(aj |s) is the normalized Q-value.
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Figure 5.3: ANN for Connectionist Q-Learning with separate hidden layers for each
output and a linear output layer. Circles represent ANN nodes, rectangles enclose
associated nodes and lines represent weighted links between nodes.

We can define the output of πi,t(s̄i,t) (equation 2.10) as any of the following: the
vector of Q-values, the probability of using each action, or a binary vector with 1
representing the final choice and 0 for the remaining actions. The first two provide
more information than the latter, so, we keep the probability of choice as the action
vector to be stored and delay the choice of the actual action until its execution. It is
also this action-vector that is used as advice. The hypothesis’ parameters are the Q-
values themselves in table-based Q-Learning or the weights of the ANN in ConnQL.

When a reward, rt, arrives, the ANN that corresponds to the action that originated
this reward, is trained using standard backpropagation, with s̄t as input value and rt +

βQmax(s̄t+1) as the desired response. QL-Agents store these examples and perform
a replay (presenting the examples in reverse order) at the end of each training epoch,
as advised in (Lin, 1992) to improve the speed of knowledge acquisition by the ANN.
When using table-based QL instead of ConnQL the update is done as shown in equation
2.5. The epoch-reward is registered but not used directly in the learning process. This
may be a problem when the combined reward has a strong component of the global
reward and it conflicts with the individual reward (i.e. increase in the individual reward
may cause a degradation of global rewards). The main parameters of QL-agents and
the effects of changing them are described in table 5.1.

Advice can be used in one of three ways:

Imitation: In this case advice replaces the evaluation process and the agent uses
the advised action and observes the result, as in the work of Clouse (1997), de-
scribed in section 3.1.
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Table 5.1: Main parameters for a QL-Agent. The second column contains the type
of change these parameters undergo during training in standard implementations. The
third column is a summary of the expected effects of changing each parameter.

Parameter Standard Effects of change

ANN structure None Insertion of nodes in the hidden layer(s):
Possible increase in the ability to map
other functions. Higher probability of over-
training/specialization;
Removal of nodes: Decrease in the detailed
mapping capabilities. Possible better general-
ization.

BP learning-rate α

(Eq. 2.1)
Decayed Increase: Faster convergence, but also higher

instability and possibly jumps to regions out-
side the local minimum’s attraction basin;

for ConnQL only Decrease: Slower convergence, better explo-
ration of the current local minimum area.

QL discount β (Eq.
2.5, 2.8)

None Increase: Emphasize long-term results;

Decrease: Emphasize immediate results.
Biasing weight γ

(Eq. 5.9)
None Increase (over 1.0): Give more importance to

advice than own experience;
Used in advice only Decrease (below 1.0): Give more importance

to own experience than advice.
QL learning-rate α

(Eq. 2.5)
Decayed Increase: Focus on last experiments;

Used in table-based
QL only

Decrease: More emphasis on previously ac-
quired knowledge.

Temperature T (Eq.
2.7)

Decayed Increase: Increases exploration and makes the
response more stochastic in learning mode;
Decrease: Increases exploitation of previously
acquired knowledge and determinism in the
choice of actions.

Virtual-Experience: In this case, the agent will learn from another agent’s exam-
ples as if they were its own, as in LBW (Whitehead, 1991), described in section
3.1. This requires the existence of information on the reward obtained and the
state observed after acting, thus it cannot be used with specific advice.

Biasing: In the third case the Q-value that corresponds to the advised action is
updated as defined in Eq. 5.9. In ConnQL the ANN is trained using this value
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as desired response, while in table-based QL this will correspond to the above-
mentioned assignment. This process is based on the same rationale as the one
used by Whitehead (1991), but differs in two important details. Whitehead uses
a fixed bonus (positive for the chosen action and negative for all other available
actions) and separates the biasing information from the Q-values. A fixed bonus
will quickly freeze the action choices by setting a large gap between advised
actions and others. Setting the value of the advised action equal or slightly higher
than the best Q-value for that state will enable the agent to explore the advised
option and, if the advice proves to be inadequate, quickly return to the previous
policy.

Q(s̄t, at,k) =

{
γ ·max

j
(Qj(s̄t, at,j)) : Q(s̄t, at,j) < max

j
(Qj(s̄t, at,j))

Q(s̄t, at,k) : otherwise
(5.9)

The variable j is the index that differentiates the several possible actions, γ ∈]0, 2[, at,k
is the advised action, and at,j runs through all actions available at the current state.

It is important to notice that imitation, is the only advice process that requires syn-
chronization, i.e. advice must arrive before a decision is taken. This requirement can
be relaxed as explained above (in section 2.3.3) or by using stored advice.

It is also important to notice that these processes differ in how new knowledge is
acquired. When imitating the agent learns from its own reward. If the advice is not
appropriate there is no change in the policy, i.e. the action with maximum Q-value will
be the same after the update. The advisee can also attribute direct responsibility to the
advisor for the outcome of the action. When biasing or virtual-experience is used the
Q-values are changed, possibly assuming a value that is not adequate for the advised
agent. This value may have impact on future choices. It also is not guaranteed that
the advised action is selected. If this is the case, the advisor cannot be held directly
responsible for the result.

Virtual-Experience and Biasing can be used offline, which will mean that informa-
tion is stored and the actual update procedure will be done only in the beginning of a
learning phase. In QL-agents, when using offline advice, the examples collected from
all the available advisors are used only at this moment, changing the current learning
hypothesis.

EA-Agents

The evaluation function for EA-Agents is similar to the one described for ConnQL
in the previous section, i.e. an ANN array where the input layer has the same dimension
as the state. In this case, however, the output layer is composed of sigmoid (softmax)
functions (tanh() in this case). The output vector will contain values in [-1,1] and
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the desired values for training must be within that range. Another difference is in
the interpretation of the result. The output of this network is not an estimate of the
reward as in QL. All we can say is that the evolution mechanism should tend to select
mappings in which the highest activation corresponds to the best action. The action
that corresponds to the highest output is selected and ties are broken randomly. When
trained from advice it will generate maps of the “relative adequacy” of each action for
a given state, from the advisors’ point-of-view.

The algorithm used differs in the following points from the one presented in (Glick-
man and Sycara, 1999), summarized in section 2.1.4:

• Each specimen is evaluated during an epoch and its fitness is the combined re-
ward for that epoch. When all specimens are evaluated the selected specimens
will be the ones with highest fitness. Contrary to (Glickman and Sycara, 1999)
we do not use tournament selection;

• The selection strategy is elitist (i.e. keeps a number of the best specimens in the
next generation without any changes);

• The crossover strategy consists on choosing two parents from the selected pool
and copying subsets of the hypothesis from each of the parents to form a new
individual. Notice that the restriction that forces all ANN to have the same struc-
ture makes it possible to copy subsets from one parent for the same position (i.e.
node) in the offspring, thus, leading to the same type of feature-detection behav-
ior in the output of that layer. The number of specimens generated by crossover
is minimal when compared to the ones generated by mutation, but contrary to
(Glickman and Sycara, 1999) we have found this procedure useful.

At the end of each generation a certain number of specimens is selected and the re-
maining members of the population are destroyed. The best specimens in the selected
pool are copied to the next generation unchanged. The remainder of the population
is filled with specimens resulting from mutation and crossover of the selected speci-
mens. The number of specimens that are kept unchanged, generated by mutation and
crossover is determined by the algorithms’ parameters, detailed in appendix B. The
main parameters of EA-agents and the effects of changing them are described in table
5.2.

Mutation is done by copying a selected specimen and changing its hypothesis’ pa-
rameters (hi,t ∈ Ht), which in this case are the ANN’s weights, according to:

hi,t+1 =

{
hi,t, : r1 < mutationprob

hi,t + r2, : otherwise
(5.10)

where r1 ∈ [0, 1] is a randomly generated number with uniform probability and r2 is
randomly generated by a normal distribution with a variance equal to themutationrate.
mutationprob is the probability of mutating a given hypothesis’ parameter.



CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 88

Table 5.2: Main parameters for an EA-Agent. The second column contains the type of
change these parameters undergo during training in normal circumstances. The third
column is a summary of the expected effects of changing each parameter.

Parameter Type of
change

Effects of change

Population size Fixed Increase: More exploration; slower training;
Decrease: Less exploration; faster fine-tuning of
the best specimens found.

BP learning rate
α (Eq. 2.1)

Decayed Increase: Faster convergence, but also higher in-
stability and possible jumps to regions outside
the local minimum’s attraction basin;
Decrease: Slower convergence, better explo-
ration of the current local minimum area.

Mutation-rate
(Eq. 5.10)

Decayed Increase: Higher exploration, higher probability
of generating bad specimens;
Decrease: Focus on a few good areas of the
search space. Danger of loss of diversity.

Mutation proba-
bility (Eq. 5.10)

Decayed Similar to mutation-rate. The relative impact of
these two parameters depends on the structure of
the hypothesis (specially the number of hypoth-
esis’ parameters).

Kept specimens
(%)

Fixed Increase: More elitist. Less exploration, more
exploitation. Danger of loosing diversity
Decrease: Higher exploration

Crossover (%) Fixed The effects of crossover are highly dependent on
the hypothesis structure, but, generally, the num-
ber of crossover specimens is positively corre-
lated with exploration

Mutated (%) Fixed Similar to the above.
ANN structure Fixed Similar in all respects to the situation described

in table 5.1. Difficult to implement because all
specimens must change simultaneously to keep
the crossover mechanism. Some proposed so-
lutions to mix EA and BP may overcome this
problem elegantly, see (Salustowicz, 1995; Yao,
1999) for details

Crossover is done by generating a new specimen from copies of parameter sub-sets
from the parents. The subsets are defined a priori. In this case we use subset-masks that
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group the incoming weights of each node. Since units (specially those in the hidden
layer) work as feature detectors this seemed an appropriate partitioning. The same view
is defended in (Salustowicz, 1995).

Learning from advice can be done online or offline using standard or ALR-BP.
Online BP was abandoned early during this research due to its poor results when com-
pared to offline ALR-BP. EA-agents cannot use imitation or virtual-experience because
they cannot learn from actions that were not generated by a specimens’ policy. The de-
sired value (d̄) for a certain advised action ak,t is defined as dj = C when j = k

and dj = −C otherwise. In most examples of BP algorithms C is set to 1, but this
target-value can never reached by the sigmoid (tanh()) which may cause weights to
grow indefinitely in an attempt to reach the target. To solve this problem some authors
suggest re-scaling the sigmoid to [−1.2, 1.2] others the use values of C lower than one.
We have chosen the latter, using C = 0.97. Using a value of C lower than one has
yet another advantage. By keeping the output sigmoids in the verge of saturation it
is more likely that small changes in the weights can have large effects on the outputs,
this allows low mutation-rates to continue being effective in changing the network’s
mapping.

The integration of advice is done at the beginning of each new generation. Part of
the new specimens are trained using the examples saved in the advisor’s stores. When
standing advisors are used only one specimen is trained. When using multiple advisors,
one specimen is trained for each of the advisors that exhibits a better validation perfor-
mance. Each specimen is trained with the advise store of only one advisor. The training
of the new specimen continues until the number of epochs without a decrease in the
error is higher than K ×En, where K = 150 is a constant and En is the classification
error in epoch n.

GP-Agents

The third type of agents use Strongly Typed Genetic Programming (STGP). The
major differences between our approach and the ones currently in use (explained in
section 2.1.5) are:

• Each action has a different program tree that performs a fuzzy classification of
the pattern;

• The leaf nodes are scalar values instead of labels;

A Program Tree (PT) has one root-node for each possible action and evaluates to
a real number having as argument a state vector. Nodes have two possible base-types
according to their output (boolean or real). A summary of the types of nodes available
can be found in table 5.3.
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Figure 5.4: An example of a Program Tree. Diamonds represent conditional instruc-
tions. Rectangles represent functions. Round-edged rectangles represent leaf-nodes.
The result types appear above each node.

External Function nodes point to environment-specific functions, of the appropri-
ate type that each environment must supply. All External Functions (boolean and real-
valued) take the state as input and calculate a certain value based on that state, e.g.
an environment-specific distance between two states, an evaluation of the equality be-
tween two elements of the state-vector, etc. This allows the introduction of domain-
specific knowledge by making available to the program a set of functions that are mean-
ingful in the context and would be complex to generate by random assembly of nodes.
This will obviously introduce a bias, but it is a common procedure in STGP and has
proved to achieve interesting results (Haynes et al., 1995b). The functions used for
each of the problems can be found in sections 6.1 through 6.3.

The initial trees are randomly generated within the restrictions posed by the types
and with a given (pre-set) probability of generation for each node type. The root-node is
always an If-Then-Else to avoid trivial trees. The maximum depth is also pre-set. When
maximum depth is reached the generation of a terminal node (one without subtrees) is
forced.

Evaluation is done recursively always carrying the state as a parameter. The set of
program trees generates a vector of real numbers as in the case of EA and QL-agents.
The selected action is the one with highest activation and ties are broken randomly.
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Table 5.3: Description of the main types of Nodes in a Program Tree. The subtree types
are: (b)oolean and (r)eal.

Name Type Subtrees Data Evaluates to
If-Then-Else real 1b+2r - The value of the true branch

if the condition is true and
the false branch otherwise

Index Value real 0 index state[index]
Real Const Value real 0 real A constant real value in [-

1,1]
Arithmetic real 2r The result of an arithmetic

operation between two real
numbers (sum, multiplica-
tion or subtraction). The re-
sult is bounded to the [-1,1]
interval

Ext. Real Func. real 0 function
name

A real number, f(s), where
f() is a given external real-
valued function

Logical bool 2b - The result of a logical oper-
ation between two booleans
(AND, OR, XOR). The
negation operator is also
available having a single
branch.

Ext. Bool Func. bool 0 function
name

True/False, f(s), where f()
is a given external boolean
function

In Interval (and
Outside Interval)

bool 3r - True if the evaluation of the
first sub-tree is in the inter-
val defined by the evaluation
of the two remaining sub-
trees, false otherwise

Greater Than (and
Smaller Than)

bool 2r - True if the evaluation of the
first sub-tree is greater than
the second, false otherwise

All processes related to specimen evaluation and selection as well as the generation
of a new population are similar to the ones described for EA except for mutation and
crossover. The main parameters of GP-agents and the effects of changing them are
described in table 5.4.
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Table 5.4: Main parameters for a GP-Agent. The second column contains the type
of change these parameters undergo during training in normal circumstances. The
third column is a summary of the expected effects of changing this parameter. Most
parameters were omitted because they are similar to those referred in table 5.2 and
changes have similar effects.

Parameter Type of
change

Effects of change

Max. tree depth Fixed or
undefined

Increase: Possible increase in the ability to
map other functions; slower training. Higher
probability of over-training/specialization
Decrease: Less detailed mapping capabili-
ties. Possible better generalization; faster
training

Trees are mutated by recursively applying a mutation operator to each node. If a
given random number (uniform in [0,1]) is smaller than the current mutation probability
the current node will mutate. The type of mutation will depend on the node it is applied
to. Nodes with subtrees can delete a sub-tree and generate a new one. Nodes containing
data can change it by disturbing the constant value stored in a Real Const Value node
with random noise, or by changing the External Function to be applied, as long as the
return type of the function is maintained.

Crossover is done simply by selecting action-subtrees randomly from one of the
parents, to form a new set of trees for the offspring. The probability of choosing a
subtree from a certain parent is proportional to the parents’ fitness.

Most of the algorithm parameters are similar to those used EA, except for BP-
related parameters that, in this case, are replaced by the PT-specific parameter: maxi-
mum tree depth.

When a random tree is generated (or a mutation occurs) a restriction vector may
be passed as a parameter during the recursive generation procedure. In some nodes
restrictions will be added to this vector before each branch generation. For example,
when generating an In Interval node we will need three branches, the first is the variable
and the remaining two define an interval. It is pointless to have three Constant Real
nodes as branches since the evaluation is always the same regardless of the state value.
We restrict at least one of these values (the first) to being a non-constant. We also
restrict the evaluation of all arithmetic functions to the [-1,1] interval by cutting-off the
results that exceed these limits.

Advice is integrated in the knowledge structure using ID3 based on a batch of
examples collected from other agents. Each set of examples is processed once for each
action. Before processing, the examples are divided into positive (states for which that
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action was advised) and negative ones. Each action is trained separately generating its
own program tree. An action k is considered to be advised for a certain state if k is the
index of the maximum value in the action-adequacy vector returned by the advisor.

As for EA-agents the training of new specimens with advice occurs only when
a new generation is created and each specimen integrates the advice from a single
advisor.

There is a predefined set of boolean functions that partitions any set of states in two
subsets. This set contains the following functions:

• Greater Than
• Smaller Than
• In Interval
• Outside Interval
• External Bool Functions

The first four functions are tried for different combinations of Index Value and Constant
Value nodes (e.g. Greater Than(Index Value: 1, Constant Value 0.2) corresponds to
the test si,t,1 > 0.2, for si,t,1 ∈ s̄i,t). The maximum gain partition is chosen at
each step. When a subset contains only positive or only negative nodes a Constant
Real Value node is generated with 1.0 or -1.0, respectively. When maximum depth
is reached a node is generated with a constant value that represents the percentage of
positive examples in the current subset. This variant of ID3 enables the representation
of fuzzy solutions instead of limiting the leaf nodes to a definite class and although it
was autonomously developed by the author it may be considered a simplified version
of the algorithms referred in (Ichihashi et al., 1996; Chiang and Hsu, 2002).

5.2.4 Information Storage

Two main types of learning-related information are stored by the agents: hypothesis
and examples.

Hypothesis

The stored hypothesis are labelled: learning, test-candidate and validation. EA and
GP agents also store the hypothesis’ parameters for each specimen of their populations.

The learning hypothesis contains the parameters currently in use. It is usually a
copy of the parameters in memory that is updated at fixed intervals. The test hypothesis
contains the parameters that are under evaluation when the system is in test-mode.
These parameters may become the new validation hypothesis if they prove to achieve a
better performance. The validation hypothesis is the one that is estimated to provide the
best performance. These are the parameters used to provide advice to other peers. All
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hypotheses require a certain evaluation-time before any changes are allowed. This time
the mid-term reward evolution interval defined in equation 5.7. In implementations
where the learning, test and validation environments run in parallel these stores would
be split through different levels.

Examples

The example stores are labeled: last epoch, current epoch, validation and advice. In
addition to these there is one store for each advisor. The last and current epoch stores
keep the examples experienced in the last two epochs. The validation stores are used to
cache the examples that will be sent to peers that have a standing-request for validation-
examples. The number of validation-stores that an agent is allowed to keep at each time
is a parameter defined during initialization. Validation stores are destroyed whenever
the validation hypothesis is updated. Advice stores keep the advice that was provided
in the past for possible future replay. The advice is split by several advisor-related
stores.

Example stores are cleared/replaced when the following events take place:

• End of epoch: last epoch’s stored examples are replaced by the ones in the cur-
rent epoch store. The latter is cleared.

• Change of standing advisor: Advisor’s store is cleared.
• Change in an advisors’ best policy: Advisor store is cleared on its signal.
• Learning stage of advisee changes (Eq. 5.12 through 5.14) or advice is started or

stopped (Eq. 5.18). All advisors’ stores are cleared.

5.2.5 Learning Stages

The evolution of an agents’ learning process is mimicked by the definition of four
Learning Stages: Exploration, Novice, Intermediate and Expert. Each learning-stage
has specific characteristics. Some learning parameters and advice integration modes
are more suitable for each case. By comparing table 5.5 with tables 5.1, 5.2 and 5.4
we can start to draw a picture of the changes in parameters that are appropriate in each
situation.

Agents evaluate the conditions to transit from one stage to the other at the end of a
validation epoch. An agent can transit only once from Exploration to any of the other
stages and will not return to Exploration stage. Transitions between all other stages can
happen any number of times.

An important condition for all transitions is the stabilization of the learning process
(Cs), defined as:

Cs = Revi (K,n−K, d) < ηd, (5.11)
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Table 5.5: Learning Stages, their characteristics and impact on learning parameters.
Stage Characteristics
Exploration No advisor

Decaying exploration:
QL: decaying temperature,
EA/GP: decaying mutation-rate

and mutation probability
Decaying learning-rate (QL/EA)

Novice Single advisor, batch advice
Low exploration-rate:

QL: low temperature or fast decay,
EA/GP: low mutation-rate and probability

High advice integration-rate:
QL: high biasing-rate
QL/EA: high learning-rate for advice

Medium/Low learning-rate for own experience:
QL/EA: medium/low learning-rate

Intermediate Multiple advisors
Medium exploration-rate:

QL: medium temperature,
EA/GP: medium mutation-rate and probability

Medium/Low advice integration rate:
QL/EA: medium/low learning-rate for advice

Medium/High learning-rates for own experience:
QL/EA: medium/high learning-rate

Expert No advisors
High exploration-rate:

QL: high temperature (decaying)
EA/GP: high mutation-rate and probability (decaying)

Medium/High learning-rate for own experience:
QL/EA: medium/high learning-rate

where K is the number of time intervals considered, d ∈ {10, 20, 100} is number of
epochs and ηd ∈ {0.01, 0.01, 0.05} is the minimum evolution required in the short, mid
and long-term, respectively. The traffic-control problem uses slightly different values
to synchronize the defined intervals with full days or weeks. When Cs is true for all
values of d learning is said to have stabilized. Whenever information is not available for
a long-term evaluation it is replaced by mid-term information. If mid-term information
is not available Cs is false.

Several sets of conditions were tested to define the transitions between neighboring
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states. The ones that were used in the experiments reported here are:

• Novice:

Cs ∧Ravgi (n0, d) < Ravgk (n0, d)− 2γ · std dev(Rk(n0, d)) (5.12)

• Intermediate:

Cs ∧Ravgk (n0, d)− 2γ · std dev(Rk(n0, d)) ≥ Ravgi (n0, d)∧
Ravgi (n0, d) < Ravgk (n0, d)− γstd dev(Rk(n0, d)) (5.13)

• Expert:

Cs ∧Ravgi (n0, d) ≤ Ravgk (n0, d)− γstd dev(Rk(n0, d)) (5.14)

where, Revi , is the performance evolution of agent i (equation 5.7), k is the index of
the agent with best performance in epoch n, or the standing advisor when one exists,
and γ is a weight, set to 1.0 whenever a state transition occurs, and multiplied by
0.9 whenever the agents’ performance is stabilized. γ forces agents with suboptimal
strategies to ask for advice if their situation is stable for a long time.

5.2.6 Roles

In (Stone and Veloso, 1997, section 5.2) MAS are defined as homogeneous or
heterogeneous depending on having “different goals, possible actions and/or domain
knowledge”. Although this definition is useful it does not (explicitly) address the pos-
sibility of developing heterogeneous behaviors as a competitive advantage in problems
where the use of the same policy by all agents leads to low performances. In certain
MAS problems the agents may be homogeneous in the sense that they have the same
goals, possible actions and domain knowledge, but they must learn to behave differ-
ently from their peers to have a good performance. In this case agent’s must assume
certain roles. A role, in this case, is simply a differentiated policy that complements
those of other partners.

There are two main types of role definitions: static and dynamic. Static roles are
those that are pre-defined by the user for MAS where the agents have different func-
tions to perform, as defined in (Stone and Veloso, 1997). It is common in these cases
that the actions available to each role are different and even the state-structure may be
different depending on the agent’s role. In these cases learning information can only be
exchanged between agents with similar roles. Since, in terms of information exchange,
these MAS are simply a restriction of those where roles change dynamically we have
not considered them in our study. Problems where strictly homogeneous agents are
useful, are also a subset of the case considered.
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When roles are dynamic all agents have the same capabilities but the best solution
to the problem requires that they use different policies. In this case it is not important
which agent assumes a certain role, as long as all critical roles are simultaneously taken.
There can also be different combinations of roles that perform equally well.

In respect to information exchange, dynamic roles pose a problem of synchronism.
If a certain team has a good performance, learning to emulate their behavior may de-
pend on all agents of an advisee team choosing a different member of the successful
team as advisor. There are different ways of achieving this result, the simplest of which
is to attribute, randomly, a virtual role to each agent and to prevent agents (at least
in some stages) from requesting information to advisors with different roles. When
members of a team ask for advice synchronously to the corresponding members of a
successful team we can be assured that all are learning different policies an that these
policies match. We do not limit the choice of advisors to a certain team, although it is
likely that advisees will chose members of the most successful team as advisors.

This type of strategy does not eliminate the problem of learning mismatching strate-
gies, but it will effectively minimize it. Still, in some cases, specially in QL-Agents
due to the algorithm’s characteristics, this may partially destroy the acquired knowl-
edge and a good process to find the role each agent is playing and choosing the “right”
advisor could accelerate the acquisition of a new policy, provided that all critical roles
of the advisor team were learned.

One such process was attempted in previous experiments (described in section A).

5.2.7 Learnability and Trust

Learnability, in this context, is the capacity to integrate the knowledge transmitted
by the advisor and reproduce its behavior. The Learnability of the advice currently
stored from a given advisor k, from the point-of-view of an agent i, is calculated as:

lik,n = mmatch/mtotal, (5.15)

where mmatch is the number of actions in which the choice made by agent i is equal to
the action advised by agent k, andmtotal is the total number of advice analyzed. When
advice is taken offline, using ID3 or BP, the final classification performance (percentage
of correctly classified examples) is used as the policies’ learnability.

As mentioned above there are three components that must be considered when
choosing an advisor. The advisors’ efficiency in its own problem (its rewards), the
learnability of the advisors’ policies (how well can an advisee learn what is being
taught) and the adequacy of the policy for the advisor’s problem. Trust, in this context,
is a relation between an advisee and an advisor. It measures the usefulness of the
information from a certain source. To measure this we chose the quotient between the
result achieved by the advisee when using a certain policy and the result announced by
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the advisor for that same policy. To put it more precisely, the trust of agent i in agent j
is initialized to 1 and updated by:

trusti,j,t+1 = αtrusti,j,t + (1− α)(Rj,t0/Ri,t), (5.16)

where α = min(0.7, lik,t) is the trust update-rate, Rj,t0 is the score announced by the
advisor and Ri,t is the actual score received when applying the policy. Using learn-
ability as an adaptation-rate for trust will prevent drastic changes in the trust when the
policy of the advisor is not being correctly mimicked.

This quotient, when multiplied by an advisor’s announced reward, should provide
an agent with an estimate of the reward that will be obtained by using the advised
policy based on previous experience with that source. If locations have very different
dynamics it would be more appropriate that the adaptation of the trust values includes
a softmax function.

When using online imitation all examples can be used in the update of trust. When
the advisee is not imitating the advisor only those examples in which their policies
agree (mmatch in equation 5.15) can be used in the update. In cases where learnability
is low, or still unknown, and it is imperative that an agent estimates the trustworthiness
of a certain advisor it can simply imitate the advisor for a certain period of time to
acquire this estimate and resume the normal learning process afterwards. The drawback
is, again, the synchrnism requirement that imitation carries. In our experiments we did
not use imitation to aquire an estimate of the advisors adequacy.

Trust is reset to 1.0 when the agent changes its learning stage to allow a fresh start
that may be usefull if the policies of the advisors’ partners changed recently.

5.2.8 Advice

An advice (ēi,t) a is tuple with the following components:

ēi,t = {s̄i,t, āi,t, [i, t, ri,t, s̄i,t+1, rl,n]}, (5.17)

as defined in section 4.1. When learning stages are not used advice is collected when:

Cs ∧Ravgi (n0, d) < Ravgk (n0, d)− γ · std dev(Rk(n0, d)) (5.18)

where i is the advisee and k the peer with best average score. This would correspond
to all learning stages, except Expert (Eq. 5.11 through 5.14).

As mentioned in section 4.1, two types of advice can be requested, specific or batch.
Specific advice is requested for a given state experienced by the advisee and contains
only the mandatory components of vector ē. Batch-advice is a standing-request made
to a given advisor. This advisor will send examples of the application of its best policy,
the one used in validation, whenever a validation epoch ends.
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Before requesting specific advice an agent will try to find in its stores an example
that matches the current state. When using multiple advisors the advice that contains
the best estimated reward is chosen. In trials where roles are used only agents with the
same roles in different teams are considered as potential advisors.

Specific advice can be used online (requiring synchronization) or stored for offline
learning. When used online it can be integrated before the action is selected or simply
imitated. Online integration of specific advice is only possible in EA and QL-agents,
although for EA the initial results proved that it was not a good option. The first
use online BP while the second use biasing or virtual-experience (see section 5.2.3).
Imitation is only possible for QL-Agents since EA and GP agents are unable to learn
from the rewards of actions they did not generate. Batch advice can only be used for
offline learning. The offline learning procedures for all types of agents are described in
section 5.2.3. Previously saved advice can be used offline even when the agent is not
requesting further advice.

The selection of the standing advisor is reviewed at fixed time-intervals. The stand-
ing advisor will be the agent with highest average reward in recent validation trials.

In this chapter we have explained in detail the environment’s structure and the com-
ponents that constitute our learning agents. In the following chapter we will describe
the problems used for testing our approach.



Chapter 6

Experimental Framework

This chapter is dedicated to the explanation of the experimental framework. The
implementation details can be found in appendix B.

The first problem (predator-prey) was chosen because it is one of the most used in
MAS and it is easy to change its difficulty level by using different formulations. It was
also our initial intention to compare our results with those obtained by others in this
problem using the exact same formulations of the problem, but it was soon obvious
that the formulations used by other authors either did not adapt to some of the learning
algorithms we used, or were easily solved with the standard versions of the algorithms,
not allowing us to demonstrate the utility of exchanging information.

The second problem to be approached was traffic-control. This problem had all
the required characteristics and the fact that real-data was available was an important
factor that led to its choice as a case-study.

The third problem we selected, in the final phase of this work, was load-balance. It
was an important goal for us to find a problem in which we could compare our results
to those of other researchers, and this problem seemed to offer just such an opportu-
nity. Even though there were some difficulties, for the reasons explained below and
detailed in appendix D, we have achieved a reasonable basis for comparison. Still, the
most important comparison to be taken in consideration is between advice-exchanging
agents and our own implementations of standard learning algorithms.

One of the main difficulties, specially in the last two scenarios, was in defining a
state structure and problem parameterization which made the problem learnable, but
not trivial. It was noticed that very slight variations in some parameters of the problem
could quickly shift these problems from trivial to unsolvable. On the one hand we have
seen that the techniques presented here have little influence in the results for problems
that are easily solvable by standard methods. On the other hand it is encouraging to see
that the best results were in problems that are extremely difficult to solve with standard
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learning algorithms. This seems to indicate that in harder problems there is more to
gain by exchanging information during learning.

6.1 Predator-Prey

Figure 6.1: An arena of the predator-prey problem with 15×15 positions, 2 predators
and 1 prey. Predators have a visual-range of 4. The white squares represent predators;
the circle represents the prey; The arrows indicate the movement of the objects and the
grey area defines the visual-field of the agent in the lower right corner.

This problem was first introduced in (Benda et al., 1985), although the versions
presented were inspired on the variants presented in (Tan, 1993) and (Haynes et al.,
1995b). Each arena is a square lattice of a given dimension. An arena of 15x15 squares,
is depicted in figure 6.1. The arena, in our implementation, is unbounded, i.e. an
attempt to move past the bounds will cause an object to appear in the opposite end of
the arena as if moving in the surface of a sphere.

In each arena there are two types of moving objects: prey and predators. Any
number of objects can occupy the same position. In each cycle, all the objects are
allowed to move one square in any of the eight directions available or to stay the same
square, i.e. nine possible actions to choose from in each turn. The directions will be
referred to according to the geographical convention: (N) North , (NE) North-East, (E)
East, (SE) South-East, (S) South, (SW) South-West, (W) West, (NW) North-West. The
prey moves before the predators’ sensing phase.
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Table 6.1: Parameters for predator-prey experiments. Comparable to tables 3.1 and
3.3.

Parameter Value

Definition of capture Individual: same position as prey
Cooperative: #predators in vicinity > 1

Size and shape of the world 15x15, unbounded
Legal moves All squares in vicinity (9)
Simultaneous/sequential moves Simultaneous, except prey
Visible objects All
Visible range 4
Predator communication No, except for learning information
Prey movement Heuristic (escaping-prey)
Overlapping objects Yes
Initial placement Random
Number of predators/prey 2/1

The predators’ objective is to capture the prey. A prey is captured if at least one
predator is in the same square as the prey (individual capture), or if two or more preda-
tors are in squares adjacent to the prey (cooperative capture). The overall objective of
a team is to catch the prey as many times as possible.

The prey will move away from the closest predator. When several predators are
equally close one is picked randomly and the prey moves away from it even if this
means approaching another predator. An escaping-prey will not be allowed to move
once every 10 turns to limit its speed relative to the predators.

The state observed by a predator consists of 2×9 elements. The first nine sense the
prey’s position, the last nine sense other predators. Each state element corresponds to
one of the possible 9 directions of movement. The intensity of activation of each state
element is inversely proportional to the distance between the predator and the sensed
object. If (x, y) is the position of the prey relative to the predator, then the activation of
the state element in the prey’s direction will be 1 − 0.1 max(|x|, |y|). The minimum
activation is 0.1 when the prey is outside the visual-range. There are 1681 possible
states and 15129 state-action pairs (for a visual-range of 4). When two objects of the
same type are in the same direction only the closest is sensed.

Predators can sense the exact position of the closest prey and partner provided they
are within the observer’s visual-range. A predator’s visual-range is a square of side 2
× visual-range + 1, centered at the predator.

The predators can be learning agents or H-agents (heuristic-agents). The first will
choose one of the nine possible actions based on their evaluation function and current
parameters. H-agents always move directly towards the prey. This is the optimal be-
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havior when a single predator is considered if no assumptions are made regarding prey
and partner’s behavior. This policy has two drawbacks in a team scenario. First it
does not account for the positions of other predators to anticipate the prey’s movement
(enabling the predator to move to a future position of the prey instead of the current
one) and in a situation where all predators are pursuing the prey from the same side the
catch will take more moves than if predators surround the prey by moving around the
world in opposite directions. This second situation is increasingly less likely to happen
as the number of predators in play increases. Having only two predators allowed us to
judge the effect of suboptimal advice.

The individual reward for a given predator is: 1.0 if the last action has resulted
in a successful catch and the predator took part in it (i.e. is in the same or an adjacent
square to the prey), and 0.01 maxj(sj) otherwise, where sj are the elements of the state
that sense the prey (i.e. j ∈ [0, 9]). The balance in the reward is tied to the random
relocation after a catch. The reward when a predator moves closer to the prey must
indicate that this is a move in the right direction, but it must not be too high otherwise
it might compensate not catching the prey. In some scenarios, with different reward
structures, it was noticed that staying close to the prey would prove more efficient than
actually catching it, because the random relocation of the predator might cause a series
of low reward movements immediately after the catch.

The epoch-reward is n/m, where n is the number of successful catches during that
epoch in a given arena, and m is the number of turns of each epoch. The number of
catches is incremented once for every predator that participates in a catch. If the reward
was proportional only to the number of catches, regardless of how many predators took
part in it, individual catches would produce higher global rewards than cooperative
catches. If n > m the reward is 1.0.

In this problem the weights of combined reward are both equal to 0.5 giving equal
weight to individual and global rewards. Each epoch consists of 60 turns, i.e. each
agent makes 60 moves.

The functions provided by the environment to be used by STGP are the following:

• Real Functions

– Distance to Prey
– Distance to Partner

• Boolean Functions

– Prey: Right, Left, Up, Down, Here, Up and Right, Up and Left, Down and
Right, Down and Left, Straight Right, Straight Left, Straight Up, Straight
Down

– Partner: Right, Left, Up, Down, Up and Right, Down and Left, Up and
Left, Down and Right

– Prey Close
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– Partner Close
– Partner Close to Prey

6.2 Load-Balance

The load-balance environment is similar to the one presented in (Whiteson and
Stone, 2004). Each area will contain three types of objects: users, load-balancers and
servers.

Load
Balancer 2

Load
Balancer 1

...

User 1

User 2

DB_Serv.2

DB−Serv.1

DB−Serv.9

Web−Serv.1
Mail−Serv.1

Web−Serv.2
Mail−Serv.2

Mail−Serv.9
Web−Serv.9

Figure 6.2: Load-balance scenario.

The two users of the system will generate jobs until a total of 500 jobs is generated.
Each job will be sent to a randomly chosen router. The routers will select a server
to complete the job and send it. Upon completion of each job the user will score it
based on its own evaluation function and the job’s completion-time. Each job will
have three job-steps, each with a corresponding type. The two possible sequences of
job-steps are: Web-Mail-Web and Web-Database-Web. A step of a given type can
only be accomplished in a server of the same type and the steps must be performed
sequentially. We chose to test our approach in one of the topologies used by Whiteson
and Stone (2004), depicted in figure 6.2. In this topology servers are divided in clusters
and all clusters have one server of each type. All available information concerns only
the server that is directly connected to the load-balancer (i.e. the Mail-servers). The
server types (and step types) considered in this case are: Web, Mail and Database.

Each server has a certain speed that defines what percentage of a job-step of that
type it can complete in one cycle, e.g. a Mail Server with speed 0.5 will complete
a mail-step every two turns. Our formulation of the problem differs from the one
presented by Whiteson and Stone (2004) in terms of server speeds and work-load. In
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the previous formulation each job-step has a certain work (number of cycles required
to complete the step), and processor speeds are represented as integers. Since all job-
steps of a certain type require the same amount of work, re-formulating the speed as
a real number, equal to the quotient between the server’s speed and step-work on the
previous formulation and assuming unitary work for all job-steps, is equivalent.

Every five cycles the servers that are directly linked to load-balancers send a packet
with their current load (number of pending jobs/speed). Time is discrete and commu-
nication between any two linked nodes takes one time-step.

The objective of the load-balancers is to route the jobs sent by the users as effi-
ciently as possible according to the measure of efficiency provided by the users (all
monotonically decreasing in time).

The load-balancer will route the job according to its current policy to one of the
front-line servers. The action will be a vector containing the probability of choosing
each server. The decision of the actual server the job will be sent to is random, based on
the probability-vector issued by the agent. The number of possible actions is equal to
the number of available servers. Jobs are stored in a FIFO queue on arrival at a server.
In each turn all servers will check the queue of pending jobs and start processing the
first job in the queue.

When a server starts to process a job it will check if the processor is free. If so,
it will start processing the first job. If a job is completed and there are still resources
to spend, the server will pop another job out of the pending jobs queue and process it.
For example, if a processor has a speed of 1.2, there are three jobs in queue and the
processor is free at the beginning of the cycle, then it will process one job-step (and
route the job to a server in its cluster that can complete the next step), complete 20%
of the second job-step, which will remain active until the next cycle, and the third job
will remain in queue. The servers’ speeds in our experiments were those selected for
the catastrophe scenario in Whiteson and Stone (2004), i.e. the speed of Mail Servers
1 through 9 is 0.2, 0.4, 0.6, 0.8, 1, 0.6, 0.7, 0.8, 0.9, respectively, and the speed of the
Database Servers 1 through 9 is 0.9, 0.8, 0.7, 0.6, 1.0, 0.8, 0.6, 0.4, 0.2, respectively.

When a job returns to the user that generated it, the user will compare its generation-
time-stamp with the current time, calculate its completion-time (i.e. the difference be-
tween the current time and generation-time) and reward the load-balancer accordingly.
The user sends, along with the reward, the identifier of the completed job, so that the
load-balancer can associate the reward with the state observed at the time of decision
and the action taken for this situation. Each user may have a different reward function.
The reward functions used in Whiteson and Stone (2004) were:

r1(tc) =

{
1− tc10, : tc < 50

1 + tc/10− 495, : otherwise
(6.1)

r2(tc) =

{
−tc/10, : tc < 50

−10tc + 495, : otherwise,
(6.2)
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where tc is the job’s completion-time. We have rescaled these functions to the interval
[0,1] using a minimum of −1000:

rj(tc) =

{
0.0, : ruser(j)(tc) <= −1000

1 + ruser(j)(tc)/1000, : otherwise,
(6.3)

where rj is the reward for job j whose completion-time is tc.

In this problem, the weights of combined reward are both equal to 0.5 giving equal
weight to individual and global rewards. Each epoch consists of 100 turns, in each turn
all users are randomly selected to generate jobs until a maximum of 500 pending jobs
is reached. The number of actions each agent executes per epoch is variable.

The state observed by a load-balancer contains information about the job-type (0
for Mail-jobs and 1 for Database jobs), the user that generated it (0 for user-1 and 1
for user-2) and an action-dependent feature (Stone and Veloso, 1997) which encodes
the last information sent by the candidate server concerning its load (in [0,1], divided
into 0.01 intervals). When servers have more than 100 jobs in queue the value of
the third component would be 1.0. The total number of states is ≈ 4e18, reduced to
404 per action by the use of action dependent features. The number of state-action
combinations is 3636.

An action-dependent feature is one that changes depending on the action the agent
is considering at a given moment. In this case, if a load-balancer is considering sending
the packet to server number n the third component of the state will be the load of the n-
th server. This requires each component of the action vector to be evaluated separately,
using a different state vector. This was one of the main reasons that led us to adopt
evaluation functions that are able to process each action with an independent set of
parameters.

In this problem we can consider that the state is observed several times each turn, to
include the new information about the next job to be processed, or that the external state
(i.e. the server loads) is only observed once per turn and the first two components are
added to the state-observation every time a new job is considered. We will choose the
second interpretation because it respects the definition of turn as the interval between
two state observations and also because it points the way to an advisable optimization.

The heuristic strategy used was random routing. Each job was sent to a randomly
selected server with an equal probability. The first experiments with this heuristic led
to the discovery of an error in the initial description of the experiments, as explained in
detail in appendix D.

The functions provided by the environment to be used by STGP are the following:

• Real Functions

– Load, Low Load, Medium Load, High Load
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Table 6.2: Summary of the parameters for the Load-Balance experiments.
Parameter Value

Number of steps per job 3
Maximum pending jobs 500
Number of users 2
Number of load-balancers 2
Number of server clusters 9

• Boolean Functions

– user1, user2
– Mail Job, Database Job
– Low Load, Medium Load, High Load

The real functions Low Load(), Medium Load() and High Load() are evaluated as
follows:

LowLoad(j) =

{
0 : lj > 0.5

1− 2lj : otherwise
(6.4)

MediumLoad(j) =

{
0 : 0.8 > lj ∨ lj < 0.2

1− 0.33|lj − 0.5| : otherwise
(6.5)

HighLoad(j) =

{
0 : lj < 0.5

2(lj − 0.5) : otherwise
(6.6)

6.3 Traffic-Control

The traffic-control problem used in these experiments bears some similarities to
several other research simulations, such as the ones presented in (Thorpe, 1997) (Brock-
feld et al., 2001) and (Dresner and Stone, 2004). There is however one important dif-
ference: the traffic-flows are generated based on real data. This data was graciously
made available by the Traffic-Control Department of Lisbon’s City Hall. An example
of a traffic scenario can be seen figure 6.3 and a sample of the used data is depicted in
6.4.

The data available was collected by magnetic sensors and gathered by Lisbon’s
automated traffic-control system (GERTRUDE) between 15/07/01 and 31/07/01 in five
of the most busy avenues of Lisbon. It indicates the number of cars that passed through
a given sensor every 5 minutes. This data was pre-processed by dividing the total
number of cars passing in each period by the number of lanes in each of the streets
observed.
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Figure 6.3: Partial view of a traffic-control area with 4 × 4 crossings (16 traffic con-
trollers).

Other measurements were taken at the site to fine-tune the simulation, such as:
typical green-time of traffic-lights (35 to 50s), average yellow-time (3s), number of cars
passing a green traffic-light in one lane, after 10s, 20s, 30s, 40s and 50s (≈ t/2). All
these measurements were done at rush-hour, when queues exceeded the traffic-lights’
throughput causing traffic jams.

Each area in a traffic-control environment contains a given number of lanes ar-
ranged in a pre-established topology. Within each lane we have several sections,
namely: start-of-lane, road-stretch, crossing and end-of-lane. All lanes have only one
start and end-of-lane, but they may have any number of crossings, and road-stretches
between them. The spatial resolution of the simulation is 1 meter and temporal resolu-
tion is 1 second, i.e the positions of all cars are recalculated for every simulated second
and its positions are discrete with a minimum step of 1m.

The scenarios with 4 traffic-controllers are the ones that more closely follow the
topology of the streets where data was collected. This is the main reason why we have
focused on these scenarios in the experiments we are describing.

Each crossing is controlled by a different Traffic-Control Agent (TCA). TCA ob-
serve the state of the world every 12s and may choose one of two actions: set the
North-South lanes traffic-light to green or red. The opposing traffic-lights will change
automatically. Yellow times are automatically introduced whenever there is a change
from green to red. Starvation is controlled by automatically changing the traffic-light
color when it stays the same color for more than 90s, regardless of the TCA instruc-
tions. The first experiments, using an interval of 20s between two consecutive actions,
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Figure 6.4: Example of the traffic flow in the 3 side-lanes of Av. Republica (North-
South direction). The vertical axis represents the number of cars that passed the sensor
in each 5 minutes (300s) period. Data collected on 19/07/2001, between 0h and 24h.

had much lower scores than the ones presented here, which leads us to the conclusion
that quick reaction-times are essential for achieving a good performance.

The objective of each TCA is to minimize the average stopped time of the vehicles
in its incoming lane-stretches and in the entire location. The overall objective of a team
is to minimize the average time cars take to cross the controlled area.

The generation of cars is done as follows: at the beginning of each 5 minutes pe-
riod of simulation (t0) each lane randomly generates a delay (td) and the number of
insertions (ni) to be done in the 5 minutes period (i). The number of cars that must
enter each lane in that period (ci, taken from real data) is evenly distributed between
the insertions (ci/ni), the remainder is attributed to the last insertion. Insertions are
done at time t0 + td and every 300s/ni after that. When lanes are full cars are placed
on an entrance queue and the generation-time of each car is registered. Since the real
traffic-flows presented a relatively easy problem we used a flow-multiplier (γ) to in-
crease these flows. The actual number of cars inserted every 5 minutes is γci. In the
experiments presented here the value of γ is 1.2.

Since the available data concerns only the number of cars that pass in a given street,
all cars move in a straight line. Information on the number of cars changing direction
was not made available. Car movement is calculated in a similar way to the method
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described in Nagel and Shreckenberg (1992), which can be summarized as follows:

speedt = min(speedmax, speedt−1 + a), speedt < speedd (6.7)

speedt = min(speedmax, speedt−1 + a r1 − round(r2)), speedt ≥ speedd
dt = min(speedt, dstmax), (6.8)

where dt is the distance to move, speedt is the speed at instant t, speedd is the desired
speed for each vehicle, dstmax is the maximum distance that can be overcame without
finding an obstacle (another car or a crossing with red or yellow light), speedmax is
the maximum speed allowed, at is the maximum acceleration, r1 and r2 are random
numbers taken from [0, 1] with uniform distribution. These random numbers account
for each drivers’ decision of breaking or accelerating at any given moment. All cars
calculate their movement before any actual movement takes place. This ensures that
all cars keep a safety-distance between them that is proportional to the speed of the
vehicle directly ahead. It will also cause the acceleration of cars to be delayed, i.e. if
two cars are sufficiently close and a given car moves at a certain speed s at time t, the
speed of the next car at t+ 1 is always smaller or equal to s.

To constrain the simulation-time it was necessary to simplify car movements as
much as possible, thus cars have infinite breaking, i.e. they reduce speed to zero in-
stantly. To avoid deadlocks it is pre-defined that cars will never block crossings and
movement of cars in an orthogonal direction is always allowed.

A reward is issued from the environment for each agent every 12s, immediately
before a new state observation. This reward ri is calculated as follows:

qi = 1− (E(tstop)− tp)/tp tp < E(tstop) < 2tp

qi = 1 E(tstop) ≤ tp
qi = 0 E(tstop) ≥ 2tp

ri = qi ∗ pi,full ∗ pi,waiting
pi,full = pn (6.9)

pi,waiting = pm

where E(tstop) is the average stopped time for cars in the incoming stretches, cut-off
at 2tp, p ∈ [0, 1[ is a penalty coefficient, n is the number of incoming stretches that
have an occupation rate higher than 96% (which in this case corresponds to 16 cars per
lane), m is the number of stretches in which cars are waiting for more than the local
patience-threshold (tp = 3s) in average.

The epoch reward is

rt,n =

{
1− E(tstop)/(gp · difn) : E(tstop) < gp · difn

0 : otherwise
(6.10)
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difn =

{
ci/K : ci > K

1 : otherwise
(6.11)

where ci is the number of cars inserted in every 5 minutes period (indexed by i),
gp = 10s is the global patience-threshold, difn is the difficulty level and K = 40

is an heuristic threshold that compensates for periods of heavy traffic that may, tem-
porarily, exceed the lanes’ throughput. A lane’s maximum throughput, under optimal
conditions, should be of approximately 67 cars in every 5 minutes.

In this problem the weights of combined reward are both equal to 0.5 giving equal
weight to individual and global rewards. Each epoch consists of 1200 turns (100 ac-
tions, in effect for 12s each).

The state is a vector of 6 real-valued attributes. The first two components repre-
sent the maximum occupation-rate of incoming stretches. The first is the maximum
occupation-rate of North and South-bound stretches, while the second contains the
same information for East and West-bound stretches. The third and fourth components
are proportional to the maximum number of cars that entered in the last five seconds,
again the former pertains to North and South-bound stretches, and the latter to East and
West-bound stretches; The fifth element represents the current color of the controlled
traffic-light (1 represents green in the North and South directions and 0 zero the oppo-
site). The last component is proportional to the time since the traffic-light last changed.
All values are scaled to [0,1]. Occupation-rates are calculated by dividing the number
of cars present in a stretch by the maximum number of cars that can fit in the smallest
stretch in the simulation (16 in this case), the result is cut-off at 1.0. The maximum
number of cars entering a stretch in the past 10 seconds is also normalized to the [0,1]
interval using a maximum number of cars of 5. The time since last change is normal-
ized using a maximum of 90s. The total number of states depends on the step used for
the first four elements. Using 0.1 steps we have 175,692 possible states. The number
of state-action combinations would be 351,384.

The heuristic strategy consists simply in switching the color at fixed periods. All
traffic-lights switch at pre-defined intervals (48s). This interval was based both in the
values measured in the real scenario for the average green-time at rush-hour and in the
results of experiments with different fixed timings.

The functions provided by the environment to be used by STGP are the following:

• Real Functions

– Maximum Occupation Difference
– Average Occupation NS, Average Occupation EW

• Boolean Functions

– Full NS, Full EW, Busy NS, Busy EW, Very Busy NS, Very Busy EW,
Incoming NS, Incoming EW
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Table 6.3: Summary of the parameters for the traffic environment.
Parameter Value

Green-time at rush-hour 35s-50s
Yellow-time 3
Number of cars passing from 10s to 50s t/2
Car’s dimensions 4x2m
Desired speed [18,27]m/s, [64,97]Km/h
Maximum speed 30m/s, 108 Km/h
Acceleration 6m/s−2

Max. cars entering 5s = 5 (1/sec.)
Max. time without change 90s
Heuristic fixed length 48s
Heuristic occupation tolerance 30%

Table 6.4: Summary of the parameters for the traffic experiments.
Parameter Value

Number of lanes 16
Number of crossings 4
Number of insertions [6,9]
Local patience threshold 3s
Global patience threshold 10s
Difficulty coefficient used true
Flow multiplier 1.6
Max. cars in stretch 16

– Green Long NS, Red Long NS, Green Too Long NS, Red Too Long NS

A lane is considered busy or very busy if its capacity is over 50 or 80% used,
respectively. A traffic-light is considered to be open/closed for long/too-long if it re-
mained the same color for more than 40/60% of the maximum time (90s), i.e 36/54s,
respectively.

In this chapter we have detailed the description of our test problems. The following
chapter presents the objectives, results and discussion of each experiment.



Chapter 7

Results and Discussion

The objective of the experiments is to test how each of the components of our
proposed solution affects learning. We will progress incrementally, using the predator-
prey problem, from simple communication of examples using a standing advisor to the
full system using the concepts of learning stages, roles and trust. The most interest-
ing scenarios will be tested in the traffic and load-balancing problems. The ease of
parameterization and control of the difficulty level in the predator-prey problem, when
compared to others, led us to choose the former as the ground for a more extensive set
of experiments.

The tests are divided into Experiment Sets, which are composed of several Experi-
ments (or scenarios) that were grouped to answer a specific question. Each scenario is
composed of several trials. The definitions we use for these terms are the following:

Experiment Set A logical organization of several experiments, each using different
parameters

Experiment/Scenario A set of trials, with different starting conditions, but using the
same number and type of agents and the same parameters

Trial A run with a fixed number of epochs at the end of which the agents’ performance
is verified in a series of validation epochs.

Epoch Period of time, within a trial, consisting on a fixed number of turns at the end
of which a global reward is issued to each member of a team. An epoch can run
in learning, test or validation modes.

Turn Period of time between two observations of the environment, in which the agent
may issue one or more actions and receive the corresponding rewards.

The results presented in this section were calculated as follows. After 19980 epochs
(19800 in the case of traffic-control) the performance was measured and averaged in
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100 consecutive validation epochs for the predator prey problem, 160 for load-balance,
and 180 for traffic-control. The results, presented in the third and fourth columns of the
tables in this section, are the average and standard deviation of this result for all agents
of each type in the 6 trials made for each scenario. In trials with 2 agents per area, each
value results from a minimum of 12 (heterogeneous trials) and a maximum of 36 points
(homogeneous trials). In the scenarios using 4 agents per area the minimum is 24 values
and maximum is 72. The graphics present the average combined reward per epoch of
all agents of a given type in a specific scenario. The x-axis represents the number
of validation epochs while the y-axis represents the average combined-reward for the
same epochs. All measurements are taken at the end of validation epochs in which the
current best hypothesis is used. Each point is the result of averaging a given number
of validation results (shown on the y-axis label). The difference in the number of
validation epochs for different problems is related to the learning-test-validation cycles,
explained in the introduction of chapter 5. The last point in each graphic includes the
final validation results. When appropriate the baseline and/or heuristic results are also
shown for comparison.

The Reference (Ref.) code summarizes the conditions of each scenario. The first
character represents Social (S) or Individual (I) experiments, i.e. with or without com-
munication, respectively. The second character encodes the type of learning agents
present: EA-agents (E), GP-agents (G), QL-agents (Q) or Mixed (M) (i.e. all previous
types). The third character (first digit) represents the number of agents per area. The
last digit represents the number of heuristic areas. The number of the experiment-set
and a summary of the parameters may follow the reference when necessary. All H0
scenarios have 3 areas. The homogeneous scenarios have 6 × EA, GP or QL-agents,
while the heterogeneous scenarios (M) have 2 agents of each of the previous types. H1
environments have an extra area with a team of H-agents (heuristic agents, represented
in the tables by the mnemonic HEU). The results for the H-agents are summarized
in the last line of each table, where appropriate, with minimum and maximum scores
and maximum standard deviation. The last column in each table represents the me-
dian run-time in minutes. We have chosen median times rather than other statistics
because part of the experiments were made on stand-alone mode while others were
not. The use of a median provides a better measure for comparison by filtering-out
the high running-times achieved when running in parallel with other applications. In
heterogeneous scenarios the results were averaged for each algorithm and the code of
the algorithm (EA, GP, QL or HEU) is appended to the reference.

The second column contains information on the type of advice parameters used in
the experiment. Only the most relevant parameters for each experiment are presented.
The full description of the parameters for each case is in the text that accompanies the
presentation of the results.

Appendix C presents the parameters used in each experiment, the average evolution
graphics, more detailed tables for each experiment and brief comments on all experi-
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ments. The following sections present a summary of the final results, the comparison
of several approaches and a discussion of the results of each experiment.

7.1 Predator-Prey Baseline

The baseline experiments, as the name indicates, are a reference. These results
will be compared to the following to determine the added value of the techniques used.
In each of the 6 trials the simulation was composed of 3 locations, each with a team
of 2 agents (Fig. 7.1). In each area agents use different learning algorithms. No
communication was allowed between the agents in the baseline trials. The objective
of this experiment is to set a reference performance for the predator-prey problem for
each type of agent.

Given the structure of the reward (presented for the general case in Eq. 2.13 and
discussed in Sect. 6.1 for the case of the predator-prey scenario) the number of turns
per catch is approximately 1/Ri,n.

EA−agents GP−agents

QL−agents

Figure 7.1: Example of three locations in a mixed scenario (S2MH0), each 15×15
positions, 2 predators and 1 prey, per location. The squares represent predators; the
circle represents the prey.
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Table 7.1: Summary of the final results for the predator-prey problem in the baseline
experiments (without communication).

Ref. Advice Type Avg. Std. Dev. Time(m)

IM2H0-EA No Advice 0.058 0.019 178
IM2H0-GP No Advice 0.067 0.007 582
IM2H0-QL No Advice 0.016 0.010 550
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Figure 7.2: Average evolution of the combined reward in the baseline experiment
(IM2H0) for the Predator-Prey problem.

Results

Observations

Performance GP shows the best performance, very close to EA. QL has a very low
relative score in all trials.

The relatively low performance of QL is mainly due to the size of the arena as was
concluded in (Nunes and Oliveira, 2003b). These experiments prove that 10x10 arenas,
under similar conditions, are much more favorable to QL-agents. The need to persist
in the same action while pursuing a prey for long periods is a handicap for QL. This is
due to the use of immediate rewards, the constant changes in the Q-values and the need
to explore different actions.
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The score of GP-agents is mainly due to the background knowledge inserted in
the external functions. It is relatively easy to learn a policy that is very similar to the
one H-agents execute. i.e. always moving towards the prey. Even though this seems an
advantage we can see from the small differences in behavior in all experiments that this
represents a very strong local optimum and that GP-agents seldom escape this “trap”,
even when using advice.

EA-agents have a performance that was expectable, given previous experiments.
They achieve a slightly lower performance than GP-agents (and H-agents, as can be
seen in the following experiments) and have a slower climb during the initial phase of
the training. The advantage of EA-agents when compared to QL-agents is mainly due
to exploring policy-spaces rather than action-spaces. The maintenance of a coherent
policy during a full epoch is advantageous in scenarios where persistence in the re-
sponse to a given state is required to achieve good performances. The handicap when
compared to GP-agents is related to the lack of background knowledge in EA-agents.

Figure 7.3: Example of pursuit by two predators in the same direction. Situation de-
scribed in section 6.1, par. 7, that was common in baseline experiments. The situation
on the left-side depicts the state for a time t = 0, while the right-side depicts the situa-
tion approximately 20 turns later, after the predator have circled around the arena twice
chasing the prey.

Figure 7.3 shows a common situation in scenarios where team-work was not ade-
quately learned (mostly for QL-agents). In this case both predators pursue the prey in
the same direction taking more turns to capture the prey than if they would surround it.
Starting from an initial position where both agents are close and aligned with the prey
(left-side) the pursuit will continue until the prey is over-run by the predators (right-
side). Given that the speed of the prey is 9/10 of the predators this can capture can
take approximately d × 10 turns, where d is the initial distance between the prey and
the closest predator.
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7.2 Experiment Set 1: Heuristic Advisors

In this experiment we will see how much can be learned from an heuristic advisor
using different types of advice. Since the advisor is suboptimal it is also interesting
to see if advisees can surpass the advisors’ performance. To do this we will run each
scenario with 3 locations where all agents use the same learning algorithm and one
location using H-agents. In this, as in all following experiments for this problem,
the maximum number of examples collected from an advisor per epoch is equal to
the epoch-size and the maximum number of stored examples is 10 times the epoch
size. Agents request advice when the condition in Eq. 5.18 holds true. All agents
can communicate with any other agent in any location. The following combinations of
advice modes will be tried:

• EA/GP: Offline, Specific, Standing advisor
• EA/GP: Offline, Batch, Standing advisor
• QL: Offline, Batch, Standing advisor, Biasing
• QL: Offline, Batch, Standing advisor, Virtual-Experience
• QL: Offline, Specific, Standing advisor, Biasing
• QL: Online, Specific, Standing advisor, Biasing
• QL: Online, Specific, Standing advisor, Imitation

Online advice for EA-agents, although possible, was not tested because previous
experiments proved that it did not result in any improvement in performance.

In this experiment-set the information referred in Eq. 4.1 is exchanged between
advisors and advisees whenever condition 5.18 holds. In experiments where specific
advice is used the advisee will request the action proposed for a the state it is experi-
encing (s̄i,t), and use the short-version of the advice structure:

ei,t = {s̄i,t, āt}, (7.1)

where at is the advised action.

When using batch-advice the advisee will receive a set of examples ei,t of the
long-version of the advice structure (Eq. 4.1) assembled by the advisor, during its
validation epochs. The state could be for example {0, 0.3, 0, 0, 0, 0, 0, 0.8, 0} (prey far-
North, partner close-South), and the advised action may be crisp {0, 1, 0, 0, 0, 0, 0, 0, 0}
(move North) or stochastic {0.1, 0.8, 0.02, 0.02, 0, 0.02, 0, 0.04, 0} (the probability of
moving in each direction clearly favoring a move to the North). The type of information
sent/received depends on the type of advisor/advisee used.

EA and GP-agents will learn from each set of examples by training one specimen in
each generation with previously collected advice-sets. EA-agents will use Backpropa-
gation for this purpose, while GP-agents will use ID3.
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QL-agents have several ways of integrating the knowledge, as explained in section
4.3. For example in Virtual Experience they will replay the collected advice just as if
they had experienced it themselves, i.e. adapting the Q-values as shown in 2.1.3.

QL-agents are the only ones that integrate advice online. In the case of Biasing the
change in Q-values is done as shown in Eq. 5.9 and occurs before they decide which
action to take. The decision is taken in the normal way (using Boltzmann selection, as
seen in Eq. 2.7) after the biasing of the Q-values. In the case of imitation the QL-agent
simply imitates the advice it was given (i.e. chooses the advised action), and learns
from the consequences (reward obtained).

The questions to answer with this experiment are:

1. Can learning agents adopt the advisors’ behavior?
2. How efficient is each method/algorithm in integrating the advice?
3. Can they overcome the local optimum and achieve better performances than their

advisors?
4. How much information do they need and for how long?
5. What is the delay induced by processing external information?

Results

Results of the baseline tests (Tab. 7.1) are included in all tables for comparison.
All experiments use standing advisors.

Table 7.2: Summary of the final results for EA-agents in Experiment 1.
Ref. Advice Type Avg. Std. Dev. Time(m)

IM2H0-EA No Advice 0.058 0.019 178
SE2H1.1-EA Offline Batch 0.082 0.012 582
SE2H1.1-EA Offline Specific 0.077 0.008 550
SE2H1.1-HEU – 0.067-0.068 0.003 –

Table 7.3: Summary of the final results for GP-agents in Experiment 1.
Ref. Advice Type Avg. Std. Dev. Time(m)

IM2H0-GP No Advice 0.067 0.007 178
SG2H1.1-GP Offline Batch 0.069 0.007 162
SG2H1.1-GP Offline Specific 0.068 0.008 204
SG2H1.1-HEU – 0.068-0.070 0.003 –
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Table 7.4: Summary of the final results for QL-agents in Experiment 1.
Ref. Advice Type Avg. Std. Dev. Time(m)

IM2H0-QL No Advice 0.016 0.010 178
SQ2H1.1-QL Offline Batch Biasing 0.069 0.011 331
SQ2H1.1-QL Offline Batch Virt. Exp. 0.079 0.010 260
SQ2H1.1-QL Offline Specific Biasing 0.073 0.014 362
SQ2H1.1-QL Online Specific Biasing 0.017 0.009 424
SQ2H1.1-QL Online Specific Imitate 0.076 0.007 245
SQ2H1-HEU – 0.068-0.070 0.003 –

Table 7.5: Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in Experiment Set 1. All values in average number
of examples per agent × epoch. Example-size is 232 bytes for Virtual-Experience
integration while all others only require 144 bytes per example.

EA GP QL HEU Type
EA 2.63 0 0 1.39 Offline-Batch
EA 0.82 0 0 0.51 Offline-Specific
GP 0 1.75 0 1.22 Offline-Batch
GP 0 1.02 0 0.44 Offline-Specific
QL 0 0 1.99 12.61 Offline-Batch-Biasing
QL 0 0 1.08 3.01 Offline-Batch-Virtual Experience
QL 0 0 0.34 0.54 Offline-Specific-Biasing
QL 0 0 0 45.69 Online-Specific-Biasing
QL 0 0 0.88 5.99 Online-Specific-Imitation

Observations

Performance EA and QL-agents reached a performance level greater or equal to their
advisors. GP-agents show slightly lower average performance than H-agents at
the end of the trial but with higher standard deviations. The comparison of the
best results using communication and the baseline results shows improvements
of 2% for GP, 41% for EA and 495% for QL-agents.

Standard Deviations Standard deviations are at the same level as in the baseline trials
and still much higher (≈ 3×) than for H-agents.

GP-agents As can be observed in Fig. 7.5 the learning curves for all GP-agents exper-
iments are similar, although we can see that GP-agents converge faster to a good
performance when using advice.

QL-agents In QL-agents experiments (Fig. 7.6) Offline-Specific advice with Imitation
and Offline-Batch with Virtual-Experience show better initial response and all,
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Figure 7.4: Evolution of the average combined-reward for EA-agents in Experiment
Set 1.

except Offline-Specific-Biasing, have significantly better results than the base-
line approach.

EA-agents EA-agents show significant improvements over the individual approach
(Fig. 7.4) with an advantage for Offline-Batch advice-mode.

Batch-advice In EA-agents batch advice shows a slight advantage all throughout the
training (Fig. 7.4) although final results are within the standard deviation of
Specific trials.

Performance with same amount of data Considering that agents using standing ad-
visors receive, at best, twice as much information as non-communicating agents,
the comparison of performances for equal amounts of data corresponds to com-
paring baseline final scores with the mid-training scores for advice-taking agents.
This comparison is clearly favorable to advice-taking agents for EA and QL.

Run-times The run-times increase by a factor of 3 (EA) and 2 (QL). In GP agents the
run-times are similar to the baseline trials.

Communication In terms of communication (table 7.5) we can see that Batch sce-
narios involve (in general) more communication than Specific ones, regardless
of the learning algorithm used. The exceptions are QL Online-Specific-Biasing
and Imitation. The first, due to its low performance, requires advice during the
whole training (45, in a maximum of 60 examples per epoch from each advi-
sor). It is interesting to notice that in the two scenarios with best performances
for QL-agents, Virtual-Experience and Imitation, the former has roughly half
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Figure 7.5: Evolution of the average combined-reward for GP-agents in Experiment
Set 1.

the communication cost of the latter. In most cases communication costs are
proportional to the time agents take to reach a good performance. QL Offline-
Specific-Biasing has relatively low communication costs compared to other QL
scenarios that reach similar final results.

Advisor switch EA and QL agents stop getting advice from H-agents during the train-
ing and chose other learning agents as advisors. The switch-over happens near
epoch 500 in EA-agents (when its results surpass those of the best H-agent) and
later for QL-agents (as can be observed in Fig. 7.4 and 7.6).

Figure 7.7 shows a common situation in this experiment where agents learn to
surround the prey and achieve a capture in less time (7 turns) than in the situation de-
scribed in Fig. 7.3 (approximately 20 turns). Strategies like this are developed more
often when using advice because the communication allows a quick sharing of experi-
ences. Communication accelerates the adoption of basic predator skills (approaching
the prey) very early in the training, by learning from H-agents. This allows more time
to explore different strategies and match the strategies of both partners, enabling learn-
ing agents to out-perform the individualistic H-agents at the end of the training.

Reviewing the questions posed above we can conclude that:

1. Learning agents can improve their capabilities by exchanging information.
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Figure 7.6: Evolution of the average combined-reward for QL-agents in Experiment
Set 1.

2. They can overcome suboptimal advice and learn better policies than, both, their
advisors and their non-communicating peers (with the exception of GP-agents).

3. The amount of information required depends heavily on the type of integration
and its efficiency.

4. The maximum delay induced by processing the extra information is a factor of 3
for EA agents, 2 for QL-agents and lower than 1.5 for GP-agents.

Given the communication costs for EA-Batch (4.02) and for EA-Specific (1.33),
and their rewards (0.0819 and 0.0766, respectively), as well as the reward for EA-
agents without communication (0.0578) we can calculate a measure of the efficiency of
communication as (0.0819−0.0578)/4.02 = 0.005995 and (0.0766−0.0578)/1.33 =

0.014135. So, in this case, even though the final results for EA-Batch are better, EA-
Specific agents make a more efficient use of communication.

The same reasoning for GP agents produces a factor of 0.00083 for GP-Batch and
0.00088 for GP-Specific, revealing a low efficiency in the use of communication when
compared to other learning agents, as expectable given the low performance increase.

For QL-agents, the factors are the following: QL-Offline-Batch-Biasing: 0.003648;
QL-Offline-Batch-Virtual Experience: 0.01545; QL-Offline-Specific-Biasing: 0.06420;
and QL-Online-Specific Imitation: 0.00872. Offline-Specific-Biasing stands-out for its
efficiency in using communication, and Virtual Experience shows an efficiency com-
parable to EA-Batch.
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Figure 7.7: Example of pursuit by two predators surrounding the prey. Situation de-
scribed in section 6.1, par. 7. The situation on the left-side depicts the state for a time
t = 0, while the right-side depicts the situation 5 turns later.

The bad results for Online-Specific-Biasing can be attributed to an early freezing of
a single hypothesis over others, which prevents exploration. This is due to the repetition
of the same advice for specific patterns and the generalizations made by the underlying
ANN. This problem has less impact on table-based QL and on Offline Biasing. In the
first case because there is no generalization and in the second because the effect of
similar advice is reduced by training with large sets of examples.

GP-agents’ lower performance is caused by the difficulty in overcoming a local op-
timum. This local optimum is similar for H-agents and GP-agents due to the structure
of the background knowledge used by both types of agents. It is admissible that differ-
ent background knowledge could overcome this problem, although these experiments
do not prove this fact.

7.3 Experiment Set 2: Homogeneous and Heterogeneous
Advisors

In this experiment set we use five scenarios without heuristic agents. In the first
three (SE2H0, SG2H0 and SQ2H0) there are 3 locations (homogeneous) and all agents
are of the same type in each of the scenarios. In the remaining 2 scenarios (SM2H0-
2 Standing and SM2H0-2 Multiple) each of the 3 locations has a different type of
learning agents (heterogeneous). In the first we use standing advisors, in the second we
use multiple advisors. All EA and GP-agents use Offline-Batch advice. QL-agents use
Offline-Batch advice and Virtual-Experience. The objectives of this experiment are:

1. To compare the results of homogeneous with heterogeneous teams.
2. Verify how the use of multiple advisors influences learning.
3. Verify if agents with low performance can improve their results by collaborating

with other low performing agents.
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Results

Results of the baseline tests are included in the tables for comparison as well as the
best result obtained this far for each type of agent.

Table 7.6: Summary of the final results for EA-agents in Experiment 2.
Ref. Advice Type Avg. Std. Dev. Time(m)

IM2H0-EA No Advice 0.057 0.019 178
SE2H1.1-EA Offline Batch 0.081 0.012 582
SE2H0.2-EA Offline-Batch 0.078 0.004 435
SM2H0.2-EA Standing Advisor 0.078 0.004 464
SM2H0.2-EA Multiple Advisors 0.077 0.008 630

Table 7.7: Summary of the final results for GP-agents in Experiment 2.
Ref. Advice Type Avg. Std. Dev. Time(m)

IM2H0-GP No Advice 0.067 0.007 178
SG2H1.1-GP Offline Batch 0.069 0.007 162
SG2H0.2-GP Offline Batch 0.070 0.006 209
SM2H0.2-GP Standing Advisor 0.071 0.009 464
SM2H0.2-GP Multiple Advisors 0.071 0.007 630

Table 7.8: Summary of the final results for QL-agents in Experiment 2.
Ref. Advice Type Avg. Std. Dev. Time(m)

IM2H0-QL No Advice 0.016 0.010 178
SQ2H1.1-QL Offline Batch Virt. Exp. 0.079 0.010 260
SQ2H0.2-QL Offline Batch Virt. Exp. 0.079 0.008 265
SM2H0.2-QL Standing Advisor 0.079 0.006 464
SM2H0.2-QL Multiple Advisors 0.077 0.007 630

Observations

Heterogeneity Contrary to our initial expectations neither heterogeneous, nor multiple-
advisor scenarios show significant improvements over the best final results achieved
in homogeneous and standing advisor scenarios, respectively. There is a slight
improvement in GP-agents’ average performance, although within the standard
deviation of previous results.
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Table 7.9: Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in Experiment Set 2. All values in average number
of examples per agent × epoch. Example-size is 232 bytes for Virtual-Experience
integration while all others only require 144 bytes per example.

EA GP QL Type
EA 5.66 0 0 SE2H0.Offline-Batch-Standing
GP 0 5.04 0 SG2H0.Offline-Batch-Standing
QL 0 0 7.81 SQ2H0.Offline-Batch-Standing-Virt. Exp.
EA 0 3.99 2.48 SM2H0-EA-Standing
GP 9.96 0 3.86 SM2H0-GP-Standing
QL 7.26 4.35 0 SM2H0-QL-Standing
EA 8.88 17.76 17.76 SM2H0-EA-Multiple
GP 19.72 9.86 19.72 SM2H0-GP-Multiple
QL 24.18 24.18 12.09 SM2H0-QL-Multiple
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Figure 7.8: Evolution of the average combined-reward for EA-agents in Experiment
Set 2.

Smaller Standard Deviations It is interesting to observe that, in general, there is a
reduction in the standard deviations when compared to the results of previous
experiments.

QL-agents In Fig. 7.10 we can detect a better initial climb in QL-agents when in
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Figure 7.9: Evolution of the average combined-reward for GP-agents in Experiment
Set 2.

heterogeneous scenarios, which is understandable given their low scores in the
baseline trials. The final results of exchanging information for QL-agents prove
to be more efficient than the baseline trials in all scenarios.

Multiple Advisors It can also be observed that the use of multiple advisors leads to
faster convergence for QL-agents despite the concurrent use of information from
several sources and its integration in the same hypothesis. All other curves are
very similar. In all scenarios there is a slight difference throughout the train-
ing between using multiple or standing advisors in heterogeneous environments
(SM2H0) which is, generally, favorable to the former.

Performance with same amount of data Considering that agents using standing ad-
visors receive a maximum of twice, and agents that use multiple advisors five
times, as much information as non-communicating agents, the comparison of
performances for equal amounts of data corresponds to comparing baseline final
scores with the mid-training scores for agents using standing advisors and vali-
dation scores for point 4× 100 for multiple advisors. This comparison is clearly
favorable to advice-taking agents for EA and QL. The same comparison between
the use of standing advisors and multiple advisors is, in general, favorable to the
use of standing advisors.

Advice All scenarios that use advice-exchange, for EA and QL-agents, produce bet-
ter results than in individual trials. GP-agents seem unable to escape the local
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Figure 7.10: Evolution of the average combined-reward for QL-agents in Experiment
Set 2.

optimum even when communicating with peers that achieve better results.
Run-times Median run-times increase up to 2.5 times in homogeneous trials, and up

to 3.5 when using multiple advisors, relative to the baseline trials.
Communication In terms of communication, there is a slight increase from homo-

geneous scenarios to heterogeneous ones when using Standing advisors, and a
relatively large increase when Multiple advisors are used. The amount of com-
munication in Multiple advisors’ trials is much higher because agents always
request all their peers to send advice when their score is not near the best score
(caching). Still, not all this advice will actually be used. If only the used advice
would be accounted for the values would be much closer to those of Specific
advice. The advantage of caching advice avoiding communication bursts may
balance the disadvantage of requiring more information.

Regarding the questions posed in this experiment we conclude that:

1. Heterogeneity may cause a faster adaptation for low-performance agents when
high-performance agents are present. This was already verified in previous ex-
periments (Nunes and Oliveira, 2005a). However, the final results are similar to
those obtained in homogeneous scenarios.

2. The use of multiple advisors shows a slight advantage over standing advisors
during training, specially in the initial phase for low performing agents, although
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always within the same standard deviation interval.
3. Communication between agents with low performance can improve their results.

All scenarios in which communication is used have better training and test results
than baseline trials, although for GP the increase in average performance is not
significant, given the standard deviation of the results.

7.4 Experiment Set 3: Specific Advice, Roles and Trust

The objective of this experiment is to verify the effects of fixed role assignment (in-
terdicting the exchange of information between agents with different roles, SM2H0.3
Roles), and adding trust and learnability to select advisors (SM2H0.3 Roles + Trust).

Using Roles should allow a better synchronization of advice requests between var-
ious team members, while Trust should allow a better selection of advisors based only
on the past history of interactions.

Results

Experiments in this set have the same parameters used experiment SM2H0.2 with
Multiple advisors, except for the use of Offline Specific (OffS) advice, Roles and Trust.
EA and GP-agents use Offline Specific (OffS) advice and Multiple advisors (Mult) and
QL-agents use Offline Batch (OffB) advice, Multiple advisors and Virtual Experience
(MVExp). Results of the baseline tests (first three lines) and the best results for each
type of agent (lines 3 to 6) are included in table 7.10 for comparison.

Table 7.10: Summary of the final results for Experiment 3.
Ref. Advisor Type Avg. Std. Dev. Time(m)

IM2H0-EA No Advice 0.058 0.019 178
IM2H0-GP No Advice 0.067 0.007 178
IM2H0-QL No Advice 0.016 0.010 178
SE2H1.1-EA Off. Batch 0.081 0.012 582
SM2H0.2-GP Off. Batch Mult. 0.071 0.007 630
SM2H0.2-QL Off. Batch Stand. 0.079 0.006 464
SM2H0.3-EA OffS Mult. + Roles 0.081 0.010 506
SM2H0.3-GP OffS Mult. + Roles 0.066 0.005 506
SM2H0.3-QL OffB MVExp.+ Roles 0.084 0.002 506
SM2H0.3-EA OffS Mult. + Roles+Trust 0.073 0.005 236
SM2H0.3-GP OffS Mult. + Roles+Trust 0.066 0.005 236
SM2H0.3-QL OffB MVExp. + Roles+Trust 0.071 0.010 236
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Table 7.11: Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in Experiment Set 3. All values in average number of
examples per agent × epoch. Example-size is 144 bytes.

EA GP QL Type
EA 0 1.41 1.41 SM2H0.3 + Roles
GP 7.88 0 7.81 SM2H0.3 + Roles
QL 23.64 23.64 0 SM2H0.3 + Roles
EA 0 1.54 1.52 SM2H0.3 + Roles + Trust
GP 9.59 0 9.54 SM2H0.3 + Roles + Trust
QL 90.89 90.89 0 SM2H0.3 + Roles + Trust
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Figure 7.11: Evolution of the average combined-reward for EA-agents in Experiment
Set 3.

Observations

Roles The use of Roles produced the best overall results for QL-agents. EA-agents
are also at their best level. It is interesting to notice also the significant reduc-
tion of the standard deviation in QL-agents’ results when compared to previous
experiments.

Performance QL-agents, the ones with lowest performance in individual trials, im-
proved their performance approximately 5.2 times, and EA-agents 1.4 times.
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Figure 7.12: Evolution of the average combined-reward for GP-agents in Experiment
Set 3.

GP-agents’ performance is in the same range as in previous tests.
Trust The use of this particular implementation of Trust leads, in general, to worst

results than using Roles, with similar communication costs.
Run-times The run-times, when using Roles, are higher by a factor of 2 than when

using Trust, even though the communication is nearly the same (higher even in
the case of QL-agents). This indicates that including Trust in the selection of the
advisors causes less specimens to be trained.

Communication In terms of communication, there is a reduction in communication
costs when using Trust in all cases except QL-agents + Roles + Trust.

The two main conclusions that can be drawn from these experiments are that re-
stricting advice to agents with the same role is effective for EA and QL-agents, limiting
communication and producing better overall results. Trust produces very poor results,
which leads us to conclude that persistence in getting advice from a given peer may
pay-off, even when the first experiments prove to be unsuccessful. The most common
situation we have identified in the experiment logs is when an agent starts to request
advice before its partner. This will cause an initial drop in performance due to non-
matching policies. By the time the second agent starts to request advice, the first stops
trusting its current advisor and will switch to a different one, leading, once more, to
the adoption of non-matching policies. This phenomenon, along with the use of less
information, seem to be the main causes for the poor results achieved when using Trust.
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Figure 7.13: Evolution of the average combined-reward for QL-agents in Experiment
Set 3.

7.5 Experiment Set 4: Batch Advice, Roles and Trust

This experiment is complementary to the previous one using Batch advice in EA
and GP-agents and experimenting with Roles and Trust separately.

Results

Observations

Performance Final results for EA and QL-agents are relatively low when compared
to other approaches where communication is used. Most agents take longer to
reach reasonable performance levels.

Communication QL-agents’ communication dropped significantly when compared to
Experiment Set 3, while EA-agents’ increased.

Roles Interestingly, the use of Roles for GP-agents leads to a slight rise in perfor-
mance, that was never achieved in previous experiments. Still, the performance
collapses to the values found in other experiments (with lower variance). This
seems to indicate that GP-agents can encode a policy that results in better av-
erage behavior, but this policy is unstable (has higher standard deviation) and
easily collapses to a more stable local optimum.
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Table 7.12: Summary of the final results for Experiment 4. Results of Baseline (lines
1 to 3), Experiment Set 2 (lines 4 to 5), and best performances (lines 7 to 9) introduced
for comparison.

Ref. Advisor Type Avg. Std. Dev. Time(m)

IM2H0-EA No Advice 0.057 0.019 178
IM2H0-GP No Advice 0.067 0.007 178
IM2H0-QL No Advice 0.016 0.010 178
SM2H0.2-EA Off. Batch Mult. 0.077 0.007 630
SM2H0.2-GP Off. Batch Mult. 0.072 0.008 630
SM2H0.2-QL OffB MVExp. 0.077 0.007 630
SE2H1.1-EA Off. Batch 0.082 0.012 582
SM2H0.2-GP Off. Batch Mult. 0.072 0.008 630
SM2H0.3-QL OffB MVExp.+ Roles 0.084 0.002 506
SM2H0.4-EA Off. Batch Mult. + Roles 0.070 0.007 623
SM2H0.4-GP Off. Batch Mult. + Roles 0.069 0.008 623
SM2H0.4-QL OffB MVExp + Roles 0.077 0.005 623
SM2H0.4-EA Off. Batch Mult. + Trust 0.076 0.006 268
SM2H0.4-GP Off. Batch Mult. + Trust 0.069 0.005 268
SM2H0.4-QL OffB MVExp + Trust 0.075 0.007 268

Table 7.13: Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in Experiment Set 4. All values in average number of
examples per agent × epoch. Example-size is 144 bytes.

EA GP QL Type
EA 0 11.10 10.68 SM2H0-Roles
GP 9.65 0 8.39 SM2H0-Roles
QL 13.08 13.08 0 SM2H0-Roles
EA 2.73 5.28 5.04 SM2H0-Trust
GP 7.08 3.36 7.20 SM2H0-Trust
QL 12.84 11.22 6.03 SM2H0-Trust

The impact of EA and GP-agents’ lower scores, and the reduction of communi-
cation, on QL-agents’ performance seems to indicate that QL-agents’ previous good
scores (in Experiment Set 3) are dependent on the performance of its advisors. Con-
trary to the other two types of agents, EA-agents show a better performance in the
Trust-scenario than when using Roles. Although this is an isolated phenomenon from
which it is difficult to draw conclusions we hypothesize that EA-agents are more de-
pendent on the quantity of information than on its quality, due to the specific character-
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Figure 7.14: Evolution of the average combined-reward for EA-agents in Experiment
Set 4.

istics of the learning algorithms used and the fact that multiple advisors’ information
is integrated in parallel in different specimens.

7.6 Experiment Set 5: Learning Stages and Adaptation
of Learning Parameters

In this experiment we introduce:

• Learning-stages;
• Adaptive advice modes (SM2H0.5 ChgAdvModes);
• Adaption of learning parameters (SM2H0.5 ChgLearnParams);
• Learning-stages using both of the above (SM2H0.5 ChgModesAndParams).

The objective of this experiment is to verify the effects of learning-stages with
dynamic advice modes (SM2H0.5 ChgAdvModes) and dynamic learning parameters
(SM2H0.5 ChgLearnParams) and the mixture of the two methods.

The number of advisors and type of advice in experiments SM2H0.5 ChgAdv-
Modes and SM2H0.5 ChgModesAndParams is decided online according to the agents’
learning-stage. Experiment SM2H0.5 ChgLearnParams use the same parameters as
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SM2H0.2. In Novice stage EA and GP agents use Offline, Batch, and Standing Ad-
visors, QL agents use Offline, Batch, Virtual-Experience and Standing Advisors. On
Intermediate stage EA and GP agents use Offline, Specific and Multiple advisors, QL
agents use Offline, Batch, Virtual-Experience and Multiple Advisors. When changing
only learning parameters EA and GP agents use Offline, Batch, and Multiple Advisors,
QL agents use Offline, Batch, Virtual-Experience and Multiple Advisors.

Results

Results of the baseline tests and best results are included in the tables for compari-
son.

Observations

Performance With the exception of SM2H0.5-QL+ChgAdvModes, all scores are rel-
atively low when compared to the best results of previous experiments although
still higher than baseline results for all but GP-agents.

Adaptive Learning Parameters The decrease in performance is specially significant
for scenarios in which learning parameters are dynamic.
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Figure 7.15: Evolution of the average combined-reward for GP-agents in Experiment
Set 4.
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Figure 7.16: Evolution of the average combined-reward for QL-agents in Experiment
Set 4.

Table 7.14: Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in Experiment Set 5. All values in average number of
examples per agent × epoch. Example-size is 144 bytes.

EA GP QL Type
EA 1.08 7.62 7.98 ChgModes
GP 19.46 2.82 17.60 ChgModes
QL 15.27 13.95 1.86 ChgModes
EA 0 5.07 1.71 ChgParams
GP 2.24 0 .72 ChgParams
QL 47.16 46.92 23.46 ChgParams
EA 2.16 11.43 12.78 ChgModesAndParams
GP 23.45 2.85 23.87 ChgModesAndParams
QL 10.53 9.27 1.53 ChgModesAndParams

Contrary to initial expectations the experimented techniques cause disturbance and
delay in the agents’ learning process, with the possible exception of Changing-Advice-
Modes in QL-agents. The conclusions we can draw from these results are that the
processes used to change the type of advice and the learning parameters were inade-
quate. We have experimented with different conditions for triggering the changes in
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Table 7.15: Summary of the final results for Experiment 5.
Ref. Advisor Type Avg. Std. Dev. Time(m)

IM2H0-EA No Advice 0.058 0.019 178
IM2H0-GP No Advice 0.067 0.007 178
IM2H0-QL No Advice 0.016 0.010 178
SE2H1.1-EA Off. Batch 0.082 0.012 582
SM2H0.2-GP Off. Batch Mult. 0.072 0.008 630
SM2H0.3-QL OffB MVExp.+ Roles 0.084 0.002 506
SM2H0.5-EA ChgAdvModes 0.070 0.016 370
SM2H0.5-GP ChgAdvModes 0.067 0.011 370
SM2H0.5-QL ChgAdvModes 0.080 0.005 370
SM2H0.5-EA ChgLearnParams 0.060 0.005 404
SM2H0.5-GP ChgLearnParams 0.059 0.004 404
SM2H0.5-QL ChgLearnParams 0.075 0.007 404
SM2H0.5-EA ChgModesAndParams 0.060 0.004 448
SM2H0.5-GP ChgModesAndParams 0.059 0.004 448
SM2H0.5-QL ChgModesAndParams 0.075 0.007 448
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Figure 7.17: Evolution of the average combined-reward for EA-agents in Experiment
Set 5.
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Figure 7.18: Evolution of the average combined-reward for GP-agents in Experiment
Set 5.

advice modes and learning parameters, all with similar results. In all these cases we
used a fixed set of conditions and applied it to all types of agents, adapting only at the
lowest possible level. For example, when the performance was above a certain thresh-
old all agents should increase their exploration. This was done in QL-agents by raising
the temperature and in EA and GP-agents by increasing the population and/or raising
the mutation-rates. It is possible that there is no set of rules which can be applied to all
learning algorithms, or that we have not found the correct rules, despite the arguments
put forth in chapter 4 that support our reasoning. One interesting possibility would be
to let agents decide, but the time necessary to test the several combinations may be
prohibitive, unless this can be done in parallel.
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Figure 7.19: Evolution of the average combined-reward for QL-agents in Experiment
Set 5.
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7.7 Experiment Set 6: Combining Roles, Trust and Adap-
tation of Learning Parameters

This experiment tests the combined use of: heuristic advisors, changing advice
modes, changing learning parameters, roles and trust. The number of advisors and
type of advice in experiments SM2H0.6 is decided online according to the agents’
learning-stage, as in the previous experiment.

Results

Results of the baseline tests and best results are included in the tables for compari-
son.

Table 7.16: Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in Experiment Set 6. All values in average number of
examples per agent × epoch. Example-size is 144 bytes.

EA GP QL Heu Type
EA 26.71 0 0 15.82 SE2H1
GP 0 8.25 0 4.67 SG2H1
QL 0 0 23.00 12.55 SQ2H1
EA 3.60 23.78 25.60 24.92 SM2H1
GP 10.02 2.40 11.85 12.06 SM2H1
QL 2.28 3.51 .60 4.02 SM2H1

Observations

Performance As in the previous experiment QL-agents are the exception, showing
relatively good performances, even though they have higher standard deviations
than the previous best scores (Experiment Set 3).

QL-agents The introduction of H-agents as a good effect on QL-agents’ performances.
GP-agents GP-agents show a fast initial climb.
EA-agents EA-agents appear to become trapped in a local optimum with a perfor-

mance similar to GP and H-agents, although they improve over the previous
experiments’ results.

Run-times The run-times for EA-agents are greater than for most other cases, which
causes a delay in heterogeneous (SM) tests.

It is interesting to notice the effects of introducing H-agents at this level. On QL-
agents the simple introduction of an agent with a good initial performance (although
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Table 7.17: Summary of the final results for Experiment 6.
Ref. Advisor Type Avg. Std. Dev. Time(m)

IM2H0-EA No Advice 0.058 0.019 178
IM2H0-GP No Advice 0.067 0.007 178
IM2H0-QL No Advice 0.016 0.010 178
SE2H1.1-EA Off. Batch 0.082 0.012 582
SM2H0.2-GP Off. Batch Mult. 0.072 0.008 630
SM2H0.3-QL OffB MVExp.+ Roles 0.084 0.002 506
SE2H1.6-EA ChgModesAndParams 0.067 0.010 841
SG2H1.6-GP ChgModesAndParams 0.066 0.006 257
SQ2H1.6-QL ChgModesAndParams 0.082 0.010 222
SM2H1.6-EA ChgModesAndParams 0.065 0.014 701
SM2H1.6-GP ChgModesAndParams 0.071 0.006 701
SM2H1.6-QL ChgModesAndParams 0.083 0.009 701
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Figure 7.20: Summary of the final results for EA-agents in Experiment Set 6.

suboptimal) and a coherent strategy, marks the difference between the relatively low
performance shown in the previous experiment (SM2H0.5-QL-ChgModesAndParams)
to a relatively high performance achieved in this experiment set. We have noticed in
several experiments that QL-agents appear to be dependent on the appearance of a peer
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Figure 7.21: Summary of the final results for GP-agents in Experiment Set 6.
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Figure 7.22: Summary of the final results for QL-agents in Experiment Set 6.



CHAPTER 7. RESULTS AND DISCUSSION 143

with a reasonable solution early in the training. When this happens, QL-agents can rise
quickly to good solutions and, having more time to explore, reach the best scores in the
tests.

In EA-agents, the introduction of H-agents causes an increase over the very low per-
formances observed in (SM2H0.5-EA-ChgModesAndParams), although still far from
the best results achieved.

For GP-agents the results are very low for (SM2H0.5-GP-ChgModesAndParams),
similar to baseline in the homogeneous scenario (SG2H1.6-GP-ChgModesAndParams)
and very close to the best in SM2H1.6-GP-ChgModesAndParams.

7.8 Traffic Baseline

In the baseline experiments for the traffic-control problem each of the 6 trials runs
3 locations, each with a team of 4 agents. In each area, agents use different learning
algorithms. No communication is allowed between the agents. The objective of this
experiment is to set a reference performance for each type of agent in the traffic-control
problem.

Results

Table 7.18: Summary of the final results for the traffic-control problem in baseline
trials.

Ref. Advice Type Avg. Std. Dev. Time(m)

IM4H0-EA No Advice 0.607 0.031 297
IM4H0-GP No Advice 0.573 0.027 297
IM4H0-QL No Advice 0.615 0.030 297

Observations

Performance QL-agents reach a near-optimal performance in the first few epochs
(less than 180), and no learning takes place after that period.

Emergent behavior The emergence of green-wave patterns and synchronization is
noticeable, contrary to previous experiments with traffic-control with different
decision-times, flow-multipliers and topology (Nunes and Oliveira, 2004).

GP-agents GP-agents are, in this case, the ones with the lowest performances in the
baseline trials. It is interesting to see that H-agents also have a relatively low
performance in traffic scenarios (Experiment Set 8), which leads us to the con-
clusion that the background knowledge used in this case has a low potential.
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Figure 7.23: Average evolution of the combined reward in the baseline experiment
(IM4H0) for the Traffic-control problem.

7.9 Experiment Set 7: Homogeneous and Heterogeneous
Advisors

The objectives of this experiment are: to verify the effects of communication and
the use of Roles in the traffic environment; to compare the results obtained in homoge-
neous and heterogeneous environments in this problem.

The conditions for this experiment are the same as for Experiment Set 4, using
Roles.

Observations

Performance QL and GP-agents show a small improvement in their final performances,
with average results near the upper limit of the baseline standard deviation.

GP-agents GP-agents climb faster to a reasonable reward in Multiple advisors scenar-
ios although final results are very similar to situations with no communication.
This indicates, once more, that agents with low performance benefit from com-
munication with expert peers.

QL-agents Contrary to the baseline experiment QL-agents continue learning after the
initial trials, although slowly. It is interesting to notice that QL-agents ask for
their peers advice, although in a small scale.
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Results

Table 7.19: Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in each epoch in Experiment Set 7. Example-size is
64 bytes.

EA GP QL Type
EA 301 0 0 SE4H0
GP 0 204 0 SG4H0
QL 0 0 156 SQ4H0
EA 0 164 204 SM4H0
GP 302 0 310 SM4H0
QL 22 21 0 SM4H0

Table 7.20: Summary of the final results for the traffic-control problem in Experiment
Set 7.

Ref. Advice Type Avg. Std. Dev. Time(m)

IM4H0-EA No Advice 0.607 0.031 297
IM4H0-GP No Advice 0.573 0.027 297
IM4H0-QL No Advice 0.615 0.030 297
SE4H0.7 OffB Mult. + Roles 0.587 0.035 308
SG4H0.7 OffB Mult. + Roles 0.591 0.033 538
SQ4H0.7 OffB MVExp + Roles 0.622 0.023 664
SM4H0.7-EA OffB Mult. + Roles 0.600 0.027 669
SM4H0.7-GP OffB Mult. + Roles 0.580 0.041 669
SM4H0.7-QL OffB MVExp + Roles 0.636 0.022 669

7.10 Experiment Set 8: Learning Stages and Adapta-
tion of Learning Parameters

The objectives of this experiment are: to verify the effects of introducing learning
stages (along with changing advice modes and parameters) in the traffic environment;
to compare the results obtained in homogeneous and heterogeneous environments in
this problem.

The conditions for this experiment are the same as for Experiment Set 6. All agents
in the Novice stage will request batch-advice to a standing advisor with the same role.
All agents in Intermediate stage will request batch advice to multiple advisors. Ex-
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Figure 7.24: Average evolution of the combined reward in Experiment Set 7 for the
Traffic-control problem.
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Figure 7.25: Summary of the final results for EA-agents in Experiment Set 7.
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Figure 7.26: Summary of the final results for GP-agents in Experiment Set 7.
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Figure 7.27: Summary of the final results for QL-agents in Experiment Set 7.
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pert agents do not request advice. Stage transitions occur in the conditions defined in
equations 5.11 through 5.14.

Results

Results of the baseline trials are included in table 7.21 for comparison. The acronym
(ChgMAndP stands for Changing advice Modes And learning Parameters).

Table 7.21: Summary of the final results for the traffic-control problem in Experiment
Set 8.

Ref. Advice Type Avg. Std. Dev. Time(m)

IM4H0-EA No Advice 0.607 0.031 297
IM4H0-GP No Advice 0.573 0.027 297
IM4H0-QL No Advice 0.615 0.030 297
SE4H1.8 ChgMAndP + Roles + Trust 0.608 0.030 367
SG4H1.8 ChgMAndP + Roles + Trust 0.579 0.026 353
SQ4H1.8 ChgMAndP + Roles + Trust 0.596 0.033 513
SM4H1.8-EA ChgMAndP + Roles + Trust 0.612 0.020 431
SM4H1.8-GP ChgMAndP + Roles + Trust 0.600 0.036 431
SM4H1.8-QL ChgMAndP + Roles + Trust 0.581 0.021 431
SM4H1.8-HEU - 0.205 0.012 431

Table 7.22: Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in each epoch in Experiment Set 8. Example-size is
64 bytes.

EA GP QL HEU Type
EA 57.55 0 0 0.8 SE4H0
GP 0 21.58 0 0.2 SG4H0
QL 0 0 29.10 0.2 SQ4H0
EA 0 0 0 0 SM4H0
GP 1.15 0 1.15 0.2 SM4H0
QL 0 0 0 0 SM4H0

Observations

Performance No significant differences in final results when compared to previous
experiments, with the exception of a slight reduction of QL-agents’ performance,
not significant given the standard deviations.
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Figure 7.28: Average evolution of the combined reward in Experiment Set 8 for the
Traffic-control problem.
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Figure 7.29: Summary of the final results for EA-agents in Experiment Set 8.
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Figure 7.30: Summary of the final results for GP-agents in Experiment Set 8.
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Figure 7.31: Summary of the final results for QL-agents in Experiment Set 8.
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Communication Very low communication in heterogeneous scenarios (negligible for
EA-agents and QL-agents) due to the very similar performance of all agents
during the trials, contrary to previous experiment where QL-agents’ better per-
formance caused other agents to engage in communication.

H-agents H-agents’ results do not appear in the figures because they are relatively low
in comparison to the results presented, as shown in table 7.21.

As in Experiment Set 6, the results of using the full set of techniques are not the
best results achieved. The fact that no significant differences were achieved from the
baseline results (with the exception of SM4H0.7-QL) leads us to conclude that the
problem is easily solved by all types of learning agents with very similar results with
or without communication. Still the fact that the best performance (along with one of
the lowest standard deviations) occurred in a trial with communication must be taken
into account.

7.11 Load-Balance Baseline

In the baseline experiments for the traffic-control problem each of the 6 trials runs
3 locations, each with a team of 2 agents. In each area, agents use different learning
algorithms. No communication is allowed between the agents. The objective of this
experiment is to set a reference performance for each type of agent in the load-balance
problem. No communication is allowed between the agents.

Results

Table 7.23: Summary of the final results for the load-balance problems in baseline
trials.

Ref. Advice Type Avg. Std. Dev. Time(m)

IM2H0-EA No Advice 0.912 0.010 319
IM2H0-GP No Advice 0.898 0.013 319
IM2H0-QL No Advice 0.910 0.009 319

Observations

Performance (EA and QL) EA and QL-agents show better performance and rela-
tively low standard deviations. QL climbs faster to a good performance.

Performance (GP) GP-agents’ performance is slightly below the lower bound of other
agents’ results.
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Figure 7.32: Average evolution of the combined reward in the baseline experiment
(IM2H0) for the load-balancing problem.

7.12 Experiment Set 9: Learning versus Advice

The objectives of this experiment are: to verify the effects of communication in the
same circumstances as Experiment Set 8, except for the use of Trust and the comparison
between heterogeneous and homogeneous environments.

Results

Results of the baseline trials are included in table 7.24 for comparison.

Observations

Performance (EA) There is a slight decay in EA-agents’ final results, although not
significant.

Performance (GP and QL) GP and QL agents show a better initial climb to their best
results. There is a slight improvement in performance for QL-agents, although
within the baselines’ standard-deviation interval.

Standard Deviations All results present lower standard deviations than baseline trials
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Table 7.24: Summary of the final results for the load-balance problems in Experiment
Set 9.

Ref. Advice Type Avg. Std. Dev. Time(m)

IM2H0-EA No Advice 0.912 0.010 319
IM2H0-GP No Advice 0.898 0.013 319
IM2H0-QL No Advice 0.910 0.009 319
SM2H0.9-EA ChgMAndP + Roles 0.909 0.004 615
SM2H0.9-GP ChgMAndP + Roles 0.900 0.011 615
SM2H0.9-QL ChgMAndP + Roles 0.915 0.006 615
HEU - 0.867 0.001 -
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Figure 7.33: Summary of the final results for EA-agents in Experiment Set 9.

As in previous experiments, where the problem could be solved with relative ease
by learning agents, even without communication, we can detect only small improve-
ments, lower standard deviations and better initial results. The fact that the agents that
achieve these improvements are again QL-agents, leads us to conclude that in all the
problems studied QL-agents are the ones with more potential to improve when com-
munication is available, even when the baseline results are below others’.
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Figure 7.34: Summary of the final results for GP-agents in Experiment Set 9.
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Figure 7.35: Summary of the final results for QL-agents in Experiment Set 9.



CHAPTER 7. RESULTS AND DISCUSSION 155

7.13 Comparison with results of other authors

Our observations support the conclusions of Tan and Lin, that were, at the time,
applicable only to the exchange of information in QL-agents:

• ”sharing learned policies or episodes among agents speeds up learning at the
cost of communication” (Tan, 1993, in Abstract)

• ”advantages of teaching should become more significant as the learning task
gets more difficult” (Lin, 1992, section 6.4)

Our results are also coherent with the observations reported in (Berenji and Vengerov,
2000) for QL-agents: that, under certain conditions, N communicating agents can
achieve better results in M steps than one agent will achieve with the same amount of
experience (N ×M steps) as shown by the analysis in sections 7.2 and 7.3. We have
seen also that the same conclusion is true for EA-agents in the predator-prey problem.

The apparent contradictions with Clouse’s results are discussed and explained in
section A.0.8.
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Figure 7.36: Score for H-agents (random-routing) in the load-balancing problem (Ex-
periment Set 9).
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Figure 7.37: Score for QL-agents in the load-balancing problem (Experiment Set 9).

The results of choosing different learning modes (Dorigo and Colombetti, 1994b)
and using different learning parameters depending on external information (Bowling
and Veloso, 2001), were achieved for QL-agents and under quite different conditions
from those we have tested. Nevertheless, our attempts to enhance the results achieved
by exchanging advice using similar techniques were unsuccessful.

The results achieved by Tan and Haynes (Tan, 1993; Haynes et al., 1995b) in the
predator-prey domain are not comparable since these authors use only movement in 4
directions and different state representations. This movement makes it harder to catch
a prey but also restricts the dimension of the search-space greatly, which makes the
problem easier to solve. The state representations are inadequate for some learning
algorithms. These difficulties prevented the direct comparison of results with these
authors.

The results presented in (Whiteson and Stone, 2004) for FIFO schedulers range
from -300 to -250 in the regular scenario and -400 to -350 under catastrophe condi-
tions (presented in (Whiteson and Stone, 2004, figure 8.a)). These results represent a
continuous moving average, during training, of the last 100 packets delivered by all
load-balancers (equations 6.1 and 6.2). The baseline results (random routing) have a
score between -750 to -650.
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Figure 7.38: Score for EA-agents in the load-balancing problem (Experiment Set 9).

Due to our epoch-based evaluation and the fact that EA and GP specimens must
be evaluated on equal conditions we cannot compare results during training. In our
simulations the network is flushed (runs without any more packets being generated until
it is empty) at end of each learning epoch and the load-balancers are evaluated for all
packets they have routed in that epoch. Even though the network is not flushed during
test or validation the effect of starting-fresh at the beginning of a new cycle produces
an average score in validation mode of -515 for H-agents (i.e. random routing). This
is still far from the value reported by Whiteson and Stone (2004), that we have verified
in our own experiments (see Appendix D). Averaging our results over 40 epochs (4000
steps), instead of the full 80 epochs that compose a validation phase, we can clearly
see a separation between the initial 40 epochs and the final 40 (figure 7.36)where the
H-agents (random-routing) results are within the range of those reported by Whiteson
and Stone (2004). Figures 7.37, 7.38, 7.39 represent the same measurements taken for
QL, EA and GP-agents, respectively, and apart from Fig. 7.37 the difference between
the first and the last 40 epochs is clearly visible.

Having this difference under consideration we can say that, using the same met-
rics for the last 8000 steps (80 epochs of 100 steps) of our final validation run (under
catastrophe conditions and without flushing the network), we achieve results of -110
for EA-agents, -228 for QL-agents and -180 for GP-agents.
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Figure 7.39: Score for GP-agents in the load-balancing problem (Experiment Set 9).

These results are not directly comparable, because ours were not achieved on a
continuous run, the policies are static, but most of all due to the difference in the initial
40 epochs, caused by starting with an empty set of servers. However, if we analyze the
lowest average scores on the final trials of figures 7.37, 7.38 and 7.39, we have results
that are not influenced by initial conditions.

Even though some of the conditions that prevent direct comparison still hold, it
seems clear that our approach is, at least, on a similar level as state-of-the-art results,
with results that are approximately -300 for GP-agents, -180 for QL-agents and -100
for EA-agents, versus -400 to -350 for (Whiteson and Stone, 2004). It is also interesting
to point out that in (Whiteson and Stone, 2004) there is learning both on servers and
routers (load-balancers), while in our case only the latter have learning capabilities. We
must say in all fairness that our approach uses much more information and learning-
time than the ones presented in (Whiteson and Stone, 2004).
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7.14 Summary of the discussion

In summary, our experiments point to the following conclusions:

• Communication can improve the performance, both in terms of final results as
well as quicker climb to reasonable results in difficult problems.

• In several situations, exchanging advice improved agent’s performance beyond
the capabilities of the best agent when measured in baseline trials.

• Also, we have observed that communicating agents (EA and QL) using the same
amount of information are able to achieve better performances.

• The performance improvements can be achieved even when using suboptimal
advisors, i.e. the extra information seems to be more important than the expertise
of the advisors.

• The improvements achieved with communication, and other related techniques
experimented here, are marginal in problems where learning agents quickly find
near optimal solutions. Occasionally, the interference caused by peers’ advice
can slow the learning procedure or lead to local optima.

• Heterogeneity and the use of multiple advisors can speed-up the training for
learning agents with a low relative performance. However, there is no proof that
these techniques can bring any further advantages in other situations.

• Changing the way in which advice is used, or the learning parameters, during
training may lead to instability and did not produce better final results or more
efficient learning. These conclusions are however restricted to the cases we have
studied. Different techniques, related to these approaches, may prove to be wor-
thy.

• The use of roles to restrict communication, narrow the search for advisors and
lead all members of a given team to seek different advisors, produced some of
the best results in the tests.

• The use of trust relationships between the advisors leads to relatively poor re-
sults. Persistence in getting advice from a certain advisor, even in face of bad
initial results, seems to pay off when the main difference between the problems
is in the partners’ behaviors.



Chapter 8

Conclusions and Future Work

The question we proposed to address was: ‘(How) can heterogeneous teams of
learning agents benefit from exchanging information during the learning pro-
cess?”. Or, more extensively: Can communication improve agents’ learning perfor-
mance for several learning algorithms in a specific type of problem? Is it possible to
enhance the benefits of communication by: using hybrid algorithms to integrate infor-
mation from different sources? using heterogeneous environments and/or an adequate
selection of information sources?

The main hypothesis was clearly verified in the predator-prey problem. The use of
communication can indeed be advantageous for QL and EA-agents engaging in com-
munication. This is true even if advisors are suboptimal. Performances improve sig-
nificantly just by exchanging information with a single advisor (the one with the best
performance). We have found several situations where the whole performs better than
the best of the parts. In the case of GP-agents the increase is not significant, mostly due
to the structure of the hypothesis. The close tie to the background knowledge inserted
in the external functions is a double-edged sword, on the one hand it provides quick
convergence to reasonable results (the best in the baseline trials for predator-prey), on
the other hand it is very difficult to improve that score because better solutions require
much more complex Program-Trees and are likely to be less stable, even when they
have better average payoff. This seems to be a case where the representational capa-
bilities of the evaluation function limited the type of policies it can achieve, making
it virtually impossible to learn beyond a certain threshold. These difficulties may be
circumvented by other implementations of GP-agents, a different set of external func-
tions, or its application to other problems.

In the traffic-control problem there are no significant changes in performance re-
gardless of the method used. GP and QL-agents, in Experiment Set 7, have an average
final performance that is close to the upper limit of the baseline results. In other two
situations SE2H0.7 and SMH0.8-QL results are slightly lower than baseline. In Ex-

160
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periment Set 7 GP-agents show faster convergence in heterogeneous scenarios. Previ-
ous results in versions with different parameters and topology (2 traffic lights) showed
small improvements in performance when exchanging advice, but were also, for the
most part, inconclusive. We have observed that changes in the reaction-time have a
great impact on the performance. The difference in performance achieved by reducing
the time between two decisions from 20s to 12 is relatively high.

In the load-balance problem the results show only an increase in the initial perfor-
mance when using advice-exchange. Final results have no significant differences.

The use of multiple advisors versus a standing advisor has no significant differences
in most situations. Considering the increase in communication it can be considered
more efficient to use a standing advisor. We are led to the conclusion that communica-
tion, beyond a certain threshold, brings no further advantage. This is, no doubt, related
to the size and topology of the search-space.

The use of heterogeneous advisors is useful only when there is a large performance
gap between two different types of learning-agents and the advisee is flexible enough
to learn the advisors’ policy. Considering the limitations to communication imposed
by heterogeneity, specially the fact that internal parameters cannot be exchanged, we
conclude that the utility of heterogeneous environments is limited.

In what regards Roles we conclude that, although very simple, it is a useful way to
synchronize advice and allow the acquisition of team policies. In problems where the
differences in the dynamics of each location are caused by other factors than the agents’
behavior this technique may need to be complemented. A good matching between the
problems may become essential. The definition of a language to describe problems, in
which similar problems could be easily identified, could provide the agents with the
necessary information to choose their advisors wisely.

Contrary to our initial expectations the use of trust did not improve the efficiency in
communication, and, in some cases even resulted in loss of performance. The reason
for this is that the initial phase of advice causes a disruption of the teams’ behavior,
leading to a temporary drop of performance until the advisees’ partners adapt to the
new behavior. During the initial phase of advice the advisee is often unable to maintain
the trust in its advisor. When this happens before its partners have adapted, and a
higher equilibrium is found, the system will either return to a previous equilibrium
or continue a run of low-performance epochs using non-matching advisors. So, in
summary, the use of trust should be avoided, unless a different implementation of this
concept takes these issues into consideration, allowing an initial phase of instability
and rewarding persistence. Still, the purpose of quickly discovering the usefulness of a
given information source will not be achieved if this tolerance for initial bad results is
allowed.

Another set of concepts that did not produce the expected results was the one
including learning-stages, dynamic advice-modes and changing learning parameters.
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The objective of applying these techniques was to give a learning agent a greater ca-
pability to change the way in which it learns. These concepts were attempted as an
initial (and possibly naive) approach to a truly autonomous learning agent. Although
this implementation has failed to produce interesting results in these problems we be-
lieve that, sooner or later, this will become a central issue for learning-agents and new
solutions must be found that allow the learning agent to have more control over how it
learns.

8.1 Summary of contributions

In this work we have provided additional evidence that exchanging information
can improve the performance of QL-agents and made a comparative study of several
advice modes, concluding that Virtual Experience and Imitation are the methods that
provide faster performance increases. The need to synchronize agents imposed by lim-
itation leads us to chose Virtual Experience as the best method for integrating external
information in QL-agents.

We have proved that EA can improve their performances when communicating,
and that GP-agents are often limited by the structure of the background knowledge
introduced by the user. In this case only minor gains can be attained in the initial
phases of training.

We have created and tested an architecture for teams of learning agents, in which
the possibility of exchanging information to improve learning performances is taken
into consideration.

We have concluded that the effects of heterogeneity are limited to specific situations
where one type of learning agents has very low relative performance. Even in these
cases the final results may be similar to homogeneous environments.

We have shown a successful way to use static role-assignment, which proved to be
a simple and adequate way to synchronize information exchange.

The use of Trust was, in general, unsuccessful in limiting communication and mak-
ing a more rational use of information because a certain degree of persistence in face
of initial bad results is a necessary characteristic when learning from peers’ advice in
team scenarios.

One good sign is that advice-exchange proved to be more advantageous in difficult
problems (in the limits of learnability). In these problems the best communicating-
agents can achieve better final results and faster convergence to reasonable policies. In
relatively easy problems the best that can be achieved is a faster convergence.

The results achieved in the traffic-control scenario, although they show no signif-
icant differences between learning approaches, provide additional evidence that learn-
ing systems can handle high traffic flows more successfully than fixed-light approaches.
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It is also interesting to observe that the difficulty of the problem can be increased be-
yond the real traffic conditions and learning approaches can still provide a reasonable
response. Of course the comparison with real traffic controllers, such as the one used in
the avenues where data was collected, is not fair given the simplifications made in the
simulation, but having nearly 20% more traffic than in the real-data and maintaining
reasonably fluid traffic conditions is an interesting result that we will try to explore in
future projects.

The emergence of synchronization in traffic-lights is another indication that adapt-
able approaches, using local information, can cooperate and work efficiently as a team.

The experiments with load-balance applications proved only that our approaches
are comparable to the state-of-the-art. Due to the ease of resolution of this problem by
standard learning algorithms no advantages could be observed in the use of communi-
cation.

This work studied several approaches to the use of communication in automated
learning. This subject was, from the very beginning deemed interesting by most of
the anonymous reviewers that have judged our work throughout these years. Proof of
this is the acceptance of all submitted papers in some of the most renowned refereed
conferences in the area of MAS and ML (Nunes and Oliveira, 2002b, 2003a,b,c, 2004,
2005b). The interest in this work lead also to an invitation to write a book-chapter
(Oliveira and Nunes, 2004), and a nomination for best student paper in one of the
conferences where our work was presented (Nunes and Oliveira, 2003c) (the paper
was classified as second runner-up by the jury). It is also interesting to point out that
in all conferences where selected papers were published in LNCS/LNAI proceedings
our work was always chosen for these publications (Nunes and Oliveira, 2002a, 2003d,
2005a).

The majority of the above-mentioned papers contains results of experiments with
variations of the problems and techniques presented here, showing that we have studied
other approaches during this research. The approaches that emerged from this work are
either included in the body of this thesis (the most successful or demonstrative ones)
or mentioned in appendix A for the benefit of future researchers.

8.2 Future Work

Undergoing work is mainly related to the application of learning agents to traffic-
control. One project is already starting with the objective of building simulation tools
that allow us to try different types of adaptive solutions at several levels in this problem.
Another project (pending approval) is specifically dedicated to learning and adaptive
solutions for traffic management. This project will allows us, in cooperation with other
European researchers, to test the effectiveness of exchanging information in state-of-
the-art traffic simulations.
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Following the line of research presented here we plan to test the impact of including
communication costs in the reward functions and experimenting with exchange of in-
formation between agents that are solving different problems with a common structure.
This will enable us to determine how different can problems be before communication
becomes useless.

The goal we aim at is a truly autonomous learning agent that can chose the best
sources of information from a vast set, select the appropriate techniques to deal with
a given problem, adapt the learning parameters online based on his own results and
external information, and require as little as possible human assistance and background
knowledge to deal with any given problem.

Machine Learning is changing its focus, from single-agents, static environments
and user-controlled systems, to multi-agent, dynamic environments and autonomous
entities. These new challenges cannot be faced with the old tools. This thesis is a step
(however small it may be) in the creation and study of new tools to meet these chal-
lenges. Many paths are left open, nevertheless we hope this work can be informative
to those that are already studying these issues, allowing them to know the results (both
positive and negative) of treading this path, and inspiring to those that are looking for
a subject of study in this area of research.
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Appendix A

Abandoned Tracks and
Unsolved Problems

During the course of this research many approaches were attempted. Several in-
cluded Competitive Learning in an attempt to summarize information, either to reduce
communication or to compare state-spaces. These experiments were abandoned due to
one, or more, of the following reasons:

• The solutions proved inadequate, either by reducing the performance or an in-
creasing the learning-times;

• The results were not conclusive as to the impact of the approach when compared
to others’, i.e. there was no significant difference in results or delay;

• Better solutions were found in the mean time, rendering the previous approach
obsolete;

• The full presentation of results and discussion of all the abandoned approaches
would increase the size of this document dramatically.

Nevertheless, the lessons learned with these “five thousand mistakes” are summarized
in the following sections for the benefit of all those that may follow similar research
directions.

A.0.1 Problems with quick transitions

We have identified, specially in traffic-control and load-balance problems, a phe-
nomenon that was not easy to deal with in the simulations. It was observed that the
threshold between easy and unsolvable problems was abrupt. Small changes in the
problem representation or parameterization rendered the same problems unsolvable.
When we classify a problem as ”easy” we mean that some learning agents can, in a
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very small number of epochs and even without using communication, reach a reward
that is near the maximum experienced for that problem and the reward remains at the
same level until the end of the trial. The problems we have labeled “unsolvable” are
those where none of solutions we have tried could find a reasonable policy until the
end of the trial. The failure in learning possible good policies could be verified ei-
ther by hand-coding an agent that would surpass this performance, or by observation
of the agents’ behavior using the graphical interface, for e.g.: in the predator-prey
problem agents would simply not learn to get close to the prey in big arenas due to
the vastness of the search-space and the low probability of catching an escaping prey
with random movements; In the traffic problem agents would not be able to dispatch
enough vehicles, avoiding the cluttering of the initial stretches of each lane, when the
flow-multiplier was taken above a certain threshold (from 1.4 to 1.8, depending on the
scenarios).

This problem was observed during the formulation of the problems (choice of state
representation, actions, etc.) as well as in the choice of parameters (number of vehicles
inserted, server speeds, etc.). As demonstrated by some of the results this problem was
not completely eradicated, but the results of numerous experiments led us to sets of
parameters (and problem structures) in the borderline of solvability.

A.0.2 Common storage format

One of the challenges in using the knowledge collected by agents with different
learning structures is the possibility of translating all the hypotheses to a common for-
mat. Given the variety of hypothesis’ structures used and the, even greater, number
of possible structures available in different ML paradigms this goal was considered
far to ambitious. After considering the problems in the translation of knowledge be-
tween Q-tables, ANN and program trees we have abandoned this goal and turned to
the use of examples as representatives of an hypothesis. This lead us to the possibility
of generalizing example representations, discussed in the next section.

A.0.3 Generalization of examples

The generalization of examples was attempted in two different ways. The first was
to store the knowledge acquired during validation in the form of classes of examples,
using Competitive Learning. Each example would be stored in the most similar class
and change the representative of the class slightly, reducing the distance between itself
and the class representative. This distance was a weighted least-mean-square, where
the difference between actions had a higher weight to allow grouping of states that
required the same action.

The second attempt was more akin to case-based reasoning, each example would
search a list of pre-stored generalized-examples trying to find the best fit. A generalized-
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example would contain a state, action and reward, but instead of a definite value for
each element of the action and state vectors the generalized-example contained an in-
terval of values. When the best match was found one of three situations occurred: the
new example fitted within the ranges of the closest generalized-example; the distance
to the closest generalized-example was below a certain threshold; the distance to the
closest generalized-example was above a certain threshold. In the first case there was
nothing to be done since the example was already well represented. In the second case
the ranges of the closest generalized-example would be expanded to include the new
example, when too many examples were represented by one class this class was be
split in two. In the third case the new example was used to create a new generalized-
example where ranges would be based on a small disturbance of the actual values in
the example.

Both techniques were implemented with the intention of reducing communication
and taking the place of a common storage format. When using these techniques we
could communicate examples of an hypothesis by sending class-representatives or
generalized-examples instead of the full set of validation examples. The results ob-
tained were not encouraging. Often, the use of these techniques lead to a degradation
of the performance and the cost in computation time was too high. This is mainly due
to the exponential increase in the number of classes necessary to obtain a good rep-
resentation of the example-space when it has many real-valued components. Another
problem was in the generation of training examples from class representatives, which
is a non-trivial matter and, in some cases, caused severe performance drops. These
techniques can be considered for cases when communication costs are very high, but
otherwise sending the full set of validation examples should produce better results.

A.0.4 Evaluation of advisor × situation

Another idea that we have explored was an attempt to relate advisors and their ex-
pertise. All agents used Competitive Learning (in a similar way to what was explained
in the previous section) to keep a summarized representation of the state-space. Each
class stored also the average reward obtained by the advisor for the correspondent ex-
amples. When using specific advice the advisee could question each advisor on its
skill for a particular state. This question could always be answered, contrary to the
situation presented in the thesis where the information is available only when an exact
match is found in the validation stores, but the result would be an average score for the
corresponding class of states. The information on which advisor performed best in the
particular case the advisee was faced with was then used in the selection of the best
advisor for that situation.

This technique was abandoned because it induced a considerable delay and caused
disturbances in the learning process, frequently leading to worse performances. These
disturbances can be attributed to two main factors: 1) the constant use of different
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advisors prevented the acquisition of full policies and 2) the error in the estimation
of performance induced by classes in which the reward had a high variance lead, fre-
quently, to a bad selection of advisors.

A.0.5 Dynamic role-learning

In Sect. 5.2.6 we have debated the possible interpretations for the term “role” in
MAS teams. One of these interpretations, which we labelled dynamic roles, consists
using it as a label for each of the complementary policies used by the team’s members.
In this case it might be useful to find advisors that visit similar states and and have
greater success. What we have essayed was to summarize the states visited by an agent
using Competitive Learning and compare the sets of class representatives, ordered by
their respective number of hits, in pairs of agents. This should allow us to discover the
advisors that had a most similar set of state-representatives. This information was then
used in the selection of standing advisors. Again, the delay introduced and the fact
that no significant differences were observed in the performance, determined that this
technique was left-out of the following experiments.

A.0.6 Team supervisors

Team-supervisors were our first attempt to synchronize the advise requests, pre-
venting or discouraging any two members of the same team from requesting advice to
the same advisor. This was achieved by informing the team supervisor when a new ad-
visor was selected. The team supervisors, would, in turn, signal the remaining partners
to disable, or reduce the trust in, this advisor. The use of team supervisors was made
obsolete by the introduction of roles.

A.0.7 Combining advice

When using specific advice from multiple advisors an agent can combine the infor-
mation given by several agents in several ways. We have experimented simple voting
and weighted voting. In the first case an agent would choose the action in which more
advisors had voted. In the second case the votes were weighted by the advisors’ perfor-
mance. One of the main disadvantages was that this process was tied to specific, online,
imitation. Some agents (EA and GP-agents) could not learn by imitating the advisors’
action, thus could not use this process. Experiments using QL-agents resulted in no
significant difference from the approaches presented in this thesis. The advantages of
choosing a better advice were, at times, shadowed by the constant change of advisors
that made it difficult to learn coherent policies.



APPENDIX A. ABANDONED TRACKS AND UNSOLVED PROBLEMS 176

A.0.8 Confidence

When advice is retrieved from a store the advisee can calculate a state-confidence
(cs(.)) based on the difference between its own observed state and the s̄t component of
the advice from agent j, represented as ¯sj,t below:

cs(s̄i,t, s̄j,t) = 1− |s̄i,t − s̄j,t|/
√
n , (A.1)

where n is the dimension of the state vectors. Here it is assumed that state vectors
contain values in [0,1]. This may be useful when the agent gets (from its own stores or
from its advisors’) advice that was previously used in states that, although similar, do
not match exactly the advisees’ current state.

The state-confidence was used in the selection of specific advice from multiple
advisors as a weight applied to the estimated reward. It was abandoned when we re-
stricted the retrieval of advice to exact matches. Even though an exact match must use
thresholds when the state components are real-valued, the use of non-exact matches
beyond these thresholds lead to bad advice even when confidence thresholds were used
to filter these matches.

Since the action is real vector representing the adequacy of each possible choice
the advisee can also evaluate an action-confidence. This quantity can be defined as:

ca(āi,t) = 1/
∑

n6=m
|ai,t,n − ai,t,m|, (A.2)

where m is the index of the highest value in āi,t.

A similar type of action-confidence is proposed by Clouse (1997), although it takes
the form of a decision criterium. An agent is said to be confident in a certain action
if the difference between the maximum value and all the other components of āi,t is
greater than a certain threshold. This definition could be extended to problems in which
there are several actions that produce similar results by defining the maximum number
of components whose distance to the maximum is smaller than the threshold. When
this limit was exceeded the agent would not be confident in the proposed action.

Action-confidence was used to decide whether or not to request advice based on
the result of the advisees’ evaluation-function. Results were inconclusive as to the ef-
fectiveness of this approach. Although it did reduce communication it also affected
learning due to the mix between the actions selected by the advisee and those selected
by the advisor, when the former was less confident. Apparently this result contradicts
Clouse’s conclusions on the effectiveness of action-confidence as a mechanism to se-
lect when to choose an advisor. This contradiction can be explained by the fact that
Clouse uses a single expert-advisor. This reduces significantly the impact of bad ad-
vice. Even when noise is introduced, to determine the effects of bad advice, we have
a significant difference between Clouse’s experiments and ours: the introduction of
random white noise can be effectively dealt with by most learning algorithms, while in
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our experiments bad advice cannot be considered white noise because it is the result of
a specific policy and will, for long periods, produce the same action in response to the
same state.

A.0.9 Influence-Exchange

At one point in our investigation we have considered the possibility of exchanging
suggestions with partners. An agent tried to influence its partners to perform the actions
that were in its own best interest. Its partner would accept the influence if the expected
performance drop would be less than a certain percentage of the best expected reward
for its current situation. The agent that issued the influence would try to learn how to
obtain best results from influencing its partners by correlating good results with influ-
ences whenever these were accepted. This (possibly naive) approach had the following
consequences:

• Severe performance drops;
• Making policy evaluations much harder;
• Spending a lot of resources in learning the effects of different combinations of

neighbors’ actions, which also leads to a form of centralization.

It was found that this technique does not lead to better global policies in the tested
cases. When an agent accepts influences it is also harder to evaluate the performance of
a certain policy. Even if the amount of influence is low it may have occurred at crucial
moments and changed dramatically the results of applying the current policy. Since
the effects of communication of learning-related data was our main concern we have
soon abandoned “influence-exchange”. This does not mean that all influence exchange
processes are doomed to fail, but that the coordination of influences and learning is very
difficult and we have found no way to overcome the problems of this combination.



Appendix B

Simulator Design and
Parameters

The experimental framework was coded in C++, on a Linux operating system (Man-
drake Linux 9.0 3.2-1mdk). It was compiled with gcc (version 2.9 and later 3.2) and
debugged with gdb (version 5.2). The only external code used as source was the boost
library (version 1.29). Graphic displays were coded in Java (2SE, Java Sun 1.3 and later
1.4.1). The C++ code, made specifically for this project, contains, roughly, 230 classes,
comprising in total more than 90, 000 lines of code (blanks and comments included).
The majority of the tests run in an Intel P3 at 1.2GHz (256Mb memory).

In this appendix we will present a brief historical summary of the development of
this project and a summary of the main classes used in the simulations. The actual
code can be found in the attached CD. This code will also be publicly available at
http://home.iscte.pt/ lmmn/www.

B.1 Design

The maintenance of a flexible and extensible code was one of main concerns through-
out the project. The core of the base-classes has suffered little change since the begin-
ning of the project, which is a strong indication of good initial design.

Scientific software has special characteristics that are seldom mentioned in Soft-
ware Engineering textbooks, mainly the fact that requirements are constantly changing
which prevents the application of development strategies designed for commercial soft-
ware.

Our approach, although partly ad-hoc followed a development strategy closely re-
lated to the spiral model (or prototyping-model). We are convinced that the only a good
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usage of the Object Oriented paradigm made it possible to cope, single-handedly, with
a project of this magnitude.

B.1.1 Algorithms, Parameters and Evaluation Functions

The first part of the system to be implemented was a first version of the Algorithm
(Fig. B.1), Evaluation Functions (Fig. B.3) and Parameters (Fig. B.2) hierarchies. The
Neural-Networks’ classes were imported from a previous project (Nunes, 1997). These
modules, that at the time did not include STGP and Program-Trees, were thoroughly
tested in a series of ML problems.

Later the Program-Trees and Genetic-Programming modules were added. The in-
troduction of GP and integration with EA classes caused a few minor structural changes
with the distinction between EA-Parameters and ConnEA-Parameters. The first cap-
ture the common features of ConnEA-Parameters and GP-Parameters, while the second
contain the features that are specific of ANN-based EA.

The Algorithms hierarchy contains Supervised, Reward-Based and Unsupervised
sub-trees (the latter not shown in Fig. B.1). Each class contains the sequence of steps
for a given type of learning-algorithm.

Parameters contain many basic functions such as those related to storing and re-
trieving hypotheses. At the leaves of this tree we have the actual update formulas for
each type of learning parameters.

The Evaluation Functions hierarchy contains the several types of evaluation-functions
used (and a few others not displayed here due to their irrelevance for the current work).

The most interesting part of the interplay between these modules is in the the ini-
tialization procedures. Since there may be several combinations of these three types
of structures we have chosen to keep this as dynamic as possible. The sequence of
construction is: Algorithm, Evaluation Function, Parameters. After the Algorithm is
built (without any internal parameters) the construction of the Evaluation Function is
triggered having the Algorithm as a parameter, during this construction the Evaluation
Function asks the Algorithm for sets of parameters with a specific set of restrictions and
maps these parameters into its own evaluation structure. The parameters, built by the
Algorithm on request, are shared between these two structures. The Algorithm sends
update messages when the learning process so requires, while the Evaluation Function
sends evaluate messages.

B.1.2 Statistics

Statistics classes were first included in the Algorithms’ classes and later isolated
as an independent module, used by the Algorithms and the Agents to process different
views of the information. These classes can be parameterized to save and recover data
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in several different ways releasing memory resources or diminishing the input-output-
time, depending on the users’ needs.

B.1.3 Environments and Agents

The Environment and Agents’ base-classes were implemented and tested in paral-
lel on the Traffic and Predator-Prey environments. This was the time for one of the
most difficult decisions: whether or not to support concurrent processes or detached
processes. The reasons for choosing to simulate parallelism were already presented in
section 5, but, in summary, we can say that the main justification was that concurrence-
related problems were outside our intended scope.

The Load-balance module was later built upon this hierarchy with minor adjust-
ments to the running cycle to allow for multiple actions in one turn.

The Environments and Agents’ classes are coupled by multi-level registration. Each
level of the Environments’ hierarchy knows the instances of Agents at the same level.
For example an agent related a specific problem X that is, by inheritance a Learning-
Agent and an Environment-Agent, is registered in the XEnvironment, in the Learning-
Environment and in the MASL-Environment. Each environment is responsible for one
view of the system. The X-Environment is in charge of problem-specific messages, the
Learning-Environment triggers reward calculations and end-of-epoch messages and the
MASL-Environment contains structures that are common to all MASL-Environments,
such as a Directory facility.

B.1.4 Java Interface Server

The Java interface-server is graphical information display server, used mostly for
the predator-prey and traffic-control modules. It is completely independent of the rest
of the structures and runs as an independent process. The interface can be switched
on/off at any time. When launched the interface server will open a TCP connection
at a specific port and wait for a connections to be established. The environment will,
at specific times defined in the configuration file graph.ptab, attempt to connect
to the servers’ port. When connected the environment will send redraw messages to
all the objects that can be displayed (GraphObject) at the end of each turn. To
ensure that the interface-server is not flooded the environment will sleep for a given
time (configurable for each environment). The type of messages (in text) understood
by the server are:

• Set world: Sets the representable area. Arguments: upper left corner x-coordinate,
upper left corner y-coordinate, length, height;

• Set view-port: Sets the viewed area. Arguments: upper left corner x-coordinate,
upper left corner y-coordinate, length, height;
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Figure B.1: Summary of the Algorithm hierarchy.

• Set zoom: Sets the zoom. Arguments: increase/decrease.
• Scroll: Scrolls the view-port in the world area. Arguments: Direction.
• Add: Adds a new graphical object. Arguments: object id, shape, position, color,

fill-type. Where shape is one of the following: circle, rectangle.
• Remove: Removes an object from the graphical interface. Arguments: Object-

id.
• Change color: Changes the color of an object: Arguments: Object-id, new-color.
• Display: Orders an object to be displayed. Arguments: Object-id.
• Undisplay: Orders an object to be hidden from view. Arguments: Object-id.
• Refresh: Orders an update of the displayed image.
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Figure B.2: Summary of the Parameters hierarchy.
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Figure B.3: Summary of the Evaluation Functions hierarchy.
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Figure B.4: Summary of the Statistics hierarchy.
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Figure B.5: Summary of the Agent’s hierarchy. The X stands for each of the specialized
agents and environments for each particular problem (Predator-Prey, Traffic-Control
and Load-Balance).
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B.2 Simulation Parameters

B.2.1 Directory organization

The common procedure is to have an output directory named ./trial/problem-name
and an input directory named ./trial/problem-name/paramFiles. Both are automatically
generated in the running scripts, based on a reference like SM2H1.

Input Directories

base-dir/

agent1/ # EA-agent

AdviceTaker/

adv.alg.ptab # Advice parameters

BP/

bp.alg.ptab # BP parameters

bp.net_array.iobj # ANN array size

bp.net.iobj # ANN structure

stats.ptab # Statistics parameters

COnnEA/

ea.alg.ptab # EA parameters

ea.net_array.iobj # ANN array size

ea.net.iobj # ANN structure

stats.ptab # Statistics parameters

agent2/ # GP-agent

AdviceTaker/

adv.alg.ptab # Advice parameters

GeneticProgramming/

gp.alg.ptab # GP parameters

gp.pt.iobj # Program-tree parameters

stats.ptab # Statistics parameters

agent3/ # QL-agent

AdviceTaker/

adv.alg.ptab # Advice parameters

Reinforcement/

BP/

bp.alg.ptab # BP parameters (ConnQL only)

bp.net_array.iobj

bp.net.iobj # ANN structure

stats.ptab # Statistics parameters

rl.alg.ptab # QL parameters

rl.sm.iobj # Table-QL parameters
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stats.ptab # Statistics parameters

agent4/ # H-agent

AdviceTaker/

adv.alg.ptab # Advice parameters

stats.ptab # Statistics parameters

{...}

graph.ptab # Graphic interface parameters

masl.ptab # Environment parameters

problem-name.env # Environment structure

Output Directories

This is an example of the appearance of the directories at the end of a trial. The use
of the statistics scripts will add new files to these directories.

base-dir/

agent1/

BP/ # EA-agent

learning.history # statistics history

# (individual reward)

test.history

validation.history

combined_learning.history # statistics history

# (combined reward)

combined_test.history

combined_validation.history

initial.BP.params # initial hypothesis

current.BP.params # last saved hypothesis

final.BP.params # final hypothesis

Xagent.comms # communications

# with agent X

ConnEA/

learning.history # statistics history

test.history # (individual reward)

validation.history

combined_learning.history

combined_test.history

combined_validation.history

initial.ConnEA.params # hypothesis files
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current.ConnEA.params

final.ConnEA.params

{...}

seed # seed-file

test.log # Output record

{...}

area1/

area.stats

B.2.2 Simulation Parameters

This section describes the simulation parameters used in our experiments. The ac-
tual or default values of these parameters are displayed in brackets, where appropriate.

Table B.1: Environment parameters for Predator Prey (file:masl.ptab).
Name Type Description

output dir string Output directory
state size int Number of state elements (18)
action size int Number of action elements (9)
save time int Number of epochs between saves (100)
n turns per epoch int Number of turns per epoch (60)
advice allowed bool Allows advice-exchange if true

Table B.2: Environment parameters for Load Balance (file:masl.ptab).
Name Type Description

output dir string Output directory
state size int Number of state elements (3)
action size int Number of action elements (9)
save time int Number of epochs between saves (100)
n turns per epoch int Number of turns per epoch (100)
advice allowed bool Allows advice-exchange if true
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Table B.3: Environment parameters for Traffic Control (file:masl.ptab).
Name Type Description

output dir string Output directory
state size int Number of state elements (6)
action size int Number of action elements (2)
save time int Number of epochs between saves (100)
n turns per epoch int Number of actions per epoch (100)
advice allowed bool Allows advice-exchange if true
max speed int Maximum car speed (30m/s)

Table B.4: Statistics-related parameters (file:stats.ptab)
Name Type Description

learning.dumping stats bool Dumping old statistics to file?
learning.keep n int Number of history values stored
learning.save frequency int Number of epochs between saves
learning.short term interval int Number of epochs that define a short-term

interval
learning.mid term interval int Number of epochs that define a mid-term

interval
learning.long term interval int Number of epochs that define a long-term

interval
learning.best feedback decay real Decay used in Eq. 5.4
learning.previous feedback real Weight used in Eq. 5.1
learning.n history values int Number of history values used in Eq. 5.7
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Table B.5: Advice related parameters (file:adv.alg.ptab).
Name Type Description

individual reward weight real Individual reward weight (0.5)
team reward weight real Global reward weight (0.5)

action selection type string Switch for stochastic/deterministic
action selection (deterministic)

replay last trial bool Flag for QL replay
request specific advice bool Specific-advice flag
request batch advice bool Batch-advice flag
use advice online bool Online advice flag
use advice offline bool Offline advice flag
imitate bool Imitation flag
biasing bool Biasing flag
max advisors int Maximum number of simultaneous

advisors
use any advisor bool Multiple advisors flag
use standing advisor bool Standing-advisor flag
use learning stages bool Learning-stages flag
use trust bool Trust flag
use roles bool Roles flag
worse scores can advice bool Agents with lower scores can ad-

vise? (true)
advisor reevaluation int Number of epochs between advisor

re-evaluations (10)

max stores int Maximum number of epochs of ad-
vice saved (10)

minimum increase short term real Short-term stability threshold
(0.01)

minimum increase mid term real Mid-term stability threshold (0.01)
minimum increase long term real Long-term stability threshold (0.05)
trust update rate real Maximum update-rate for trust val-

ues (0.7)
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Table B.6: Parameters for EA and GP algorithms (files: ea.al.ptab, gp.alg.ptab).
Name Type Description

Evaluation Function string Type of evaluation function used
auxiliary alg string Type of auxiliary algorithm used

init mutation prob real Initial mutation probability
max mutation prob real Maximum mutation probability
min mutation prob real Minimum mutation probability
mutation prob decay real Mutation probability decay-rate
mutation prob decay schedule int Number of epochs between updates

init mutation rate real Initial mutation rate
max mutation rate real Maximum mutation rate
min mutation rate real Minimum mutation rate
mutation rate decay real Mutation rate decay-rate
mutation rate decay schedule int Number of epochs between updates

crossover by rows bool Flags that control crossover for EA-
Agents

crossover by cols bool Flags that control crossover for EA-
Agents

crossover by jump bool Flags that control crossover for EA-
Agents

crossover by bundle bool Flags that control crossover for EA-
Agents

special last crossover bool Flags that control crossover for EA-
Agents

crossover jump int Flags that control crossover for EA-
Agents

bundle size int Flags that control crossover for EA-
Agents

initial population avg real Initial distribution average
initial population span real Initial distribution variance
population size int Number of specimens in a popula-

tion
selected p real % of the population selected for

breeding
keep best p real % of the population that passes un-

touched to the next generation
mutate p 0.7 % of the population generated by

mutation
crossover p 0.2 % of the population generated by

crossover
n trials per specimen 1 Number of epochs per specimen
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Table B.7: Parameters for QL algorithms (file:rl.alg.ptab)
Name Type Description

Evaluation Function string Type of Evaluation function
used (Table-QL)

update type string Type of update (QL)

StateHasher string Hash-table description file-
name

discount real parameter β in Eq. 2.5
exploration rate real Initial exploration-rate
min exploration rate real Minimum exploration-rate
max exploration rate real Maximum exploration-rate
exploration rate decay real Exploration-rate decay
exploration rate decay schedule int Number of epochs between

updates

learning rate real Learning-rate, α in Eq. 2.5
max learning rate real Maximum learning-rate
min learning rate real Minimum learning-rate
finish learning rate decay at int Number of epochs to reach

minimum learning-rate
learning rate decay schedule int Number of epochs between

updates

Table B.8: Program-Tree parameters (file:gp.pt.iobj)
Name Type Description

n nodes int Number of output nodes (equal to action size)
init max level int Maximum depth of initial trees
max level int Maximum depth allowed
input size int State dimension
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Example of an ANN used in the load-balance problem.

Definition of an ANN (file:bp.net.iobj):

Unit 0 Weights 3 20

Unit 1 Sigmoid 20

Unit 2 Weights 20 1

Unit 3 Sigmoid 1

# Inputs <range>

Inputs 0

InputSize 3

#Connect <out_range> - <in_range>

Connect 0 - 1

Connect 1 - 2

Connect 2 - 3

# Outputs <range>

Outputs 3

OutputSize 1

Example of an environment definition file (traffic.env). The character ’#’ is used as
a comment marker.

#World: start position (x,y) and size (x,y)

World

0 0 716 516

#StateDescription: number of elements,

#maximum value, minimum value, step.

StateDescription

6

1 1 1 1 1 1

0 0 0 0 0 0

0.2 0.2 0.2 0.2 1 0.1

#ActionDescription: number of actions,

#maximum value, minimum value.

ActionDescription

2 0.9 0.1

#Areas: number, start position (x,y) and size (x,y)

Area 1

10 10 348 248

Area 2
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368 10 348 248

Area 3

10 268 348 248

#PreObjects: problem dependent,

# in this case its lane definition

#Lane: number, start position (x,y), length, area,

#direction, delay, flow database files

#(start-day, end-day)

Lane 1 108 0 132 Area 1 South 5

file: paramFiles/traffic/Flows/ct5_ 15 30

Lane 2 112 0 132 Area 1 South 5

file: paramFiles/traffic/Flows/ct5_ 15 30

Lane 3 116 100 132 Area 1 North 10

file: paramFiles/traffic/Flows/ct6_ 15 30

{...}

Lane 1 108 0 132 Area 2 South 5

file: paramFiles/traffic/Flows/ct5_ 15 30

Lane 2 112 0 132 Area 2 South 5

file: paramFiles/traffic/Flows/ct5_ 15 30

Lane 3 116 100 132 Area 2 North 10

file: paramFiles/traffic/Flows/ct6_ 15 30

{...}

#EAAgents: Area, number of traffic-lights controlled,

# definition of traffic-lights

# Algorithm parameters’ directory

# Role

# Aux. Algorithm parameters’ directory

EAAgent

Area 1

NSems 4

# Traffic-light: graphical position,

# number of lights controlled,

# lane for a specific light,

# position of stop-line in lane
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TrafficLight 104 100

2

1 107

2 107

TrafficLight 128 102

2

5 223

6 223

TrafficLight 100 124

2

7 107

8 107

TrafficLight 124 128

2

3 107

4 107

ConnEA trial/.../ConnEA

StaticRoleWatcher Role1

ALR_BP trial/.../BP

{...}

#GPAgents

GPAgent

Area 2

NSems 4

TrafficLight 104 100

2

1 107

2 107

{...}

GeneticProgramming trial/.../GeneticProgramming

StaticRoleWatcher Role1

{...}

#QLAgents

QLAgent

Area 3
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NSems 4

TrafficLight 104 100

2

1 107

2 107

{...}

Reinforcement trial/.../Reinforcement

StaticRoleWatcher Role1

B.3 Response to the main events

Summary, in pseudo-code, of the core routines in classes: LearningAgent and Ad-
viceTaker.

On reception of observed state:

Observed state: si,t

IF specific-advice

Search for advice in example stores

(first exact match for si,t,

stores searched in random order)

IF advice not found

IF using standing advisor

k = standing advisor

ELSE

k = advisor with best estimated reward

ENDIF

Request advice for (si,t) to agent k

IF imitating

Wait for reply

ENDIF

ai,t = Select action for state (si,t)

Perform action(ai,t)

ENDIF

ENDIF

On reception of reply to advice request for si,t:
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Advice: ek,t, Advised action: ak,t

Store advice (ek,t)

IF online-advice

IF imitating

ai,t ← ak,t

Perform action(ak,t)

ELSE

Process advice

(Virt. Exp., Biasing or online BP)

ENDIF

ENDIF

IF ai,t = ak,t

action-imitation ← true

ENDIF

On reception of individual reward for action ai,t:

Reward: ri,t

IF action-imitation

Update online-advisor information

ENDIF

Update statistics

Store example ei,t = {si,t, ai,t, ri,t, si,t+1}
Learn ei,t

On end of learning epoch:

Epoch reward: rl,n

Calculate combined reward (Ri,n)

Update statistics

Retreive responsible advisors

FOR all responsible advisors

IF using trust

Update trust in responsible advisor

IF offline-advice

FOR all advisors

IF advice available

Replay stored advice

ENDIF

ENDIF

On end of validation epoch:

Epoch-reward: rl,n
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Calculate Ri,n

Service standing requests

(Ri,n and validation examples)

On reception of new performance information from peer k:

Combined Reward for peer k: Rk,n

IF learning-stages

Update learning-stage

IF learning-stage changed

Update advice mode

Update learning params

ELSE

start/stop advice

ENDIF

IF using standing advisor

re-evalaute standing advisor

IF advisor changed

clear advice-stores

renew standing requests

ENDIF

ENDIF

ENDIF



Appendix C

Detailed Results

The results presented in this section were calculated as follows. After 19980 epochs
(19800 in the case of traffic-control) the performance was measured and averaged
in 100 consecutive validation epochs (for the predator prey problem), 160 (for load-
balance), and 180 (for traffic-control). The results, presented in the third and fourth
columns of the tables in this section, are the average and standard deviation of this
result for all agents of each type in the 6 trials made for each scenario. In trials with
2 agents per area each value results from a minimum of 12 (heterogeneous trials) and
a maximum of 36 points (homogeneous trials). In the scenarios using 4 agents per
area the minimum is 24 values and maximum is 72. The graphics present the average
combined reward per epoch of all agents of a given type in a specific scenario. The
x-axis represents the number of validation epochs while the y-axis represents the av-
erage combined-reward for the same epochs. All measurements are taken at the end
of validation epochs in which the current best hypothesis is used. Each point is the
result of averaging a given number of validation results (shown on the y-axis label).
The difference in the number of validation epochs for different problems is related
to the learning-test-validation cycles, explained in the introduction of chapter 5. The
last point in each graphic includes the final validation results. When appropriate the
baseline and/or heuristic results are also shown for comparison.

The Reference (Ref.) code summarizes the conditions of each scenario. The first
character represents Social (S) or Individual (I) experiments, i.e. with or without com-
munication, respectively. The second character encodes the type of learning agents
present: EA-agents (E), GP-agents (G), QL-agents (Q) or Mixed (M) (i.e. all previous
types). The third character (first digit) represents the number of agents per area. The
last digit represents the number of heuristic areas. The number of the experiment-set
and a summary of the parameters may follow the reference when necessary. All H0
scenarios have 3 areas. The homogeneous scenarios have 6 × EA, GP or QL-agents,
while the heterogeneous scenarios (M) have 2 agents of each of the previous types. H1

199
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environments have an extra area with H-agents. The results for the H-agents are sum-
marized in the last line of each table, where appropriate, with minimum and maximum
scores and maximum standard deviation. The last column in each table represents the
median run-time in minutes. We have chosen median times rather than other statistics
because part of the experiments were made on stand-alone mode while others were
not. The use of a median provides a better measure for comparison by filtering-out
the high running-times achieved when running in parallel with other applications. In
heterogeneous scenarios the results were averaged for each algorithm and the code of
the algorithm (EA, GP, QL or HEU) is appended to the reference.

The second column contains information on the type of advice parameters used in
the experiment. Only the most relevant parameters for each experiment are presented.

This appendix was generated automatically with the scripts: report all and
generate appendix.

C.1 Predator Prey Baseline Tests
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Figure C.1: Average evolution of combined reward for the Predator-Prey problem in
the baseline experiments (IM2H0).
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Table C.1: Results of the final validation cycle for the baseline Experiment Set on the
Predator-Prey problem.

Agent Avg Std Dev
QL 0.016016 0.0100669
EA 0.0578403 0.0191091
GP 0.0666539 0.00739038
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Figure C.2: Summary of results for EA-agents in the baseline Experiment Set on the
Predator-Prey problem.
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Figure C.3: Summary of results for GP-agents in baseline Experiment Set on the
Predator-Prey problem.

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  5  10  15  20

C
om

bi
ne

d 
R

ew
ar

d

Validation Epochs X 100

QL
Baseline

Figure C.4: Summary of results for QL-agents in the baseline Experiment Set on the
Predator-Prey problem.
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C.2 Experiment Set 1
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Figure C.5: Average evolution of the combined reward in experiment SE2H1-Offline
Batch Standing.

Table C.2: Results of the final validation cycle for experiment SE2H1-Offline Batch
Standing.

Agent Avg Std Dev
HEU 0.0683082 0.00290115
EA 0.0819361 0.0123265

Table C.3: Results of the final validation cycle for experiment SE2H1-Offline Specific
Standing.

Agent Avg Std Dev
HEU 0.0674889 0.00290811
EA 0.0766049 0.00889292
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Figure C.6: Average evolution of the combined reward in experiment SE2H1-Offline
Specific Standing.

Table C.4: Results of the final validation cycle for experiment SG2H1-Offline Batch
Standing.

Agent Avg Std Dev
HEU 0.0681671 0.00237103
GP 0.0685259 0.00736909

Table C.5: Results of the final validation cycle for experiment SG2H1-Offline Specific
Standing.

Agent Avg Std Dev
HEU 0.0706467 0.00327752
GP 0.0679962 0.0076324
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Figure C.7: Average evolution of the combined reward in experiment SG2H1-Offline
Batch Standing.
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Figure C.8: Average evolution of the combined reward in experiment SG2H1-Offline
Specific Standing.
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Figure C.9: Average evolution of the combined reward in experiment SQ2H1-Offline
Batch Biasing Standing.

Table C.6: Results of the final validation cycle for experiment SQ2H1-Offline Batch
Biasing Standing.

Agent Avg Std Dev
HEU 0.0686907 0.00330321
QL 0.0689109 0.0116386

Table C.7: Results of the final validation cycle for experiment SQ2H1-Offline Batch
Virtual-Experience Standing.

Agent Avg Std Dev
HEU 0.0683005 0.00314918
QL 0.0792305 0.0103017
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Figure C.10: Average evolution of the combined reward in experiment SQ2H1-Offline
Batch Virtual-Experience Standing.

Table C.8: Results of the final validation cycle for experiment SQ2H1-Offline Specific
Biasing Standing.

Agent Avg Std Dev
HEU 0.0685482 0.00148758
QL 0.0725953 0.0143903

Table C.9: Results of the final validation cycle for experiment SQ2H1-Online Specific
Biasing Standing.

Agent Avg Std Dev
HEU 0.0703686 0.00312342
QL 0.0165019 0.00964853

Table C.10: Results of the final validation cycle for experiment SQ2H1-Online Specific
Imitation Standing.

Agent Avg Std Dev
HEU 0.0701527 0.00283177
QL 0.0761233 0.00735551



APPENDIX C. DETAILED RESULTS 208

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  5  10  15  20

C
om

bi
ne

d 
R

ew
ar

d

Validation Epochs X 100

SQ2H1-Offline Specific Biasing Standing
QL

HEU
QL-baseline

Figure C.11: Average evolution of the combined reward in experiment SQ2H1-Offline
Specific Biasing Standing.
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Figure C.12: Average evolution of the combined reward in experiment SQ2H1-Online
Specific Biasing Standing.
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Figure C.13: Average evolution of the combined reward in experiment SQ2H1-Online
Specific Imitation Standing.
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Figure C.14: Summary of results for EA-agents in Experiment Set 1.
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Figure C.15: Summary of results for GP-agents in Experiment Set 1.
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Figure C.16: Summary of results for QL-agents in Experiment Set 1.
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C.3 Experiment Set 2
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Figure C.17: Average evolution of the combined reward in experiment SE2H0-Offline
Batch Standing.

Table C.11: Results of the final validation cycle for experiment SE2H0-Offline Batch
Standing.

Agent Avg Std Dev
EA 0.0783934 0.00448353

Table C.12: Results of the final validation cycle for experiment SG2H0-Offline Batch
Standing.

Agent Avg Std Dev
GP 0.0705565 0.00624749
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Figure C.18: Average evolution of the combined reward in experiment SG2H0-Offline
Batch Standing.

Table C.13: Results of the final validation cycle for experiment SM2H0-Multiple Ad-
visors.

Agent Avg Std Dev
QL 0.0771157 0.00786617
EA 0.0773864 0.00788732
GP 0.0717317 0.0079441

Table C.14: Results of the final validation cycle for experiment SM2H0-Standing Ad-
visor.

Agent Avg Std Dev
QL 0.0784898 0.00627837
EA 0.0781268 0.00431552
GP 0.071124 0.0090083

Table C.15: Results of the final validation cycle for experiment SQ2H0-Offline Batch
Virt-Exp- Standing.

Agent Avg Std Dev
QL 0.0789844 0.00828043
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Figure C.19: Average evolution of the combined reward in experiment SM2H0-
Multiple Advisors.
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Figure C.20: Average evolution of the combined reward in experiment SM2H0-
Standing Advisor.
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Figure C.21: Average evolution of the combined reward in experiment SQ2H0-Offline
Batch Virt-Exp- Standing.
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Figure C.22: Summary of results for EA-agents in Experiment Set 2.
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Figure C.23: Summary of results for GP-agents in Experiment Set 2.
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Figure C.24: Summary of results for QL-agents in Experiment Set 2.
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C.4 Experiment Set 3
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Figure C.25: Average evolution of the combined reward in experiment SM2H0-Offline
Specific Multiple Roles.

Table C.16: Results of the final validation cycle for experiment SM2H0-Offline Spe-
cific Multiple Roles.

Agent Avg Std Dev
QL 0.0842081 0.00265709
EA 0.0812713 0.0105108
GP 0.0657592 0.00537815

Table C.17: Results of the final validation cycle for experiment SM2H0-Offline Spe-
cific Multiple Roles Trust.

Agent Avg Std Dev
QL 0.0713236 0.0100503
EA 0.0724886 0.00559709
GP 0.0654637 0.00531979
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Figure C.26: Average evolution of the combined reward in experiment SM2H0-Offline
Specific Multiple Roles Trust.
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Figure C.27: Summary of results for EA-agents in Experiment Set 3.



APPENDIX C. DETAILED RESULTS 218

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  5  10  15  20

C
om

bi
ne

d 
R

ew
ar

d

Validation Epochs X 100

GP
Baseline

SM2H0-Offline Specific Multiple Roles
SM2H0-Offline Specific Multiple Roles Trust

Figure C.28: Summary of results for GP-agents in Experiment Set 3.
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Figure C.29: Summary of results for QL-agents in Experiment Set 3.
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C.5 Experiment Set 4
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Figure C.30: Average evolution of the combined reward in experiment SM2H0-Offline
Batch Multiple Roles.

Table C.18: Results of the final validation cycle for experiment SM2H0-Offline Batch
Multiple Roles.

Agent Avg Std Dev
QL 0.0777089 0.00571074
EA 0.0696568 0.00769363
GP 0.0691497 0.0078972

Table C.19: Results of the final validation cycle for experiment SM2H0-Offline Batch
Multiple Trust.

Agent Avg Std Dev
QL 0.0752682 0.00728397
EA 0.076441 0.00640996
GP 0.0658598 0.00486845
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Figure C.31: Average evolution of the combined reward in experiment SM2H0-Offline
Batch Multiple Trust.
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Figure C.32: Summary of results for EA-agents in Experiment Set 4.
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Figure C.33: Summary of results for GP-agents in Experiment Set 4.
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Figure C.34: Summary of results for QL-agents in Experiment Set 4.
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C.6 Experiment Set 5

 0

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0  5  10  15  20

C
om

bi
ne

d 
R

ew
ar

d

Validation Epochs X 100

SM2H0-Offline Batch Multiple ChgAdvModes
EA
GP
QL

Figure C.35: Average evolution of the combined reward in experiment SM2H0-Offline
Batch Multiple Changing Advice Modes.

Table C.20: Results of the final validation cycle for experiment SM2H0-Offline Batch
Multiple Changing Advice Modes.

Agent Avg Std Dev
QL 0.0766297 0.00635994
EA 0.0764721 0.00797502
GP 0.0682434 0.0058265

Table C.21: Results of the final validation cycle for experiment SM2H0-Offline Batch
Multiple Changing Learning Parameters.

Agent Avg Std Dev
QL 0.0802154 0.00470469
EA 0.0699507 0.0161411
GP 0.0665043 0.0110998
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Figure C.36: Average evolution of the combined reward in experiment SM2H0-Offline
Batch Multiple Changing Learning Parameters.

Table C.22: Results of the final validation cycle for experiment SM2H0-Offline Batch
Multiple Changing Advice Modes and Parameters.

Agent Avg Std Dev
QL 0.0710992 0.0139757
EA 0.0660738 0.0075965
GP 0.0622365 0.00847292
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Figure C.37: Average evolution of the combined reward in experiment SM2H0-Offline
Batch Multiple Changing Advice Modes and Parameters.
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Figure C.38: Summary of results for EA-agents in Experiment Set 5.
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Figure C.39: Summary of results for GP-agents in Experiment Set 5.
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Figure C.40: Summary of results for QL-agents in Experiment Set 5.
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C.7 Experiment Set 6
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Figure C.41: Average evolution of the combined reward in experiment SE2H1-Offline
Batch Multiple Changing Advice Modes and Parameters.

Table C.23: Results of the final validation cycle for experiment SE2H1-Offline Batch
Multiple Changing Advice Modes and Parameters.

Agent Avg Std Dev
HEU 0.0701684 0.00332053
EA 0.0671555 0.00989725

Table C.24: Results of the final validation cycle for experiment SG2H1-Offline Batch
Multiple Changing Advice Modes and Parameters.

Agent Avg Std Dev
HEU 0.0685155 0.00292811
GP 0.066252 0.00575137
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Figure C.42: Average evolution of the combined reward in experiment SG2H1-Offline
Batch Multiple Changing Advice Modes and Parameters.

Table C.25: Results of the final validation cycle for experiment SM2H1-Offline Batch
Multiple Changing Advice Modes and Parameters.

Agent Avg Std Dev
HEU 0.0708408 0.00219108
QL 0.0834194 0.00850732
EA 0.0649986 0.0142614
GP 0.0709161 0.00550188

Table C.26: Results of the final validation cycle for experiment SQ2H1-Offline Batch
Virt-Exp- Multiple Changing Advice Modes and Parameters.

Agent Avg Std Dev
HEU 0.0682267 0.00310873
QL 0.0823297 0.00981624
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Figure C.43: Average evolution of the combined reward in experiment SM2H1-Offline
Batch Multiple Changing Advice Modes and Parameters.
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Figure C.44: Average evolution of the combined reward in experiment SQ2H1-Offline
Batch Virt-Exp- Multiple Changing Advice Modes and Parameters.
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Figure C.45: Summary of results for EA-agents in Experiment Set 6.
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Figure C.46: Summary of results for GP-agents in Experiment Set 6.
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Figure C.47: Summary of results for QL-agents in Experiment Set 6.
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C.8 Traffic Baseline Tests
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Figure C.48: Average evolution of the combined reward in the baseline Experiment Set
for the Traffic-Control problem.

Table C.27: Results of the final validation cycle for the baseline Experiment Set for the
Traffic-Control problem.

Agent Avg Std Dev
QL 0.615148 0.0298644
EA 0.607371 0.0304795
GP 0.573297 0.0271324
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Figure C.49: Summary of results for EA-agents in the baseline Experiment Set for the
Traffic-Control problem.
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Figure C.50: Summary of results for GP-agents in the baseline Experiment Set for the
Traffic-Control problem.
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Figure C.51: Summary of results for QL-agents in the baseline Experiment Set for the
Traffic-Control problem.
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C.9 Experiment Set 7
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Figure C.52: Average evolution of the combined reward in experiment SE4H0-Offline
Batch Multiple Roles.

Table C.28: Results of the final validation cycle for experiment SE4H0-Offline Batch
Multiple Roles.

Agent Avg Std Dev
EA 0.587314 0.0346009

Table C.29: Results of the final validation cycle for experiment SG4H0-Offline Batch
Multiple Roles.

Agent Avg Std Dev
GP 0.591071 0.0328854
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Figure C.53: Average evolution of the combined reward in experiment SG4H0-Offline
Batch Multiple Roles.

Table C.30: Results of the final validation cycle for experiment SM4H0-Offline Batch
Multiple Roles.

Agent Avg Std Dev
QL 0.636003 0.0217209
EA 0.600155 0.0272507
GP 0.580365 0.0406332

Table C.31: Results of the final validation cycle for experiment SQ4H0-Offline Batch
Virtual-Experience Multiple Roles.

Agent Avg Std Dev
QL 0.62148 0.0235495
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Figure C.54: Average evolution of the combined reward in experiment SM4H0-Offline
Batch Multiple Roles.
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Figure C.55: Average evolution of the combined reward in experiment SQ4H0-Offline
Batch Virtual-Experience Multiple Roles.
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Figure C.56: Summary of results for EA-agents in Experiment Set 7.
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Figure C.57: Summary of results for GP-agents in Experiment Set 7.
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Figure C.58: Summary of results for QL-agents in Experiment Set 7.
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C.10 Experiment Set 8
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Figure C.59: Average evolution of the combined reward in experiment SE4H1-Offline
Batch Multiple Roles Changing Advice Modes and Parameters.

Table C.32: Results of the final validation cycle for experiment SE4H1-Offline Batch
Multiple Roles Changing Advice Modes and Parameters.

Agent Avg Std Dev
HEU 0.204661 0.0120485
EA 0.608072 0.0297021

Table C.33: Results of the final validation cycle for experiment SG4H1-Offline Batch
Multiple Roles Changing Advice Modes and Parameters.

Agent Avg Std Dev
HEU 0.20455 0.0121521
GP 0.578557 0.0260195
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Figure C.60: Average evolution of the combined reward in experiment SG4H1-Offline
Batch Multiple Roles Changing Advice Modes and Parameters.

Table C.34: Results of the final validation cycle for experiment SM4H1-Offline Batch
Multiple Changing Advice Modes and Parameters.

Agent Avg Std Dev
HEU 0.204584 0.0123701
QL 0.599468 0.0362202
EA 0.61218 0.0203334
GP 0.580606 0.0209091

Table C.35: Results of the final validation cycle for experiment SQ4H1-Offline Batch
Virt-Exp- Multiple Roles Changing Advice Modes and Parameters.

Agent Avg Std Dev
HEU 0.204713 0.0121507
QL 0.596397 0.0330602
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Figure C.61: Average evolution of the combined reward in experiment SM4H1-Offline
Batch Multiple Changing Advice Modes and Parameters.
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Figure C.62: Average evolution of the combined reward in experiment SQ4H1-Offline
Batch Virt-Exp- Multiple Roles Changing Advice Modes and Parameters.
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Figure C.63: Summary of results for EA-agents in Experiment Set 8.
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Figure C.64: Summary of results for GP-agents in Experiment Set 8.
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Figure C.65: Summary of results for QL-agents in Experiment Set 8.
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C.11 Load Balance Baseline Tests
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Figure C.66: Average evolution of the combined reward in the baseline experiments
for the load-balance problem.

Table C.36: Results of the final validation cycle for the baseline experiment of the
load-balance problem.

Agent Avg Std Dev
QL 0.910163 0.0090603
EA 0.911899 0.00990651
GP 0.897997 0.0134088
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Figure C.67: Summary of results for EA-agents in the baseline Experiment Set for the
load-balance problem.
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Figure C.68: Summary of results for GP-agents in the baseline Experiment Set for the
load-balance problem.
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Figure C.69: Summary of results for QL-agents in the baseline Experiment Set for the
load-balance problem.
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C.12 Experiment Set 9
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Figure C.70: Average evolution of the combined reward in experiment SM2H0-Offline
Batch Multiple Roles Changing Advice Modes and Parameters.

Table C.37: Results of the final validation cycle for experiment SM2H0-Offline Batch
Multiple Roles Changing Advice Modes and Parameters.

Agent Avg Std Dev
QL 0.915373 0.00603051
EA 0.909172 0.00413075
GP 0.899808 0.01097
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Figure C.71: Summary of results for EA-agents in Experiment Set 9.
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Figure C.72: Summary of results for GP-agents in Experiment Set 9.
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Figure C.73: Summary of results for QL-agents in Experiment Set 9.



Appendix D

Job Routing: Analysis of
Baseline Tests

D.1 Introduction

During the attempt to duplicate the experiments reported in (Whiteson and Stone,
2004) we have detected differences between the results of our initial experiments and
their baseline tests. We have analyzed the problem and concluded that there are errors
either in the experimental results presented or the experiments’ description. This report
presents our experimental results and an analysis of the baseline tests modeled as a
Markov chain. The consistency of the empirical and theoretical results leads us to
believe that our results are accurate. These are compared with those presented by
the authors of the above-mentioned paper and it is made clear that both results are
inconsistent. The cause of the inconsistence was not detected, which prevents us from
validating the experiments presented in (Whiteson and Stone, 2004) and comparing
their results to our learning approaches.

D.2 Discussion

The baseline tests, used for comparison with the Adaptive Job Routing (AJR) ap-
proach, consist on a random router coupled with a FIFO scheduler. We will, in this
section, compare an analysis of the expectable performance of the baseline tests with
the actual performance reported in (Whiteson and Stone, 2004).

One of the networks studied in this work is the one depicted in figure D.1, labeled
network #3. In this scenario each user generates one or two jobs, with 50% probability

250
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Load
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Load
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...

User 1
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DB_Serv.2

DB−Serv.1

DB−Serv.9
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Web−Serv.2
Mail−Serv.2

Mail−Serv.9
Web−Serv.9

Figure D.1: Load-balance scenario (network #3).

for each case 1. Each job has one of two possible types, also chosen randomly (with
50% probability for each case): Mail or Database. A Mail-job is composed of three,
sequential, job-steps: Web-step; Mail-step; Web-step. A Data-Base job is also com-
posed of three job-steps: Web-step; Database-step; Web-step. In average the 2 users of
network #3, will generate 1.5 jobs per turn each. Both users generate a total of 3 jobs
per turn, in average, which contain 6 web-steps, 1.5 Mail-steps and 1.5 Database-steps.

Let pgn be the probability of both users generating n jobs in a given turn, then:
pg2 = 0.25, pg3 = 0.5, pg4 = 0.25. The probability of generating n jobs of a specific
type is:

pj0 = 1/4pg2 + 1/8pg3 + 1/16pg4 = 9/64

pj1 = 2/4pg2 + 3/8pg3 + 4/16pg4 = 24/64

pj2 = 1/4pg2 + 3/8pg3 + 6/16pg4 = 22/64 (D.1)

pj3 = 1/8pg3 + 4/16pg4 = 8/64

pj4 = 1/16pg4 = 1/64

Users will stop generating new jobs if they have more than 100 pending jobs (this
restriction was not duplicated in our experiments). The work necessary to perform a
Web, Mail or Database job-step is, 50, 100 and 200, respectively. Each job is sent
randomly to one load-balancer. All types of communication take one simulation step
to be performed. It is not clear from the description if a job leaving at t=1 will arrive
at the receiver at the beginning of time t=2, in time to be processed, or if it can only

1This description proved to be source of the error, in the actual implementation each user generated as
many jobs as it could until the total number of jobs generated by both users was equal to 500
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be processed at t=3, nor is it clear if a job can be loaded from the link, processed and
put on the out-link in the same time-step. We will assume that a job is put on the link
at time t, picked up for processing at time t + 1 and, if the queue is empty and the
processor can complete the job in one time step this job can be processed and put on
the out-link during time-step t + 1 being available for the next server at t + 2. As we
explain below this choice has a relatively low impact in the results.

At t=2 the generated jobs arrive at the load-balancers and are queued. The jobs
in queue are analyzed in order of arrival time-stamp when using a FIFO scheduler.
All jobs with the same arrival time-stamp are given a random ordering. It is assumed
that the load-balancing activity runs fast enough so that any number of generated jobs
can be processed in one simulation step by any load-balancer 2, despite the fact that
the load-balancing nodes have a Work feature that equals 200. This is consistent with
the fact that there is no value for the work required to route a job. Still in the same
simulation step (t=2), the jobs are sent to a randomly chosen Web-server (choice is
made with a uniform probability in the case of a random router).

At t=3 each Web-server (if not completing a pending job) chooses one of the first
jobs that arrived and starts processing it. In network #3 the Web-Servers have a work
capacity of 400, i.e. each can process 8 Web-steps per simulation step, which gives a
total processing capacity of 72 Web-steps per turn, for the 9 Web-servers. The 9 Mail
Servers have the following capacities 20, 40, 60, 80, 100, 120, 140, 160 and 180 and
the Data-Servers’ capacities are: 40, 80, 120, 160, 200, 240, 280, 320 and 360. This,
when related with the work necessities of each job-step type, leads to the conclusion
that for each of the possible job-steps (Mail and Database) the 9 corresponding servers
can process the following number of jobs-steps of that type per simulation step: 0.2,
0.4, 0.6, 0.8, 1, 1.2, 1.4, 1.6, 1.8. So the capacity of the whole network is of 72 Web-
steps, 9 Mail-steps and 9 Database-steps, per simulation step. Taking into account
the number of generated job-steps (6, 1.5, 1.5) the usage is 8.3% of the Web-servers
capacity and 16.6% of the Mail and Database servers capacity. Since even one Web-
server can process more Web-steps than can ever be generated in one time-step no
delay is incurred in the Web-server and at t=3 all Web-steps are completed and will be
sent to the Mail or Database servers, which will be able to process them at t=4. The fact
that there can be no congestion at the Web-servers, even in the worst case scenario, is
important because it allows us to model the system as if the user is producing directly
to the second-line servers, with an added fixed penalty for the time it takes to cross the
links between user and Mail/Database-server. In catastrophe conditions the work/speed
quotients of the faster servers are reduced to half, so the number of jobs-steps of a given
type per simulation step for each of the 9 servers is, in this case: 0.2, 0.4, 0.6, 0.8, 1,
0.6, 0.7, 0.8, 0.9. This reduces the capacity of the Mail/Database servers to a total of
6 job-steps per time-step (giving a usage-rate of 25%). All our experiments run under
catastrophe conditions.

2This was assured to us in private communication with one of the authors
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Figure D.2: Markov chain representation for the state of a given server whose speed
(i.e. work capacity) is 1/k.

The system’s bottleneck in network #3 is at the Mail/Database servers. Let us then
see what are the probabilities of a given Mail/Database-server receiving a given number
of jobs in each turn.

Given that each job is distributed randomly and uniformly to one of the 9 possible
clusters, and considering the values found in equation D.1, the probability of a server
of certain type receiving n jobs (prn) of that same type is:

pr0 = 1pj0 + 8/9pj1 + 82/92pj2 + 83/93 + pj3 + 84/94pj4 = 0.843107

pr1 = 1/9pj1 + 16/92pj2 + 3 · 82/93pj3 + 4 · 83/94pj4 = 0.147364

pr2 = 1/92pj2 + 3 · 8/93pj3 + 6 · 82/94pj4 = 0.009272 (D.2)

pr3 = 1/93pj3 + 4 · 8/94pj4 = 0.000247

pr4 = 1/94pj4 = 0.000002

So the number of jobs arriving per turn (in average) should be approximately:
0.147364 + 2 · 0.009272 + 3 · 0.000247 + 4 · 0.000002 = 0.1(6). This means that, in
average, a server will receive one job every 6 turns. Since the slowest server can pro-
cess a job every 5 turns, in average, there should be a relatively low level of congestion,
even in the slowest servers.

A more detailed analysis can be made by modeling each server as a Markov chain.
If a certain server does 1/k jobs per time-step, then the corresponding Markov chain
will be the one presented in figure D.2, where state n corresponds to having n parts of
1/k size of a job in queue. When m new jobs arrive and 1/k jobs are processed per
step the state will change to n+mk − 1.
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Figure D.3: Comparison of the probability of having n jobs in queue in the slowest
Mail-server, (that completes only one job every 5 time-steps) obtained by equation
D.3 with k=5 (represented by the squares), with the empirical results averaged over
51 experiments (represented by the cross). The 95% confidence interval for a t-test,
relative to the empirical results, is also presented.

From this formulation we can extract the following equations:

p0 = (p0 + p1)pr0 (D.3)

pn = pn−4k+1pr4 + pn−3k+1pr3 + pn−2k+1pr2 + pn−k+1pr1 + pn+1pr0,
N+1∑

n=0

pn = 1,

where pn is the probability of being in state n when the system is running in steady-
state. This represents a system with an infinite number of equations. In order to solve
D.3 numerically a Markov chain with a finite number of states is defined from the
original one. In the finite Markov chain N+1 represents the state where there are N+1
or more 1/k fractions of a job in queue. On our numerical solution N is chosen to be
large enough so that the probability to be is state N+1 can be considered negligible.
For the server with less capacity N was set to 500 (equivalent to a queue of 100 jobs)
and a value of pN+1 = 1.2e− 17 was obtained.

We can see in figures D.3 and D.4 the comparison of the probabilities of being
in each state for the slowest servers. Similar results were achieved for other cases.
This was chosen as an example only because it is the most critical case (along with the
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Figure D.4: Comparison of the probability of having n jobs in queue in the slowest
Database-server, (that completes only one job every 5 time-steps) obtained by equation
D.3 with k=5 (represented by the squares), with the empirical results averaged over
51 experiments (represented by the cross). The 95% confidence interval for a t-test,
relative to the empirical results, is also presented.

slowest Database server that has an equal throughput). The fact that the theoretical pre-
dictions match very accurately our estimated probability, extracted from experimental
runs, leads us to conclude that the implementation of our experiments is in strict accor-
dance with the model we have presented and that we believe is exactly the same as the
one described in (Whiteson and Stone, 2004).

Let us then continue our analysis of the path taken by a packet assuming that there
is an average delay of M steps at the Mail/Database server. The job will leave the
server at time t = 4+M , arriving back at the Web server at t = 5+M , and since from
that point on there is no more cause for congestion, it will, inevitably, arrive at the user
at time t = 7 + M after following the remaining links: Web-server to load-balancer;
load-balancer to user. If the initial assumption (that a job can be put on the outbound
link in the same turn as it was finished, even if it was just taken off the inbound link in
the same time-step) does not hold, we will have an added delay equal to the number of
nodes the job passed in in its path, i.e. 5. So the average delay will be either 7 +M or
12 +M .
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Figure D.5: Time-to-go for all jobs generated in one experiment (after warmup).

Each of the users will measure the performance in a different way

R1(t) =

{
−10t, : t < 50

−t/10− 495, : otherwise
(D.4)

R2(t) =

{
−t/10, : t < 50

−10t+ 495, : otherwise,
(D.5)

where t is the job’s completion-time.

Our experimental results, based on 51 experiments indicate that the average time-
to-go (averaged over all jobs in each experiment and then for all experiments) is ap-
proximately 10 (to be precise 9.8), and reach an average score of −50 (to be precise
−49.7), which means that the average delay M is approximately 3. All results are
acquired after 5000 warm-up steps.

Figure D.5 represents the time-to-go of all jobs in the experiment whose final score
is closest to the average (−49.82). Figure D.6 represents the average score of both
users for finished jobs in the same experiment.

The results are according to the expectations since the number of jobs that have a
time-to-go higher than 50 is negligible and the users generate a balanced number of
jobs each. Thus, the resulting score is bound to be approximately −(10t + t/10)/2,
where t is the average time-to-go. This is confirmed by the experimental results: −(10·
10 + 10/10)/2 ≈ −50. If an extra delay of 5 time-steps was introduced to account
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Figure D.6: Average score of both users in each epoch (after warmup).

for the above-mentioned delay, the average time-to-go would rise to 15 and the average
score to −75, approximately.

To avoid testing under initial conditions the simulator is “warmed-up” for 5000
steps before measurements are taken, as in the described experiments. Since there is
only temporary congestion, this is hardly relevant for our analysis. It is also worth
mentioning that using the Markov chain model it is possible to prove that the time
necessary to reach steady-state conditions is far less than 5000. All our measurements
were taken under catastrophe conditions and without restricting the users to less than
100 pending jobs, i.e. under the worst possible scenario presented.

D.3 Conclusions

The results presented in (Whiteson and Stone, 2004) for the baseline test (random
routing + FIFO scheduling) that we have attempted to replicate are in average approxi-
mately -700 (the exact number is never mentioned in the paper and we must rely on the
results displayed in figure 8 a) for an estimate). This result is the same both in normal
as well as in catastrophe conditions.

The above reasoning, as well as the results of replicating the experiment, led us
to conclude that, either both implementations differ, or we have inconsistent results
for the same experiment. Private communication with one of the authors (to whom
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we thank the patience of answering our questions) led us to believe that we have ac-
curately replicated the experiment. The theoretical analysis of steady-state behavior
of the system assures us that the results of our experiment are in agreement with these
predictions. Despite these facts the discussion with one of the authors was inconclusive
as to the cause of the inconsistent results or the possible differences in the experiment.

These facts do not invalidate the conclusions in (Whiteson and Stone, 2004) con-
cerning the relative increase of performance of the routing algorithms in relation to
the base-test, but they make it impossible to repeat the experiments and validate these
results. It is also impossible to compare results with our own learning approach, which
was our main objective. We believe that an effort should be made by both teams to find
the cause of the inconsistencies and that this effort may help us, and the authors of the
above-mentioned paper, to clarify the description of the experiment, or, in case an error
is detected, to correct it. Our only objective is to replicate the experiment and compare
the adaptive approaches.
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