Aprendizagem a Partir de Multiplas Fontes em

Grupos Heterogéneos de Agentes

Learning From Multiple Sources in

Heterogeneous Groups of Agents

Luis Miguel Martins Nunes
(Mestre/M.Sc.)

Afiliagoes/Afiliations:
FEUP (Doutorando/PhD Student),
LIACC-NIAD&R (Investigador/Researcher),
ISCTE (Assistente/Assistant Teacher)
Contactos/Contacts:
ISCTE, Av. Forcas Armadas, 1649-026 Lisbon, Portugal
Luis.Nunes@iscte.pt
Orientador/Advisor:
Professor Doutor Eugénio da Costa Oliveira (Ph.D.)

Tese apresentada para o cumprimento dos requisitos necessarios a
obtencdo do grau de Doutoramento em Engenharia Informatica pela
Faculdade de Engenharia da Universidade do Porto.

Thesis presented for the fullfilment of the requirements necessary to
complete the degree of Ph.D. in Computer Science at Faculdade de
Engenharia da Universidade do Porto.

28 de Outubro de 2005 / October 28, 2005

Abstract

The field of Multiagent Systems (MAS) is concerned with software solutions com-
posed of several autonomous elements (agents) that interact and communicate. The
scenarios these techniques apply to have special characteristics that bring about new
problems, but also provide new tools to develop adequate solutions. One of the re-
search fields that is evolving in parallel and adapting to this new type of paradigm is
Machine Learning (ML). Research in ML has been increasingly focused on the devel-
opment of solutions that can deal with the problems posed by MAS. The contribution
of ML to this field is of utmost importance since adaptability and learning are funda-

mental in increasing agents’ autonomy and flexibility.

This work presents a study concerning the relationship between communication
and learning in a certain type of MAS. We focus on problems where we have different
teams of agents, solving similar problems at different locations. Each of these teams
may use different learning algorithms or heuristic solutions. In the past, learning-agents
used solely the environment’s feedback as a source of information for learning. MAS
provide other sources of information that can increase agents’ learning capabilities.
Our goal is to determine how the communication of examples and reward information

can affect the learning process.

The hypotheses posed in this thesis are: That communication can improve agents’
learning performance for several learning algorithms in a specific type of problems; It
is possible to enhance the benefits of communication by: using of hybrid algorithms
to integrate information from different sources, using heterogeneous environments and
an adequate selection of information sources. These techniques are tested in three
application domains: a “toy-problem” (predator-prey), a simulation with synthetic data
(load-balancing) and one using real data (traffic-control).

During this study several variables that influence the performance of the exchange
of information during learning where identified, namely: use of batch or specific of
information; online or offline integration; number of advisors; use of heuristic advi-
sors; heterogeneity of the environment; type of algorithm used in the integration of
external information. Although not exhaustive, due to the large number of possible

combinations, our research tests the effects of several of these possibilities.

The initial expectations pointed towards the possibility of increasing the speed of
learning and the performance by exchanging information, particularly when using het-
erogeneous environments. It was verified that exchanging information is beneficial, in
terms of speed, performance and reliability. Contrary to our expectations the environ-
ments’ heterogeneity and other tested techniques did not show the desired effects. This

fact is due, mainly, to the near-optimal performance of agents in most environments

where agents are allowed to communicate.

Even though there is still a long path to follow in the quest for adequate solutions,
this work provides, apart from the above mentioned contributions, a review of the main
difficulties found during this research that may be helpful for those that follow this path
in the future.

The ultimate goal of this line of research is to endow agents with the capability of
learning from more sources than just the environments’ feedback in a context where
information is abundant. This new perspective of learning in MAS can lead to the
development of new learning paradigms, specially suited for MAS, and take us one
step further in the construction of autonomous and intelligent agents.

Abstract

A investigacdo em Sistemas Multi-Agente (SMA) tem como objectivo o desen-
volvimento de solugdes computacionais, baseadas em elementos auténomos (agentes)
que interagem e comunicam entre si. Os cendrios a que estas técnicas se aplicam trazem
consigo um novo conjunto de problemas, mas também a possibilidade de desenvolver
novas solucdes. Uma das 4reas de investigacdo que se tem desenvolvido em paralelo é
a Aprendizagem Automadtica (AA). A pesquisa na area da AA foca, cada vez mais, o
desenvolvimento de solu¢des destinadas a lidar com os problemas postos pelos SMA.
A contribuicdo da AA neste campo € da maior importancia dado que a capacidade de
adaptacdo € fundamental para melhorar a autonomia e flexibilidade dos agentes.

Este trabalho estuda a relacao entre a comunicagdo e a aprendizagem em certo tipo
de SMA. Os problemas focados caracterizam-se pela existéncia de diversas equipas
de agentes, cuja tarefa é a resolucdo de problemas semelhantes em locais diferentes.
Cada uma destas equipas poderd utilizar diferentes mecanismos de aprendizagem ou
solugdes heuristicas. No passado, a aprendizagem baseava-se apenas na informacgdo
devolvida pelo ambiente. Com a introducao do conceito de SMA abrem-se novas pos-
sibilidades na utilizacdo de outras fontes de informacgdo. O objectivo deste trabalho é
determinar quais os efeitos que a troca de certo tipo de informagao (exemplos e recom-

pensas) pode ter na aprendizagem.

As hipéteses postas nesta tese sdo: que a comunicagdo pode ser usada para melhorar
o desempenho de vérios tipos de agentes durante a aprendizagem em determinado tipo
de problemas; E possivel realgar os beneficios da comunicacdo através do uso de:
algoritmos hibridos para a integracdo de informacao de diferentes fontes, da utilizagdo
de ambientes heterogéneos e de uma escolha adequada das fontes de informagao. Estas
propostas sdo testadas em trés problemas: o problema do “predador e a presa”, uma
simulacdo de distribui¢do de carga por servidores, e uma simulacdo de controlo de

trafego baseada em dados reais.

Durante o estudo foi identificado um conjunto de varidveis que pode influenciar o
desempenho da troca de informacao durante a aprendizagem, nomeadamente: trans-
missdo em bloco ou caso a caso; integra¢do imediata ou adiada; nimero de consel-
heiros; utilizacdo de conselheiros pré-programados; ambientes homogéneos ou het-
erogéneos; modo de integra¢do da informacdo. Embora nio sendo exaustiva, devido
ao grande nimero de combinagdes possiveis, a nossa pesquisa testa os efeitos de varias
combinagdes de valores para as varidveis acima mencionadas.

As expectativas iniciais apontavam para a possibilidade de aumentar a velocidade
e o desempenho com a troca de informagdo, em particular quando fossem utilizados
ambientes heterogéneos. Verificou-se que a troca de informacao traz beneficios quer

em termos de desempenho quer em termos de fiabilidade. Ao contrario das expectativas
iniciais a heterogeneidade do ambiente, bem como outras técnicas empregadas para
realgar o desempenho da troca de informacdo, ndo surtiram os efeitos esperados. Este
facto deve-se, principalmente, ao desempenho guasi 6ptimo dos agentes em ambientes

com troca de informacao.

Embora haja ainda um longo caminho a percorrer na busca de solugdes adequadas,
este trabalho contém, além das contribui¢des mencionadas, uma enumeragao das difi-
culdades encontradas durante esta investigacao que podera ser ttil para aqueles que se

futuramente dedicarem a este tema.

O objectivo ultimo da linha de investigac¢do prosseguida € a criagao dos mecanismos
necessdrios para a utilizacdo da informacao disponivel em contextos onde esta é abun-
dante. Esta nova vis@o da aprendizagem em SMA poderd levar ao desenvolvimento
de diferentes paradigmas de aprendizagem, adequados as necessidades dos SMA, e ser

um passo mais no sentido de sistemas auténomos e inteligentes.

Abstract

La recherche dans le domaine des Systemes Multi-Agents (SMA) a pour objectif le
développement de solutions informatiques basées sur des éléments autonomes (agents)
qui interagissent et communiquent entre eux. Ces caractéristiques portent un nouvel
ensemble de problemes mais aussi la possibilité de développer des nouvelles solutions.
L’un des domaines de recherche qui s’est développé en parallele est I’ Apprentissage
Automatique (AA). La recherche dans le domaine la AA met en évidence de plus en
plus le développement de solutions destinées a travailler avec les problémes présentés
par les SMA. La contribution de la AA dans cette domaine est de la plus grande impor-
tance vue que la capacité d’adaptation est fondamentale pour améliorer 1’autonomie et

flexibilité des agents.

Ce travaille analyse la relation entre la communication et 1’apprentissage en cer-
tains types de SMA. Les problemes abordés se caractérisent par 1’existence de diverses
équipes d’agents pour les quelles 1’objectif est la résolution de problemes identiques en
locaux différentes. Chaque une des équipes pourra utiliser des différents mécanismes
d’apprentissage ou des solutions heuristiques. Dans le passé, I’apprentissage s’est basé
uniquement sur I’information de retour fournie par I’environnement. Des nouvelles
possibilités dans 1’utilisation d’autres sources d’information s’ouvrent avec 1’ introduc-
tion des SMA. L’ objectif de cette étude est de déterminer les effets de la communication

des exemples et des récompenses sur 1’apprentissage.

L’hypotheses proposées dans cet étude sont: que la communication peut améliorer
la performance des différents types d’agents durant 1’apprentissage, dans certain pro-
blemes; Est possible de rehausser les bénéfices de la communication avec ’'usage: des
algorithmes hybrides pour I’intégration de la information de différents sources, la util-
isation des environnent hétérogenes, et une bonne choix de les sources d’information.
L’hypotheses son testées en utilisant trois problemes: “prédateur et la proie”, une simu-
lation de distribution de charge par des serveurs, et une simulation de controle de trafic

basée sur les données réelles.

Durant cet étude, un ensemble de variables qui peuvent influencer la performance
des échanges d’information pendant I’apprentissage on été identifiées, comme par ex-
emple: transmission en bloque ou cas a cas; intégration immédiate ou stockage pour
intégration en bloque; nombre de conseillers; utilisation de conseillers préprogrammées;
environnements homogenes ou hétérogenes; mode d’intégration de I'information. Bien
quelle ne soit pas exhaustif a cause du tres grand nombre de combinaisons possibles,
notre recherche teste les efforts de plusieurs combinaisons de valeurs pour des variables

ci-dessus présentées.

Les expectatives initiales laissaient entrevoir la possibilité d’augmentation de la
vitesse et de la qualité résultant des échanges d’information particulierement en util-
isations sur d’environnements hétérogenes. On a pu constater que 1’échange d’infor-
mation apporte de bénéfices soit en termes de performance soit en termes de fiabilité.
Contrairement aux expectatifs initiales, I’hétérogénéité de 1’environnement et d’outres
techniques utilisées, n’ont pas produit les effets espérés. Ce fait peut étre due a la
performance quasi-optimale des agents quand ils échangent des informations.

Bien que cette recherche n’est pas finie on a énumérée les principales difficultés et

étudié des différents solutions.

L’objectif final de cette recherche est la création des mécanismes pour la utilisa-
tion de la information obtenue par touts les agents qui approche un probleme. Cette
recherche pourra porter le développement des nouvelles méthodes de apprentissage

plus approprié aux besoins des SMA.

The sooner you make your first 5000 mistakes

the sooner you will be able to correct them

in “The Natural Way to Draw”,
Kimon Nicolaides, 1941

Acknowledgments

To my parents and wife without whom this would not have been possible.

To my advisor for the freedom he allowed me in choosing my path and his good

advice in difficult times.

To all my colleagues and staff at FEUP/NIAD&R, ISCTE/DCTI and also to my
friends, with a special thanks to Rui Lopes, Luis Botelho, Ricardo Ribeiro, Pedro

Figueiredo, Joaquim Esmerado, Alexandre Almeida, José Moura and Luis Paulo Reis.

Our thanks, also, to the Traffic Control Department of Camara Municipal de Lisboa
for making the necessary data available for the traffic-control simulation. A special
acknowledgement to the Open Software Foundation and all contributors to the software
used during this work. Our thanks to the anonymous reviewers that made a serious
analysis of our work and whose comments have been very helpful in the progress of
this research. Our thanks to FCT/PRODEP, DCTI and LIACC for the financial support
necessary for the research activities and for granting us the necessary time to develop
them.

I could not finish these acknowledgements without thanking the persons from whom
I have learned the most valuable lessons throughout these years, both in my profession
as well as in life. Their competence, professionalism and character have been an ex-
ample to me and to all those fortunate enough to have worked with them. To my great
teachers, Professors Eugénio da Costa Oliveira, Luis Borges de Almeida, Fernando
Corte-Real and Manuel Menezes de Sequeira, my gratitude and respect.

Definitions, Abbreviations and
Acronyms

The first item of the description, in parenthesis, is the section where the concept is
defined in the text.

Action (section 2.2) An agent’s decision that has consequences in the environment.

Action-dependent feature (section 6.2) A state feature that has a different value de-
pending on the action being considered. See also Action and State.

Adaptable Parameters (section 2.2) See Hypothesis Parameters.

Agent (section 1.1) An autonomous element of a MAS environment whose decisions
can affect state transitions. In this text all references to agent should be inter-
preted as Learning Agents.

Area (section 2.2) See Location.

Artificial Neural Network (ANN) (section 2.1.1) Evaluation function used mainly
with the Backpropagation algorithm. The name is also used to define a com-
puting paradigm that encompasses several types of functions, inspired by the
research on how human brain-cells work, as well as the learning algorithms that
apply to them.

Backpropagation (section 2.1.1) Supervised Learning Algorithm that adapts the pa-
rameters of an ANN to minimize the difference between the current response to
a given input and the desired response.

Connectionist Q-Learning (section 2.1.3) Adaptation of Q-Learning, used for large
search-spaces, that replaces the Q-table with an ANN.

Epoch (section 2.2) Period of time, consisting on a fixed number of turns. See also
Turn and Trial.

Environment (section 2.2) Virtual or physical space in which the agents are immersed.

See also Location.

Evaluation Function (section 2.2) A function that maps states to actions and contains
adaptable parameters (called Hypothesis). The Evaluation Function can also be
referred to as adaptive function. See also Hypothesis Parameters and Hypothesis.

Evolutionary Algorithms (EA) (section 2.1.4) Stochastic search algorithms, inspired
by Darwin’s theory, that represent each hypothesis as a specimen in competi-
tion with others for survival. Performance is seen as a measure of fitness and
the fittest specimens are allowed to breed, so as to iteratively improve the best
specimen or a whole population. This, broad, definition is subdivided in several
sub-categories such as: Genetic Algorithms, Evolutionary Strategies and Genetic

Programming See also Genetic Programming.

Genetic Programming (GP) (section 2.1.5) A sub-category of Evolutionary Algori-
thms where the base structures can be interpreted as program trees. See also
Strongly Typed Genetic Programming.

Hypothesis (section 2.2) Set of parameters of an Evaluation Function that determines
the mapping of states to actions.

Hypothesis Parameters (section 2.2) Adaptable components of an Evaluation Func-

tion. See also Hypothesis.

Learning Algorithm (section 2.1) Process of change that affects the Hypothesis based
on acquired information and leads to an improvement of a certain measure of
quality with respect to a certain class of tasks.

Learning Parameters (section 2.2) Set of label-value pairs that influence how a cer-
tain Learning Algorithm will change the Hypothesis.

Location (section 2.2) A sub-component of the environment where a team of Agents
acts.See also Area.

Multiagent Systems (MAS) (section 1.1) Aggregation of autonomous computing en-
tities (agents) jointly working in the same environment to reach, both, individual
and collective goals. The name of a research area the focuses on problems where
distributed and autonomous software/hardware is used. See also Agent.

Nash equilibrium (section 3.2.2) Situation that refers to a given set of hypothesis,
where changes in one of the hypotheses alone will cause a decrease in perfor-

mance.

Policy (section 2.2) A policy is the mapping made by an Evaluation Function accord-

ing to a given Hypothesis See also Hypothesis and Evaluation Function.

Q-Learning (QL) (section 2.1.3) Reinforcement Learning algorithm based on the es-
timation of the quality associated with pairs of states and actions.

Reward (section 2.2) Scalar number, in this work always in [0, 1], that measures an
estimated quality of an action/state, or a sequence of actions/states.

Reward-based Learning (section 2.1) Class of learning algorithms in which the feed-
back information comes in the form of a quality evaluation. When given an ex-
ample (usually called state in this case) the agent chooses an action and gets a
reward (which may be delayed in time). The agent’s objective is to maximize
this reward, i.e. learn to choose actions that cause the environment to give high
rewards as feedback. This label is proposed by Panait and Luke (2003).

State (section 2.2) A snapshot of the values of certain characteristics of the environ-
ment.

Strongly Typed Genetic Programming (GP) (section 2.1.5) A class of Genetic Pro-
gramming algorithms where the nodes in the program trees have types. Mutation
and crossover are bound by the use of these types. See also Genetic Program-
ming.

Supervised Learning (section 2.1) Class of learning algorithms in which the feedback
information is in the form of a desired response for each presented example. The
agent’s job is to emulate, generalize (and in some cases, describe the underlying

rules that govern) the behavior represented by the example-response pairs.

Trial (section 2.2) A sequence of events consisting of a given number of epochs See
also Epoch and Turn.

Trust (section 4.2) In this thesis trust is a coefficient that is proportional to the esti-
mated efficiency of the advice given by a certain advisor.

Turn (section 2.2) Period of time between two observations of the environment, in
which the agent may issue one or more actions See also Epoch and Trial.

Unsupervised Learning (section 2.1) Class of learning algorithms where there is no
feedback information, the learning agent’s job is to divide a set of examples into
a certain number of classes according to a given measure (distance between ex-
amples in most cases). The evaluation of the results depends on the application,
although in most cases what is requested is that the learning agent finds a division

that results in a compact and well defined partition of the example space.

Symbols

One of the main concerns related to notation was to maintain the coherence of the
meaning for the symbols used, with the exception of chapters 2 and 3, “Background
Concepts” and “Related Work™, respectively, where notations followed, as much as
possible, the most common norms for each specific subject. In other chapters coher-
ence had to be balanced with other concerns such as: clarity, size of equations and
readability, which forced minor adjustments in different contexts. For these reasons,
the indexes and function parameters are sometimes omitted, whenever they are not rele-
vant for the current explanation. Even though all symbols are defined the first time they
are used in each section, here we list their default meaning through the text. Whenever
a symbol has a different meaning this will be explicitly defined.

Variables are uncapitalized, e.g. (x), vectors are indicated using a bar above the

name, e.g. Z. The first letter of symbols representing sets is capitalized.

The indexes ¢,j and k are mainly used as the identifier of agents in a set. k is mainly
used as the identifier of an agent selected according to a certain criterium. t is always
used to define the time of a certain event or the index of a sequence of values for a

given variable.

The first item of the description, in parenthesis, is the section of the symbol’s first
appearance in the text.

A, + (section 2.2) The set of actions available for agent ¢ at time .

a; (section 2.2) Action take by agent ¢ at time ¢. The action may also be represented
as a vector a; ¢ representing the adequacy or probability of choosing each possi-

ble action.
B (section 2.2) Set of learning parameters that control a certain learning function.

&i+ (section 2.2) Previous experience obtained by agent 7 until a certain time ¢. Each
element of this set contains tuples with, at least, three values, namely: state,
action and reward.

Fi,i (section 2.2) Evaluation Function of type k used by agent <.

H; . (section 2.2) Hypothesis in use by agent ¢ at time ¢.

‘H; (section 2.2) Set of optimal hypothesis parameters for a given agent ¢ considering

the current state and dynamics of the environment.

7:(;‘ (section 2.2) Hypothesis with the best estimated performance found by agent 7 at

time ¢.

L; (section 2.2) Learning function that transforms the hypothesis’ values, based on

previous experience.
;¢ (section 2.2) Snapshot of the policy used by agent 7 at time ¢.
®,; (section 2.2) The set of all agents acting in location /.

Q+(8,a) (section 2.1.3) Estimated quality of taking action a at state 5 at a given time
t.

Q+(5) (section 2.1.3) Estimated quality of taking each of the possible actions at state
5 and time .

R, ,, (section 2.2) Reward achieved by the team controlling location [in epoch n.
75+ (section 2.2) Reward achieved by agent ¢ after issuing an action at time ¢.

T1.n (section 2.2) Reward achieved by a team of agents in location [at epoch 7.

5;¢ (section 2.2) State of the environment from the point-of-view of agent ¢ at time ¢.
Sl,t (section 2.2) State of the environment at location [and time ¢.

T (section 2.1.3) Temperature parameter for Boltzmann selection.

Wy; (section 2.1.1) Weight of an ANN connecting unit ¢ of layer n to unit j of layer
n+ 1

Contents

1 Introduction

1.1 Motivation L e
1.2 ThesisQuestion
1.3 Objectivesand Approach
1.4 Contributions
1.5 Reader’'sGuide

2 Background Concepts

2.1 Overview of Learning Algorithms
2.1.1 Backpropagation
212 ID3 .o
2.1.3 Q-Learning
2.1.4 Evolutionary Algorithms
2.1.5 Strongly Typed Genetic Programming
2.2 Learning in Multiagent Systems
2.3 The Problems of Learningin MAS
2.3.1 Continuous Policy Changes
2.3.2 Policy Coordination
233 Knowledge Transfer

3 Related Work

3.1 Early Related Work (1990-94)
3.2 Recent Contributions
3.2.1 Transfer of Knowledge from Different Problems
3.2.2 Multiagent Reinforcement Learning

CONTENTS

3.2.3 Advice by Humans and Automated Experts
324 Trust
3.2.5 Adaptation of Learning Parameters
3.3 Application-Domains L
33.1 Predator-Prey
332 Traffic-Control
333 Load-Balancing

3.3.4 Summary on related applications

4 Communication During Learning
4.1 Useful Information
4.2 When and Where to Collect Information?

4.3 Integrating Information L.

5 Simulator Architecture and Agent’s Structure
5.1 Environment’s Structure
5.2 Agent’sStructureo
5.2.1 Response to External Events,
5.2.2 Reward Statistics Lo
5.2.3 Learning Algorithms and Evaluation Functions
5.24 Information Storage
5.2.5 Learning Stages.o
52,6 Roles
5.27 Learnabilityand Trust
528 Advice e

6 Experimental Framework
6.1 Predator-Prey
6.2 Load-Balance
6.3 Traffic-Control

54
55
56
56
57
59
63
64

65
65
67
72

75
77
78
80
81
83
93
94
96
97
98

CONTENTS 10

7 Results and Discussion 113
7.1 Predator-Prey Baseline 115
7.2 Experiment Set 1: Heuristic Advisors 118
7.3 Experiment Set 2: Homogeneous and Heterogeneous Advisors 124
7.4 Experiment Set 3: Specific Advice, Roles and Trust 129
7.5 Experiment Set 4: Batch Advice, Roles and Trust 132

7.6 Experiment Set 5: Learning Stages and Adaptation of Learning Param-
CLETS . . v v i i e e 134

7.7 Experiment Set 6: Combining Roles, Trust and Adaptation of Learning

Parameters. 140
7.8 TrafficBaseline 143
7.9 Experiment Set 7: Homogeneous and Heterogeneous Advisors 144

7.10 Experiment Set 8: Learning Stages and Adaptation of Learning Param-

CLETS .« o v vt i i e e e e 145

7.11 Load-Balance Baseline 151
7.12 Experiment Set 9: Learning versus Advice 152
7.13 Comparison with results of other authors 155
7.14 Summary of the discussion 159

8 Conclusions and Future Work 160
8.1 Summary of contributions oL 162

82 FutureWork 163

A Abandoned Tracks and Unsolved Problems 172
A.0.1 Problems with quick transitions 172

A.0.2 Common storage format 173

A.0.3 Generalizationof examples, 173

A.0.4 Evaluation of advisor X situation 174

A.0.5 Dynamic role-learning 175

A.0.6 Team supervisorso 175

A.0.7 Combining advice 175

A.0.8 Confidence 176

A.0.9 Influence-Exchange. 177

CONTENTS

B Simulator Design and Parameters

B.1

B.2

B.3

Design
B.1.1 Algorithms, Parameters and Evaluation Functions
B.1.2 Statistics
B.1.3 Environments and Agents
B.1.4 Javalnterface Server
Simulation Parameters 0oL
B.2.1 Directory organization
B.2.2 Simulation Parameters
Response tothe mainevents

C Detailed Results

C.1
C2
C3
C4
C5
C.6
C.7
C.8
C9

Predator Prey Baseline Tests
ExperimentSet 1,
ExperimentSet2
ExperimentSet3
Experiment Set4 Lo oL
ExperimentSetS
ExperimentSet6
Traffic Baseline Tests

Experiment Set7

C.10 Experiment Set8

C.11 Load Balance Baseline Tests

C.12 Experiment Set9

D Job Routing: Analysis of Baseline Tests

D.1
D.2
D3
D4

Introduction
Discussion
Conclusions e

Acknowledgements

11

178
178
179
179
180
180
186
186
188
196

199
200
203
211
216
219
222
226
231
234
239
244
247

List of Figures

2.1

5.1

52
53

54

6.1

6.2
6.3

ANN with three, fully connected, layers. Circles represent nodes that
sum their inputs an perform a non-linear transformation, while squares
represent input and output variables. Rectangles group a set of related
variables or nodes (layer). The lines represent links that carry the result
of the lower nodes’ computation to the upper nodes multiplying it by a
weightfactor. L

Environment’s structure. The Infrastructure (IS) modules may con-
tain Directory Facilitators (DF), as well as other services necessary to
gather and distribute information on a particular environment/location.
Lines represent some of the possible communications between ele-
ments in the environment. L.

Agent components.o L e e e e

ANN for Connectionist Q-Learning with separate hidden layers for
each output and a linear output layer. Circles represent ANN nodes,
rectangles enclose associated nodes and lines represent weighted links
betweennodes. o o

An example of a Program Tree. Diamonds represent conditional in-
structions. Rectangles represent functions. Round-edged rectangles

represent leaf-nodes. The result types appear above each node.

An arena of the predator-prey problem with 15X 15 positions, 2 preda-
tors and 1 prey. Predators have a visual-range of 4. The white squares
represent predators; the circle represents the prey; The arrows indicate
the movement of the objects and the grey area defines the visual-field
of the agent in the lower rightcorner.

Load-balance scenario.

Partial view of a traffic-control area with 4 x 4 crossings (16 traffic
controllers). e

12

33

77
80

84

90

LIST OF FIGURES

6.4

7.1

7.2

7.3

7.4

1.5

7.6

1.7

7.8

7.9

7.10

7.11

7.12

7.13

7.14

Example of the traffic flow in the 3 side-lanes of Av. Republica (North-
South direction). The vertical axis represents the number of cars that
passed the sensor in each 5 minutes (300s) period. Data collected on
19/07/2001, between Ohand 24h.

Example of three locations in a mixed scenario (S2MHO0), each 15x 15
positions, 2 predators and 1 prey, per location. The squares represent
predators; the circle represents the prey.

Average evolution of the combined reward in the baseline experiment
(IM2HO) for the Predator-Prey problem.

Example of pursuit by two predators in the same direction. Situation
described in section 6.1, par. 7, that was common in baseline experi-
ments. The situation on the left-side depicts the state for a time ¢t = 0,
while the right-side depicts the situation approximately 20 turns later,
after the predator have circled around the arena twice chasing the prey.

Evolution of the average combined-reward for EA-agents in Experi-
mentSet l.

Evolution of the average combined-reward for GP-agents in Experi-
mentSet I.

Evolution of the average combined-reward for QL-agents in Experi-
mentSet I.

Example of pursuit by two predators surrounding the prey. Situation
described in section 6.1, par. 7. The situation on the left-side depicts
the state for a time ¢ = 0, while the right-side depicts the situation 5
turns later. L L

Evolution of the average combined-reward for EA-agents in Experi-
ment Set2. e e

Evolution of the average combined-reward for GP-agents in Experi-
ment Set2. e e

Evolution of the average combined-reward for QL-agents in Experi-
mentSet2.

Evolution of the average combined-reward for EA-agents in Experi-
mentSet3.

Evolution of the average combined-reward for GP-agents in Experi-
mentSet3.

Evolution of the average combined-reward for QL-agents in Experi-

ment Set3. e

Evolution of the average combined-reward for EA-agents in Experi-
mentSetd. ..o

13

109

115

116

LIST OF FIGURES

7.15

7.16

7.17

7.18

7.19

7.20
7.21
7.22
7.23

7.24

7.25
7.26
7.27
7.28

7.29
7.30
7.31
7.32

7.33
7.34
7.35
7.36

7.37
7.38
7.39

Evolution of the average combined-reward for GP-agents in Experi-
mentSetd. ...

Evolution of the average combined-reward for QL-agents in Experi-
mentSetd. ...

Evolution of the average combined-reward for EA-agents in Experi-

ment SetS. e

Evolution of the average combined-reward for GP-agents in Experi-
mentSetS.

Evolution of the average combined-reward for QL-agents in Experi-
ment SetS.

Summary of the final results for EA-agents in Experiment Set 6.
Summary of the final results for GP-agents in Experiment Set 6.
Summary of the final results for QL-agents in Experiment Set 6.

Average evolution of the combined reward in the baseline experiment
(IM4HO) for the Traffic-control problem.

Average evolution of the combined reward in Experiment Set 7 for the
Traffic-control problem.

Summary of the final results for EA-agents in Experiment Set 7.
Summary of the final results for GP-agents in Experiment Set 7.
Summary of the final results for QL-agents in Experiment Set 7.

Average evolution of the combined reward in Experiment Set 8 for the
Traffic-control problem.

Summary of the final results for EA-agents in Experiment Set 8.
Summary of the final results for GP-agents in Experiment Set 8.
Summary of the final results for QL-agents in Experiment Set 8.

Average evolution of the combined reward in the baseline experiment
(IM2HO) for the load-balancing problem.

Summary of the final results for EA-agents in Experiment Set 9.
Summary of the final results for GP-agents in Experiment Set 9.
Summary of the final results for QL-agents in Experiment Set 9.

Score for H-agents (random-routing) in the load-balancing problem
(Experiment Set9).

Score for QL-agents in the load-balancing problem (Experiment Set 9).
Score for EA-agents in the load-balancing problem (Experiment Set 9).

Score for GP-agents in the load-balancing problem (Experiment Set 9).

14

135

136

137

138

139
141
142
142

144

146
146
147
147

149
149
150
150

152
153
154
154

155
156
157
158

LIST OF FIGURES 15

B.1 Summary of the Algorithm hierarchy. 181
B.2 Summary of the Parameters hierarchy. 182
B.3 Summary of the Evaluation Functions hierarchy. 183
B.4 Summary of the Statistics hierarchy. 184

B.5 Summary of the Agent’s hierarchy. The X stands for each of the spe-
cialized agents and environments for each particular problem (Predator-
Prey, Traffic-Control and Load-Balance). 185

C.1 Average evolution of combined reward for the Predator-Prey problem

in the baseline experiments (IM2HO). 200
C.2 Summary of results for EA-agents in the baseline Experiment Set on
the Predator-Prey problem., 201
C.3 Summary of results for GP-agents in baseline Experiment Set on the
Predator-Prey problem. oL 202
C.4 Summary of results for QL-agents in the baseline Experiment Set on
the Predator-Prey problem. 202
C.5 Average evolution of the combined reward in experiment SE2H1-Offline
Batch Standing. 203
C.6 Average evolution of the combined reward in experiment SE2H1-Offline
Specific Standing.o oL 204
C.7 Average evolution of the combined reward in experiment SG2H1-Offline
Batch Standing. 205
C.8 Average evolution of the combined reward in experiment SG2H1-Offline
Specific Standing. 205
C.9 Average evolution of the combined reward in experiment SQ2H1-Offline
Batch Biasing Standing. 206
C.10 Average evolution of the combined reward in experiment SQ2H1-Offline
Batch Virtual-Experience Standing. 207
C.11 Average evolution of the combined reward in experiment SQ2H1-Offline
Specific Biasing Standing. 0oL 208
C.12 Average evolution of the combined reward in experiment SQ2H1-Online
Specific Biasing Standing. oL 208
C.13 Average evolution of the combined reward in experiment SQ2H1-Online
Specific Imitation Standing. 0oL 209
C.14 Summary of results for EA-agents in Experiment Set 1. 209

C.15 Summary of results for GP-agents in Experiment Set 1. 210

LIST OF FIGURES 16

C.16 Summary of results for QL-agents in Experiment Set 1. 210
C.17 Average evolution of the combined reward in experiment SE2ZHO-Offline
Batch Standing. 211
C.18 Average evolution of the combined reward in experiment SG2HO-Offline
Batch Standing. 212
C.19 Average evolution of the combined reward in experiment SM2HO-Multiple
AdVISOTS. . ..o 213
C.20 Average evolution of the combined reward in experiment SM2HO-Standing
AdVIsOr. 213
C.21 Average evolution of the combined reward in experiment SQ2HO-Offline
Batch Virt-Exp- Standing.o Lo 214
C.22 Summary of results for EA-agents in Experiment Set2. 214
C.23 Summary of results for GP-agents in Experiment Set2. 215
C.24 Summary of results for QL-agents in Experiment Set2. 215
C.25 Average evolution of the combined reward in experiment SM2HO-Offline
Specific MultipleRoles., 216
C.26 Average evolution of the combined reward in experiment SM2HO-Offline
Specific Multiple Roles Trust. 217
C.27 Summary of results for EA-agents in Experiment Set3. 217
C.28 Summary of results for GP-agents in Experiment Set 3. 218
C.29 Summary of results for QL-agents in Experiment Set3. 218
C.30 Average evolution of the combined reward in experiment SM2HO-Offline
Batch MultipleRoles. 219
C.31 Average evolution of the combined reward in experiment SM2HO-Offline
Batch Multiple Trust., 220
C.32 Summary of results for EA-agents in Experiment Set4. 220
C.33 Summary of results for GP-agents in Experiment Set4. 221
C.34 Summary of results for QL-agents in Experiment Set4. 221

C.35 Average evolution of the combined reward in experiment SM2HO-Offline
Batch Multiple Changing Advice Modes. 222

C.36 Average evolution of the combined reward in experiment SM2HO-Offline
Batch Multiple Changing Learning Parameters. 223

C.37 Average evolution of the combined reward in experiment SM2HO-Offline
Batch Multiple Changing Advice Modes and Parameters. 224

C.38 Summary of results for EA-agents in Experiment Set5. 224

LIST OF FIGURES 17

C.39 Summary of results for GP-agents in Experiment Set5. 225
C.40 Summary of results for QL-agents in Experiment Set5. 225

C.41 Average evolution of the combined reward in experiment SE2H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 226

C.42 Average evolution of the combined reward in experiment SG2H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 227

C.43 Average evolution of the combined reward in experiment SM2H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 228

C.44 Average evolution of the combined reward in experiment SQ2H1-Offline
Batch Virt-Exp- Multiple Changing Advice Modes and Parameters. . 228

C.45 Summary of results for EA-agents in Experiment Set6. 229
C.46 Summary of results for GP-agents in Experiment Set 6. 229
C.47 Summary of results for QL-agents in Experiment Set6. 230
C.48 Average evolution of the combined reward in the baseline Experiment

Set for the Traffic-Control problem. 231
C.49 Summary of results for EA-agents in the baseline Experiment Set for

the Traffic-Control problem. 232
C.50 Summary of results for GP-agents in the baseline Experiment Set for

the Traffic-Control problem. 232
C.51 Summary of results for QL-agents in the baseline Experiment Set for

the Traffic-Control problem. 233
C.52 Average evolution of the combined reward in experiment SE4HO-Offline

Batch MultipleRoles., 234
C.53 Average evolution of the combined reward in experiment SG4HO-Offline

Batch MultipleRoles. 235
C.54 Average evolution of the combined reward in experiment SM4HO-Offline

Batch MultipleRoles. 236
C.55 Average evolution of the combined reward in experiment SQ4HO-Offline

Batch Virtual-Experience Multiple Roles. 236
C.56 Summary of results for EA-agents in Experiment Set7. 237
C.57 Summary of results for GP-agents in Experiment Set 7. 237
C.58 Summary of results for QL-agents in Experiment Set7. 238

C.59 Average evolution of the combined reward in experiment SE4H1-Offline
Batch Multiple Roles Changing Advice Modes and Parameters. 239

C.60 Average evolution of the combined reward in experiment SG4H1-Offline
Batch Multiple Roles Changing Advice Modes and Parameters. 240

LIST OF FIGURES 18

C.61 Average evolution of the combined reward in experiment SM4H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 241

C.62 Average evolution of the combined reward in experiment SQ4H1-Offline
Batch Virt-Exp- Multiple Roles Changing Advice Modes and Parameters.241

C.63 Summary of results for EA-agents in Experiment Set 8. 242
C.64 Summary of results for GP-agents in Experiment Set8. 242
C.65 Summary of results for QL-agents in Experiment Set8. 243
C.66 Average evolution of the combined reward in the baseline experiments

for the load-balance problem. 244
C.67 Summary of results for EA-agents in the baseline Experiment Set for

the load-balance problem. oL 245
C.68 Summary of results for GP-agents in the baseline Experiment Set for

the load-balance problem. Lo 245
C.69 Summary of results for QL-agents in the baseline Experiment Set for

the load-balance problem. 246
C.70 Average evolution of the combined reward in experiment SM2HO-Offline

Batch Multiple Roles Changing Advice Modes and Parameters. 247
C.71 Summary of results for EA-agents in Experiment Set9. 248
C.72 Summary of results for GP-agents in Experiment Set9. 248
C.73 Summary of results for QL-agents in Experiment Set9. 249
D.1 Load-balance scenario (network #3). 251

D.2 Markov chain representation for the state of a given server whose speed
(i.e. work capacity)is 1/k. 253

D.3 Comparison of the probability of having n jobs in queue in the slowest
Mail-server, (that completes only one job every 5 time-steps) obtained
by equation D.3 with k=5 (represented by the squares), with the em-
pirical results averaged over 51 experiments (represented by the cross).
The 95% confidence interval for a t-test, relative to the empirical re-

sults,isalsopresented. L. 254

D.4 Comparison of the probability of having n jobs in queue in the slow-
est Database-server, (that completes only one job every 5 time-steps)
obtained by equation D.3 with k=5 (represented by the squares), with
the empirical results averaged over 51 experiments (represented by the
cross). The 95% confidence interval for a t-test, relative to the empiri-

cal results, is also presented. 255
D.5 Time-to-go for all jobs generated in one experiment (after warmup). . 256

D.6 Average score of both users in each epoch (after warmup). 257

List of Tables

2.1

3.1
3.2

33
34

5.1

52

53

54

Summary of ID3 Algorithm for binary classification, adapted from
(Mitchell, 1997). E stands for a set of examples classified as posi-
tive or negative and A is a set of attributes that compose each example.
Node stands for a positive classification, Node_ for a negative. . . .

Parameters for Tan’s predator-prey experiments.

Average number of steps to individual capture in Tan’s Predator-Prey
Experiments (for 2 predators and 1 prey). In “mutual scouting” mode
the agents have extra information on the prey’s position sent by their
PArtner. e e e e e

Parameters for Haynes’ predator-prey experiments.

Average number of captures in test in 1000 random scenarios x 200

steps in Haynes’ predator-prey experiments, using 4 predators and 1

PIEY. o o e

Main parameters for a QL-Agent. The second column contains the type
of change these parameters undergo during training in standard imple-
mentations. The third column is a summary of the expected effects of
changing each parameter.

Main parameters for an EA-Agent. The second column contains the
type of change these parameters undergo during training in normal cir-
cumstances. The third column is a summary of the expected effects of
changing each parameter.

Description of the main types of Nodes in a Program Tree. The subtree

types are: (b)ooleanand (r)eal.,

Main parameters for a GP-Agent. The second column contains the
type of change these parameters undergo during training in normal cir-
cumstances. The third column is a summary of the expected effects of

changing this parameter. Most parameters were omitted because they

35

58

58
59

59

85

88

91

are similar to those referred in table 5.2 and changes have similar effects. 92

19

LIST OF TABLES

5.5

6.1

6.2
6.3
6.4

7.1

7.2
7.3
7.4
7.5

7.6
7.7
7.8
7.9

7.10
7.11

7.12

7.13

Learning Stages, their characteristics and impact on learning parame-
TOIS. o o o e e e e

Parameters for predator-prey experiments. Comparable to tables 3.1
and3.3.

Summary of the parameters for the Load-Balance experiments.
Summary of the parameters for the traffic environment.

Summary of the parameters for the traffic experiments.

Summary of the final results for the predator-prey problem in the base-
line experiments (without communication).

Summary of the final results for EA-agents in Experiment 1.
Summary of the final results for GP-agents in Experiment 1.
Summary of the final results for QL-agents in Experiment 1.

Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in Experiment Set 1. All values in
average number of examples per agent x epoch. Example-size is 232
bytes for Virtual-Experience integration while all others only require
144 bytesperexample.

Summary of the final results for EA-agents in Experiment 2.
Summary of the final results for GP-agents in Experiment 2.
Summary of the final results for QL-agents in Experiment2.

Average number of bytes exchanged between an advisee of a given type
(lines) and an advisor (columns) in Experiment Set 2. All values in
average number of examples per agent x epoch. Example-size is 232
bytes for Virtual-Experience integration while all others only require
l44 bytes perexample.

Summary of the final results for Experiment3.

Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in Experiment Set 3. All values
in average number of examples per agent X epoch. Example-size is
144 bytes. o o e e

Summary of the final results for Experiment 4. Results of Baseline
(lines 1 to 3), Experiment Set 2 (lines 4 to 5), and best performances
(lines 7 to 9) introduced for comparison.

Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in Experiment Set 4. All values
in average number of examples per agent X epoch. Example-size is
144bytes. . . . o oo e

20

120

126
129

LIST OF TABLES

7.14 Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in Experiment Set 5. All values
in average number of examples per agent X epoch. Example-size is
144 bytes. o o e e e e e

7.15 Summary of the final results for Experiment5.

7.16 Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in Experiment Set 6. All values
in average number of examples per agent X epoch. Example-size is
144 bytes. o . e e

7.17 Summary of the final results for Experiment6.

7.18 Summary of the final results for the traffic-control problem in baseline
trials.

7.19 Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in each epoch in Experiment Set
7. Example-size is 64 bytes.

7.20 Summary of the final results for the traffic-control problem in Experi-

ment Set7. e e

7.21 Summary of the final results for the traffic-control problem in Experi-
mentSet8.

7.22 Average number of bytes exchanged between an advisee of a given
type (lines) and an advisor (columns) in each epoch in Experiment Set
8. Example-sizeis 64 bytes.

7.23 Summary of the final results for the load-balance problems in baseline
trials.

7.24 Summary of the final results for the load-balance problems in Experi-

ment Set9.

B.1 Environment parameters for Predator Prey (file:masl.ptab).
B.2 Environment parameters for Load Balance (file:masl.ptab).
B.3 Environment parameters for Traffic Control (file:masl.ptab).
B.4 Statistics-related parameters (file:stats.ptab)
B.5 Advice related parameters (file:adv.alg.ptab).
B.6 Parameters for EA and GP algorithms (files: ea.al.ptab, gp.alg.ptab). .
B.7 Parameters for QL algorithms (file:rl.alg.ptab)
B.8 Program-Tree parameters (file:gp.pt.iobj)

C.1 Results of the final validation cycle for the baseline Experiment Set on
the Predator-Prey problem.

21

191

201

LIST OF TABLES 22

C.2 Results of the final validation cycle for experiment SE2H1-Offline Batch
Standing. 203

C.3 Results of the final validation cycle for experiment SE2H1-Offline Spe-
cificStanding.o oL 203

C.4 Results of the final validation cycle for experiment SG2H1-Offline
Batch Standing. 204

C.5 Results of the final validation cycle for experiment SG2H1-Offline
Specific Standing. o 204

C.6 Results of the final validation cycle for experiment SQ2H1-Offline
Batch Biasing Standing.o oL 206

C.7 Results of the final validation cycle for experiment SQ2H1-Offline
Batch Virtual-Experience Standing. 206

C.8 Results of the final validation cycle for experiment SQ2H1-Offline
Specific Biasing Standing. oL 207

C.9 Results of the final validation cycle for experiment SQ2H1-Online Spe-
cific Biasing Standing. oL oL 207

C.10 Results of the final validation cycle for experiment SQ2H1-Online Spe-
cific Imitation Standing. oL 207

C.11 Results of the final validation cycle for experiment SE2HO-Offline Batch
Standing. 211

C.12 Results of the final validation cycle for experiment SG2H0-Offline
Batch Standing. 211

C.13 Results of the final validation cycle for experiment SM2HO-Multiple
Advisors. . ..o 212

C.14 Results of the final validation cycle for experiment SM2HO0-Standing
AdVISOr. 212

C.15 Results of the final validation cycle for experiment SQ2HO0-Offline
Batch Virt-Exp- Standing. oL 212

C.16 Results of the final validation cycle for experiment SM2HO0-Offline
Specific Multiple Roles. 216

C.17 Results of the final validation cycle for experiment SM2HO0-Offline
Specific Multiple Roles Trust. 216

C.18 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Roles. 219

C.19 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Trust. 219

LIST OF TABLES 23

C.20 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Changing Advice Modes. 222

C.21 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Changing Learning Parameters. 222

C.22 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Changing Advice Modes and Parameters. 223

C.23 Results of the final validation cycle for experiment SE2H1-Offline Batch
Multiple Changing Advice Modes and Parameters. 226

C.24 Results of the final validation cycle for experiment SG2H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 226

C.25 Results of the final validation cycle for experiment SM2H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 227

C.26 Results of the final validation cycle for experiment SQ2H1-Offline
Batch Virt-Exp- Multiple Changing Advice Modes and Parameters. . 227

C.27 Results of the final validation cycle for the baseline Experiment Set for

the Traffic-Control problem., 231
C.28 Results of the final validation cycle for experiment SE4HO-Offline Batch
MultipleRoles. 234
C.29 Results of the final validation cycle for experiment SG4H0-Offline
Batch Multiple Roles. 234
C.30 Results of the final validation cycle for experiment SM4HO0-Offline
Batch Multiple Roles. 235

C.31 Results of the final validation cycle for experiment SQ4HO-Offline
Batch Virtual-Experience Multiple Roles. 235

C.32 Results of the final validation cycle for experiment SE4H1-Offline Batch
Multiple Roles Changing Advice Modes and Parameters. 239

C.33 Results of the final validation cycle for experiment SG4H1-Offline
Batch Multiple Roles Changing Advice Modes and Parameters. . . . 239

C.34 Results of the final validation cycle for experiment SM4H1-Offline
Batch Multiple Changing Advice Modes and Parameters. 240

C.35 Results of the final validation cycle for experiment SQ4H1-Offline
Batch Virt-Exp- Multiple Roles Changing Advice Modes and Parame-
EBIS. . o o e e e e e e e e e e 240

C.36 Results of the final validation cycle for the baseline experiment of the
load-balance problem. oL 244

C.37 Results of the final validation cycle for experiment SM2HO0-Offline
Batch Multiple Roles Changing Advice Modes and Parameters. . . . 247

Chapter 1

Introduction

1.1 Motivation

In the past decades the concepts of decentralization and autonomy are currently
concentrating the attention of researchers in most areas of computational sciences. The
facts in favor of decentralized and autonomous software solutions are well known and
have been proved in practice by its growing use. The main factors that are usually
pointed out in favor of these solutions when compared to centralized ones, are:

Better resistance to failure, e.g. distributed network management;
e More efficient access to decentralized resources, e.g. distributed Databases;
e Decrease in the number of critical bottlenecks/elements, e.g. distributed routing;

A large number of small and cheap computational elements can overpower cen-
tralized processing solutions, e.g. SETI program (SETI, 2005);

The ability to cope with situations where direct human/centralized control is not
possible, e.g. Mars Rover project (MarsRover, 2005);

Although centralized solutions still have — and will certainly keep — their place
in many areas, it is increasingly obvious that there are a number of problems where
decentralized software is a better option. In some cases it is the only option. It is im-
portant to notice that when speaking of these concepts we are, in most cases, referring
to “a certain degree of decentralization/autonomy” and that the efficient balance of this
degree is always a problem-dependent feature.

The field of Multiagent Systems (MAS) is currently the ground for most of the
research involving this type of software. We will not go into the discussion of “what
is an agent?”. This discussion has been a controversial one in the recent past. Now,
that the dust has settled, there are a certain number of characteristics that seem to be
consensual about this type of software, namely: a relative degree of autonomy in the

24

CHAPTER 1. INTRODUCTION 25

decision process, the ability to, pro-actively, interact with the environment and other

agents and the fact that it is immersed in a “society”.

The MAS area merges the research from several other areas, some of which were
unrelated in the past. One of these is Machine Learning (ML) that was also faced with
the problems and advantages put forth by MAS. Some authors argue that true auton-
omy can only be achieved through adaptability and learning. But, complex MAS, add
several challenges to the, already difficult, problem of single-agent automated learning,

namely:

e Partial observability;
e Non-static environments, due to:

— Constant changes in other agents’ policies;
— External/Unpredictable events;
e Integration of, often conflicting, local solutions;
e Large search-spaces (when considering the information collected by all agents);

Of course most of these problems had already been approached, but they were usu-
ally tackled individually. Their appearance as an ensemble creates a new problem, for
which some of the proposed solutions are ineffective. Given the growth in popularity
of MAS the demand for adequate solutions is now higher than ever. The reviews of
Sen (1997), Weiss and Dillenbourg (1999) and Kazakov and Kudenko (2001) corrob-
orate this view, mentioning learning and cooperation between autonomous agents as
important subjects of research that deserve attention and are likely to become the main
features of this new generation of software.

Several approaches have been attempted for these problems, but none which con-
siders the possibility of joining the efforts of teams that use different learning algo-
rithms by exchanging information between them. The strength of diversity has been
proven in nature as in human societies. Communication was once the main break-
through in human evolution (some say, the main difference between humans and other
animals) and is now a key factor in the advance of science. Is learning in MAS an ex-
ception, or can these two concepts (communication and heterogeneity) be used to our
advantage in this problem too? This work will attempt to take us (and the reader) one
step further, however small it may be, towards an answer to this question.

1.2 Thesis Question

As we mentioned in the previous section there are several new problems but also
new advantages to explore in MAS. One of the main advantages is that there is more
information available in MAS than in traditional ML scenarios. Establishing if/how

CHAPTER 1. INTRODUCTION 26

this additional information may be used advantageously to improve an agents’ learning
process is the main concern of this work.

As hinted above the question we strive to answer is: “(How) can heterogeneous
teams of learning agents benefit from exchanging information during the learn-
ing process?” or, rephrasing it as a working hypothesis: Can communication im-
prove agents’ learning performance, for several learning algorithms in a specific type
of problems? Is it possible to enhance the benefits of communication by: using hy-
brid algorithms to integrate information from different sources? using heterogeneous

environments and/or an adequate selection of information sources?

It is important to establish that when we speak of “heterogeneous teams” we mean
that each team may use different learning algorithms. We have not approached the
problems related to heterogeneity of learning algorithms within the group. There are
no restrictions in our proposals that preclude these scenarios, but no effort was done to

investigate or solve the particular problems posed by intra-team heterogeneity.

It is also important to define that our approach is in a middle ground between the
definitions of Concurrent Learning (MAS where each agent learns on its own) and
Team Learning (where teams learn as a whole). These definitions are proposed by
Panait and Luke (2003).

In the course of this research several questions were raised. This report will try to
guide the reader through the problems that emerged and propose a set of solutions that

will be evaluated and discussed. Some of the questions discussed in this work are:

e What information is useful to the learning task, other than the one directly pro-
vided by the environment?

e How can agents select the appropriate information source for a given situation?

e How can different types of information be integrated in an agent’s learning pro-
cess?

e What are the consequences of communication between agents that use different

learning algorithms in similar problems?

Much of the related work, focused on section 3 of this report, only considers parts
of the problem, specific instances of single-agent environments, the use of expert ad-
visors, or situations where all members of a team use similar learning algorithms. In
this work we have tried to broaden the spectrum of possible environments and agent
types. It is likely that specific solutions to some of our test-problems may show a better
performance than our approach. Nevertheless, this study is important and, to the best
of the author’s knowledge, original work.

The problems under scrutiny are related to many others and it is important at
this moment to “draw-the-line” on what is the focus of this research. This work is
not concerned with: explicit coordination protocols, ontologies, social behavior dy-
namics (except for learning-related behaviors), concurrence, synchronization, secu-
rity, non-cooperative/malicious agents, or the solution to the problems of any specific

CHAPTER 1. INTRODUCTION 27

application-domain. The experiments were designed with the sole purpose of verifying
the quality of the approach we present in paradigmatic instances of problems in which
several teams of autonomous learning agents may be used to solve similar problems at

different locations.

1.3 Objectives and Approach

Our objective is to improve the efficiency of several teams of learning agents using
communication. We aim at results in which all teams achieve better performances in
scenarios where they are allowed to communicate than in those where this option is not
available.

We study the effects of exchanging of information between agents of different types
during the learning process. In the experiments we made, we use several different
learning algorithms as well as pre-programmed agents with fixed (heuristic) behaviors.
All teams will be attempting to solve similar problems and trying to use communication

with their peers to improve their skills.

In this work we experiment with one well known toy-problem and two simulated
application domains (load-balance and traffic-control), but the model is not restricted
by any particular feature of these application-domains. Other MAS applications can
also use our model, provided that: they learn from environment rewards, and there are
several communicating teams of learning agents, solving similar problems, at different
locations. In our experiments, we have chosen a few learning algorithms to demonstrate
how the concepts could be applied. The choice of these learning algorithms is related
to their adequacy in solving the type of problems we intended to address and with a
concern to cover different types of algorithms, which should lead to a more general set
of solutions. Even though the efficiency of some proposed solutions is algorithm and
problem-dependent, the same concepts can be applied to other problems and learning

algorithms.

Our approach can be used directly in a real environment as much as any learning
solution that depends on learning from errors. We believe, however, that validating this
model requires a cycle that includes simulation, testing and deployment phases. In the
first phase agents would learn in a simulated environment, that follows, as closely as
possible, the dynamics of the real system to which a solution is required. After gen-
erating a set of policies (and possibly using fixed adaptation parameters) the solutions
must be tested in a real environment under strict supervision, either human or auto-
matic or in a more detailed simulation. Finally, if tests prove the efficiency of the new
solutions, these can be deployed on a real situation and the changes in the environ-
ment’s dynamics propagated back to the simulation where a new learning phase would
start. This type of cycle is well known in software engineering but seldom considered
in the automatic employment of adaptable solutions. The evaluation cycle is hinted

CHAPTER 1. INTRODUCTION 28

by our architecture although the impossibility of testing in real systems does not allow
us to complete the cycle and determine the efficiency of this solution when applied to
real-life problems. In the experiments reported here all phases run on simulated envi-
ronments, but a new project ! related to traffic-control, which is currently in its startup
phase, may allow us to go one step further in this ideas.

Another important question related to this approach is its communication cost. We
have not been excessively concerned with this matter, although aware of it. The lim-
its considered for communication were thought of in the perspective of having as few
autonomy restrictions as possible, not in saving bandwidth. It is more important for
us that an agent does not depend on information sent by another to take its decision
than to reduce the total amount of information exchanged. Stone and Veloso (1997) ar-
gue that unrestricted communication between homogeneous agents leads to a scenario
where multiagent learning is similar to centralized learning. We agree with this point
of view, but it is important to make it clear that this is a different situation. The agents
considered in this research are heterogeneous in the sense that an agents’ policy is not
necessarily the best for another agent. A solution where all agents learn the same be-
havior is usually suboptimal and often even a disastrous one. In the situations focused
here each agent must preserve its autonomy and specialize in its own task, even though
there are common points in the agents’ tasks within the team or in different teams. This
is true even if, at first, any agent can fulfill any of the roles, or if the roles are not strictly
defined. In (Stone and Veloso, 1997) only the above-mentioned form of heterogeneity
is considered. In this work we have heterogeneity at different levels: not only are the
agents within a team required to have different policies, but also, each team may use
different learning algorithms. Throughout this text the word “ heterogeneous” will be
used in the broader sense.

1.4 Contributions

The main contributions of this work are: the extension of the results on the effec-
tiveness of communication to different environments, problems and learning algori-
thms; and a set of techniques that are aimed at enhancing the use of multiple sources
of information during learning.

In this work we report our study of the effects of communication between agents
that use different learning algorithms. Nearly all of the previous approaches to this type
of problems considered solely agents that use Q-Learning and/or have expert advisors.
Also, most of the related work focuses single-agent problems, as can be seen in chapter
3. We extend the study to teams that use different learning algorithms, and non-expert

advisors. Another important contribution is the definition of the foundations of an ar-

The GRICES/CAPES Project, approved for funding in 2005

CHAPTER 1. INTRODUCTION 29

chitecture that supports the integration of communication from different sources during
learning.

Along the way several minor contributions were added, namely: the development
of particular types of hybrid algorithms, specially suited for integrating different types
of information; the adaptation of Strongly Typed Genetic Programming/ID3 to real-
valued program trees; the use of other agent’s reward information for the adjustment of
learning parameters; and the exploration of the concept of learning-related trust.

During this study several variables that influence the performance of the exchange
of information during learning were identified and studied, namely: use of batch or spe-
cific of information; online or offline integration; number of advisors; use of heuristic
advisors; heterogeneity of the environment; type of algorithm used in the integration

of external information.

The initial expectations pointed towards the possibility of increasing the speed of
learning and the performance by exchanging information, particularly when using het-
erogeneous environments. It was verified that exchanging information is beneficial, in
terms of speed, performance and reliability for several types of learning agents, but,
contrary to our expectations, the environments’ heterogeneity and other tested tech-
niques did not show the desired effects. This fact is due, mostly, to the near-optimal

performance of agents in most environments where agents are allowed to communicate.

1.5 Reader’s Guide

In this thesis we have tried to present the subject in increasingly complex layers.
The reader will see the same subjects at several points of this discussion and their
descriptions will become increasingly more detailed. Even though it may appear repet-
itive, we believe that the top-down approach is easier to follow given the amount of
details present at the last level (which would, eventually, be the code itself).

Following these introductory notes, chapter 2 describes the standard versions of
the learning algorithms used in our approach and reformulates the learning problem to
enhance the special characteristics of learning in the type of MAS we are interested in
studying. The first section of chapter 2 can be skipped by those familiarized with the

algorithms described in it.

Chapter 3 contains a review of related work, both to give the necessary credits to
those “whose shoulders we stand on” and to situate the reader in terms of the research
conducted in the area in the past decade.

Chapter 4 contains an analysis of the problem, a set of proposals to deal with it
along with the arguments that led us to take these options rather than others. In chapter
5 we define the architecture of the MAS and the characteristics of the agents that com-
pose it. While doing this we present a more detailed explanation of the implementation

of the concepts discussed in chapter 4.

CHAPTER 1. INTRODUCTION 30

In chapter 6 we explain what kind of experiments were conducted, their objectives
and detailed descriptions. Chapter 7 presents and discusses the results achieved. Fi-
nally, in chapter 8, we present a summary of the conclusions and directions for future

work.

Appendix B contains details on the simulators’ design and construction. In Ap-
pendix C we present the full set of results and parameters used in the experiments.
Finally, Appendix D contains a critical review of (Whiteson and Stone, 2004) exposing

a flaw that originated a correction in the above-mentioned paper.

In this chapter we introduced the area of research, the type of problems we are
concerned with and provided the first hints concerning the type of solutions we propose.
We have clearly stated the question we address and summarized the main contributions
of this work. The following chapter is dedicated to an overview of some background

concepts related to Machine Learning and Multiagent Systems.

Chapter 2

Background Concepts

In this chapter we will take a closer look at the type of learning problems we will be
addressing and at some of the tools inherited from Machine Learning (ML) to deal with
these problems. In the first section we will present an overview of standard versions
of the learning algorithms that will be part of the integrated learning process described
in chapter 4. The following section analyses in detail the type of problems we are

attempting to deal with.

2.1 Opverview of Learning Algorithms

The most common subdivision of learning algorithms is done according to the type
of feedback they need. When adopting this division we have three main categories:
Unsupervised, Supervised and Reward-based (a.k.a. Reinforcement). A similar divi-
sion can be done in the type of learning problems (although some problems can be
posed in different ways, falling in different categories). These categories are used here
to describe different types of learning algorithms. We use Reward-based to describe
algorithms that can learn from a qualitative feedback, and Reinforcement Learning to
mention a specific family of these algorithms, inspired by dynamic programming (Sut-
ton and Barto, 1987).

Unsupervised Learning: no feedback information, the learning agent’s job is to
divide a set of examples into a certain number of classes according to a given
measure (distance between examples in most cases). The evaluation of the results
depends on the application, although in most cases what is requested is that the
learning agent finds a division that results in a compact and well defined partition
of the example-space.

Supervised Learning: the feedback information is in the form of a desired re-
sponse for each presented example. The agent’s job is to emulate, generalize

31

CHAPTER 2. BACKGROUND CONCEPTS 32

(and in some cases, describe the underlying rules that govern) the behavior rep-
resented by the example-response pairs.

Reward-based Learning: the feedback information comes in the form of a qual-
ity evaluation. When given an example (usually called state in this case) the
agent chooses an action and gets a reward (which may be delayed in time). The
agent’s objective is to maximize this reward, i.e. learn to choose actions that
cause the environment to give high rewards as feedback.

In the the next few chapters we will mention several types of well known learn-
ing algorithms, from two of the types discussed above: Supervised and Reward-based
Learning. We will describe (briefly) the standard versions of these learning algorithms,
so that later on, in chapter 4 we can focus on the changes that were made to integrate
these learning algorithms in our agent’s architecture. Readers that are familiarized with
these algorithms can skip this section.

2.1.1 Backpropagation

Backpropagation (BP) (Rumelhart et al., 1986) is, perhaps, the most well known
Supervised Learning algorithm. The concept is that for a given function (equation 2.2),
which contains a set of real-valued parameters (usually called weights) it is possible
to reduce the mean squared difference between the actual output, F'(Z), for a given
example 7, and a certain desired value, d, by changing the parameters. The function,
F(Z), must be differentiable in relation to each of these parameters. This is done as
shown in equation 2.1, using, in this case, the squared difference as error function.

Awj = —a—, 2.1

In equation 2.1 « represents the learning-rate parameter and dx/dy is the partial
derivative of x in relation to y. Awyj is the amount added to parameter w; to bring
F(z) closer to d. The learning-rate, a, is either fixed from the beginning the training

or reduced during training to ensure convergence.

Since, for most functions, it is not efficient to compute these derivatives, BP is
commonly associated with a type of functions for which this computation is efficient.
These functions were called Artificial Neural Networks (ANN), a name that is often
confused with the BP algorithm itself and its variants. ANN are (usually) organized
in layers of computational units that perform a non-linear function of the sum of the

activations of all incoming connections. Given an input the ANN calculates the

CHAPTER 2. BACKGROUND CONCEPTS 33

m Output vector
]
x’x’, Output Layer
XWX

Connection, w . .
n, i, j

I/—Iidden unit

Cﬁ(& ébé} Hidden Layer
\ Connection, w

\'4 A\

N
o 0. o0 |InputLayer

7

n, i, j

roo
Input unit

Figure 2.1: ANN with three, fully connected, layers. Circles represent nodes that sum
their inputs an perform a non-linear transformation, while squares represent input and
output variables. Rectangles group a set of related variables or nodes (layer). The lines
represent links that carry the result of the lower nodes’ computation to the upper nodes
multiplying it by a weight factor.

output F(Z) in the following way:

Mo
yig = fOwiiy-w) 2.2)
=0
M,
Yn,j = f(z Wn,ij * yn—l,i)a 1<n < N
=0
Fi(z) = yng,

where n is the layer number, ¢ and j are the indexes defining a connection between
two nodes in consecutive layers and f(x) is a sigmoid function, of which the most
commonly used examples are: tanh(z) and 1/(1 + e~*). M, is the number of nodes
in layer n and NV is the number of layers of the ANN. The number of nodes in the first
layer (M) is considered to be the dimension of the input vector . For each node in
all but the first layer there is also a parameter called bias, which is often represented as
parameter O of that layer (w,, ¢;) and it is assumed to be associated to a permanently
activated node, i.e. y,—1,0 = 1,Vn € {1,2,..., N}).

Usually, the adaptation shown in equation 2.1 is not done for each example pre-
sented but accumulated for a set of examples before each change in the parameters.
This is usually referred to as “batch” or “offline” learning, by opposition to “online”
learning where each example-response pair triggers a change in the hypothesis param-
eters.

CHAPTER 2. BACKGROUND CONCEPTS 34

Although it was a breakthrough at the time of its creation, the standard implemen-
tation of BP was still a relatively slow procedure, because it required many examples
to be repeatedly presented in order to achieve a reasonable approximation of the de-
sired function. One of the (many) processes found to reduce the training time was
labeled Adaptable Learning Rates (ALR) (Silva and Almeida, 1990). This method
proposes an adaptation, not only of the weights, but also of the learning-rates «; that
are, in this case, different for each of the hypothesis’ parameters. In summary, this
technique proposes that the learning rate is increased when two consecutive adapta-
tions of a parameter point in the same direction (i.e. the sign of Aw; is the same) and
decreased otherwise. This technique also proposes backtracking and a drastic cut in the
learning-rates when the total error of the network increases during an epoch to avoid
overshooting a local minimum.

We will not go into further detail on BP or ANN here, since this is consolidated
work, but the interested reader is advised to lookup (Haykin, 1999) for an extensive

discussion of all subjects related to this type of learning algorithms.

2.1.2 ID3

The ID3 algorithm (Quinlan, 1986) was created having in mind the supervised
classification of examples composed of discrete-valued attributes. The extension to
continuous attributes was later proposed by Fayyad (1991). The information required
to execute this algorithm is a set of examples, each classified in one of N classes. We
will focus this explanation, for simplicity, in the example of just one class and consider
as positive examples those that belong to the class and the remaining as negative. Table
2.1 summarizes the main steps of ID3.

The main problem is to find the attribute that best classifies the set of examples
E. Each member of E is composed of a vector of values, one for every corresponding
attribute in a. This is equivalent to finding which partition of F into subsets has the
highest information gain. The information gain of partitioning F using attribute a is
defined by:

Evi
Gain(E,a) = Entropy(E) — Z #—Entropy(Em-), (2.3)
Yovi #E
where #FE is the number of elements in F, F,,; is the set of examples in which a

evaluates to v;, and the Entropy function is defined as:
Entropy(E) =) | —pc logy(pe), (2.4)
Ve
where c stands for each possible classification of an example from E and p. is the

proportion of elements in E that belong to class c.

Entropy can be seen as a measure of the amount of information contained in a
set. Consider a binary classification and a set in which we know the proportion of

CHAPTER 2. BACKGROUND CONCEPTS 35

Table 2.1: Summary of ID3 Algorithm for binary classification, adapted from
(Mitchell, 1997). E stands for a set of examples classified as positive or negative
and A is a set of attributes that compose each example. Node; stands for a positive
classification, Node _ for a negative.
ID3(E, A)
Create new node: Root;
IF all e € E positive, THEN return Root = Node ;
IF all e € E negative, THEN return Root = Node _;
IF A = () return Root = Node;gpe;,

where label is the most common value (4 or —) for the examples in F;

LET a = Element of A that best classifies the examples in E (see equation 2.3);
Set decision attribute for the current node to a;
For each possible value (v;) of a:

Create new branch of Root, corresponding to the test a = v;;

Select F;, the subset of E for which a = v;;

IF E,; = @ THEN branch,,; = Node;gpei,

(most common classification for the examples in E);

ELSE branch,; = ID3(E,;, A — a);

Return Root

elements of each class it contains. If the set has elements of only one class (minimum
entropy) guessing the correct classification of a random element of the set is trivial.
But, if the elements of the set are evenly distributed through both classes (maximum
entropy), classifying a random element without analyzing it further is a random guess,
with equal chances of succeeding or failing. The objective of ID3 is to reduce the
problem to subsets with the least possible degree of entropy at each stage. The gain
is a measure of the reduction of entropy that can be achieved by partitioning the set
according to a certain attribute. Thus, the attribute a that is best suited to partition a
certain set E is the one with highest gain.

If we want to consider continuous attributes we will need to change the test a = v;
into a function f(a,v;) that returns a boolean value, e.g. f(a,v;) = (a > v; — K) A
(a < v; + K) with K > 0. The only restriction is that in all decisions there can be
only one i such that f(a,v;) = true.

2.1.3 Q-Learning

Q-Learning (QL) (Watkins, 1989) is the most commonly used learning algorithm
in the class of Reinforcement Learning which is a subclass of what we have labeled
Reward-Based learning. Its most simple form (one-level Q-Learning), is based on a

table that stores the estimated quality, Q(5, a), of performing action a at state s, for

CHAPTER 2. BACKGROUND CONCEPTS 36

every possible state-action pair. When a reward r; is received, at time ¢, the value of
Q+(3, a) is updated as follows:

Qi+1(51,a) = (1 — a)Q¢(5¢,a) + ary + BQmax(5141))s (2.5)

where 31 is the state of the environment after performing action a at state 5, a €]0, 1]
is the learning rate and 5 € [0, 1] a discount factor applied to the estimated quality of
the next state, that is given by:

Qmam(§t+1) - maaX(Q(gt-‘rla a))7 (26)

for all possible actions @ when the system is in state 5;1. The learning rate « is usually
decayed during training. When prompted to choose an action for a given state the Q-
Learning algorithm will fetch the values of Q;(3, a) for all available actions a. There
are several strategies to chose an action given a set of Q-values. The main dilemma is
the exploration/exploitation tradeoff. One of the most used techniques to regulate this
compromise is Boltzmann selection. In this case an action a is selected with probability

p(a|s) that is given by a Boltzmann distribution,
Q¢ (5,a)

e~ T
Se

Q¢ (5,4)
T
€A,

p(als) = (2.7)

where T is a temperature parameter, decayed during training, and A is the set of all
actions available from state 5. This allows an emphasis on exploratory behavior when

T is high that gradually shifts to exploitation as 7" decreases.

It is often the case that the number of state-action pairs is too big to represent all
possible combinations explicitly. One of the most popular solutions to this problem is
Connectionist Q-Learning (ConnQL) (Lin, 1992). In this approach the table that stores
Q(5,a) is replaced by an approximation function that is trained to map state-action
pairs to its estimated quality. Usually an ANN encodes this mapping using standard
online Backpropagation (section 2.1.1) as an auxiliary learning algorithm. In this case
the update in equation 2.5 is replaced by the presentation of an example-response pair
to the ANN in which the input is the concatenation of the state and action vectors and

the desired output is set to:

dy =1+ BQmaz (5t41) (2.8)

2.1.4 Evolutionary Algorithms

Evolutionary Algorithms (EA) (Holland, 1975; Koza, 1992) are a well known set
of learning techniques inspired by the processes that rule the evolution of species in
nature. The hypothesis’ parameters are interpreted as a specimen (or a phenotype from
which a specimen can be generated), and its performance in a given problem as its

CHAPTER 2. BACKGROUND CONCEPTS 37

fitness. After the evaluation of all the specimens, the ones with best fitness are selected
for breeding. The selected specimens are then mutated and crossed-over to generate a
new population. There are countless variations on the structure of the specimens the
crossover and mutation procedures. The type of EA chosen for our experiments was
inspired by the one used in (Glickman and Sycara, 1999). According to the definitions
in (Kantrowitz, 1997) this approach can fall in two different sub-categories, labelled
Evolutionary Programming and Evolutionary Strategies. Even though Glickman and
Sycara (1999) refer to this technique as a Genetic Algorithm (GA), the use of this term
to define the technique is debatable according to (Kantrowitz, 1997). We have adopted

the broadest category, Evolutionary Algorithms, to avoid possible misinterpretations.

An EA keeps a set of specimens (called population). In each step of its life cycle,
it evaluates all specimens. At the end of each cycle a given number of specimens is
selected for breeding. Glickman and Sycara (1999) use tournament selection. Tour-
nament selection consists in testing a small subset of the population in parallel and
selecting the one with highest fitness (highest accumulated reward) to pass to the next
generation. Tournaments are repeated until the required number of selected specimens
is achieved.

Breeding consists in applying mutation and/or crossover operators to one, or a pair
of, selected specimen(s) to generate a specimen for a new population. The specimens

in this case contain the weights of an ANN with fixed dimensions.

Mutation is done by adding a certain amount to the value of a parameter with a cer-
tain probability (mutation probability). The amount to be added is randomly generated
with normal distribution and zero average. The variance of the distribution will depend
on a learning parameter labelled mutation rate, that is, usually, decayed during training

to ensure convergence.

Crossover was not used by Glickman and Sycara (1999), but there are many strate-
gies to select the partitioning of the parameters in subsets for ANN. For a review on this
please refer to (Salustowicz, 1995; Yao, 1999). The description of our own approach
to crossover as well as other changes made to this approach will be detailed in section
5.2.3.

2.1.5 Strongly Typed Genetic Programming

Strongly Typed Genetic Programming (STGP) (Haynes et al., 1995a) relies on a
process that is very similar to the above description for EA. All steps down to the
mutation and crossover details are the same, but the underlying evaluation function is
different: a program tree. A program tree consists of a number of nodes, which contain
instructions (inner nodes) or class labels (leafs). When evaluated, the control flow
will follow an evaluation path consisting of selection instructions, gated by boolean
instructions leading to a leaf. The label of this leaf will determine to which class the
state belongs to.

CHAPTER 2. BACKGROUND CONCEPTS 38

What is particular to STGP, when compared to other Genetic Programming (GP)
approaches, is the fact that it takes into account the input and output types of each
node of the program tree when mutation and crossover are applied. By enforcing these
restrictions it will always generate trees that can be evaluated for all possible input pat-
terns and reduce the search-space eliminating programs that may result either in invalid
or useless evaluations. Another interesting characteristic is that problem-specific func-
tions can be inserted into the instruction nodes. For example, if the designer thinks that
a certain combination of values of the state can be useful, he can code it and make it
available to the STGP algorithm. The algorithm will use it as it sees fit in the generation
of new programs. It is far easier to program, for example, the norm of a state vector,
than to expect a search mechanism to “discover” it on its own by random combination
of sums and multiplications.

The initial trees are randomly generated, respecting the restrictions posed by the
types and with a given (pre-set) probability of generation for each node type. The
root-node is always a selection instruction to avoid trivial trees (e.g. with a leaf as
a root node). The maximum depth can also be pre-set to restrict the complexity of
the generated trees. When maximum depth is reached the generation of a leaf node is
forced.

Trees are mutated by applying a mutation operator to each node. If a given random
number (uniform in [0,1]) is smaller than the current mutation probability the node will
suffer a mutation. The type of mutation will depend on the node it is applied to. Nodes
with subtrees can delete and regenerate them (using the same procedure as in random
initialization); Nodes containing data can change it, e.g. by disturbing a constant value
with a certain amount of noise; A node can also change the type of function it performs,
as long as the input and output types are maintained.

Crossover is usually done by selecting subtrees from different parents and pasting
them into a new tree, always respecting the nodes’ input and output types.

We have reviewed in this section some specific instances of algorithms used in the
past to deal with learning problems in different ways. Now we will focus our attention
in the type of problems we will study.

2.2 Learning in Multiagent Systems

The most concise, and broadly accepted, definition of learning in ML is:

“A computer program is said to learn from experience E with respect to
some class of tasks 7" and performance measure P, if its performance at
tasks in T', as measured by P, improves with experience F.”

in Machine Learning, by Tom M. Mitchell (1997)

CHAPTER 2. BACKGROUND CONCEPTS 39

This definition, due to its generality, does not describe well enough the characteristics
of the learning problems we will be dealing with. We will now detail this definition
to highlight these characteristics and achieve a better understanding of the problem we
are facing.

The learning problem faced by an agent ¢ is to maximize the average rewards
achieved in given time periods, by learning to map each observed state, 5;, to an
action, a; . Time is measured in discrete units, which we will call furns. An epoch
contains a fixed number of turns. This can be generalizable to other types of learning
if we think of the state as an example, the action as a desired response and the reward
as a quantity that is inversely proportional to the error.

The mapping of states to actions is done according to a policy (m;). The snapshot

of a policy at a given time ¢, is a function:
ai = mi1(3i1), (2.9)

where a; ; is an element of A; ;, the set of available actions at time ¢ that may depend
on the current state.

But the function 7; ; hides a few details. Each agent i, at a given time ¢ contains
a set of adaptable parameters, H,; ;, called hypothesis and an evaluation function F;()
that performs the mapping of states and hypotheses to actions:

it (3i) = Fi(Hiyt, i) (2.10)

F; itself contains a set of parameters that are usually fixed throughout the learning
process, such as the size and structure of an ANN, or the step used to discretize the
state-space when building a Q-table. Some of these parameters may be interpreted
as a part of the hypothesis if the learning algorithm is allowed to alter its value. F;
can also be a composition of several functions and it is not necessarily deterministic.
Many evaluation-functions return a vector (a; ;) that characterizes the adequacy of each
possible action as a response to state, 5; ;. In general, an action is more adequate
than another if it can generate higher rewards or contribute to its generation in the
future. The choice of a particular action, a; ;, based on the information contained in
@i+ can range from simply selecting the action with maximum adequacy, making it a
deterministic choice, to considering the choice of all actions with a probability that is
proportional to their adequacy, as exemplified for Q-Learning in section 2.1.3.

The state, 5, ;, is a subset of the global state, S; ;, on a certain location, . An envi-
ronment contains several locations. The subset of S; ; that is taken into consideration
when calculating the observable state for agent ¢ may be related to its role in the team,
its current geographical position, etc. Each location contains a team of agents, each
with its own view of the problem. We will refer to the agents in the same location as

partners and the agents in different locations as peers.

Siir1 =T (S14, A, Upr). (2.11)

CHAPTER 2. BACKGROUND CONCEPTS 40

The global state’s transition to S; ;41 depends on: the previous state, S; ;; the actions
of all agents, A;; = Ua;;,Vj € ®;, where ®; is the set of all agents acting in location
l; a set of external events, U, ;. The external events are, for example the number of data
packets generated by the users of a system in a given time interval or the number of
cars entering a certain location in a given period of time.

The only restriction we pose to the structure of the state is that its features have
the same meaning for all agents, for example: the first feature represents the distance
to the closest partner in the upper-left quadrant of the agents’ sensing field. This is
essential to allow communication of state vectors between agents. This restriction can
be relaxed when using the concept of roles, defined in section 5.2.6. In this case, only
agents with the same role are required to have the same state-structure. The agent itself
can pre-process the state to adapt the data to its own learning algorithm, although when

communicating with others it must always respect the environment’s format.

Based on an evaluation of a subset of state S; ;41 (mainly, but not only, in the subset

5; 1+1) the environment will calculate the agents’ reward for each action.

The environment can also evaluate a team’s policy calculating the team reward
achieved by the team controlling location {. This is calculated based on a subset of S; ;.
The subset of features used to calculate the team’s reward can differ from the union
of the subsets used to calculate the agents’ rewards, although they should be as highly
correlated as possible.

It is fundamental that the environment supports these two types of rewards so that
different types of learning algorithms can be used. While some algorithms use rewards
that are associated with a certain state (or state-action pair) and rely on their internal
structure to measure the long term effects of their actions, others measure only the
performance of full policies. The relative effectiveness of both techniques depends on
the problem, but since one of our main goals is to assert the possible benefits of different
approaches it is imperative that both types of rewards coexist. Panait and Luke (2003)
provide an interesting discussion of the consequences of using each of these types of

rewards.

The combined reward, at the end of epoch n, can be seen as a combination of
several components:

ty ty
Rip=o Z rie/(ty —to) + o2 Z rie/(ty —to) + asrin + Quripn, (2.12)

t=to t=to
where % is the start-time of epoch n and ¢ ; its ending, and the reward components are:
the immediate-individual reward, 7; ;; the immediate-team reward, 7; ;; the long-term
individual reward, r; ; the long-term team reward, r; ,. The o; parameters are the
weights of each component. But it is not always possible, or useful, to define all the
components of the reward. These components should be highly correlated and in most
cases this may allow a simplification of equation 2.12 loosing as little information as

possible.

CHAPTER 2. BACKGROUND CONCEPTS 41

The easiest component to determine is, usually, r; ,, because the designer knows
what is the long-term objective of the team, but this information alone often poses
difficulties to learning, specially for algorithms such as QL. It is important to have
some immediate information. If this information was also team-related we would have
a system in which agents were strictly bound to maximizing the teams’ reward, i.e.
with no possibility of acting in their own best interest even if that did not hurt the
team’s performance. We have adopted a balanced simplification of equation 2.12:

ts

Rim=aY ris/(ty —to) + Brim, (2.13)

t=to
where the weights « and 3, whose sum is 1.0 if the magnitude of the components is
equal, control the relative importance of teamwork and long-term evaluation versus
immediate and individualistic behavior.

It may be important for the agent to know the value of each component of the
reward. When both terms of equation 2.13 increase consistently due to a change in
policy, the agent is definitely going in the right direction. Conversely if both terms
decrease the new policy is clearly worse. When the first term increases while the second
decreases, the agent is being greedy, either in terms of seeking immediate payoff or
by exploring its partners behavior. It is increasing its own immediate reward at the
expense of long-term rewards or its teams’ performance. In the opposite situation (first
term decreases and second term increases) the agent is sacrificing its individual reward
for the common good and/or to obtain better long-term performance. By ignoring
or changing the weights of the several reward components the systems’ designer can

decide what type of behaviors are more adequate.

In real systems it is common that a long-term evaluation of a a team’s performance
is easier (and more precise) than the evaluation of each agent’s individual response to
every state. This is specially true when actions may have long term consequences. It
is, for example, difficult to evaluate the impact of switching a traffic light to green for
a 20s period. It is easier to evaluate the performance of a control policy in a bounded
area over a fixed period of time, knowing that, during that period, the system was under
a certain load. In this problem there is a balance to be attained. Even though the global
reward is a more exact (less noisy) evaluation, the local reward is easier to learn from,
because it is more closely related to the state observed by the agent and its last action(s).

Considering unobserved elements of the global state in the computation of the re-
ward and state transition causes a problem known as partial observability, which is a

common feature of most real MAS. The main causes for this are:

e The need to keep some information private;
e The impossibility of dealing with all the variables that are relevant for state tran-

sition;

CHAPTER 2. BACKGROUND CONCEPTS 42

e The impossibility to measure some variables directly, or even to know which of
them are relevant;

One of the main differences between this formulation and most others is that the
reward is calculated externally and not by a critic module inside the agent. This was
a natural consequence of calculating the rewards based on more than just the infor-
mation explicitly available to any given agent. The presence of an external evaluator
and team rewards may be considered a partial centralization but there may be good
reasons to keep the critic outside the agent’s scope, such as: ensuring the privacy of
some information used to calculate the reward or limiting the access to certain sensors.
In situations where no environment infrastructures are present, the individual reward
evaluation would necessarily be done by the agent itself and the team reward could be
estimated by communication with immediate neighbors. In this case, the need to syn-
chronize the gathering of rewards could cause the same autonomy problems that are

often criticized in semi-centralized solutions.

The problems caused by partial observability are similar to the consequences of
external events. These factors, from the agent’s point-of-view, cause the reward and
state transitions to be stochastic, turning their environment into a non-static world. In
other words, there is no guaranty that choosing a certain action in the presence of a
certain state will lead to the same reward as it did in a previous case. The agent can
only learn the reward distribution achievable for a certain observed state and not the
exact reward that it will achieve.

In non-static environments, agents, when starting from a certain state 5; ;,, will
have a certain probability p of getting each possible reward, by applying a given policy
7, so the best policy 7} is the one that maximizes an estimated reward]A%m in the

future:
Ri (S0, mi) = Z(Rznk - P(Rin k5340, 7)) (2.14)
k
mi = argmax(D (AnRin(5i00,71))) (2.15)
‘ n>n0

where k takes a different value for all possible rewards and)\, is the discount applied
to future rewards.

When the action choice is deterministic 7 is a mapping of states to actions. In cases
where stochastic action selection is required 7 is a mapping of states to probability
distributions over possible actions.

The direct determination of p() (from equation 2.14), considering all these vari-
able conditions and the number of possibilities, is unthinkable, except for very simple
problems. It becomes specially difficult when Rm is not discrete, which turns the
sum in equation 2.14 into an integral. Most learning algorithms abstract away many
of these components and concentrate on finding the direct mapping of state-action (or
state-policy) pairs to rewards.

CHAPTER 2. BACKGROUND CONCEPTS 43

The learning algorithm changes the parameters (H; ;) (Eq. 2.16), to find the set of
parameters () which lead to a behavior that collects the highest possible reward.

Hisyr = Li(Bi, Hie, Eit)- (2.16)

We will refer to the current best estimate of H; as 7:[;*. The learning function (£;)
changes the hypothesis, based on the current value of H; ¢, a set of learning parame-
ters (B;), such as learning-rates, and on previous experience (&; ;). Each element of
&+ includes the state, action and reward experienced at a given time in the past, i.e.
eir = {8i4,ai,rie). An experience tuple can be extended with further information,
such as: its source (because it could have been generated by a different agent than the
one that is using it), the epoch reward achieved when this action was used, the state
after a the action was completed, etc. We will go deeper into the possibilities of ex-
tending this information in chapter 4. The function £; needs not to be unique for each
agent, to be exact it should be represented as L ;, where K represents the learning
algorithm used. Different learning functions can be used to change the same hypothe-
sis parameters, depending, for example, on the source or type of information they are
using. The interaction between different learning functions over the same hypothesis
requires some care, but there are many reports of successful integration of learning

functions in the literature, some of which are mentioned in chapter 3.

In order for cooperation to be possible it is important that all teams of agents are
facing similar problems. In this case we assume that the state-space, the possible ac-
tions and the reward functions are the same in all locations. What differs from one
location to the other are: initial conditions, state transitions and external events. These
variations, along with different partner behaviors, are the causes for the different dy-
namics of each location.

Notice that we have not made any assumptions regarding the convergence of agent’s
objectives. All we assume is that all agents that can be contacted are willing to share
their knowledge. In adversarial environments it would be likely that agents in the same
location would withhold information. This is only a problem if there are no other teams
in other locations, a scenario that contradicts our initial assumptions. In our environ-
ments there is a mix of cooperation and competition. The tasks require that all agents
work together and cooperate, but there is also a certain measure of competition for lim-
ited resources. An agent must make the best of the available resources to maximize its
performance, without causing its exhaustion, which usually leads to high penalties in

the team rewards.

We have not considered the possibility of malicious intents of some agents, al-
though the use of trust (see chapter 4 for details) can overcome this problem.

The elements of the language, used in agent’s communication, may be a simple
set of keywords that refer to the type of information that follows, for example, the

meanings of: Individual Average Reward and Team Reward must be understood by

CHAPTER 2. BACKGROUND CONCEPTS 44

all agents in order to question the environment or other peers about r; , and r; ;. The
matters related to the types of data to be exchanged will be discussed in chapter 4. We
will not, however, define an ontology or specific protocol since the requirements in
these aspects are very simple and most existing communication protocols meet these

requirements.

In this section we described the type of learning problems we are interested in, their
main difficulties and the assumptions we make regarding environments and agents. We
will proceed by analyzing in more detail the main difficulties this problem presents.

2.3 The Problems of Learning in MAS

It is apparent from the description in section 2.2 that learning in these environ-
ments presents several problems. From the agents’ point-of-view the environment is
non-static. This is caused by: partial observability; changes in partners’ policies; ex-
ternal events. These factors were examined in the previous section. In addition, there
are difficulties in policy coordination and transferring knowledge between different

learning algorithms. In this section we will discuss these problems in more detail.

2.3.1 Continuous Policy Changes

Learning requires continuous change in search of better policies. When this is done
by all agents in a team, simultaneously, it is defined as co-learning (Panait and Luke,
2003). In MAS this causes the environment’s dynamics to change from each agent’s
point-of-view. If we assume that observability is limited and agents are autonomous, it
is not possible for an agent to be aware of the state of its partners or of the changes in
their policies. For this to be true, the information necessary to make a decision would
be far too large and all agents would be trying to solve the whole problem, instead of

solving only their part.

The main consequence for learning is that the optimal policy is a moving target.
This can be dealt with in two ways, either restricting the possibility of changing the
policy in some agents, during certain times, to make the system more stable, or de-
signing systems that can quickly react to environment changes. Both solutions have
disadvantages, the first will limit the agent’s learning capabilities, its autonomy, and
will require a certain degree of synchronization, the second generates a very difficult
tradeoff. An agent should be stable enough to avoid changing its policy due to ab-
normal sequences of events that have a low probability of happening again, but still
react promptly to lasting changes in the environment or new opportunities to increase
the reward. It is, however, difficult to differentiate, in the short-term, situations where
agents will have to deal with new environment’s dynamics and those that are temporary
effects. The reaction time must be carefully chosen.

CHAPTER 2. BACKGROUND CONCEPTS 45

2.3.2 Policy Coordination

Policy coordination is highly related to the problem we examined in the last section
and also to the type of MAS we are dealing with. MAS learning is often divided into
competitive and cooperative. If agents’ have conflicting interests and can only increase
performance by the loss of performance of others (as in zero-sum games) the task is
competitive. When the increase in one agent’s performance will lead to an increase in
the team’s performance the task is cooperative. However, in most situations (the ones
we consider here) there is a mix of interests. Without coordination the performance of
all agents will drop considerably but, to a certain extent, agents need to maximize their

use of the resources.

Tragedy Of the Commons

Let us see how this works in a practical situation. Consider an instance of a load-
balancing problem where we have two servers and two load-balancers. One of the
servers is relatively faster than the other but not fast enough to serve all requests made
by the two load-balancers. If both clients use the best server they will have lower per-
formance than if one was using the slower server. It is obvious that one of the agents
must sacrifice its performance or that both will need to balance the number of requests
they make to the faster server to reach a good performance. The key factor, in global
terms, is to use the full capacity of the faster server, but if the systems’ designer also
aims at fairness, this capacity must be used by both agents (either equally or propor-
tionally to their respective loads). This problem is known as the “Tragedy of the Com-
mons” (TOC) (Wiering et al., 1999). The TOC occurs when all agents are competing
for a limited resource and the optimal level of usage of this resource is lower than the
sum of their work. An individual policy that chooses to use only the best resource is
only good as long as the number of agents using the same policy is below the resource’s
capacity. If all agents choose the same “good” policy, they may overuse the resource
and be penalized. Still, self-interested agents should strive to acquire as much of the
resource as possible.

We may consider the problem of policy coordination similar to learning in a very
large state-space, if we see the team as a whole, but with an added difficulty: different
parts of the system may be pushing in different directions to optimize the individual

component of their rewards.

The solutions to this problems are mostly related to reward design. It is important in
these situations to share a global reward, or that the reward has global component, but it
is difficult to learn from this type of rewards because it has a low correlation with each
individuals’ states and actions. So a balance must be struck between the learnability of

local rewards and the ease of coordination that can be achieved with global rewards.

As we can see from the TOC example, it may be important that agents in a team

CHAPTER 2. BACKGROUND CONCEPTS 46

have different policies, i.e. fill different roles in the team. The use of roles is another
tool to deal with the problems of policy coordination.

2.3.3 Knowledge Transfer

The problem of transferring knowledge from one agent to the other, regardless
of the learning algorithm used, has several difficulties. On the basis of these is the
different representation used for knowledge. Different types of representations (and
evaluation functions) have different capabilities and each type of learning algorithm is
more adapted to deal with certain types of data or rewards.

Evaluation Function Bias

In some situations, it may be nearly impossible to transfer knowledge from one
agent to the other. For a trivial, but elucidating, example consider the case of the
XOR problem. A table-based Q-Learning algorithm will easily learn to map pairs of
binary digits to the result of a XOR operation between them. An ANN may, depending
on its inner structure, not be able to represent this knowledge at all. This is a very
simple example that would easily be overcome by restructuring the ANN, but we have
found more complicated versions of this type of behavior. Some policies learned by
QL-agents, where neighboring states often require different actions, are very difficult
to model by knowledge structures that assume a certain degree of smoothness in the
mapping they are required to do. Conversely, in problems where there are vast regions
of the state-space where the best action is the same, ANN-based algorithms quickly
find good solutions, due to their generalization capabilities, while Q-Learning must
explore each and every possible state-action pair before a good mapping is learned.

This is both a problem and an opportunity.

Even though most learning algorithms use functions that are, in some way or an-
other, universal approximators (i.e. can approximate any function with an unlimited
degree of precision), this guaranty usually comes with a set of restrictions, such as
an unknown number of parameters, or the foreseen smoothness of the target function.
The more a function is biased to solve a particular type of problem, the less it will
be adaptable enough to approximate different target functions. Given a limited (finite)
number of parameters there are always limits to the representational capabilities of any
evaluation function. Again, having more information can be used to counter this effect.
If an agent has enough information and autonomy to change its learning parameters, it
can reduce some of these problems, for example, by changing the structure of its ANN
during training, or by replaying information from other sources to increase the number
of visited states (in the case of QL). Ultimately, an agent could even decide what learn-
ing algorithm it must use to deal with each problem based on information from other
sources, although we do not explore this path.

CHAPTER 2. BACKGROUND CONCEPTS 47

On the one hand we see that some agents could, in some cases, help others in their
exploration by transferring their generalizations but, on the other hand, we may find
situations where knowledge is not transferable at all.

Common Format

Storing knowledge in a common format, readable by all, is an interesting research
subject, but it is doubtful that a format exists that is easy to produce and integrate by
all learning algorithms. Even if it did exist its generation would introduce another bias
in the hypothesis. Nevertheless, if the agents have the appropriate structure, they can
send the best hypothesis’ parameters along with the information necessary to build an
evaluation function similar to that of the advisor. Then, they an use this “copy” of
the advisor’s function to generate the advice information and integrate it in their own
knowledge structure. This would significantly reduce communication and eliminate the
need for synchronization. Ultimately, an agent could switch between different evalua-
tion functions using the one best suited for each state, in a similar way to the approach
defined in (Powers and Shoham, 2005), and with similar disadvantages (see section
3.2.2 for details).

Specialization

Another problem in transferring knowledge is that the specialization acquired for
a certain location may not be adequate for another, i.e. the same policy can have dif-
ferent consequences when used at different locations. The selection of the source of
information is the key to overcome this problem. Another technique to minimize this
problem is to synchronize information requests between members of the same team.
This will limit the problems of learning a policy that does not match the other agents’
in this area, but it may also limit the emergence of new global solutions that combine
useful aspects of different advised policies.

As we can see there are many difficulties. Some are well known from previous work
in single-agent problems, others appear only when agents must work in a team, or when
they are endowed with the ability to communicate, others yet are a consequence of the
complexity of the environment they are facing. For every expansion of the complexity
of a learning system, new difficulties appear, but also more tools are available to deal
with these difficulties. Our purpose is to study how the use of some of these tools can
improve the ability of agents to cope with the new problems. This will be the subject
of chapter 4. But before that, in the next chapter, we will see how other authors dealt

with some of these problems.

Chapter 3

Related Work

In this chapter we summarize the research that focuses on learning using both, re-
ward and other sources of information. We also browse through some of the most inter-
esting concepts related to hybrid learning algorithms, team-learning, trust and online-
adaptation of learning parameters. This chapter is divided in two main sections, one
that covers closely related work in Q-Learning, dating from the early nineties, and an-
other that browses through current related work. Our work touches many points that
were previously subject of research on their own. A full review of each of these subjects
would be too long to include here. Therefore, in this chapter, we make a brief summary
and comment of the main related references, going a little deeper in the analysis of all
work where teams of agents learn from sources other than the environment’s reward.
Given the vast amount of related work the choice of what to focus on was a difficult
one. The main criteria, apart from its relation to our work, was the visibility (for the
most recent works) and its relevance (for the older works), which was estimated by the

number of citations seen in related papers.

The research subtopics that support this work range from hybrid learning to the
development of trust relationships between agents. Some of these subjects were ad-
dressed from different perspectives since the early days of ML research. Approaches
such as Bagging, (Breiman, 1996), Boosting, (Schapire, 1990; Freund and Schapire,
1996) and Cascade Generalization (Gama and Brazdil, 2000) tried to capture the ad-
vantages of having several different learning systems, usually called experts in this
context, dealing with the same problem (or with different parts of it). These techniques
proved often to be more successful than using a single expert. They were, however,
designed for supervised learning, which is not the case of the type of problems we are
facing here. Furthermore, the components are regarded as a single learning system, not
as a cooperating group of autonomous entities.

Hybrid approaches that mix different learning algorithms were also subject of re-
search: Counterpropagation Networks (Hecht-Nielsen, 1987) and Radial Basis Func-

48

CHAPTER 3. RELATED WORK 49

tions (Moody and Darken, 1988) mix supervised and unsupervised learning; Hybrids of
Backpropagation (BP) (Rumelhart et al., 1986) with Genetic Algorithms (GA) (Hol-
land, 1975; Koza, 1992) are also reported in many research works. For a review on
these the reader can refer to (Salustowicz, 1995; Yao, 1999). The great majority of this
work was, however, aimed at solving Supervised Learning problems.

The above mentioned techniques are related to parts of our work, but the first re-
search that clearly focus on using communication between autonomous learning agents
in reward-based scenarios appeared in close relation to Reinforcement Learning (RL)
(Sutton and Barto, 1987) and its most popular variant: Q-Learning (QL) (Watkins,
1989) (defined in section 2.1.3). In the early nineties several researchers made impor-
tant contributions in this direction. This will be the focus of the next section.

3.1 Early Related Work (1990-94)

The work on information exchange between QL-agents (agents that use QL as a ba-
sis for their learning skills) started with the contributions of (Whitehead, 1991; Clouse
and Utgoff, 1991, 1992; Lin, 1992) and (Tan, 1993).

Whitehead created two cooperative learning architectures labelled Learning with an
External Critic, (LEC) and Learning By Watching (LBW). In the first (LEC) the learner
uses the help of an expert agent to bias the search procedure. In normal Q-Learning
the values considered when deciding which action to take in a certain state 5 are the
estimated qualities for all possible actions a;, Q(3, a;). In this case the agent considers
a sum of these values with a quantity, B(S, a;), called bias. This quantity is updated
using information sent by an expert teacher. When a certain action a; is advised by the
teacher, B(3, aj) is added a certain quantity +K if ¢« = j, or —K otherwise, where
K is a fixed positive value. In the second architecture the agent learns by watching its
peers’ behavior (which is equivalent to sharing series of state, action, quality triplets).
In LBW an agent will use other agents’ episodes as if they were its own. This work
proves that the complexity of the search mechanisms of LEC and LBW is inferior to
that of standard Q-Learning (drops from exponential to linear) for an important class of
state-spaces. The state-spaces considered are required to be one-step-invertible (each
action has a reverse) and uniformly k-bounded (all states can be reached in, at most, k&
steps). The main problem with LEC is that the expertise of the teacher agent is critical.
A suboptimal teacher may lead to worse learning performance than when no advice is
used. In the LBW architecture there are two major drawbacks: it requires that all agents
are engaged in exactly the same task and that there is full observability, or unrestricted

communication between teacher and student.

The results presented in (Clouse and Utgoff, 1991, 1992) are reviewed and ex-
panded in Clouse’s Ph.D. thesis (Clouse, 1997). This important contribution reports
the results of a strategy labeled Ask for Help (AH), in which QL-agents learn by asking

CHAPTER 3. RELATED WORK 50

their peers for suggestions and imitating the suggested actions. Clouse proposes two
different approaches for the problem of deciding when to ask for help: in the first ap-
proach the advisee asks for help, randomly, for a given percentage of the actions it has
to take; in a second approach the agent asks for help only when it is “confused” about
what action to take next. Confusion is defined as having similar quality estimates for all
possible actions that the agent can perform at a given stage. Several variants on the AH
architecture are tested in two types of problems: mazes and the “race track problem”.
Clouse concludes that the integration of QL and selective imitation achieves better re-
sults than each of its constituents separately. However, this solution uses only direct
imitation, and the advisee has no choice over different advisors. In the experiments it
was proved that AH is not sensitive to random suboptimal advice, up to a certain level,
but when getting advice from other agents, specially if advice is coming from a single
source, suboptimal advice is not randomly distributed. Consistent errors in a part of
the policy are likely to lead the system into a suboptimal response early in the training
and hinder exploration. There are two other important differences between AH and the
solutions proposed in this work: AH was employed in problems that can be solved by
a single agent and not by teams; AH can only be used by QL-agents, the extension of
this method to other learning algorithms is not foreseen in Clouse’s work.

The work presented by Lin (1992) uses an expert trainer to teach lessons to a QL-
agent that is starting its own training. Lin experimented with several architectures, the
most interesting for the current subject is QCON-T (Connectionist Q-Learning with
Teaching). This architecture records and replays both “taught” and “learned lessons”,
i.e. sequences of actions that led to a success. The “taught lessons” are given by
an expert trainer (human or automatic), while “learned lessons™ are recorded by the
student agent as it explores the problem. The student will replay the actions backwards
to reduce the number of iterations necessary to propagate the influence of discounted
rewards. Among other things, this work reports that the “advantages of teaching should
become more significant as the learning task gets more difficult” (Lin, 1992, section
6.4). Results in variants of the maze problem show that replay of taught and learned
lessons does improve learning performance in the harder task, although it seems to
have no effect on the performance of the agents on the easier task. As in the previous
case these methods were tested in single-agent problems and focus exclusively on Q-
Learners.

Tan (1993) addressed the problem of exchanging information between QL-agents
engaged in teamwork. This work reports the results of sharing several types of infor-
mation among agents that are working in the pursuit (a.k.a. predator-prey) problem. In
these experiments QL-agents shared policies (internal solution parameters), episodes
(series of state, action, quality triplets), and sensations (observed states). The conclu-
sions are: “a) additional sensation from another agent is beneficial if it can be used
efficiently, b) sharing learned policies or episodes among agents speeds up learning at

the cost of communication, and c) for joint tasks, agents engaging in partnership can

CHAPTER 3. RELATED WORK 51

significantly outperform independent agents, although they may learn slowly in the
beginning” (Tan, 1993, in Abstract). The research directions followed in Tan’s work
are very similar to the ones in which this research is based, although Tan uses only
QL-agents with a comparatively simple architecture and it does not focus the problems

selecting the information to be used in each case.

The work on exchange of information between QL-agents continued in several
fronts. The following section will, briefly, point to some of these approaches.

3.2 Recent Contributions

3.2.1 Transfer of Knowledge from Different Problems

Thrun and Mitchell (1995) approached the problem of exchanging information dur-
ing learning in a general way. Their work, in the context of lifelong robot learning, aims
at transferring knowledge about generic problem solving strategies between learners.
The rationale is based on the fact that humans do at times generalize the solution to
a problem from just a few examples (or even from a single example), often based on
previous experience with other problems. This meta-generalization is extremely inter-
esting when considering an agent that has to learn a great variety of concepts during
its “lifetime”. Thrun uses Connectionist Reinforcement Learning (ConnRL), mapping
state-action pairs to quality with Explanation-Based Neural Networks (EBNN). Pre-
vious knowledge is used to bias the generalization in the training of EBNN and it
effectively reduces training times. The authors consider only single-agent learning and
the problem of choosing the most appropriate source for this knowledge, when several

possibilities are available, was not considered.

Taylor and Stone (2004) follow the same path. In their work they effectively trans-
fer knowledge between two reinforcement learners, reducing the training time when
compared to agents that do not use knowledge transfer. One agent (the teacher) has
learned to perform a certain task while the other (the student) is learning to perform a
similar task. In this case the state and action sets of teacher and student need not be the
same. Transfer is accomplished by defining a transfer function that was specifically
designed for a particular application (labelled Keep-away, a sub-task of Robotic Soc-
cer). The main drawback of this technique is the specificity of the transfer function,
which is relatively easy to design for the tasks used in this experiment, but may not be
in other situations.

3.2.2 Multiagent Reinforcement Learning

Multiagent Reinforcement Learning (MARL) has been a very active research area
in the recent past. Shoham et al. (2003) present an interesting discussion and critic

CHAPTER 3. RELATED WORK 52

view on some of these techniques. We will look into their opinions after summarizing
the main approaches to this problem.

A very broad review of Cooperative Multiagent Learning can be found in (Panait
and Luke, 2003). This survey is a good aid in identifying starting points for biblio-
graphical research in the several sub-areas covered.

The first reference to the concept of MARL is in the work of Littman (1994) where
QL-agents are used to solve (i.e. attain optimal equilibrium in) two-player, zero-sum,
games. This approach was labeled Minimax-Q and, even though it is still a reference,
it was soon challenged by other authors due to its restricted applicability and slow
convergence in empiric tests.

In (Claus and Boutilier, 1998) the authors define the concept of Joint-Action Learn-
ers (JAL). JAL are QL-agents that learn, each on its own, the quality of joint actions.
A joint action is composed of an agents’ own action plus the actions chosen by all its
partners at a given time. The main drawback of this approach is that it presupposes
full observability of the actions done by all agents in the team or the construction of a
model of other agents’ behavior. Also, as pointed out by Bowling and Veloso (2001),
the application of this technique in homogeneous MAS results in all agents multiplying

efforts to learn the same mapping.

Hu and Wellman (1998) proposed a different update rule for Multiagent Q-learners
labeled Nash Q-Learning in which the update of the quality values is made under the
assumption that all other agents will adopt an equilibrium strategy in all future actions.

Bowling and Veloso (2001) proposed an algorithm, Win or Learn Fast - Policy Hill
Climbing (WoLF-PHC), based on two characteristics that are, in the authors’ view,

desirable for a learning agent when in the presence of others, namely:

Rationality: Convergence to a policy that is the best response to other agents’
policies;

Convergence: All agents must necessarily converge to a stationary policy.

An interesting characteristic of WoLF-PHC is that agents are not required to ob-
serve the behavior of their counterparts as in JAL. WoLF-PHC attempts to learn fast
when loosing and slowly when winning, accomplishing this by changing the learning-
rates appropriately.

Also related to this research, is the work of Kapetanakis and Kudenko (2002) that
proposes an optimistic heuristic Frequency Maximum Q-Value (FMQ) that uses an ex-
tra term in the action selection, along with (S, a), that benefits actions that produce
a maximum reward with high frequency. As in (Bowling and Veloso, 2001) this algo-
rithm does not require full observability of other agents’ actions.

The term Joint Learning was used by Berenji and Vengerov (2000) when refer-
ring to agents that update concurrently the same quality values, in a similar way to the

CHAPTER 3. RELATED WORK 53

LBW approach referred above. These authors presented a study of a “fuzzy” variant of
multi-agent Q-Learning in which agents cooperate during learning by updating a com-
mon quality table. Their work provides theoretical and experimental evidence that, for
a wide class of problems, a group of cooperative learners will outperform independent
learners, i.e. [N communicating agents achieve better results in M steps than one agent
will achieve with the same amount of experience (N x M steps). Even though these
are interesting results, the update of a common quality table will prevent local special-
ization and severely hinder agent’s autonomy, not to mention the possibility of causing
a communication bottleneck.

Shoham et al. (2003) provide us with a good discussion of the directions taken in
the recent developments of Multiagent Q-Learning. The main argument is that, in the
authors’ opinion, too much attention is being dedicated to Nash equilibrium. Nash
equilibrium consists on having a set of policies, one for each agent in a team, such that:
if any agent would decide, individually, to change its own policy, while all other agents
maintain theirs, this decision would inevitably reduce its future reward. In this paper,
Shohoam et. al. advocate that the focus of the work in Multiagent Reinforcement

Learning should change to match the four agendas they propose, namely:

Human Agenda: How do humans learn in face of other learners?

DAI Agenda: What procedures should be used by a central designer when defin-
ing the (possibly adaptive) behavior of a group of agents?

Equilibrium Agenda: When does a vector of learning strategies form an equilib-
rium?

Al Agenda: What is the best strategy an agent can play for a fixed class of the
other agents in the game?

In the sequence of this work Powers and Shoham (2005) define a specific set of
criteria, which all learning systems should meet in order to be useful, and propose
a Meta Strategy approach. This approach consists (putting it simply) in switching
between different known strategies according to a number of pre-specified conditions.
The authors not only prove theoretically that the conditions they have put forth are met
by this Meta Strategy but also run an extensive set of tests on fully observable, two-
player, repeated games, matching their strategy against most of the other known fixed
strategies and learning algorithms. The results are surprisingly good in all respects
(even more so than the theoretical guarantees) overpowering all other strategies in a
vast majority of the cases. Future work points to the extension of this approach to
n-player games and eventually to any type of stochastic games. In our opinion this
extension will raise a question that was not approached in this work, and is possibly its
main flaw: the difficulty in creating a fixed set of rules that is efficient in a larger set of
problems.

CHAPTER 3. RELATED WORK 54

3.2.3 Adyvice by Humans and Automated Experts

Many researchers have focused on the use of human advice, or pre-programmed

teachers, to help QL-agents.

Gordon and Subramanian (1993) provide high-level, human, advice in the form
of rules that are later optimized by a Genetic Algorithm (GA). The technique was
tested with experiments in navigation problems. They concluded that, although the
combination of procedures did improve performance in some tests, its success was

highly dependent on how the advice biased the GA search.

Following a similar path, the work of Maclin and Shavlik (1996) uses connection-
ist QL with Knowledge Based Artificial Neural Networks (KBANN), (Fu, 1989). In
this case human advice is provided by the user, in the form of rules in a structured
high-level language. Rules are inserted into the KBANN by creating new nodes that
encode the knowledge. Experiments in game domain prove that advice does improve
the performance. An important conclusion is that an agent must be able to refine advice
so that general instructions can be assimilated and also to overcome the effects of bad
advice. Again, the tests were performed in single-agent tasks and group dynamics are
not considered.

Matari¢ (1996) shares sensory data and rewards between teams of robots that use
RL in a gathering task. This leads to effective learning of social behaviors such as
avoiding collisions by yielding to others when necessary (without causing deadlocks)
and following each others’ tips on the location of resources to be gathered. This work
focused on sharing raw information and using it, mostly, for coordination purposes.
Its most interesting characteristic is that data is exchanged locally (between robots
that are temporarily close to each other). In subsequent work (Nicolescu and Matarié,
2001) a robot is taught how to perform a task by demonstration, either by a human or
by another robot. 9 out of 10 of these experiments resulted in learning a structurally
correct set of rules and in an appropriate test behavior. The knowledge structure in
this case is based on rules that are triggered by state conditions. Atkeson and Schaal
(1997) follow a similar path in trying to teach a robot to swing-up a pendulum, but
in this case knowledge is encoded in the parameters of a control function and in a Q-
table. In their conclusions, they point out that mimicking is not enough to accomplish
this task and that learning is required. Model-based learning achieves a relative good
performance fast, but the parallel use of a non model-based approach compensates for
modeling errors and slow model learning. This is one of the few cases where two
different approaches are used in parallel, even if both approaches are related to the RL
family.

Still in this line, the work, reported by Sen and Kar (2002) is one of the few that
considers a form of heterogeneity. The Agent Teaching Agent (ATA) framework relies
on an expert to teach a student agent a certain concept by selecting the training exam-
ples to use on each epoch, based on the errors the student made in the previous epochs.

CHAPTER 3. RELATED WORK 55

Contrary to most work done in this area the task is supervised, i.e. information on the
correct classification of each example is available. The two most interesting issues of
this work are: the refinement of the choice, made by the teacher, of which examples to
present to the student, and the fact that both agents are using different learning algori-
thms. In this case the teacher uses instance-based learning (IB2), while the student uses
decision-tree learning (C4.5). Initial results are encouraging and further experiments
are undergoing. It is important to notice, however, that the teacher is not learning to do
the same task as its student, it already posses perfect knowledge on this, and its focus is
simply in helping the student. Also, the task is supervised and done by a single agent.

One of the most interesting recent works is (Price and Boutilier, 1999, 2000; Price,
2003) in which novice QL-agents learn by implicit imitation of pre-trained expert
agents. This work has some very interesting characteristics: the student agent has
no knowledge of the actions done by the expert, it can only observe its state transitions;
there is no explicit communication between the expert and the student; the goals and
actions of both agents can be different. The student agent uses an augmented Bellman
equation to calculate the utility of each state that incorporates the information regard-
ing the state transitions made by the expert. This technique was tested in several maze
problems with good results. Again, in this work the problems of heterogeneity and
teamwork are not focused.

3.2.4 Trust

Trust is an important concept to our work because agents need to acquire informa-
tion regarding the competence of others. This view of trust is slightly different from
most views found in the literature in which trust is associated with security or with
exchange of services between agents. There are however some definitions of trust that
point-out a competence-related component. When we speak of trust in this work, we
are in fact considering only this component that measures the competence of other
agents to provide help in a given situation. The same type of technique could be used
to disregard the information coming from agents with malicious purposes, but this is

not our main goal.

The research on trust relationships between agents that is most related to our own,
was developed by Sen’s research group (Sen, 1996; Biswas et al., 2000; Banerjee et al.,
2000). This series of works, and other related papers, focus on several aspects of learn-
ing to (dis)trust other agents, and dealing with agents that will not cooperate. The
above-mentioned papers are mostly concerned with the effects of different policies in
cooperation between agents. These policies range from malicious agents that try to
get others to perform their job without, in turn, giving them any assistance, to philan-
thropic agents that always help their peers. The results indicate that agents that take
decisions based on trust are able to cope with malicious agents. The development of
trust relationships improves the overall performance by enabling cooperation between

CHAPTER 3. RELATED WORK 56

the non-malicious agents and shutting out the others from the society by not cooperat-
ing with them. The use of trust in this series of works was never related to learning.
The focus is in the design of agent societies rather in how each agent can protect itself
against other agents’ malicious intentions or lack of expertise.

3.2.5 Adaptation of Learning Parameters

Apart from the, previously cited, work of Bowling and Veloso (2001) not many
authors used the available information to change the way the agent learns or automate

the evolution of the learning parameters.

One exception is the work of Weibull (1995) in evolutionary game theory, where
individuals growth-rate is set to be inversely proportional to the overall success of the
population. This allows the agents to change more quickly when performance is low
and explore in more detail a given area of the search-space when performance is high.
This rationale is similar to the one used in Bowling and Veloso (2001) to justify the

adaptation of learning rates.

Dorigo and Colombetti (1994b) use a trainer (that can be a human or another pro-
gram) to help a QL-agent in learning a certain task by giving it extra reinforcement.
They propose three development phases (labeled baby, young and adult) in which the
learning agent changes the way it relates to the trainer and its environment. In the
baby phase it gets a positive/negative feedback from the trainer for every action. This
strategy is highly related to the concept of shaping Dorigo and Colombetti (1994a).
In the young phase it learns solely from the environments’ reinforcement. When the
agent reaches the adult phase, the training is assumed to be complete and learning is
switched off.

In summary, the work reviewed in the previous sections is mostly devoted to Q-
Learning and there are relatively few examples that consider the effects of co-learning
within a team. None of these works addresses the effects of exchanging information
between different learning algorithms in team scenarios. Most approaches that involve
exchange of information use only expert advisors and not other agents that are also in
the process of learning. Although several proposals were made for integrating informa-
tion from other agents and users, these are all specific to a problem or algorithm and no
general procedure or architecture was ever proposed. None of these works uses exter-
nal information, both to tune the learning process and as extra information to improve

the current hypothesis. These are the gaps we intend to explore in our work.

3.3 Application-Domains

Although it is not the objective of our work to provide a specific solution to any
particular application, reference must be made to previous results on the application-

CHAPTER 3. RELATED WORK 57

domains we have selected to test our ideas. That will be the focus of this section. In
chapter 6 we will explain the reasons for choosing these problems and the variants we
have implemented.

3.3.1 Predator-Prey

Many researchers have used variations of the predator-prey problem (a.k.a. pursuit
problem). We will focus our attention in two of these references — (Tan, 1993) and
(Haynes et al., 1995b) — due to the close relation between the research presented in
these papers and our own. The full description of the scenario used in our experiments
can be found in section 6.1. Haynes et al. (1995b) present an interesting review of the
work on this problem to that date.

As mentioned in Stone and Veloso (1997) this problem has several variable param-
eters that change its type and difficulty level. According to these authors, the variable
parameters are:

e Definition of capture

e Size and shape of the world

e Legal moves

e Simultaneous or sequential movement
e Visible objects

e Sensing range

e Predator communication

e Prey movement

Using these parameters (and a few others that were found useful in this context), we
can summarize Tan’s scenario by table 3.1. In Tan’s experiments the state consists of
the coordinates of the prey’s position relative to the predator (2 integer inputs), plus the
partner’s relative position on cooperative trials. When the prey is not visible a “unique
sensation” is used. The reward structure is +1 on capture and -0.1 otherwise. Trials
are finished when a capture occurs or at the end of a maximum number of turns. The
agents that achieved a capture are randomly repositioned at the beginning of a new trial.
The conclusions of these experiments, as well as the learning approach, were already
mentioned in section 3.1. Tan’s results on sharing policies or episodes are based on a
10 x 10 arena with 2 predators and one prey and a visual range of 4. From the graphics
in section 6 we can conclude that the best performance in training was an average of
10 steps per catch, using expert advice, and around 12 when using peer advice.

In Haynes’ scenarios (summarized in table 3.3) the state consists only of the prey’s
position. Capture is achieved by surrounding the prey from all sides. When this is

achieved the prey is unable to move and if agents maintain their positions it will remain

CHAPTER 3. RELATED WORK 58

Table 3.1: Parameters for Tan’s predator-prey experiments.

Parameter Value

Definition of capture Individual: same position as prey
Cooperative: #predator in vicinity > 1

Size and shape of the world 10x10, bounded

Legal moves 4(N,S,E, W)

Simultaneous/sequential moves | simultaneous

Visible objects closest prey and predator

Visible range 2-4

Predator communication yes (of different types)

Prey movement random

Overlapping objects yes

Initial placement random

Number of predators/prey 2/1-4/2

Table 3.2: Average number of steps to individual capture in Tan’s Predator-Prey Exper-
iments (for 2 predators and 1 prey). In “mutual scouting” mode the agents have extra
information on the prey’s position sent by their partner.

‘ Predator type ‘ Visual Range | Avg. steps

Independent 2 24.0
Mutual scouting 2 24.5
Independent 3 16.0
Mutual scouting 3 12.9
Independent 4 11.5
Mutual scouting 4 8.8

locked-in for the remainder of the trial. When two predators try to move to the same
cell one is bounced off. The reward for epoch n is:

Rip=> g/d 3.1)

ten
where g is the grid width and d, is the distance between predator 7 and the prey at
time ¢. At the end of the trial predators that are close to the prey receive a bonus of
m - g (where m is the number of moves allowed) and when the prey is surrounded
(i.e. captured) all predators receive a bonus of 4mg. This is one of the few approaches
where a mixture of local/immediate and global/delayed rewards is used. The results

achieved are presented in table 3.4.

CHAPTER 3. RELATED WORK 59

Table 3.3: Parameters for Haynes’ predator-prey experiments.

Parameter ‘ Value

Definition of capture surround prey

Size and shape of the world 30x30, unbounded

Legal moves 4(N,S,E, W)

Simultaneous or sequential movement | simultaneous

Visible objects prey

Visible range unlimited

Predator communication no

Prey movement away from closest (90%),
random (10%)

Overlapping objects no

Initial placement prey on center

Number of predators/prey 4/1

Table 3.4: Average number of captures in test in 1000 random scenarios x 200 steps in
Haynes’ predator-prey experiments, using 4 predators and 1 prey.

Type of Prey | Movement ‘ Average | t-test 90%
Random prey | moving first 100.4 +/-13.23
Random prey | simultaneous w/ predators 332 +/- 18.71
Escaping prey | moving first 74.1 +/-9.79

Escaping prey | simultaneous w/ predators 162 +/- 10

3.3.2 Traffic-Control

Traffic-control has been approached by several researchers in different ways. Gold-
man and Rosenschein (1995) use the example of controlling the traffic-lights at an inter-
section to prove that learning can replace explicit coordination. In this case each traffic-
light controls one of the two roads in orthogonal directions. The purpose is learning
to synchronize red/green periods without explicit coordination. This is achieved by
having each agent in turn trying to teach the other agent when to set its traffic-light to

a given color (opposite to its own).

Thorpe (1997) performed an interesting set of experiments using SARSA (Singh
and Sutton, 1996) for traffic-lights control. The objective of these experiments was
twofold: establish that learned control is more effective than fixed control and study
how the use of different types of state structures can affect learning. The objectives
were partially achieved. It was verified that the learning performance is very dependent
on the type of information used and that, in some cases, the system is unable to learn.

CHAPTER 3. RELATED WORK 60

It was also reported that the differences between the best adaptive strategies and the
best results of tests with fixed-duration lights were relatively small. Thorpe performs
its experiments in a 4x4 grid of roads where intersections are set approximately 145m
apart. Each intersection contains 4 incoming roads, labeled North, South, East and

West according to their direction.

Several different state representations are tested, namely:

Count representation: Number of incoming vehicles each of the two approaching
directions (north-south and east-west) plus the elapsed time since the last light
change. The number of vehicles incoming from the north is summed with those

from the south, a similar operation is done for the east and west vehicles;

Fixed-distance representation: Registers the occupation (or not) of each 40m
partition of the incoming lanes. North and South information is combined us-
ing a boolean “or” for corresponding partitions, as is East and West. The elapsed

time since the last light change is also present in this representation;

Variable-distance representation: Similar to previous except in the size of the
partitions, which in this case is variable. The size of partitions increases with the
distance to the crossing;

Count-duration representation: Equal to the count representation plus the cur-
rent north-south light color and minimum light duration.

Each agent controls a crossing and its action is to set the color of the north-south
lights (and indirectly the east-west, which are automatically set to the opposing color).
The learning algorithm (SARSA) has differentiated eligibility traces for each crossing
but a common table of state-action values for all traffic-lights.

Car trajectories are pre-set before they enter the scenario by randomly selecting
their points of entry and exit. Tests consist in inserting 100, 500 or 1000 cars in the
system, with a uniform distribution over time, and allowing 1200 (first two cases) to
2400 time-steps (last case) for the system to clear the scenario.

The performance is measured along four different dimensions:

Total number of steps taken for all cars to reach their destination.

Average travel time.

Total waiting time for all cars.

Average waiting time.
The most important conclusions, from our point-of-view, were:

e Count-duration representation provides best results in terms of learnability.

CHAPTER 3. RELATED WORK 61

e Load-based control (attributing the green light to the road with more traffic)
achieved very poor results due to quick oscillation of the traffic lights when the
traffic in both directions is similar.

These conclusions were taken into account when deciding on the representation and

heuristics used in our own traffic simulation (described in section 6.3).

(Bazzan, 1997) proposes the use of Game Theory and Evolutionary Algorithms for
coordination in signal-plan selection. Results indicate that the approach is feasible and
learning can reduce or even eliminate the need for communication and negotiation, pro-
viding coordinated choice of signal-plans for groups of individually motivated agents.
The experiments were run on a traffic-control simulation with computer-generated
traffic-flows. One common differentiation between the types of traffic simulators is
in the detail level. When the simulation considers the movements of each individual
car separately it is labeled a micro-level simulation. Contrary to all other works refer-
enced in this section, the simulator used in these experiments does not use micro-level
traffic simulation. The simulation is based on flow density which is considered a meso

or macro-level simulation.

The work of Fernandes and Oliveira (1999) consists on the development of a multi-
layered architecture in which the first layer controls a single traffic-light, the second
layer (local decision-maker) a set of connected traffic-lights, and a third layer, labelled
cooperative-layer, was in charge of ensuring that different locations cooperated in the
management of traffic. This work proves that agent-based strategies are more success-
ful than fixed-time firing plans in maintaining high traffic flows and that coordinated

action plans can emerge from the interaction of independent decision-makers.

Brockfeld ef al. (2001) evaluates several fixed strategies for synchronized traffic-
light control. One of the models for traffic flow used is the same as in our experiments
(Nagel and Shreckenberg, 1992), but contrary to our approach they keep the number of
cars in the system fixed by re-entering the vehicles in the beginning of the same lane
they exit. None of the approaches tested involves learning. Their findings were the
following:

e The efficiency of fixed-time cycles depends heavily on the chosen cycle time.

e Results indicate that two different models tested for vehicle movement cause
only slight differences in the results, thus this choice does not play an important
role in the simulators’ design.

e Two dimensional green-waves show better performance than fixed, synchro-
nized, cycles, although still dependent on the choice of the cycle time.

e The use of a random offset along with fixed-time cycles also shows better per-
formance than synchronized traffic-lights.

e Results with “inhomogeneous traffic” suggest that local decision taking at every
crossing should be able to outperform any of the global techniques tested in these

experiments.

CHAPTER 3. RELATED WORK 62

Montana and Czerwinski (1996) use Genetic Algorithms (GA) and Strongly Typed
Genetic Programming (STGP) (described in section 2.1.5) to control the timings of
traffic-lights. This is similar to (Bazzan, 1997), but over a micro-level simulation.
Montana considers that the information comes from two sensors, one that counts cars
leaving an intersection and the other that has a twofold purpose: counting inbound cars
and verifying if an incoming lane is full. Performance is inversely proportional to the
delay, which is defined as the time lost due to stopping at an intersection. Only fixed
traffic flows are considered, i.e. the probability of insertion of new cars is fixed in
each experiment. In a first experiment GA are used to evolve specimens that consist
simply on choosing the cycle time, split and offset for each intersection. The split is the
division of time between the N phases of a traffic-light set. Phases must follow a certain
sequence (e.g. phase one: green for north-south lanes, phase two: green for right turn
in north-south lanes, phase three: green for east-west lanes). In these experiments all
intersections have four phases. In subsequent experiments STGP evolves program trees
that take into consideration the sensor data in the decision of when to end the current
phase. Their findings are summarized by the following statements:

e The learning approach is superior to fixed-cycle control;

It also generalizes well to situations with similar statistics.

Performance is expected to drop if variations of the traffic flows are considered.
Coordination was achieved both with and without communication.

The main problems with this approach, reported by the authors themselves, are: the
fact that traffic-flows were fixed for each experiment and that nothing can be said in

what regards its scalability.

Wiering et al. (2004) compare several different approaches in their “Green Light
District” simulator. Their original approach is based on a combination of the pre-
dictions made by each car. Cars try to predict what their waiting time will be if the
traffic-light ahead of them turns green or red and use these estimates to vote on their
preferred color for a given traffic-light. They argue against the use of fixed firing se-
quences based mostly on the fact that choosing which phase is used next is a more
flexible procedure. In one of the approaches tested cars also learn to choose their path
(this was labelled the co-learning approach). Their conclusions were that RL is more
efficient in controlling traffic than fixed controllers (even a simplified version of RL
can have good performances in certain situations); and co-learning can, in some situ-
ations, avoid overcrowding intersections, although in others it causes no difference in

performance.

The use of learning methods in traffic-control, as in other realistic application-
domains, is a delicate matter. All systems that must learn from their own mistakes
must be projected to learn offline, and its employment should be controlled by another
layer of software that must ensure that they operate within reasonable bounds. There

CHAPTER 3. RELATED WORK 63

may be, however, much to learn from traffic-control simulation, even though some
of the authors mentioned above report only residual improvements of using learning
strategies as opposed to fixed ones.

As we mentioned previously we do not aim at solving the problem of traffic-light
control in this work, we merely use it as a test case. Nevertheless, we believe that our
approach may point in some directions that can be useful when adaptive applications
are considered in this, as well as in other, real-life problems.

3.3.3 Load-Balancing

In (Schaerf et al., 1995) the authors present a very broad framework for the study
of computing load-balancing problems and an adaptive solution to this problem. This
solution is based on a very simple adaptation scheme, labeled: Best Choice Selection
Rule. In the first set of experiments agents use only local information. These experi-
ments prove that it is possible to design an adaptable system capable of executing the
task, based only on local information. The effect of varying the adaptable parameters
of their solution is also studied in these experiments. The second set of experiments
is related to heterogeneous systems (here heterogeneity means that different sets of
agents may have different policies). Some results show that, under certain circum-
stances, “parasitic” agents can take advantage of their peers’ flexibility and capacity
for adaptation. The third set of experiments regards sharing of historical information
between agents. It is proven that naive communication may have no effect, and can
even deteriorate, the overall systems’ performance.

The load-balance scenario used in the experiments — described in section 6.2 — was
inspired in (Whiteson and Stone, 2004). This work defines a simulation environment
for job routing and scheduling and compares a variation of Q-Routing (Boyan and
Littman, 1994) coupled with different types of schedulers, to other routing methods.
In the conclusions, the authors claim that: “The results presented here (...) provide
evidence of the value of combining intelligent, adaptive agents at more than one level

of the system”.

This is a typical scenario where communication between teams can be used, and
it was selected due to our interest in comparing the results of our approach to those
presented in the paper. When attempting to replicate the experiment, the discrepancy
between the results of our baseline experiments and those presented in (Whiteson and
Stone, 2004) led us to make a deeper analysis of their results. From this analysis we
concluded that either the results or the experiment description presented in the above-
mentioned paper were faulty !. Appendix D presents the description of the experiments

in the initial version of the paper and our analysis that led to a revision of this work.

11t was later established that there was indeed a fault in the experiment’s description.

CHAPTER 3. RELATED WORK 64

3.3.4 Summary on related applications

We reviewed, in this last section, the main contributions related to the applications
we use for our tests. Several possibilities were never addressed in any of this work,
namely: None of these applications uses communication between teams of agents with
different learning algorithms; In traffic-control scenarios no learning approach ever
essayed the use of communication for other purposes than extending the state informa-
tion; In the load-balance scenarios the only form of cooperation attempted is by shar-
ing all past information. Our work will test new solutions to these problems by using
different learning algorithms and selective communication. The following chapter is

dedicated to an analysis of the problem and the explanation of our proposed solutions.

Chapter 4

Communication During
Learning

In this chapter we analyze the problem, propose solutions and justify the options
taken during this work. Some of these concepts were already mentioned in chapter 2 as
possible solutions to the problems we described. Some details are left out to maintain
a clear line of reasoning. These details will be fully covered in the following chapters.

4.1 Useful Information

The first question is: what useful information can be supplied by other agents facing
similar problems? Usually a learning agent selects an action by evaluating its own
evaluation function, (as seen in equation 2.10) but if we consider that there may be
other agents with whom it is possible to communicate and that they also have some
experience in the problem, there are other options. An agent can request information
concerning, for example: the best action for the current state; the policy other agents are
using; the results of choosing different actions at this state; the magnitude of rewards

achievable in the current situation.

If all agents used the same learning algorithm an advisee could simply request the
best solution’s parameters (ﬂ}’;t) to an advisor (k) that reports a good performance.
But we are mainly interested in cases where agents use different learning algorithms,
in which case this solution is infeasible. It is also undesirable if we want our system to
search for solutions in different ways. Since using the hypothesis’ parameters acquired

by other agents is not an option, what other information can be useful?

As explained previously condensing the hypothesis’ information into a format that
can easily be produced and read by all learning algorithms is a difficult task, if at all
possible. This solution was not considered in this work, except in the sense that a set of

65

CHAPTER 4. COMMUNICATION DURING LEARNING 66

examples can define a policy. Some efforts were made to aggregate subsets of examples
in order to achieve a more condensed set of information that would represent a given
policy. These efforts lead to a degradation of the performance and were abandoned
during the research (see chapter 8).

Since we are dealing with similar problems, in which the state and actions have the
same structure for all agents in all locations, it is possible to exchange the historical
information (&; ; in equation 2.16) on which the current hypothesis is based. But the
repeated exchange of all the experiences by all agents in a, possibly large, group can
lead to vast amounts of communication and has obvious scalability problems. This is
not the only problem: the use of outdated information, its storage, and the different
types of information each agent needs, make it clear that we must focus on an inter-
esting part of the information produced. We must choose only a limited number of
sources and store only relevant parts of the information. The two most obvious crite-
ria for storing examples are: efficiency and recency. We have focused on storing and
exchanging examples of policies that have recently proved to be efficient.

The information that contains examples experienced by other agents is what we
refer to as advice. Advice is a tuple consisting of two mandatory elements: a state
(54,+) and an advised action (a;) — or a vector defining the adequacy of each possible
action to that state (@, ;). Optionally it may include the source ¢, the time when was
issued ¢, the reward obtained when the situation occurred (7; ;), the state after the action
was performed and the reward obtained in the epoch where the action was used (7).

ei,t = {gi,h a‘i,t, [27 ta T’i,tv gi,t+17 Tl,n}} (41)

Asking a reputedly experienced agent k for the best action for a certain state was the
approach used in previous experiments (Nunes and Oliveira, 2003c, 2004, 2005a). We
have labeled this type of interaction specific-advice as opposed to requesting sub-sets

of historical information, batch-advice.

Specific advice has the advantage of not wasting resources on information requests
for situations the agent may never experience and also does not require the advisor to

store its previous experience, but it also has disadvantages:

e The advisee will not have information on the whole policy that led agent % to a
good reward, it will learn based on fragments of a policy;

e The advisor will be unable to inform on what was the result of using its policy
in that situation at a previous time because it is producing the advice on request,
based on its current best hypothesis, and may have never experienced the same
state itself;

e It may be difficult to evaluate the confidence in the information sent or the expe-
rience an agent has in a certain situation, due to the reasons stated above;

e When this information is intended for immediate use the advisee will have to
wait for the advisors’ reply before taking an action.

CHAPTER 4. COMMUNICATION DURING LEARNING 67

When learning from a sequential set of examples, experienced by the advisor (batch
advice), the advisee will know exactly what was the result achieved previously with
that behavior. It will also have the advantage of training with a full sequence of states
that took the advisor from a given state to a goal. Still, the use of batch advice will
tend to generate more communication and may fail to respond to the special needs
of the advisee in particular situations. The tradeoff between using these two types of
information may also depend on the learning algorithm used, or the learning agent’s
expertise.

As mentioned above, the information may be requested to an agent that “reports
a good performance”. The knowledge of other agents’ performance will also involve
communication. Agents may request their potential advisors information regarding
their performance statistics in the form of a standing-request that will trigger an answer
when a certain situation occurs, e.g. surpassing the best score achieved in previous
epochs or completing a given number of validation epochs.

The statistical information on the performance of other agents can also be used
for other purposes than just finding the best advisor. An agent is able to know, for
example, how far it is from the best solution achieved this far to its problem and use
this knowledge to tune its learning parameters.

In summary, in this section we argue that:

e An agent may find it useful to know:

Examples of others’ policies (batch);

Examples of others’ response for a given situation (specific);

The results achieved by choosing a certain action for a certain state;

The rewards achieved during certain periods;

The average performance of the best policies.

e The problem of having a large body of available information must be dealt with
by filtering this information according to certain criteria. These criteria can

moderate the amount of information exchanged keeping the solutions’ scalabil-
ity.

4.2 When and Where to Collect Information?

Humans ask for information in one of two situations: when they learn that someone
else seems able to solve the problem they are facing more efficiently, or when they
cannot tell which is the best course of action for a certain situation. This procedure can
be replicated by automated agents if they are aware of other agent’s performance and
if they can measure how certain they are of the action to take next. In the first case all

an agent will need is to know its peers’ average performance. For the second case an

CHAPTER 4. COMMUNICATION DURING LEARNING 68

agent must be able to determine the confidence in each action or the level of experience
for a given state. The latter is easier for some agents than for others.

As noted by Dorigo and Colombetti (1994b) (see section 3.2), it may be useful to
divide the learning process in stages. Although we agree with the principle we disagree
with the proposed division. We believe that the initial phase (where most learning takes
place) can be subdivided in several different stages. The learning stage of an agent can
be used to change the way it learns and also to decide whether or not to ask for advice,
and, if so, in which form. Humans, when learning about a subject, go through different
stages:

1. First they need to acquire some basic knowledge on the subject;

2. After this phase they require a stream of detailed, sequential, information about

a solution. This is usually given by a single teacher;

3. Then, as their skills in solving the problem increase, the information needs de-
crease and become more flexible. Useful information can be collected from sev-

eral sources and may be specific for a certain sub-problem.

4. The ability to deal with conflicting information, to experiment new solutions,
and to pick up the best of several different ideas, arises when the solver is well

acquainted with the variants of the problem and with several different solutions.

In an attempt to mimic this behavior we have defined four learning stages:

Exploration: Initially the agent will not use external information and will explore
using only the environment’s feedback, to acquire some experience on the prob-

lem and assess its own capabilities in learning a solution;

Novice: After the exploration stage if an agent has a low performance, much worse
than the best performance in other teams, it will require detailed, and coherent,

information about the solution to its problem.

Intermediate: When the agent has a reasonable performance, although below the
level of the best agents, it may benefit from being exposed to different solutions.
This may lead it to combine parts of different solutions or use policies that are
more suited to its own problem, even though they may be reported as suboptimal
by other agents.

Expert: When the agent has learned a policy that is on a par with the best know
so far, it can devote more resources to exploration and to advise other its less

successful peers.

These will be our learning stages and they will determine how an agent decides

what type of advice to request and how to parameterize its learning algorithms.

CHAPTER 4. COMMUNICATION DURING LEARNING 69

In what regards the “where” (to collect information), the obvious answer is: the
agent with best performance, — or even simpler, ask everyone and then decide — but
the similarity of the problem being solved, the capability of an agent to duplicate the
teacher’s solution and the advisors under use by its partners, can also be taken into

consideration. This may allow better decisions and limit communication.

An agent should seek information that is:

Efficient: Proved to have a good performance in a related situation;

Learnable: Can be integrated in the hypothesis using the tools available to this
particular agent;

Adequate for its problem: Matches the policies of the agents’ partners.

If an agent’s partners behave quite differently from its advisor’s partners then it is
likely that the advice is useless (or even harmful). An agent must choose its advisors

not only based on their performance but also on how useful is their advice.

Advisees must learn which of their peers provide more valuable information from
their own point-of-view. If a whole team asks for information to another team, in
synchrony, the problems related to inadequate advice may be mitigated. However, syn-
chronous advice from one team to another requires either dynamic or pre-established
agreements. The easiest form of establishing an agreement for synchronized informa-
tion requests is to trigger this advice based on the comparison of teams’ scores. One of
the solutions to prevent all agents from taking advice from the same peer is to define
roles. This can be done simply by attributing a different role to each team member and
establishing that advice can only be requested to agents that share the same roles.

After trying several types of strategies to distribute advisors, avoiding that two
members of a team ask advice to the same member of an expert team, we have settled in
a simple form of role assignment. This simple form of assigning sequential numbers to
the agents in a team, by order of creation, and restricting advice requests to agents with
the same team number (i.e. role). This method is simple and proved to be as effective
as more elaborate solutions (referred in (Nunes and Oliveira, 2003b) and in chapter
8). These solutions involved exchanging information between members of the same
team that would reduce the probability of sharing advisors. Another approach, that
also aims at solving the problem of different team dynamics, is the use of unsupervised
learning to create a set of representatives of the most common states for each agent.
Matching these representatives for a pair of agents would provide a measure of how
closely related were the problems they were attempting to solve. This way we could
group related agents allowing them to choose an advisor that experienced states that
were more closely related to its own experience. Neither of these methods obtained
better performance than the simple sequential numbering of agents. Nevertheless, these
methods may be useful when the problems each team is solving differ in more than just
the partners’ behavior and initial conditions.

CHAPTER 4. COMMUNICATION DURING LEARNING 70

One possible use of external information, that we have not mentioned previously,
is in the parameterization of the learning process. Most learning parameters control
how much an agent learns from each example (or set of examples) and how much of
the available time is it willing to use for exploration of new policies. In this case, since
validation occurs in parallel (see chapter 5 for details) one could be tempted to say that
exploration should always be the most important factor, but there are drawbacks to this.
An excessive emphasis on exploration may prevent the test of coherent policies, since
an agents’ options may be constantly changing for the same state. Exploitation, in a
team scenario, is important, not only to take advantage of what was learned but also to
provide coherence in the choices and enable the fine-tuning of partners’ policies when
a low rate of exploration is used.

When an agent knows that there are better solutions (by getting performance infor-
mation from its peers) it is natural that it will maximize the learning-rates used in the
acquisition of knowledge from peers, while controlling its exploratory behavior (to test
the advised policies appropriately). After this stage there are two possible situations:
either the agent reaches a similar performance level to that of its advisor, or not. In
the first case, it is likely that the agent became an expert, having a score that is on a
par with the best. The acquired policy will be in continuous validation and the agent
can increase the exploration levels and stop information exchange (or reduce it signif-
icantly). If the advisee did not reach the advisors’ performance levels, this may have
occurred for two types reasons:

Internal: The advisee is unable to mimic the advisors’ solution due to limitations

of its learning algorithm or evaluation function, or

External: The advisors’ policy is not an adequate solution for its own problem, ei-
ther due to differences in the locations’ current dynamics, or because its partners
are not performing matching policies.

In both cases the agent should either try a new advisor, or increase the exploration
levels and learn more from its own experience than from advice. In case of internal
difficulties an agent could also increase the representational capabilities of its own
evaluation function, although we have not explored this path in this work.

These two types of failure in integrating the advisors’ policy are related to two
concepts that can also be measured.

e The first (internal causes) is related to what we have labeled as learnability. This
quantity represents the capacity to learn an advisors’ policy. It can be measured
as the inverse of the classification error that the advisee shows when comparing
its own options with those of its advisor.

e The second case (external causes) is related to the adequacy of the policy being
taught to the advisees situation. We have labeled this quantity ¢rust and measure

CHAPTER 4. COMMUNICATION DURING LEARNING 71

it as the quotient between the reward achieved with the advised actions and the
reward that the advisor claims to achieve with the same actions. Trust is used
here as a measure of the competence of a certain advisor.

In the previous paragraphs we have defined (informally) a set of rules to control

several learning parameters. These rules will be formally stated below in section 5.2.3.

As hinted during the introduction of learning stages, another important matter is the
the stability on the choice of an advisor. On the one hand it may be important to have
just one advisor for a long period so that its policy can be acquired without interfer-
ence. On the other hand, getting advice from several advisors enables the emergence
of policies that merge different aspects of advisors’ policies. Using too many advisors,
can, in some cases, prevent the agent from learning any of the policies if advisors give
conflicting advice. So, in certain situations, it may be important to select a standing-
advisor that will be the sole source of information for a specific period. This has two
advantages: it is easier to attribute the responsibility for the long-term result of using
advice and it is less likely to have inconsistent advice (it is not impossible because the
advisors’ policy may be stochastic). However, the use of multiple-advisors may con-
tribute to the emergence of policies that result from merging several different solutions.
It is important to establish in which situations is the use of only one advisor preferable

to using information from several available sources.

Even though some care is taken to restrict communication at all levels it should be
noted that the cost of communication is often non-linear (except when it is associated
with energy consumption and/or wireless access). The cost, in most cases, is virtually
null up to the band-width limit and very high when over that limit (if it can be surpassed
at all). This is similar to establishing a maximum band-width, which was our approach.
We have defined maximum numbers of examples to be exchanged per epoch, thus

simulating a limit band-width.

In summary, we can say that:

e An agent should ask for information either when it knows there is a better so-
lution than the one it is currently using, or when doubts arise in choosing an
action.

e Advisors should fulfill three requirements:

— Have a good performance;
— Their policy must be learnable by the advisee;
— The policy must be adequate for the advisees’ problem.

e Trying to acquire a teams’ policy as a whole may be adequate in certain stages
and this can be enforced by simple agreements that do not require agents to

(explicitly) synchronize or exchange any further information.

CHAPTER 4. COMMUNICATION DURING LEARNING 72

e The failure to acquire a solution may be caused by internal or external factors.
This can be estimated by measuring how much was learned from an advisor and
how well does its policy adapt to the advisees’ current problem.

e The tradeoffs resulting from using single or multiple advisors must be consid-
ered.

4.3 Integrating Information

The way in which information is integrated is highly dependent on the learning
algorithm(s) used by an agent. The exact process of integration used for each type of
agent will be detailed in section 5.2.3. Here we will review the basic guidelines on how

to use information.

The main concept is to have two (or more) different learning functions working on
the same hypothesis. When reinforcement information arrives the hypothesis will be
changed by a learning function that uses the reward information. When advice infor-
mation arrives, another function can be used taking advantage of the extra information
in the advice. If an advisor is well chosen its advice can be interpreted as supervision

information.

Two difficulties are immediately apparent:

1. The interplay between two different learning methods may fail to respect the

particular convergence conditions of each method;

2. When the limitations are at the level of the evaluation function neither of the

methods will be able to solve the problem.

The first problem must be dealt with in the design process. In ML literature there
are quite a few successful works in the integration of different learning functions work-
ing on the same hypothesis (see chapter 3 for examples). In some of these, the problems
related to the convergence conditions are circumvented by alternating the use of both
learning algorithms, others simply prove empirically that the process does converge
and is effective on a number of practical cases. Considering that one of the character-
istics of the systems we are studying is the continuous change, it is appropriate that all
agents maintain a certain degree of adaptability which, in most cases, precludes con-
vergence to a static hypothesis. Given these facts, we have taken a pragmatic approach
to this first problem by choosing combinations of learning algorithms and evaluation

functions that proved to be applicable in the situations we have studied.

The problem of learnability can be attacked in two ways: by changing the parame-
ters of the evaluation function, or by simply ignoring parts of the state where the func-
tion does not perform well and keeping the information (advice or its source) necessary

to overcome these situations.

CHAPTER 4. COMMUNICATION DURING LEARNING 73

There are several ways to integrate advice information in an hypothesis, depending
on the structure of the evaluation function. Advice can be used in one, or more, of the
following ways:

Imitation: The advisee performs the advised action and learns from the conse-
quences of this action. In this case, advice must be specific and used online. It
also requires that the advisee can learn from actions that it did not generate itself.
The advisee must send its current state to the advisor and wait for its reply.

Virtual Experience: Advice is interpreted as if the agent performed the action
itself but the reward information is the one received by the advisor when the
advice was recorded. In this case, advice must be collected in batch and the
advisee must be able to integrate information about others’ experiences. This
type of advice must contain information on the reward obtained by the advisor,
and possibly also the state of the environment after the action was performed.

Supervision: In this case, advice is interpreted as examples of the correct mapping
of states to actions. Only these two pieces of information must be transmitted.
The advisee must be able to perform supervised learning. This type of advice is
usually best suited for batch-offline learning, because a large set of examples is
usually required to learn a reasonable mapping of the advisors’ policy.

The information requested to an advisor can be used online (i.e. trigger a change
in the current hypothesis immediately upon arrival), or offline (i.e. be stored on arrival
and processed in batch later). Both methods have advantages and disadvantages, many
of which are related to the learning algorithm used and will be discussed in section
5.2. In general, only specific-advice can be used online. The only exception is when
the advisee finds an answer to its current problem in previously stored advice that may

have been received in batch.

The integration of information about others’ performance is done at a different
level. Reward information is mostly used for control purposes. In our experiments
we have used this information to: determine an agents’ learning stage, enable and dis-
able advice, select an advisor, decide which type of advice to use and change learning

parameters.

In summary:

e The integration of information requires that an agent is able to learn from rein-
forcement as well as from supervision information.

e Advice can be imitated, used as virtual-experience or as an example given by a
teacher.

e Information can be used immediately (i.e. online) or stored and used in offline.

CHAPTER 4. COMMUNICATION DURING LEARNING 74

e Information on peers’ performance can be used for to control the learning pro-

CESs.

As we can see from the previous sections, there are several ways in which informa-
tion from other peers can be useful, but there are also several tradeoffs that require our
study. Up to this point we identified the following options/tradeoffs: specific vs. batch,
online vs. offline and using all advisors vs. using a standing advisor. We also have
several possibilities regarding the way to use advice: imitation, virtual-experience or

supervised training.

Sections 5.2.1 and B.3 show how the several concepts are related. The first presents
an explanation of the response to all the events, the second presents an explanation in
pseudo-code of the reactions to the main events.

In this chapter we have analyzed the problem, explained the reasons that lead to our
main options and we have defined, informally, the main components of our approach.
We have also mentioned several directions that may prove interesting, but that we have
decided not to pursue to avoid overextending the focus of our research. In the following
chapters we will detail the design of the simulator, the specific implementation of these

ideas and the experiments we have devised to study the effects of these techniques.

Chapter 5

Simulator Architecture and
Agent’s Structure

We have discussed, in general terms, the possibilities and pitfalls of using informa-
tion provided by other agents. In this chapter we look at the structure of the agents and
environment. We will define the requirements they must fulfill to have the capabilities
discussed in the previous chapter.

In the following discussion we will assume that the agents are part of a software
environment. This implies the presence of environment Infrastructures (IS), such as
Directory Facilitators (DF), sensors, and reward evaluation modules. The application
of these methods in environments without these infrastructures would eliminate some
requests but would also require a more elaborate way to collect information on partners,
peers and rewards.

The objective of this work is to evaluate the impact of communication during learn-
ing. To do this we must simulate MAS problems that require agents with learning
skills. Initially the choice was either to implement a MAS using parallel processes,
which could run in different physical sites, or to simulate such a system. We chose the
simulation of this system in a single-threaded program for the following reasons:

e Learning is a processor and memory-intensive activity. The availability of the
required number of machines to deploy a true MAS in realistic conditions, during
long periods of time required to perform the experiments (several consecutive
weeks at times), was out of the question. It may be important at this point to say
that, despite the number of publications and the interest this work generated in
some members of the research community, the funding for a project related to
this work was only successful in its last few months.

e The simulator is required to run 100 to 1000 times faster than real-time (this

is specially significant in the traffic-control problem). The adaptations required

75

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 76

to achieve this speed would necessarily lead to minimizing delays, including
communication and synchronization. This would require either the distribution
of the processes over a relatively large number of computers, or the concentration
of processes of the main parts of the system reducing communication delays.
These restrictions are mostly related to the simulation rather than the advice-
exchange or learning procedures.

e The pre-developed agent platforms, existent when development started, were rel-
atively slow and, in some cases, had limitations to agents’ behavior, linkage with
external code, or top-level language used. Most MAS simulators were closely
related to Java, a language that has gone through an enormous evolution dur-
ing these few years. Its efficiency, even though still not par with C/C++ related
languages, has improved greatly since this project started.

e The design and implementation, from scratch, of an agent platform was out of the
scope of our research and would require too many resources that were necessary
for other activities.

e Since synchronization of processes between learning agents is necessary only in
a very limited number of situations the problems that can derive from parallel
implementation are minimal.

o A distributed MAS that uses this architecture would require distribution only at
the validation level. Most learning could still be done offline in processes where
efficiency would be the most important issue and these would not require any

type of synchronization.

We have implemented a multi-level simulation with three different levels. The first
level (learning) quickly sorts out the bad policies from the promising candidates. At
a second level (fest) the promising candidates are thoroughly tested in terms of long-
term adequacy and coordination with other agent’s policies. At a third level (valida-
tion) the best policies are under continuous validation and will only be replaced when
a test-policy proves to have better performance. The existence of the validation-level
can also allow us to determine when there are sudden changes in the environment’s
dynamics. In a real situation the first too levels would run offline in a simulated en-
vironment while the validation would be online acting on the problem. This type of
system requires continuous adaptation of the simulation to mimic as close as possi-
ble the real environment. In our simulation agents switch at fixed intervals between
different modes (learning, test and validation) to simulate the parallel execution of
these different levels. The predator-prey and load-balance problems have cycles of 200
epochs (100+80+20 for learning, test and validation, respectively). The Traffic prob-
lem has a cycle of 540 epochs (180+180+180). The difference in the partition and sizes
of the cycles is related to finding a comparable interval for each problem. In the traffic-
control problem 180 epochs correspond to a week and, given the daily oscillations, is

the minimum comparable interval.

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 77

Environment

Location

O

Figure 5.1: Environment’s structure. The Infrastructure (IS) modules may contain
Directory Facilitators (DF), as well as other services necessary to gather and distribute
information on a particular environment/location. Lines represent some of the possible

communications between elements in the environment.

5.1 Environment’s Structure

The main structural units of simulation software are: Environment, Location and
Agent, organized as depicted in figure 5.1. The Environment IS provides contact be-
tween different Locations. Each location provides agents with the following services:
addresses of other agents solving similar problems at different locations, state observa-

tions and rewards. State transitions are calculated at the location level.

There are several time scales in this environment. In the location-time an increment
corresponds to one state transition. Several local state transitions may occur between
two agent’s observations. All transitions occurred in the environment between two

observations will be perceived by the agent as a single transition.

Different environments may require a different number of actions per turn. In the
predator-prey problem we have one action per turn. In the traffic problem agents are
only required to act once every 12 turns (12s). The remaining turns are used to calculate
the evolution of the cars in the environment on a second by second basis. In the load-
balance problem each agent may route several jobs in each turn, so, in this case, several
actions take place in each turn.

At the agent level a time-step (or turn) is the interval between two state observa-

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 78

tions. In real environments there are two types of critical timings, the response-time
(i.e. the time elapsed between the observation of a certain state and the production
of an action) and the adaptation-time (the number of observations an agent needs to
adapt to new environment conditions). The first is easily met, because the evaluation
process is computationally simple for the algorithms under study. The remaining tasks
required for learning could be performed in the idle-time between two observations,
or in an offline server. The second critical timing is the most important for our study,
therefore measurements are always taken in terms of the number of validation epochs
(which represent a fixed number of turns). The points where synchronization between

learning agents is necessary in a real system would be:

e During the initialization procedures.
e Waiting for online advice to produce an action.

The first is not critical since it happens only once at startup. The second is necessary
only in a few of the studied scenarios and could be surpassed by local implementation
of the advisors’ evaluation function, as described in section 2.3.3. We stress this point
because autonomy is a very important characteristic and it may be severely limited by
the need to synchronize.

It can be argued that using communication and receiving external data increases
the amount of information and thus it cannot be directly comparable to solutions where
there is no communication. This view is correct if we assume that an increase in the
amount of data leads to a proportional increase in the critical response times (as was
common in ML approaches). In MAS, agents often have idle time while waiting for the
state transitions to occur in the environment. Thus, using this idle time to acquire and
process external information will incur in no penalty, except for the communication
cost. For this reason we have concerned ourselves mostly with running-times and
amount of data exchanged and less with comparing performances for similar amounts
of information. Nevertheless we have made an analysis of these costs in the discussion
(chapter 7).

5.2 Agent’s Structure

From an agent’s point-of-view each turn is composed of four phases:

1. Sensing: In this phase all agents receive their own view of the environment’s
state. All sensing actions are considered to be simultaneous. This emulates a
standing request, from each agent to a location IS, for state information. This
information is broadcasted to all members of the team simultaneously.

2. Acting: Agents perform the action selected for the current state.

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 79

3. State Transition: In this phase the location calculates the evolution of its state,
based on the previous state, the external events and the actions of all agents (as
explained in section 2.2, equation 2.11). During this time agents may be idle or
occupied with internal tasks.

4. Reward distribution: After the state transition each agent receives its own re-
ward (r; ; in equation 2.13). At fixed intervals the location IS sends a team-
reward (77 ,, in equation 2.13) to all agents in its location.

An agent contains the following components (depicted in figure 5.2 and detailed in
sections 5.2.2 through 5.2.8):

Evaluation: This module contains the evaluation function (F; in equation 2.10)
that maps states to actions according to the current policy or a previously saved
one, depending on the active set of parameters. Evaluation functions may be
required to keep certain temporary values used in some learning algorithms, e.g.
the derivative of the error used in BP.

Learning: The learning algorithm contains the £y ; functions that use rewards
and advice information to change the current hypothesis (equation 2.16, detailed
in section 5.2.3 for each type of algorithm used). Heuristic agents do not have
this module.

Control: The Control module takes decisions regarding: when to request advice,
how to filter and relay it to its Learning Algorithm. The calculations of frust,
learning stages and other concepts used in the decision of when and to whom

should information requests be made are also calculated here.

Parameter Stores: These stores contain several labeled hypotheses (i.e. parame-
ter sets) that can be saved and retrieved by the Learning Algorithm and Control
modules. The labels are: learning, test-candidate and validation.

Example Stores: This set of stores contains labeled sets of examples or advice di-
vided in epoch-size blocks. The stores have the following labels: current epoch,
last epoch, online advice, advisor-name validation, where N stands for the
epoch number. In each case where a store keeps information regarding more than
one epoch, old information is discarded after a certain time, or the store is reset
when a certain event happens.

Communication: This module receives, interprets, and relays information. It also
keeps track of the peers addresses received from the Location-DF. In the case
of our simulation it merely keeps pointers to peers that enable an agent to call
another’s methods.

Reward Statistics: Receives reward information and keeps several sets of reward
statistics.

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 80

Learning Agent
Parameter Example
Stores Stores
Reward Stats A
Learning Control

Evaluation

Communication

State
Reward
Acti .
ction Advice
Environment Advice Request

Reward Statistics

Figure 5.2: Agent components.

In the current implementation the parameter stores, reward statistics and learning
algorithms are associated to the Algorithm class hierarchy, and all remaining modules
are associated to the Agent class hierarchy. Further details on the simulator design can
be found in Appendix B.

In the following sections we will describe each of the components of our learning
agents in more detail and give more precise definitions for some of the concepts debated
in sections 2.2, 2.3 and chapter 4.

5.2.1 Response to External Events

The agents’ parameters, on creation, will define what type of learning algorithms it
will use as well as other characteristics that will be mentioned in the following sections.
A summary of these parameters can be found in appendix B. On creation an agent will
issue a standing request for the addresses and identifications of other agents possibly
parameterized by its own role. On arrival of a peer’s address and identification it will
issue a standing request for validation-reward statistics, whenever these are updated.

Agents’ functions, except for initialization procedures, are triggered by the arrival
of new information. The following list describes the actions triggered by each of the
events. Section B.3 contains the pseudo-code for the main events described here.

Observed state: Evaluate the state, with the suitable parameters for the current
mode (i.e. learning, test or validation), and execute the selected action. If using

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 81

specific advice, request advice. When imitating this process is suspended while
waiting for the advice reply.

Advice arrival: When new advice arrives the agent will process it, or store it for
offline usage. When an evaluation is suspended, waiting for advice information,
it will be resumed.

Standing-request for advice: Send all advice (i.e. examples of validation epochs
stored) that is currently available and matches the request; save the standing
request for future reference.

Advice request: Process the request using the current validation hypothesis and
send the requester the advised action.

Peer’s reward update: Update peer’s information. The arrival of this information
triggers a re-evaluation of all parameters that are related to peer’s rewards. When
the number of peers increases the information requests are restricted to the most

successful advisors.

End of validation epoch: Triggers the reply to all standing requests for rewards
and validation examples. When the validation policy changes it will signal this
event to all advisees with standing requests.

Peer’s reward request: These are usually standing requests, only issued during
initialization. They will be stored and re-evaluated at the end of validation

epochs.

Advisor’s change of policy: Triggers the process that clears the advice stores that
belong to that advisor.

Reward: Triggers the learning procedure, parameterized by the state and action
that correspond to this reward. Some learning algorithms may delay the learning
procedure until the arrival of the next observed state, whenever this information

is necessary for learning.

Epoch reward: Calculate combined reward for epoch n. Calculate each advisor’s
responsibility in this result (depending on the percentage of imitated actions or
on the classification accuracy of offline training) and update the trust coefficient
of each advisor. When offline advice is used, replay stored advice (EA and GP-

agents only use offline advice when a new-generation is created).

5.2.2 Reward Statistics

As discussed in section 2.2 an agent receives an individual reward for each action

issued and a team-reward for the performance in a given epoch. These are combined, as

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 82

shown in equation 2.13, to produce a combined reward. The Reward Statistics module
calculates several indicators based on each type of reward. The following description
focuses (in terms of notation) on the combined reward (R, ,,), but can easily be extrap-
olated for other cases. In the following equations, ¢ stands for the agent’s identification

and n is the current epoch.

e Infinite discounted reward (Réfin) provides a weighted reward in which the im-
portance of older rewards decays in time:

ﬁfio = R, (5.1
z:,d”-‘rl = aRz,dn + (1 - Q)Ri,n-‘rla (52)

with e € [0,1];
e Absolute best reward (R;’f#z) is the highest reward achieved this far:

R™* = max(R; m); (5.3)

7,1
’ m<n

e Decayed best reward (Rﬁ?ﬁ;‘j‘t) is an adaptive estimate of the maximum reward

achieved in the recent past:

RIG' =0, (5.4)
best | = max (BRI, Ri), (5.5)

i,mn

with 8 € [0, 1];

e Average reward (R;"?

. ¢ (no, d)) over a period d staring at epoch ng:

no+d—1
R{"(no,d) =1/d » Rin; (5.6)
n=ng
e Average reward evolution (RS (k, ng, d)) estimates the variation of the average
reward in k — 1 periods (k >= 2) of d # 0 epochs starting at epoch n:

AR (ng,d) = R (ng + d,d) — R (ng, d) (5.7)
k—2

R§¥(k,mo,d) = 1/(k = 1) > AR (no + dn, d) (5.8)
n=0

Replacing d with suitable values we can have estimates of the short, mid and

long term evolution of the average reward.

All these statistics, are permanently updated by all agents and may be sent to any
other agent upon request. Several of these were used in previous experiments to decide

when to get advice or select an advisor although, currently, only R;"Y is used.

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 83

5.2.3 Learning Algorithms and Evaluation Functions

The choice of the learning algorithms was based on two criteria: their applicabil-
ity to the type of problems we wanted to study and the differences in the way they
explore search-space. One of the main questions of our study is related to the effects
of cooperation between agents using different learning algorithms, therefore we made
all efforts to use learning algorithms with very different characteristics and exploration
strategies, to enforce heterogeneity. This allowed also a study of the common points in
the architecture that were useful to a broad spectrum of, reward-based, learning tech-
niques. In the first experiments (Nunes and Oliveira, 2002b) we used Q-Learning (QL),
Evolutionary Algorithms (EA) and Simulated Annealing (SA). SA was abandoned due
to the poor results registered in the initial trials. QL and EA showed interesting (and
different) behaviors in the initial experiments and were kept for that reason. In the final
stretch of this research it was found useful to have another algorithm with a radically
different knowledge structure from the other two. Strongly Typed Genetic Program-
ming (STGP) was chosen for this reason and also because it can produce knowledge in
a human-friendly format and incorporate domain knowledge, which is not the case of
EA or QL.

In the following subsections we will explain how each of these algorithms is used.
This explanation is based on the definitions presented in section 2.2 and will focus on

the differences between the standard implementations and our own.

QL-Agents

Upon observation of a new state (5;) a QL-Agent will evaluate it by calculating
Q; (5, ay, ;) for available actions a; ; (as explained in section 2.1.3) producing a vector
of Q-values (Qj (8¢, @t 4)). This evaluation can be a simple extraction of a row of values
from a matrix, indexed by state-action pairs (in table-based QL), or the evaluation of
an ANN that is trained to perform this mapping (ConnQL). The majority of the QL-
agents used in our experiments use ANN to map state-action pairs to Q-values due to
the high dimensionality of the state-spaces. It was found useful to divide the mappings
of the different actions. We have one, independent, ANN for each action, which can be
interpreted as an ANN array or a single ANN with independent hidden layers for each
output, as depicted in figure 5.3. In this case the units in the last layer are linear, i.e. do
not use a sigmoid function to restrict the output to [0, 1].

The vector of Q-values Q(3;, a;) contains the estimated quality of performing each
possible action. The choice of which action will be executed may be done in one of
two ways: using the action with the highest Q-value, or, choosing a random action
with probability p(a;|5) calculated by Boltzmann selection as shown in equation 2.7.
The former is used in test or validation modes, while the latter is used learning mode.
When the choice of an action is stochastic the Q-values are normalized to unit sum and
p(aj|s) is the normalized Q-value.

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 84

Output vector

Linear Output Layer

Connection, w
n, i, j

Hidden unit

Hidden Layer

\ Connection, w .
n, i, j

D | Input Layer

/

Input unit

Figure 5.3: ANN for Connectionist Q-Learning with separate hidden layers for each
output and a linear output layer. Circles represent ANN nodes, rectangles enclose
associated nodes and lines represent weighted links between nodes.

We can define the output of 7; +(5; +) (equation 2.10) as any of the following: the
vector of Q-values, the probability of using each action, or a binary vector with 1
representing the final choice and O for the remaining actions. The first two provide
more information than the latter, so, we keep the probability of choice as the action
vector to be stored and delay the choice of the actual action until its execution. It is
also this action-vector that is used as advice. The hypothesis’ parameters are the Q-
values themselves in table-based Q-Learning or the weights of the ANN in ConnQL.

When a reward, r;, arrives, the ANN that corresponds to the action that originated
this reward, is trained using standard backpropagation, with 5, as input value and r; +
BQmax(5:11) as the desired response. QL-Agents store these examples and perform
a replay (presenting the examples in reverse order) at the end of each training epoch,
as advised in (Lin, 1992) to improve the speed of knowledge acquisition by the ANN.
When using table-based QL instead of ConnQL the update is done as shown in equation
2.5. The epoch-reward is registered but not used directly in the learning process. This
may be a problem when the combined reward has a strong component of the global
reward and it conflicts with the individual reward (i.e. increase in the individual reward
may cause a degradation of global rewards). The main parameters of QL-agents and
the effects of changing them are described in table 5.1.

Adpvice can be used in one of three ways:
Imitation: In this case advice replaces the evaluation process and the agent uses

the advised action and observes the result, as in the work of Clouse (1997), de-

scribed in section 3.1.

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 85

Table 5.1: Main parameters for a QL-Agent. The second column contains the type

of change these parameters undergo during training in standard implementations. The

third column is a summary of the ex

pected effects of changing each parameter.

Parameter

‘ Standard

Effects of change

|

ANN structure

None

Insertion of nodes in the hidden layer(s):
Possible increase in the ability to map
other functions. Higher probability of over-
training/specialization;

Removal of nodes: Decrease in the detailed
mapping capabilities. Possible better general-

ization.

BP learning-rate «
(Eq. 2.1)

for ConnQL only

Decayed

Increase: Faster convergence, but also higher
instability and possibly jumps to regions out-
side the local minimum’s attraction basin;

Decrease: Slower convergence, better explo-

ration of the current local minimum area.

2.7)

QL discount 3 (Eq. | None Increase: Emphasize long-term results;
2.5,2.8)
Decrease: Emphasize immediate results.
Biasing weight + | None Increase (over 1.0): Give more importance to
(Eq. 5.9) advice than own experience;
Used in advice only Decrease (below 1.0): Give more importance
to own experience than advice.
QL learning-rate « | Decayed | Increase: Focus on last experiments;
(Eq. 2.5)
Used in table-based Decrease: More emphasis on previously ac-
QL only quired knowledge.
Temperature 7' (Eq. | Decayed | Increase: Increases exploration and makes the

response more stochastic in learning mode;
Decrease: Increases exploitation of previously
acquired knowledge and determinism in the
choice of actions.

Virtual-Experience: In this case, the agent will learn from another agent’s exam-

ples as if they were its own, as in LBW (Whitehead, 1991), described in section

3.1. This requires the existence of information on the reward obtained and the

state observed after acting, thus it cannot be used with specific advice.

Biasing: In the third case the Q-value that corresponds to the advised action is
updated as defined in Eq. 5.9. In ConnQL the ANN is trained using this value

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 86

as desired response, while in table-based QL this will correspond to the above-
mentioned assignment. This process is based on the same rationale as the one
used by Whitehead (1991), but differs in two important details. Whitehead uses
a fixed bonus (positive for the chosen action and negative for all other available
actions) and separates the biasing information from the Q-values. A fixed bonus
will quickly freeze the action choices by setting a large gap between advised
actions and others. Setting the value of the advised action equal or slightly higher
than the best Q-value for that state will enable the agent to explore the advised
option and, if the advice proves to be inadequate, quickly return to the previous

policy.

_ v-max(Q(Se,arg)) 0 Q5rar ;) < max(Qj(Si, ar,5))
Q(St, arr) = 3 _ i (5.9)
Q(5t,ar,) - otherwise
The variable j is the index that differentiates the several possible actions, v €]0, 2[, a4k

is the advised action, and a ; runs through all actions available at the current state.

It is important to notice that imitation, is the only advice process that requires syn-
chronization, i.e. advice must arrive before a decision is taken. This requirement can

be relaxed as explained above (in section 2.3.3) or by using stored advice.

It is also important to notice that these processes differ in how new knowledge is
acquired. When imitating the agent learns from its own reward. If the advice is not
appropriate there is no change in the policy, i.e. the action with maximum Q-value will
be the same after the update. The advisee can also attribute direct responsibility to the
advisor for the outcome of the action. When biasing or virtual-experience is used the
Q-values are changed, possibly assuming a value that is not adequate for the advised
agent. This value may have impact on future choices. It also is not guaranteed that
the advised action is selected. If this is the case, the advisor cannot be held directly

responsible for the result.

Virtual-Experience and Biasing can be used offline, which will mean that informa-
tion is stored and the actual update procedure will be done only in the beginning of a
learning phase. In QL-agents, when using offline advice, the examples collected from
all the available advisors are used only at this moment, changing the current learning
hypothesis.

EA-Agents

The evaluation function for EA-Agents is similar to the one described for ConnQL
in the previous section, i.e. an ANN array where the input layer has the same dimension
as the state. In this case, however, the output layer is composed of sigmoid (softmax)
functions (tanh() in this case). The output vector will contain values in [-1,1] and

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 87

the desired values for training must be within that range. Another difference is in
the interpretation of the result. The output of this network is not an estimate of the
reward as in QL. All we can say is that the evolution mechanism should tend to select
mappings in which the highest activation corresponds to the best action. The action
that corresponds to the highest output is selected and ties are broken randomly. When
trained from advice it will generate maps of the “relative adequacy” of each action for
a given state, from the advisors’ point-of-view.

The algorithm used differs in the following points from the one presented in (Glick-

man and Sycara, 1999), summarized in section 2.1.4:

e Each specimen is evaluated during an epoch and its fitness is the combined re-
ward for that epoch. When all specimens are evaluated the selected specimens
will be the ones with highest fitness. Contrary to (Glickman and Sycara, 1999)
we do not use tournament selection;

e The selection strategy is elitist (i.e. keeps a number of the best specimens in the
next generation without any changes);

e The crossover strategy consists on choosing two parents from the selected pool
and copying subsets of the hypothesis from each of the parents to form a new
individual. Notice that the restriction that forces all ANN to have the same struc-
ture makes it possible to copy subsets from one parent for the same position (i.e.
node) in the offspring, thus, leading to the same type of feature-detection behav-
ior in the output of that layer. The number of specimens generated by crossover
is minimal when compared to the ones generated by mutation, but contrary to
(Glickman and Sycara, 1999) we have found this procedure useful.

At the end of each generation a certain number of specimens is selected and the re-
maining members of the population are destroyed. The best specimens in the selected
pool are copied to the next generation unchanged. The remainder of the population
is filled with specimens resulting from mutation and crossover of the selected speci-
mens. The number of specimens that are kept unchanged, generated by mutation and
crossover is determined by the algorithms’ parameters, detailed in appendix B. The
main parameters of EA-agents and the effects of changing them are described in table
5.2.

Mutation is done by copying a selected specimen and changing its hypothesis’ pa-
rameters (h; ; € H;), which in this case are the ANN’s weights, according to:

hi PR < tati 70
hige1 = { . A (5.10)

it +72, @ otherwise

where 1 € [0,1] is a randomly generated number with uniform probability and 75 is
randomly generated by a normal distribution with a variance equal to the mutationqze.

mutationyrep is the probability of mutating a given hypothesis’ parameter.

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 88

Table 5.2: Main parameters for an EA-Agent. The second column contains the type of
change these parameters undergo during training in normal circumstances. The third
column is a summary of the expected effects of changing each parameter.

Parameter Type of | Effects of change
change
Population size Fixed Increase: More exploration; slower training;

Decrease: Less exploration; faster fine-tuning of
the best specimens found.

BP learning rate | Decayed | Increase: Faster convergence, but also higher in-
a (Eq. 2.1) stability and possible jumps to regions outside
the local minimum’s attraction basin;

Decrease: Slower convergence, better explo-
ration of the current local minimum area.

Mutation-rate Decayed | Increase: Higher exploration, higher probability
(Eq. 5.10) of generating bad specimens;
Decrease: Focus on a few good areas of the

search space. Danger of loss of diversity.

Mutation proba- | Decayed | Similar to mutation-rate. The relative impact of
bility (Eq. 5.10) these two parameters depends on the structure of
the hypothesis (specially the number of hypoth-
esis’ parameters).

Kept specimens | Fixed Increase: More elitist. Less exploration, more
(%) exploitation. Danger of loosing diversity
Decrease: Higher exploration

Crossover (%) Fixed The effects of crossover are highly dependent on
the hypothesis structure, but, generally, the num-
ber of crossover specimens is positively corre-
lated with exploration

Mutated (%) Fixed Similar to the above.

ANN structure Fixed Similar in all respects to the situation described

in table 5.1. Difficult to implement because all
specimens must change simultaneously to keep
the crossover mechanism. Some proposed so-
lutions to mix EA and BP may overcome this
problem elegantly, see (Salustowicz, 1995; Yao,
1999) for details

Crossover is done by generating a new specimen from copies of parameter sub-sets
from the parents. The subsets are defined a priori. In this case we use subset-masks that

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 89

group the incoming weights of each node. Since units (specially those in the hidden
layer) work as feature detectors this seemed an appropriate partitioning. The same view
is defended in (Salustowicz, 1995).

Learning from advice can be done online or offline using standard or ALR-BP.
Online BP was abandoned early during this research due to its poor results when com-
pared to offline ALR-BP. EA-agents cannot use imitation or virtual-experience because
they cannot learn from actions that were not generated by a specimens’ policy. The de-
sired value (d) for a certain advised action ay, is defined as d; = C when j = k
and d; = —C otherwise. In most examples of BP algorithms C is set to 1, but this
target-value can never reached by the sigmoid (tanh()) which may cause weights to
grow indefinitely in an attempt to reach the target. To solve this problem some authors
suggest re-scaling the sigmoid to [—1.2, 1.2] others the use values of C' lower than one.
We have chosen the latter, using C' = 0.97. Using a value of C' lower than one has
yet another advantage. By keeping the output sigmoids in the verge of saturation it
is more likely that small changes in the weights can have large effects on the outputs,
this allows low mutation-rates to continue being effective in changing the network’s
mapping.

The integration of advice is done at the beginning of each new generation. Part of
the new specimens are trained using the examples saved in the advisor’s stores. When
standing advisors are used only one specimen is trained. When using multiple advisors,
one specimen is trained for each of the advisors that exhibits a better validation perfor-
mance. Each specimen is trained with the advise store of only one advisor. The training
of the new specimen continues until the number of epochs without a decrease in the
error is higher than K x E,,, where K = 150 is a constant and F,, is the classification
error in epoch n.

GP-Agents

The third type of agents use Strongly Typed Genetic Programming (STGP). The
major differences between our approach and the ones currently in use (explained in

section 2.1.5) are:

e Each action has a different program tree that performs a fuzzy classification of
the pattern;
e The leaf nodes are scalar values instead of labels;

A Program Tree (PT) has one root-node for each possible action and evaluates to
a real number having as argument a state vector. Nodes have two possible base-types
according to their output (boolean or real). A summary of the types of nodes available
can be found in table 5.3.

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 90

Cond

bool

bool

AND

[

bool

1

IF

real

__Else

Then
real

In Interval

@XtBoolFunct(s))

(ExtRealFunct(s))

real real real
@alueOf(s,i)) Const) (Const) real
Cond
IF Else Const
real
bool
Then
>]
real real
(ExtRealFunct(s) j Const real
ValueOf(s,1))

Figure 5.4: An example of a Program Tree. Diamonds represent conditional instruc-
tions. Rectangles represent functions. Round-edged rectangles represent leaf-nodes.

The result types appear above each node.

External Function nodes point to environment-specific functions, of the appropri-
ate type that each environment must supply. All External Functions (boolean and real-
valued) take the state as input and calculate a certain value based on that state, e.g.
an environment-specific distance between two states, an evaluation of the equality be-
tween two elements of the state-vector, etc. This allows the introduction of domain-
specific knowledge by making available to the program a set of functions that are mean-
ingful in the context and would be complex to generate by random assembly of nodes.
This will obviously introduce a bias, but it is a common procedure in STGP and has
proved to achieve interesting results (Haynes et al., 1995b). The functions used for
each of the problems can be found in sections 6.1 through 6.3.

The initial trees are randomly generated within the restrictions posed by the types
and with a given (pre-set) probability of generation for each node type. The root-node is
always an If-Then-Else to avoid trivial trees. The maximum depth is also pre-set. When
maximum depth is reached the generation of a terminal node (one without subtrees) is
forced.

Evaluation is done recursively always carrying the state as a parameter. The set of
program trees generates a vector of real numbers as in the case of EA and QL-agents.
The selected action is the one with highest activation and ties are broken randomly.

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 91

Table 5.3: Description of the main types of Nodes in a Program Tree. The subtree types
are: (b)oolean and (r)eal.

Name Type | Subtrees | Data Evaluates to

If-Then-Else real Ib+2r | - The value of the true branch

if the condition is true and

the false branch otherwise

Index Value real 0 index state[index]

Real Const Value real 0 real A constant real value in [-
1,1]

Arithmetic real 2r The result of an arithmetic

operation between two real
numbers (sum, multiplica-
tion or subtraction). The re-
sult is bounded to the [-1,1]

interval
Ext. Real Func. real 0 function | A real number, f(s), where
name f() is a given external real-

valued function

Logical bool 2b - The result of a logical oper-
ation between two booleans
(AND, OR, XOR). The
negation operator is also
available having a single

branch.
Ext. Bool Func. bool 0 function | True/False, f(s), where f()
name is a given external boolean

function
In Interval (and | bool 3r - True if the evaluation of the
Outside Interval) first sub-tree is in the inter-

val defined by the evaluation
of the two remaining sub-

trees, false otherwise

Greater Than (and | bool 2r - True if the evaluation of the
Smaller Than) first sub-tree is greater than

the second, false otherwise

All processes related to specimen evaluation and selection as well as the generation
of a new population are similar to the ones described for EA except for mutation and
crossover. The main parameters of GP-agents and the effects of changing them are
described in table 5.4.

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 92

Table 5.4: Main parameters for a GP-Agent. The second column contains the type
of change these parameters undergo during training in normal circumstances. The
third column is a summary of the expected effects of changing this parameter. Most
parameters were omitted because they are similar to those referred in table 5.2 and
changes have similar effects.

Parameter Type of | Effects of change
change

Max. tree depth Fixed or | Increase: Possible increase in the ability to
undefined | map other functions; slower training. Higher
probability of over-training/specialization

Decrease: Less detailed mapping capabili-
ties. Possible better generalization; faster

training

Trees are mutated by recursively applying a mutation operator to each node. If a
given random number (uniform in [0,1]) is smaller than the current mutation probability
the current node will mutate. The type of mutation will depend on the node it is applied
to. Nodes with subtrees can delete a sub-tree and generate a new one. Nodes containing
data can change it by disturbing the constant value stored in a Real Const Value node
with random noise, or by changing the External Function to be applied, as long as the
return type of the function is maintained.

Crossover is done simply by selecting action-subtrees randomly from one of the
parents, to form a new set of trees for the offspring. The probability of choosing a

subtree from a certain parent is proportional to the parents’ fitness.

Most of the algorithm parameters are similar to those used EA, except for BP-
related parameters that, in this case, are replaced by the PT-specific parameter: maxi-

mum tree depth.

When a random tree is generated (or a mutation occurs) a restriction vector may
be passed as a parameter during the recursive generation procedure. In some nodes
restrictions will be added to this vector before each branch generation. For example,
when generating an In Interval node we will need three branches, the first is the variable
and the remaining two define an interval. It is pointless to have three Constant Real
nodes as branches since the evaluation is always the same regardless of the state value.
We restrict at least one of these values (the first) to being a non-constant. We also
restrict the evaluation of all arithmetic functions to the [-1,1] interval by cutting-off the
results that exceed these limits.

Adpvice is integrated in the knowledge structure using ID3 based on a batch of
examples collected from other agents. Each set of examples is processed once for each
action. Before processing, the examples are divided into positive (states for which that

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 93

action was advised) and negative ones. Each action is trained separately generating its
own program tree. An action k is considered to be advised for a certain state if k is the
index of the maximum value in the action-adequacy vector returned by the advisor.

As for EA-agents the training of new specimens with advice occurs only when
a new generation is created and each specimen integrates the advice from a single

advisor.

There is a predefined set of boolean functions that partitions any set of states in two

subsets. This set contains the following functions:

e Greater Than
Smaller Than
In Interval

Outside Interval

External Bool Functions

The first four functions are tried for different combinations of Index Value and Constant
Value nodes (e.g. Greater Than(Index Value: 1, Constant Value 0.2) corresponds to
the test s; 41 > 0.2, for s;;1 € 5;;). The maximum gain partition is chosen at
each step. When a subset contains only positive or only negative nodes a Constant
Real Value node is generated with 1.0 or -1.0, respectively. When maximum depth
is reached a node is generated with a constant value that represents the percentage of
positive examples in the current subset. This variant of ID3 enables the representation
of fuzzy solutions instead of limiting the leaf nodes to a definite class and although it
was autonomously developed by the author it may be considered a simplified version
of the algorithms referred in (Ichihashi et al., 1996; Chiang and Hsu, 2002).

5.2.4 Information Storage

Two main types of learning-related information are stored by the agents: hypothesis

and examples.

Hypothesis

The stored hypothesis are labelled: learning, test-candidate and validation. EA and

GP agents also store the hypothesis’ parameters for each specimen of their populations.

The learning hypothesis contains the parameters currently in use. It is usually a
copy of the parameters in memory that is updated at fixed intervals. The test hypothesis
contains the parameters that are under evaluation when the system is in test-mode.
These parameters may become the new validation hypothesis if they prove to achieve a
better performance. The validation hypothesis is the one that is estimated to provide the
best performance. These are the parameters used to provide advice to other peers. All

CHAPTER 5. SIMULATOR ARCHITECTURE AND AGENT’S STRUCTURE 94

hypotheses require a certain evaluation-time before any changes are allowed. This time
the mid-term reward evolution interval defined in equation 5.7. In implementations
where the learning, test and validation environments run in parallel these stores would

be split through different levels.

Examples

The example stores are labeled: last epoch, current epoch, validation and advice. In
addition to these there is one store for each advisor. The last and current epoch stores
keep the examples experienced in the last two epochs. The validation stores are used to
cache the examples that will be sent to peers that have a standing-request for validation-
examples. The number of validation-stores that an agent is allowed to keep at each time
is a parameter defined during initialization. Validation stores are destroyed whenever
the validation hypothesis is updated. Advice stores keep the advice that was provided
in the past for possible future replay. The advice is split by several advisor-related
stores.

Example stores are cleared/replaced when the following events take place:

e End of epoch: last epoch’s stored examples are replaced by the ones in the cur-
rent epoch store. The latter is cleared.

e Change of standing advisor: Advisor’s store is cleared.

e Change in an advisors’ best policy: Advisor store is cleared on its signal.

e Learning stage of advisee changes (Eq. 5.12 through 5.14) or advice is started or
stopped (Eq. 5.18). All advisors’ stores are cleared.

5.2.5 Learning Stages

The evolution of an agents’ learning process is mimicked by the definition of four
Learning Stages: Exploration, Novice, Intermediate and Expert. Each learning-stage
has specific characteristics. Some learning parameters and advice integration modes
are more suitable for each case. By comparing table 5.5 with tables 5.1, 5.2 and 5.4
we can start to draw a picture of the changes in parameters that are appropriate in each
situation.

Agents evaluate the conditions t