
Definition and Computation

of

Similarity Operations

between

Web-specific Lexical Items

Lúıs Sarmento

Definition and Computation

of

Similarity Operations

between

Web-specific Lexical Items

Supervisor: Prof. Dr. Eugénio de Oliveira

Faculdade de Engenharia
Universidade do Porto
Rua Dr. Roberto Frias, s/n
4200-465 Porto, Portugal

This work was supported by Fundação para a Ciência e Tecnologia (FCT) through
grant SFRH/BD/23590/2005.

Copyright c⃝ 2010 by Lúıs Sarmento

This thesis is dedicated to my Parents,

Maria Helena and Lúıs Carlos,

whose love, support and faith in me

have always been unconditional.

iii

Acknowledgments

This work was only possible thanks to the contribution of many people, who
helped in several different ways during almost five years. It is hard to acknowledge
all these people, whose true impact on the final work I may not even realize at
this moment.

First of all, I would like to thank my Parents, Maria Helena and Lúıs Carlos,
and my Family. I had many dark moments during the preparation of this thesis
but they were always there giving love and support and helping to cast some light
over the shadows.

Secondly, I would like to express my gratitude to my supervisor Prof. Eugénio
de Oliveira, who always supported this thesis at various levels and provided all
the necessary conditions and protection for this project to grow and to flourish.
Thank you, Professor Eugénio de Oliveira, for standing by my side, and for helping
me navigate through the eye of the storm.

I also had the fortune of having had the help of other excellent Professors
from outside the University of Porto. All of them taught me things that were
fundamental in complementing what I learned in my University. I thank Professor
Maarten de Rijke, from the University of Amsterdam, for his bright insights and
ability to see clearly what for me was very fuzzy. I thank Professor Valentin
Jijkoun, also from the University of Amsterdam, for his method and objectivity.
I thank Professor Lyle Ungar, from the University of Pennsylvania, for his ability
to patiently teach me and motivate me during most of the period of this thesis.
And, finally, I thank Professor Mário Silva, from the University of Lisbon, for his
surgical criticisms, for involving me in his projects and, last but not least, for his
keen sense of humour.

This thesis also gave me the opportunity to meet and work with other young
researchers who had either recently finished or were still developing work for their
PhD’s. I would like to thank Fabien Gouyon, Paula Carvalho, Sérgio Nunes and
Rui Sousa Silva. All of them helped me to develop my work in many ways and to
explore new ideas. I have learned a lot from all of them, and more importantly,

v

they all contributed to making me feel part of a community of promising young
researchers based in Portugal.

A great deal of the work presented in this thesis was started and partially
developed in collaboration with industry leaders. In 2007, I had the chance to
spend a six-month internship at the New York offices of Google. I learned a
great deal during this internship, not only from a technical point of view, but
also about the organics of team work. I thank all the Google team in NY and
especially Alexander Kehlenbeck, Casey Whitelaw and Nemanja Petrovic. I have
also had the opportunity to collaborate with SAPO.pt in several projects. The
entire SAPO.pt team has always been very enthusiastic about this collaboration,
and this has resulted in good ongoing relationship. I would like to thank espe-
cially Benjamin Junior, João Pedro Goncalves, Paulo Trezentos and also Celso
Martinho.

Additionally, I would like to thank all my colleagues at LIACC / FEUP for
their support, for the productive discussions and exchange of ideas, and also for
the friendly environment that they helped to create. I also wish to thank all the
staff from the Secretary of the Department of Informatics, and specially Sandra
Reis, for helping me to fight the never-ending battle against bureaucracy.

I would also like to thank Professor Belinda Maia, from the University of
Porto, with whom I have worked on projects and events for more than eight
years, and who has always been patient and supportive in issues more important
and much more complex than science.

I am also deeply indebted to the Fundação para a Ciência e Tecnologia (FCT)
who supported my work financially during 4 years. I would never have been able
to develop the work required for this thesis if I had not been allowed to dedicate
myself full time to the task, and that was only possible thanks to the PhD grant
provided by the FCT.

I would like to end by thanking Jorge Teixeira, who, midway through this
thesis, decided to join me in tilting at windmills. His enthusiasm, dedication and
mental strength have been invaluable. I am happy to see that he is now getting
ready to tilt at his own windmills. Good luck Jorge!

vi

Resumo

Nesta tese iremos estudar vários tipos de relações de similaridade que podem ser
estabelecidas entre diversas classes de items lexicais t́ıpicos da Web, nomeada-
mente (i) palavras (ou expressões multi-palavra) do léxico comum, (ii) nomes
próprios de uma alargada gama de entidades, e (iii) outras estruturas lexicais es-
pećıficas das Web como etiquetas de classificação, tags Web 2.0 e palavras-chave
geradas espontaneamente pelos utilizadores. Iremos focar particularmente em três
tipos de relações de similaridade que se podem encontrar em vários cenários
práticos de processamento linguagem: (i) similaridade de conteúdo, (ii) simi-
laridade de tipo e (iii) similaridade de função.

Começaremos esta tese por formalizar cada um dos três conceitos de similari-
dade referidos e demonstraremos como é posśıvel unificar os três conceitos numa
estrutura formal mais abrangente. Depois, discutiremos assuntos relacionados
com o Modelo de Espaço Vectorial, a principal ferramenta computacional que ire-
mos empregar para a implementação de funções de similaridade entre items lex-
icais. Em seguida, abordaremos diversas questões relacionadas com a avaliação
dos métodos de computação da similaridade, incluindo uma discussão acerca das
estratégias de avaliação posśıveis, das medidas de avaliação apropriadas e dos
recursos existentes para uso como referência padrão.

Prosseguiremos com a apresentação de sete casos de estudo, todos eles moti-
vados por questões práticas encontradas durante o desenvolvimento de diferentes
projectos de processamento automático de linguagem. Cada um destes casos
práticos permitirá ilustrar uma situação em que um determinado conceito de
similaridade associado a um dos tipos de items lexicais em causa é a chave para
a resolução de um problema concreto de processamento de linguagem. Através
destes sete casos de estudo iremos validar, em diversos cenários, a formalização e
os métodos de computação de similaridade propostos nesta tese.

Terminaremos apresentando as conclusões finais, enumerando as principais
contribuições desta tese e apontando posśıveis linhas de investigação futuras.

vii

Abstract

In this thesis we study several types of similarity relations that can be established
between different classes of lexical items that are typical of the Web, namely (i)
words (or multi-word expressions) in the general lexicon, (ii) names belonging to
a wide range of entities, and (iii) other lexical structures that are specific to the
Web, such as classification labels, Web 2.0 tags and keywords spontaneously gen-
erated by users. We focus more specifically on three types of similarity relations
that can be found in several practical language processing scenarios: (i) content
similarity , (ii) type similarity and (iii) functional similarity.

We begin this thesis by formalizing each of the three previously mentioned
similarity concepts, and we show how it is possible to unify them into a more
comprehensive formal structure. Then, we discuss issues related to the Vector
Space Model, the main computational tool used for supporting the implementa-
tion of similarity functions between lexical items. Next, we address several issues
related to the evaluation of the proposed methods for computing similarity, in-
cluding a discussion about the different possible evaluation strategies, the most
appropriate evaluation measures, and the resources available for serving as a gold
standard in our evaluation procedures.

We proceed by presenting seven case studies, all of them motivated by prac-
tical questions found during the development of several automatic language pro-
cessing projects. Each of these case studies illustrates situations in which a given
similarity concept is the key for solving a practical language processing problem.
These seven case studies allow us to validate, in various settings, the formalization
and methods for computing similarity that we propose in this thesis.

We end by presenting the final conclusions, by enumerating the main contri-
butions of this thesis and by presenting lines for future research work.

ix

Contents

Acknowledgments v

Resumo vii

Abstract ix

1 Introduction 1
1.1 Research Questions . 4
1.2 Organization of this Thesis . 7
1.3 Foundations . 8
1.4 Outline of the Main Contributions 9

I Background 11

2 Similarity and Ambiguity 15
2.1 Why is similarity important? . 15
2.2 Lexical Items, Referents and Dynamic Lexicons 17
2.3 Defining Similarity . 19

2.3.1 Content Similarity . 19
2.3.2 Type Similarity . 20
2.3.3 Functional Similarity . 22

2.4 Semantic Ambiguity . 24
2.5 Conclusion . 26

3 The Vector Space Model 27
3.1 Introduction . 27
3.2 VSM Parameters and Distance Metrics 28
3.3 Feature Context . 30

3.3.1 Directly Observable Feature Contexts 30

xi

3.3.2 Indirectly Observable Feature Contexts 31
3.3.3 Partially Observable Feature Contexts 32

3.4 Feature Weighting Functions . 32
3.4.1 Observations, Contingency Table and Estimations 33
3.4.2 Significance Tests as Feature Weighting Functions 34
3.4.3 Weighting Functions based on Information Theory 42
3.4.4 tf-idf as a Feature Weighting Function 44

3.5 Vector Distance Measures . 45
3.5.1 Distance Measures over Real-Valued Vector Spaces 46
3.5.2 Distance Measures over Binary Vector Spaces 49

3.6 Conclusion . 51

4 Evaluation 53
4.1 Direct vs. Indirect Strategies . 53
4.2 Direct Evaluation Strategies . 55

4.2.1 Evaluating Pairings . 55
4.2.2 Evaluating Ranked Lists 56
4.2.3 Evaluating Clusters . 58
4.2.4 Gold-Standard Resources for Direct Evaluation 62

4.3 Indirect Evaluation Strategies . 67
4.4 Conclusion . 68

II Common Lexicon 69

5 Identification of Verb Synonyms 73
5.1 Introduction . 74
5.2 Related Work . 75
5.3 VSM for Verb Synonyms . 78
5.4 Evaluating Verb Synonyms . 79
5.5 Experimental Setup . 81

5.5.1 Feature Information . 82
5.6 Results and Analysis . 82
5.7 Conclusions . 86

6 Paraphrasing Job Titles 87
6.1 Introduction . 88
6.2 Related Work . 89
6.3 Method Description . 91

6.3.1 Finding Potential Short Paraphrases 92
6.3.2 Inferring Substitution Rules 93

6.4 Experimental Setup . 94
6.4.1 Evaluation . 97

xii

6.5 Results and Analysis . 98
6.5.1 Substitution Rules . 98
6.5.2 Evaluating new Job Titles 101

6.6 Conclusions . 102

III Names and Entities 105

7 Finding Type Similar Entities 109
7.1 Introduction . 110
7.2 Related Work . 110
7.3 Expansion using Membership Functions 111

7.3.1 Implementing a Class Membership Function 112
7.3.2 Identification of Lists . 112
7.3.3 Building Feature Vectors 113
7.3.4 Calculating membership function 114

7.4 Evaluation Using Wikipedia . 114
7.4.1 Test sets and performance measures 115
7.4.2 Test Set Construction using Wikipedia 115
7.4.3 A Baseline using Wikipedia Categories 118

7.5 Experimental Setup . 119
7.5.1 Extracting entities and features 119
7.5.2 Evaluation setup . 121

7.6 Results . 122
7.6.1 Results on least frequent elements 124

7.7 Conclusions . 125

8 Web-Scale Entity Disambiguation 127
8.1 Introduction . 128
8.2 Related Work . 130

8.2.1 Approaches based on clustering 130
8.2.2 Approaches using external knowledge 135

8.3 A Clustering Approach to NED 139
8.3.1 Feature Vector Generation 139
8.3.2 Clustering Procedure Overview 140

8.4 Clustering-based Approaches to Web-Scale NED: Challenges . . . 141
8.5 Efficient Web Clustering by Finding Connected Components . . . 142
8.6 Additional Scalability Issues . 144
8.7 Evaluation Framework . 146

8.7.1 Preparing the Gold Standard 147
8.8 Experimental Setup . 147
8.9 Results and Analysis . 148
8.10 Conclusion . 152

xiii

IV Labels, Web 2.0 Tags and other User-Generated
Keywords 153

9 Conflating News Topic Labels 159

9.1 Introduction . 160

9.2 Related Work . 161

9.3 Propagating Topic Labels . 162

9.4 Experimental Set-Up . 163

9.5 Results and Analysis . 164

9.6 Conclusions . 166

10 Expanding User-Defined Tag Sets 167

10.1 Introduction . 168

10.2 Related Work . 170

10.3 Tag Propagation Method . 170

10.4 Data . 171

10.5 Experimental Setup . 172

10.5.1 Evaluation . 174

10.6 Results and analysis . 175

10.6.1 Automatic vs manual evaluations 176

10.6.2 Particular case of Long Tail artists 176

10.6.3 Further error analysis . 177

10.7 Conclusions . 178

11 The Suggestion of Keywords for Ads 181

11.1 Introduction . 182

11.2 Related Work . 183

11.3 Method Description . 186

11.3.1 Computing Keyword Synonymy 187

11.3.2 Keyword Suggestion and Ranking 188

11.3.3 Overview of the Suggestion Procedure 189

11.4 Evaluation: an On-line Method 190

11.4.1 Evaluating Method Usefulness 192

11.4.2 Impact on Revenue . 193

11.5 Experimental Set-Up . 194

11.6 Results and Analysis . 195

11.6.1 Method Usefulness . 196

11.6.2 Impact on Revenue . 197

11.7 Conclusion . 199

xiv

V Conclusions 201

12 Conclusions 203
12.1 Overview . 203
12.2 Answer to Research Questions . 204
12.3 Main Contributions . 208
12.4 Future Directions . 209

12.4.1 High-Level Improvements in Previous Work 209
12.4.2 New Lines of Research . 211

A Demonstrations for Chapter 8 215

Bibliography 217

xv

Chapter 1

Introduction

This thesis is built around the notion of semantic similarity, and, more specifi-
cally, around the question of how to decide in context if two lexical items represent
“similar” referents or not, according to a pre-defined notion of semantic similarity.
This question is central to natural language processing, since many “real-world”
language processing applications depend, directly or indirectly, on such knowl-
edge about similarity, especially when some form of robust semantic analysis
is required. For example, in Information Retrieval (IR) or Question-Answering
(QA) applications, information about word synonymy is important for matching
query terms with documents that do not contain those specific query terms but
only their synonyms.

For many years, lexical-semantic resources, such as (hand-made) machine-
readable dictionaries (MRD) and thesauri, have provided the information about
word similarity that was required by most language processing applications. Tra-
ditionally, such applications were designed to process specific document collec-
tions, usually of a restricted domain and genre, and, therefore, were supposed to
face rather controlled text processing environments, with stable lexicons and con-
cept ontologies. And, since text production and dissemination were essentially
in the hands of experts and editors, text correctness, both from a lexical and
grammatical point of view, was taken for granted by application developers.

However, the environment for “real-world” text processing technologies has
changed dramatically over the last decade, and the Web has brought totally new
and different ways of producing, disseminating and consuming text contents. We
can find many distinct text formats on the Web today and while some of them
are comparable to traditional formats, others are totally new. For example, the
Web contains:

∙ industrial media (e.g. on-line newspapers);

∙ revised contents (e.g. scientific papers, on-line books);

∙ user-generated contents (e.g. blogs, mailing-list archives);

1

2 Chapter 1. Introduction

∙ a wide variety of semi-structured contents (e.g. information tables, bibtex
entries) and media-specific contents (e.g. bookmark lists).

These formats – and the interconnections that have been organically estab-
lished between them – have decisively reshaped the essential nature of text. The
building blocks of such an amalgam of contents are no longer “words” belonging
to a relatively stable and well-established lexicon, but “text symbols” which are
part of an ever-expanding universe of words, entity names, tags, domain-specific
vocabularies, neologisms, and other idiosyncratic sequences such as spelling mis-
takes or emoticons.

In such a scenario, traditional lexical-semantic resources are becoming insuf-
ficient for supporting “real-world” applications. First of all, what we understand
by “lexicon” has changed dramatically, and we are yet to find the best linguistic
treatment for certain lexical items found on the web, such as for example Web 2.0
tags. Second, even if we had such a linguistic framework, the speed at which new
lexical items are added to the universe of the Web (e.g. names) is so high that
it would be impossible to update dictionaries. Third, it would also be impossible
to differentiate all senses of the lexicon used on the Web (i.e. by providing stan-
dard definitions for all words), since the number of contexts is huge and grows
in an uncontrolled and distributed fashion. This harsh environment calls for a
new approach to similarity, to its computation and to the generation of related
resources.

A Uniform Approach to Similarity: Challenges

We need a framework capable of uniformly accommodating the various perspec-
tives of similarity that emerge from practical applications. This demands a notion
of similarity that covers several related, yet different, sub-concepts. For instance,
word synonymy and paraphrase are traditional similarity relations. They are in-
stances of content similarity, since synonyms and paraphrases convey equivalent
content using different forms. But, a definition of similarity that is motivated by
practical concerns needs to embrace other (less traditional) concepts related to
similarity, such as co-hyponymy (i.e type similarity), name equivalence (e.g. the
relationship between names and nicknames), or more generally, functional equiv-
alence (e.g. items can be interchanged without significantly affecting the end
result of a given task). Ideally, these concepts would be seamlessly integrated in
a common framework, which, as the Web evolves, it should be possible to update
with the integration of new concepts.

Moreover, the decentralized nature of the Web imposes several additional
challenges. Since there is no global supervision mechanism that ensures a com-
mon ontology between all content producers, the web is essentially populated by
“local” semantics: there is no guarantee that semantic relations, and thus item
similarities, that apply in a given context can be ported to another context, even

3

when there is overlap between concepts. In fact, since most of these “local” se-
mantics systems are open to edition by the community, they tend to evolve in
an organic and possibly incoherent way, merging the contributions of users who
may even share different visions about the subjects at stake. This is the case, for
example, of tagging systems, which are now a standard feature in Web 2.0 sites.
The question that arises is: how can a framework for similarity cope with such
“local” semantics?

For all these reasons, the current generation of applications cannot simply
rely on static pre-computed resources to decide about the similarity of two ref-
erents: they must possess, at least, the ability to adapt such information to
context. Ideally, applications would use contextual information to infer the se-
mantic knowledge as they proceed. The focus, then, should be on developing
efficient methods for inferring similarity relations dynamically and in a context-
dependent way. These adaptation capabilities are required not only for the sake
of keeping up with the dynamics of the lexicon. In fact, because Web contents are
always in mutation, the relations of similarity themselves change over time and
require constant updating. The work presented in this thesis is a contribution to
developing methods capable of coping with such changes.

Semantic Ambiguity

Another concept closely related to similarity is semantic ambiguity. Rather than
deciding if two distinct lexical representations are “similar” (e.g. content similar
such as synonyms or spelling variations), resolving semantic ambiguity involves
deciding if the same lexical representation found in two different contexts is point-
ing to the same referent or not. There is a strong connection between these two
concepts, since one can formulate the problem of lexical ambiguity as a ques-
tion regarding the similarity between two lexical items: do these equal lexical
representations that occur in different documents, or distinct parts of the same
document, relate to the surrounding context in “similar” ways so that they can
be considered representatives of the same referent?

While approaches to ambiguity resolution in relatively controlled text envi-
ronments are not new, as one can conclude by examining the large body of work
that has been produced in the field of Word-Sense Disambiguation (WSD) and
Named-Entity Disambiguation (NED), new approaches are required to tackle the
problem of lexical ambiguity on the Web. The Web accommodates references
to many more concepts and entities than any other environment. Just for the
purpose of illustration, the English version of the Wikipedia (i.e. an extremely
small part of the web) contains more than 90 articles for entities named “Paris”,
ranging from several possible locations to several possible songs. This is a much
higher level of ambiguity than would be found in most domain-specific collections.
However, the number of distinct entities named “Paris” that can be found on the
Web is definitely several orders of magnitude higher.

4 Chapter 1. Introduction

Hence, the number of distinct concepts or entities whose lexical representa-
tions may collide on the Web is much higher than is found in smaller and topic-
restricted collections, such as those traditional approaches to NED try to address.
In this thesis, we also hope to contribute to solving some of the aforementioned
issues.

1.1 Research Questions

The work presented partially results from a set of experiments motivated by
practical problems found while developing language processing resources and ap-
plications. Table 1.1 presents those projects and some questions related to the
computation of “similarity” that have naturally emerged from them.

From these practical questions, we formulated the following higher-level re-
search questions regarding similarity:

1. Can we provide a unified conceptualization that embraces all sub-concepts
of similarity found between text elements, and, at the same time, provides
solutions to practical questions imposed by the Web?

This is the top question of this thesis. We aim at presenting a formulation of sim-
ilarity accommodating several specific similarity relations, such as synonymy, co-
hyponymy (i.e. type similarity), and various forms of functional equivalence. The
formulation should be applicable both to traditional words and to Web-specific
lexical units (e.g. Web 2.0 tags). Additionally, it should allow a straightforward
computational implementation to be of practical use in “real-world” language
applications.

2. How does one deal with web-specific lexical items, such as tags or topic
labels? What notions of similarity can be applied to them?

As the lexical universe of the web becomes more complex and varied by the
inclusion of new lexical items that are different from existing words, it is important
to understand whether we can extend traditional similarity relations to such new
items, especially when the semantics of such items are subject to locality. For
example, do certain similarity relations, such as synonymy or antonymy, apply to
a given set of user-defined tags of a particular Web 2.0 site in the same way as
they do to traditional words? What restrictions should be applied, if any?

3. Which information sources can be used for grounding the computation of
similarity?

Although several techniques for computing word-similarity based on pre-existing
lexical-semantic resources have been proposed previously (e.g. [RD00]), for the

1.1. Research Questions 5

Table 1.1: Projects developed and various questions related to similarity that
emerged from them.
Project / Application Questions emerged
Semantic Lexicons for Infor-
mation Extraction

Can two specific words be considered synonyms
(within a certain context)?
Should two specific words be grouped under the
same semantic class?

Named-Entity Recognition
(NER) systems

Is a given entity similar enough to one found in
a reference list for it to be tagged with the same
semantic tag?

Named-Entity Disambigua-
tion (NED) systems

How can we measure the “similarity” between two
mentions of the same (or different) name?
What features can be used to know if two mentions
of the same name refer to the same entity or not?

Automatic Question-
Answering (QA) systems

Is synonym-based query expansion useful in find-
ing answers?

Keyword or Tag Suggestion
systems

Given a set of seed keywords can we expand it with
“similar” or equally relevant keywords?
How can we find “local” synonyms (i.e. domain-
specific synonyms)?
Can we use external information sources to mine
previously “unseen” relevant keywords?

Quotation Extraction and
Topic Classification systems

How can we robustly find mentions to relevant en-
tities in news when they are made not only by
name but also by job title, and these can be ex-
pressed in so many different equivalent ways?
Are two topic labels found on RSS feeds published
by two different on-line newspapers “equivalent”
in a certain context, despite using different lexical
representations?

6 Chapter 1. Introduction

reasons stated above, our goal is different. We need to find an adaptive method for
computing similarity for various types of lexical items, using information derived
from the Web and with the least human intervention possible. Therefore, we wish
to understand which information sources can be used to infer such similarity. Are
purely statistical approaches based on item co-occurrence information enough?
Or do we need to obtain additional information from text sources using some form
of extraction patterns? Can we benefit from community-edited resources, such
as Wikipedia, and their corresponding folksonomies or bottom-up classification
structures? Can we extract valuable similarity information from domain-specific
social networks?

4. How can we evaluate the results of procedures for computing similarity?

Ideally, evaluation of similarity computation procedures would involve comparing
the results of such procedures against gold-standard resources. However, as we
have argued before, one of the motivations for this thesis is precisely the lack
of up-to-date lexical-semantic resources containing information about similarity,
particularly for some Web-specific contexts. While manual evaluation is always
possible, it may require too much effort and it is inherently not reproducible.
One alternative involves extracting (partially complete) gold-standard informa-
tion from the Web. Another alternative is to perform an application-oriented
evaluation, since we are approaching similarity computation from the point of
view of applications. In this thesis, we discuss the possibilities and limits of such
alternatives.

Theoretical Instruments

One of the mathematical tools that has allowed us to approach the different
facets of similarity in a more unified fashion is the Vector Space Model (VSM).
With the VSM, items to be processed are converted into feature vectors, i.e.
vector representations that populate a n-dimensional hyperspace. The axes of
such hyperspace are derived from the set of features that are used to describe
the items being processed. Using the VSM, item comparison becomes a matter
of comparing the corresponding vectors in the hyperspace, an operation that
can be performed using any of the several vector similarity (or distance) metrics
available. The crux of successful representation under the VSM lies precisely in
the set of features used to describe the items (i.e. in the choice of the axes of the
hyperspace). The selection of such features determines the semantic information
that is projected to the hyperspace, and thus, the nature of what is actually
compared. Therefore, a fundamental part of this thesis is related to discussing
the selection, and subsequent transformations, of the feature information, as well
as evaluating the impact of such choices on the values of similarity obtained.

1.2. Organization of this Thesis 7

1.2 Organization of this Thesis

For the purpose of making a more focused discussion of the vast number of inter-
connected questions surrounding similarity, this thesis is divided into five parts.
Despite this division, it should be understood as a single unit of work, which tries
to tackle a large problem from different angles. To make the connections between
each of the five parts more obvious, we begin each part with a summary of the
main issues being addressed.

In part I we present the background information required for the remainder of
the thesis, and we discuss several methodological issues. We begin by providing
additional motivation for our study in chapter 2. We present several possible
perspectives related to similarity, motivated by questions raised during develop-
ment of language processing applications. Then, in chapter 3, we present the
fundamental notions regarding the Vector Space Model. Finally, in chapter 4, we
address methodological issues regarding evaluation of several tasks related to the
computation of similarity.

Parts II to IV address similarity issues of different types of lexical items and
referents:

Part II - Common Lexicon: We begin by studying the possibilities that ex-
ist for automatically detecting similarities between “traditional” words and
phrases. We focus on synonymy (chapter 5) and paraphrase (chapter 6)
relations. The main questions here are related to the selection of the best
features for grounding the computation of similarity, which is then per-
formed either by transferring semantic information to the vector space, or
by using algorithms for finding semantic associations.

Part III - Names and Entities: Part III focuses on questions related to en-
tities and their lexical representations (i.e. names and nicknames). More
specifically, we focus on the co-hyponymy (i.e. type similarity) relation
which has direct application in named-entity recognition applications (chap-
ter 7). We then move to a related question on the disambiguation of entity
names (chapter 8).

Part IV - Labels, Web 2.0 Tags and other User-Generated Keywords:
In part IV we address issues related to some web-specific lexical items
namely (i) (manually assigned) news topic labels (chapter 9), (ii) user-
assigned tags describing artists in a Web 2.0 radio (chapter 10), and (iii)
trigger keywords provided by advertisers to their web ads (chapter 11). In
all cases, the motivation is to obtain suggestions of lexical items that could
be used to expand an initial set of examples. Suggestions are required to
be synonyms, co-hyponyms or functional equivalents of the seed examples
in the application context at stake. The main questions addressed are re-
lated to choosing the appropriate sources for grounding the computation of

8 Chapter 1. Introduction

similarity for these web-specific items.

To maintain a more focused discussion, for each chapter of parts II to IV
we present specific sections regarding related work. Also, in each of those chap-
ters, we describe some specific contributions to which we add the more general
contributions that arise from this thesis (summarized in section 1.4).

Finally, in part V (chapter 12), we begin by summarizing the work presented
in this thesis. Then we explicitly state the answers to research questions posed
in this chapter, and outline the main contributions of this thesis. We end by
suggesting lines for future work.

1.3 Foundations

The work presented in this thesis is the outcome of several projects developed
at LIACC’s “Distributed AI & Robotics Group” (NIAD&R) in which I partici-
pated during the period of this thesis. Some of these projects were the result of
successful cooperation between LIAAC and academia researchers such as Profes-
sor Marteen de Rijke and Professor Valentin Jijkoun (University of Amsterdam)
Professor Lyle Ungar (University of Pennsylvania), Doctor Fabien Gouyon (In-
escporto) and Professor Mário Silva and Doctor Paula Carvalho (University of
Lisbon). Others have been established with leading industry practitioners such
as Google NY1, and Sapo.pt2. Other have been started with my colleague, Sérgio
Nunes. Undoubtedly, without such collaborations this thesis would not have been
possible.

This thesis contains some work that has already been published, namely in
the following papers (ordered by date of publication):

∙ “More like these”: growing entity classes from seeds [SJdRO07]

∙ Music Artist Tag Propagation with Wikipedia abstracts [SGO09]

∙ Inferring Local Synonyms for Improving Keyword Suggestion in an On-line
Advertisement System [STGO09]

∙ An Approach to Web-scale Named-Entity Disambiguation [SKOU09a]

∙ Efficient clustering of web-derived data sets [SKOU09b]

∙ Exploring the Vector Space Model for Finding Verb Synonyms in Portuguese
[SCO09]

1Special thanks to all the Google Team in NY and, in particular, to Alexander Kehlenbeck,
Casey Whitelaw and Nemanja Petrovic

2Special thanks to Paulo Trezentos, João Pedro Gonçalves, Celso Martinho and Benjamin
Junior

1.4. Outline of the Main Contributions 9

∙ Propagating Fine-Grained Topic Labels in News Snippets [SNTO09]

While working on the research presented in this thesis, other lines of research
were explored. These lines were definitely useful for acquiring valuable back-
ground knowledge and intuition, and for preparing future research. Nevertheless,
for the sake of brevity and consistency, not all such work was integrated in this
thesis. It can, however, be found in the following publications (ordered by date):

∙ SIEMÊS - a Named-Entity Recognizer for Portuguese Relying on Similarity
Rules [Sar06c]

∙ REPENTINO - A Wide-Scope Gazetteer for Entity Recognition in Por-
tuguese [SPC06]

∙ BACO - A large database of text and co-occurrences [Sar06a]

∙ A first step to address biography generation as an iterative QA task [Sar07]

∙ Assessing the Impact of Thesaurus-Based Expansion Techniques in QA-
centric IR [STO08]

∙ Visualizing Networks of Music Artists with RAMA [SGCO09]

∙ The Design of OPTIMISM, an Opinion Mining System for Portuguese Pol-
itics [SCS+09]

∙ Automatic Creation of a Reference Corpus for Political Opinion Mining in
User-Generated Content [SCSdO09]

∙ Clues for Detecting Irony in User-Generated Contents: Oh...!! It’s “so easy”
;-) [CSSdO09]

∙ Comparing Sentence-Level Features for Authorship Analysis in Portuguese
[SSSG+10]

∙ Comparing Verb Synonym Resources for Portuguese [TSO10]

1.4 Outline of the Main Contributions

This thesis provides three main contributions:

1. An original formal framework for uniform treatment of several similarity-
related concepts (including disambiguation), applicable both to traditional
and to Web-based text environments;

2. A study on the information sources and types of features that can be used
for supporting the computation of similarity-related functions, as well as
some of their intrinsic limitations ;

10 Chapter 1. Introduction

3. The proposal of several methods and metrics and strategies for obtaining
gold-standard information for evaluating similarity-related functions in a
variety of different scenarios.

Part I

Background

11

13

The goal of part I is mainly to provide background information for the remain-
der of this thesis. It contains all the common ground required for parts II to IV,
thus avoiding the need for repeating the discussion about generic methodological
issues in each of the subsequent parts.

In chapter 2, we introduce and formalize the main concepts related to sim-
ilarity, which are explored in more detail later in parts II to IV. We begin by
presenting further motivation for studying similarity, in the context of traditional
and non-traditional text formats. Then, after introducing some basic concepts
and terminology, we provide formal definitions for Semantic Similarity (includ-
ing some more specific concepts such as Content Similarity, Type Similarity and
Functional Similarity) and Semantic Ambiguity.

Then, in chapter 3, we focus on the main mathematical tool used in this thesis,
the Vector Space Model (VSM), which is used in most of the experiments here
presented. We address several issues that are fundamental for a successful uti-
lization of the VSM, namely issues related to extracting information for building
feature vectors, weighting such feature information and comparing the resulting
features vectors.

Finally, in chapter 4, we present methods, measures and possible gold stan-
dard resources for evaluating the performance of similarity-based functions. This
chapter first includes a panoramic view about evaluation, and then it addresses
more specific issues that are fundamental to understanding the evaluation proce-
dures used in our experiments.

Chapter 2

Similarity and Ambiguity

We begin this chapter by providing a concrete example of why the concept of
semantic similarity is important for practical Natural Language Processing (NLP)
tasks. We then introduce the essential concepts for defining Semantic Similarity
in an encompassing way. We proceed by providing definitions for the several
specific notions of Semantic Similarity which are addressed in the thesis, namely
Content Similarity, Type Similarity and Functional Similarity. Next, we provide a
definition for Semantic Ambiguity, a strongly related concept. Finally, we present
a measure of the degree of ambiguity, and formalize disambiguation as a similarity
computation problem.

2.1 Why is similarity important?

Similarity is central to many language processing tasks, especially those involving
classification or analysis. In fact, many classification or analysis operations can
be formulated as a similarity-based procedure, such as:

based on the example annotations made on these snippets of texts, perform equiv-
alent annotation (or classification) in all “similar” situations found in other texts

Let us consider, for instance, the task of Name-Entity Recognition (NER).
Given an example annotation, A0:

A0: “... the [composer]ERGO [Richard Wagner]PER ...”

where ERGO represents an ergonym or job title and PER represents a person
entity, we would like to have a NER system capable of annotating the following
instances, I1 and I2:

I1: “... the composer Johann Sebastian Bach ...”

I2: “... the pianist Richard Wagner ...”

15

16 Chapter 2. Similarity and Ambiguity

Such a NER system should be able to detect that I1 and I2 are structurally and
semantically similar to the example A0, and that they should thus be annotated
likewise, i.e.:

A1: “... the [composer]ERGO [Johann Sebastian Bach]PER ...”

A2: “... the [pianist]ERGO [Richard Wagner]PER ...”

Such ideal NER system should also be able to conclude that the following
instances:

I3: “... the German Ludwig van Beethoven ...”

I4: “... the famous Wolfgang Amadeus Mozart ...”

are not as similar to the example A0 as the two previous instances (I1 and I2),
but they are similar enough to be possible to annotate them partially and, at the
same time, infer that there are two new “classes” of words (that could be learned
later):

A3: “... the [German]?#1 [Ludwig van Beethoven]PER ...”

A4: “... the [famous]?#2 [Wolfgang Amadeus Mozart]PER ...”

Finally, the NER system should conclude that the following instance:

I5: “... the opera Richard Wagner ...”

is not similar enough to the initial example and, thus, it should not be annotated
in the same way.

The core of such an ideal system is the ability to detect the similarities between
instances. More specifically, the system would be capable of recognizing similar
structures and similar components within these instances. Let us assume that we
have a function S that is capable of computing the value of the similarity between
the referents of two lexical items given as input. For simplicity, we assume that:

∙ lexical items are either common nouns or entity names.

∙ S has only two parameters, i.e. the lexical items to be compared (i.e. all
information about context is, for now, disregarded).

∙ the values produced by the function range from 0 (no similarity) to 1 (full
similarity)

Then, given two items to be compared, ii and ij , the similarity of their referents
is obtained by function S(ii, ij):

S(ii, ij) −→ [0, 1] (2.1)

For now, the mechanics of S need not to be explained, and S can be said to
work as an oracle. Using such oracle, our ideal NER system is able to know that:

2.2. Lexical Items, Referents and Dynamic Lexicons 17

1. S(“composer”, “pianist”) > smin

2. S(“Richard Wagner”, “Johann Sebastian Bach”) > smin

with smin being the minimum value of similarity for two items to be actually
considered similar. Such knowledge is enough to support annotations A1 and A2

since the remainder components of instances I1 and I2 are the same as I0.
Using the oracle, it is also possible to know that some components of instances

I3 and I4 are very similar to the corresponding component of the annotated
example I0:

3. S(“Richard Wagner”, “Ludwig van Beethoven”) > smin

4. S(“Richard Wagner”, “Wolfgang Amadeus Mozart”) > smin

However, the oracle should be able to tell that the other components of instances
I3 and I4 do not share enough similarity with the corresponding component in
I0:

5. sexcl < S(“composer”, “German”) < smin

6. sexcl < S(“composer”, “famous”) < smin

Nevertheless, because the similarities computed in 5) and 6) are still higher than
a minimum threshold sexcl, it is possible to partially annotate I3 and I4 as shown
in A3 and A4.

Finally, the oracle should be able to identify that the similarity between “com-
poser” and “opera” is lower than the threshold sexcl:

7. S(“composer”, “opera”) < sexcl

which excludes any chance of similarity between instance I5 and the annotated
example instance, and thus no annotation is performed.

Although this illustration is based on the entity recognition task, other exam-
ples of how such an ideal similarity function could be used in several language
processing tasks (specially at the level of lexicon acquisition and semantic tag-
ging) could be easily formulated. This simplified example, however, hides many
of the subtleties of such an ideal similarity function. In the next sections, we
expose them and provide a formalization for similarity.

2.2 Lexical Items, Referents and Dynamic Lex-

icons

The notion of similarity that was informally introduced in the previous example
is type similarity, which is related with class membership: the words “composer”

18 Chapter 2. Similarity and Ambiguity

and “pianist” refer to music-related ergonyms, while the proper names “Richard
Wagner”, “Ludwig van Beethoven”, “Wolfgang Amadeus Mozart” and “Johann
Sebastian Bach” refer to people that can be said to belong to the class “com-
posers” (among several other possible classes).

This, however, is not the only similarity paradigm we wish to address in this
work. For example, synonyms do not fit in this type of paradigm. But, before
defining similarity in a more encompassing way, we need to clarify some closely
related concepts and terminology. We start by defining two core concepts: lexical
item and referent.

Briefly, we can say that a lexical item is a text symbol (i.e. a word or a multi-
word expression) that is used to represent a certain referent. A referent, which
we denote by �, is any concrete or abstract entity or concept (including states
and events) that belongs to an universe of referents, denoted by ℛ.

Standard definitions for these concepts are based on rather conservative as-
sumptions, which do not hold when the text environment at stake is the Web.
For example, the traditional definition of lexical item implicitly assumes the pre-
existence of a stable lexicon (one that is represented in a standard dictionary),
which defines the set of valid items (i.e. words) that can be used in text produc-
tion.

However, it is clear that the set of symbols used on the Web, which goes far
beyond traditional “words” (e.g. tags), is constantly growing as a direct conse-
quence of the continuous expansion of the universe of referents. Let #ℛwww(t) be
the (unknown) number of referents that exist on the Web in a given time instant.
We assume that such universe is growing monotonically, since new information is
constantly being added to the Web:

#ℛwww(t+ t′) ≥ #ℛwww(t), ∀t′ > 0 (2.2)

Additionally, because there is no practical way of knowing all the information
that exists on the Web at a given time, the universe of referents ℛwww(t) can
only be partially known. We are now able to introduce the concept of Dynamic
Lexicon of the Web, denoted by ℒwww(t):

2.2.1. Definition. A Dynamic Lexicon of the Web, ℒwww(t), is an open set of
symbols used in the Web in a given time instant t. The Dynamic Lexicon of the
Web includes common lexicon (traditional words), names, specific-domain lexicon
(technical terminology), acronyms, Web 2.0 tags, automatically generated labels,
“emoticons”, spelling mistakes and all other more or less idiosyncratic symbols
and expressions used on the Web.

The number of elements in ℒwww(t), i.e. #ℒwww(t), is also supposed to grow
monotonically:

#ℒwww(t+ t′) ≥ #ℒwww(t), ∀t′ > 0 (2.3)

2.3. Defining Similarity 19

Again, ℒwww(t) can only be partially known. For these reasons, it becomes
virtually impossible to have a complete and up to date dictionary of the lexicon of
the Web, ℒwww(t). Any definition of lexical item that is intended to be of practical
use in the Web environment cannot depend on the existence of a pre-compiled
dictionary.

Thus, we propose the following generic definition for Lexical Item:

2.2.2. Definition. A Lexical Item, denoted by l�,� is a symbol � belonging to
Lexicon ℒwww(t) that is used to represent a certain referent, �r ∈ ℛwww(t).

This definition of Lexical item is relational because it relates a symbol � with
a referent �. Such relation may only be verifiable in a certain semantic context,
such as a specific domain or a specific subset of the Web. We denote such contexts
by C. Also, we are assuming that the set of valid symbols is dynamic, and cannot
be completely known in advance. This imposes two important requirements for
robust language processing procedures:

1. ability to adapt to different semantic contexts;

2. ability to process unknown lexical items.

2.3 Defining Similarity

We can now provide a generic definition of Similarity taking into account the
previously defined concepts. Let S be a function that computes the value of
similarity between the referents of two lexical items, taking into account a given
context, C. For convenience reasons, and without loss of generality, let us assume
that the value of similarity ranges from 0 (no similarity) to 1 (full similarity):

S(l�i,�i , l�j ,�j , C) −→ [0, 1] (2.4)

We can specialize this function taking into account different types of similarity.
The examples given in the previous section illustrate just one case of similarity
- Type Similarity - but we wish to have a definition applicable to other cases,
namely Content Similarity and Functional Similarity.

2.3.1 Content Similarity

Content Similarity occurs when two lexical items have the same referent, despite
using different symbols. It embraces two other more specialized – and traditional
– semantic relations:

∙ synonymy, when symbols are part of the common lexicon (names, verbs,
adjectives, etc.); and

20 Chapter 2. Similarity and Ambiguity

∙ paraphrase, when at least one of the symbols is a multi-word expression,
such as a technical term or an idiomatic expression.

Content Similarity also includes the relation of name equivalence that occurs
when symbols are name variations or nicknames of the same entity.

We propose the following definition for Content Similarity:

2.3.1. Definition. Two different lexical items, l�i,�i and l�j ,�j with �i ∕= �j , are
said to be content similar in a certain context C, if the two referents �i and �j
can be said to be the same �i = �j (or equivalent, �i ≃ �j).

Let us now define Content Similarity Function, Scnt, as a function that mea-
sures the degree of equivalence � between the referents of two lexical items:

Scnt(l�i,�i , l�j ,�j , C) = �cnt(�i, �j, C) (2.5)

with �cnt being a boolean function based on the equivalence of the referents:

�cnt(�i, �j , C) =
{

1 if�i = �j
0 if�i ∕= �j

(2.6)

In practice, it might not possible to have a straightforward binary equivalence
function, so an alternative might be using a continuous equivalence function,
such as:

�≃cnt(�i, �j, C) =

⎧

⎨

⎩

1 if �i = �j
]0, 1[if �i ≃ �j
0 if �i ∕= �j

(2.7)

whose result might then be binarized according to a given decision threshold.

2.3.2 Type Similarity

Type similarity is the relation between two lexical items whose referents belong to
the some more or less specific class. When considering common lexicon (nouns,
adjectives, etc), this relation is usually known as co-hyponymy. For example,
“orange” and “lemon” are co-hyponyms because they share a common hypernym:
“fruit”. When considering names of entities, there is no specific term in literature
so we use the term class relatives. For example, “Coldplay” and “Travis” are class
relatives since they both belong to the class “britpop band”.

Generically, we can propose the following definition regarding Type Similarity :

2.3.2. Definition. Two different lexical items, l�i,�i and l�j ,�j with �i ∕= �j , are
said to be type similar in a certain context Cc, if the two corresponding referents
�i and �j are elements of at least one common class.

2.3. Defining Similarity 21

Let us denote Stype as the Type Similarity Function, which computes the degree
of type similarity between the referents of two lexical items. The Type Similarity
Function can be expressed by:

Stype(l�i,�i , l�j ,�j , C) = �type(�i, �j, C) (2.8)

For defining Stype(l�i,�i, l�j ,�j , C) we have to consider that the relation between
items and classes is complex: not only an item can belong to many classes, but
also the degree to which it belongs to any of these classes is not a strictly binary
function. Consider, for example the items “Michelangelo” and “Leonardo da
Vinci”. In principle, they both can be assigned to any of the following classes
c1: “Renaissance artists”, c2: “Italian artists” or c3: “Italian people”. Binary
membership cannot deal with such descriptive vagueness straightforwardly.

Let us start by defining a class membership function1 �(l�i,�i, ck) that com-
putes the degree of membership of the referent of l�i,�i in class ck (a value between
0 and 1):

0 ≤ �(l�i,�i, ck) ≤ 1, ∀i, k (2.9)

For the example above, we expect �(“Jan van Eyck”, c1) ≃ 1, while �(“Jan
van Eyck”, c2) ≃ 0. Again, to account for the influence of the context, C, in the
level of membership, we can introduce an additional parameter to Equation 2.9:

0 ≤ �(l�i,�i, ck, C) ≤ 1, ∀i, k, C (2.10)

We can further simplify this function in order to take into account only the
referent �i:

0 ≤ �(�i, ck, C) ≤ 1, ∀i, k, C (2.11)

Now, since lexical items may belong to many different classes, the task of
ranking items by similarity is not as trivial as it looks, and in most cases it is
highly dependent on the context. For example, “Lisbon” and “Porto” are entities
part of the class “Portuguese cities”, while “Lisbon” and “Madrid” are part of the
class “Iberian Capitals”. Therefore, if context C1 focus on National (Portuguese)
Affairs, then we might have:

Stype(“Lisbon”, “Porto”, C1) > Stype(“Lisbon”, “Madrid”, C1) (2.12)

But, if context C2 is related with International Politics, then possibly:

Stype(“Lisbon”, “Porto”, C2) < Stype(“Lisbon”, “Madrid”, C2) (2.13)

Scope plays also an important role in defining the degree of type similarity.
For example, “orange”, “lemon” and “strawberry” are all co-hyponyns of “fruit”
but only “orange”, “lemon” are co-hyponyms of “citrine”. So, one might say that

1We borrow the terminology from Fuzzy Set Theory.

22 Chapter 2. Similarity and Ambiguity

“orange” and “lemon” are more type similar than “orange” and “strawberry” or
“lemon” and “strawberry”.

In order to provide a more complete description of the Type Similarity Func-
tion, Stype, we need to include additional factors in the formalization. Let M(�i)
be the set of classes of which the referent �i can be considered member of:

M(�i) = {c1, c2, ...cn} (2.14)

M(�i) can be transformed into a vector of weights using the values provided by
the class membership function �(�i, ck, C) (see Equation 2.11), which describe the
degree of membership of �i to each of the classes in M(�i):

C(�i) = [(c1, �(�i, c1, C)), (c2, �(�i, c2, C)), ...(cn, �(�i, cn, C))] (2.15)

Now, let Ω be the Class Overlap Function that measures the overlap between
the classes to which two referents �i and �j belong, taking into account context C.

Ω(M(�i),M(�j), C) −→ [0, 1] (2.16)

We can now redefine the generic Type Similarity Function first introduced
in Equation (2.8) in order to take into account both (i) the various classes to
which each referent can belong, (ii) the different degrees of membership of the
referents to each of the corresponding classes, and (iii) the context C in which we
are performing the computation of similarities:

Stype(l�i,�i, l�j ,�j , C) = Ω(M(�i),M(�j), C) (2.17)

In section 3.5 we present some instantiations of Ω, although many other are
possible. Generically, Ω(M(�i),M(�j), C) function is to be defined in a context-
dependent fashion.

2.3.3 Functional Similarity

Briefly, Functional Similarity relates lexical items that can be alternatively used
as inputs to a given natural language processing function and still lead to the
production of the same, or equivalent result.

Let us assume the existence of a low-level language processing operation, O,
that takes as input one lexical item, l�i,�j and, based on it, operates over a given
text object, T , to produce the intermediate output ointer:

ointer = O(T , l�i,�j) (2.18)

Let us further assume that such output is intended to be used by a higher-level
function ℱ , to produce the final result ℛfinal:

ℛfinal = ℱ(ointer) (2.19)

2.3. Defining Similarity 23

Though abstractly defined, the low-level operation O and the high-level func-
tion ℱ can be related to many concrete NLP tasks. For example, O can be the
operation of (automatic or manual) tag assignment to a blog page (i.e. assigning
ltag�i,�j

to T blog) to improve retrieval efficiency by retrieval function ℱ blog
IR . Or, O can

be the operation of automatically selecting a term, lexp�i,�j
, for expanding a query

(i.e. T query) for improving the recall of a document retrieval function, ℱdoc
IR .

In this setting it becomes straightforward to define Functional Similarity.

2.3.3. Definition. Two different lexical items, l�i,�i and l�j ,�j with �i ∕= �j ,
are said to be functional similar in a certain context Cc if, given a low-level text
operation, O(T , l�k ,�k), which produces as intermediate result, ointer, and ℱ , a
high-level function that consumes ointer in order to produce a final result, ℛ, we
obtain the same or equivalent results from function ℱ no matter whether we use
l�i,�i or l�j ,�j to obtain the intermediate result required by ℱ :

ℱ(oiinter) = ℱ(ojinter) ⇐⇒ ℛi = ℛj (2.20)

with

∙ oiinter = O(T , l�i,�i)

∙ ojinter = O(T , l�j ,�j)

Or, more compactly, by exposing the functional pipeline, ℱ ⊙O:

ℱ(O(T , l�i,�i)) = ℱ(O(T , l�j ,�j)) ⇐⇒ ℱ ⊙O(T , l�i,�i) = ℱ ⊙O(T , l�j ,�j) (2.21)

We define the Functional Similarity Function, Sfnc as the functions that mea-
sures the functional equivalence of two lexical items. The function is computed
by calculating the degree of equivalence of the results produced by the pipeline
ℱ ⊙O for each one of the two lexical items (given as input):

Sfnc(l�i,�i , l�j ,�j , C) = �fnc(ℛi,ℛj , C) (2.22)

with:

∙ ℛi = ℱ ⊙O(T , l�i,�i)

∙ ℛj = ℱ ⊙O(T , l�j ,�j)

and �fnc being a binary equivalence function:

�fnc(ℛi,ℛj , C) =
{

1 if ℛi = ℛj

0 if ℛi ∕= ℛj
(2.23)

24 Chapter 2. Similarity and Ambiguity

Again, in practice it might be important to have a continuous equivalence func-
tion, such as:

�≃fnc(ℛi,ℛj , C) =

⎧

⎨

⎩

1 if ℛi = ℛj

]0, 1[if ℛi ≃ ℛj

0 if ℛi ∕= ℛj

(2.24)

so that:
Sfnc(l�i,�i, l�j ,�j , C) = �≃fnc(ℛi,ℛj, C) −→ [0, 1] (2.25)

In many scenarios, Functional Similarity subsumes Content Similarity and
Type Similarity. For example, synonyms (and co-hyponyms) can certainly be
valid expansions for a given search keyword in most IR settings, so they are both
Content (or Type) Similar and Functionally Similar. The key point is that while
Content Similarity and Type Similarity presuppose a conceptual framework from
which relations are derived (even if such framework is not totally accessible, is
abstract, or is context dependent), Functional Similarity depends only on the
impact that lexical items have on the results of a given NLP function pipeline,
ℱ ⊙O.

2.4 Semantic Ambiguity

Semantic ambiguity occurs whenever two (or more) lexical items have the same
lexical representation but mention different referents. Semantic Ambiguity is also
known as homography. Using notation defined in the previous sections we can
provide a formulation for semantic ambiguity:

2.4.1. Definition. Two lexical items, l�i,�i and l�j ,�j are said to be lexically
ambiguous if their lexical representation, �i and �j , are the same, �i = �j , but
the two corresponding referents, �i and �j, are not the same, �i ∕= �j .

In this definition we do not frame the event of lexical ambiguity within “certain
context Cc” as we do when defining the several different notions of similarity. In
fact, all lexical items are potentially semantically ambiguous in the sense that,
in practice, there is no way of ensuring that there exists only one referent for a
given same lexical representation in all possible contexts.

Interestingly, when restricting ourselves to smaller contexts, semantic ambi-
guity may not exist, or may not be relevant. For example, when focusing on news
about politics, name ambiguity is not as severe as one would initially think, since
the most popular politicians tend become known by names that do not collide
with the names of other popular politicians. So, in the context of “politic news”
name ambiguity might almost never occur, at least for the most frequently men-
tioned politicians. There are, however, a few good counterexamples in American
politics due to the existence of political “clans”, such as the Bush or the Clinton,
but even these tend not to co-occur within the same time span.

2.4. Semantic Ambiguity 25

Quantifying Ambiguity

To quantify the ambiguity that exists between several lexical items in a certain
context, we can compute the entropy of the corresponding symbol in relation to
the set of possible referents. Let Cc be a context in which it is possible to find n
semantically ambiguous lexical items, i.e. having the same lexical representation
but different referents: l�,�1 , l�,�2 ... l�,�n . Let p1, p2 ... pn be the probability of the
a specific occurrence of � in such context referring to �1, �2, ... �n, respectively.
Then:

Eamb = −
n

∑

i

pi log2 pi (2.26)

quantifies the degree of ambiguity that there is in practice. If all referents are
equally probable (pi = k, ∀ i) then Eamb reaches a maximum, indicating that
there is in fact great uncertainty when guessing the referent of symbol �. If,
on the other hand, the probability of one referent is significantly larger than all
others (pj ≫ pi, ∀ i ∕= j), then Eamb will be close to zero, meaning that almost all
occurrences of � found in context Cc mention one specific referent. In such case,
the ambiguity of the lexical items should not be a particularly relevant problem
in practice.

Disambiguation and Similarity

Disambiguating two ambiguous lexical items, i.e. determining if they mention the
same referent or not, can be formulated as a question of measuring how similar
the corresponding referents are within a given context. Let l�,�1 and l�,�2 be two
potentially ambiguous lexical items in context Cc. For instance, these two lexical
items may have been found in two different documents that belong to the same
document collection. Let Scnt = �≃cnt(�i, �j, C) be the content similarity function
as defined by Equations 2.5 and 2.7 (see section 2.3.1). A decision regarding the
disambiguation of l�,�1 and l�,�2 can be made according the following rules:

1. if �cnt(�1, �2, Cc) ≥ �min then lexical items l�,�1 and l�,�2 mention the same
referent

2. if �cnt(�1, �2, Cc) < �min then lexical items l�,�1 and l�,�2 mention different
referents

Hence, in this setting disambiguating lexical items becomes a matter of choosing
the appropriate content similarity function for comparing the referents (within
the context at stake).

26 Chapter 2. Similarity and Ambiguity

2.5 Conclusion

In this chapter we formalized the fundamental concepts about similarity which
are the core of our research. We began by defining:

∙ Lexical Item;

∙ Symbol and Referent; and

∙ Dynamic Lexicon.

We then formalized three cases of similarity between lexical items:

1. Content Similarity;

2. Type Similarity; and

3. Functional Similarity.

We showed how each case can be supported by other lower-level functions, such as
content equivalence functions, class overlap functions and functional equivalence
functions, and how they can thus be grouped in order to form a uniform con-
cept of similarity. Finally, we presented a compatible formalization for Semantic
Ambiguity, and showed how disambiguation can be formulated as a Content Sim-
ilarity problem. Although the formalization we provide is, at this stage, rather
abstract, in parts II to IV we illustrate how these concepts instantiate in practical
situations.

Chapter 3

The Vector Space Model

In this chapter, we focus on one of the fundamental tools used in this thesis:
the Vector Space Model (VSM). We explain the principles underlying the use
of the VSM as the basis for computing similarity. We describe the main issues
related to the representation of text information in the VSM, and we discuss
specific questions regarding the selection of the feature space and the usage of
feature weighting functions. Then, because the computation of similarity between
lexical items and the computation of vector proximity are isomorphic operations,
we present several functions for computing the proximity (or distance) between
vectors on real-valued and binary-valued vector spaces.

3.1 Introduction

In the Vector Space Model (VSM), each lexical item l�i,�i is represented by a vector
of features in a multidimensional feature space, l�i,�i. Such vector representations
allow us to perform several language processing operations by isomorphically
computing geometric operations over vectors (e.g. distance between two vectors).
We can, thus, take advantage of strong algebraic frameworks to compute complex
semantic functions, which would otherwise be very difficult to compute due to
lack of simple conceptual and operational formalizations.

For instance, the Vector Space Model provides a very convenient framework
for computing content similarity between lexical items because it allows to ge-
ometrically express a strong intuition regarding semantic similarity: the Distri-
butional Hypothesis [Har54]. According to the Distributional Hypothesis, words1

that occur in the same contexts tend to have “similar” meanings (i.e. should be
synonyms). If words are transformed into the appropriate vector representations
(which we discuss later), then the vectors of two synonymous words should be

1In this paragraph we are using the term “word” instead our own “lexical item” in order to
maintain the generally accepted formulation of the Distributional Hypothesis

27

28 Chapter 3. The Vector Space Model

“close” to each other in the vectors space. Alternatively, vectors that are rela-
tively close in the vector space should correspond to sets of synonymous words.
There are multiple possible variations and extensions to this concept but, es-
sentially, it enables us to compute complex semantic operations by performing
relatively simple vector operations.

3.2 VSM Parameters and Distance Metrics

The key point in using the VSM for computing semantic operations has to do with
how lexical items are transformed in feature vectors. There are three essential
parameters that control how such transformation is performed: (i) the choice
of feature context, (ii) the feature weighting function and (iii) the choice of the
representation domain.

Feature Context The feature context is the environment from which features
are extracted in order to build meaningful vector representations. Relevant fea-
tures can be found either at lexical level or at syntactical level. The choice of a
specific feature context has a huge impact on the information that is transferred
to the Vector Space, thus directly affecting the notion of similarity that may be
inferred from feature vectors (see Sahlgren [Sah06]). For this reason, the fea-
ture context parameter is deeply explored throughout this thesis (more details in
section 3.3).

Feature Weighting Function Another fundamental parameter for obtaining
an appropriate vector representations is the feature weighting function. Usually,
the value of each component of the feature vector is derived from a raw frequency
value (e.g. the number of times a given reference context co-occurs with the
lexical item). By using weighting functions (e.g. tf-idf [SM86], Pointwise Mutual
Information [CH90], Log-Likelihood Ratio [Dun93], etc.) one can promote (or
demote) different sections of the feature spectrum, thus compensating biases that
arise from raw frequency counts (e.g. very frequent contexts tend to be over
emphasized). Thus, the choice of a specific weighting function can have a deep
impact in the final results of the operations that we wish to perform on the vector
space (e.g. should “rare” features be considered important or should they be
ignored?). We provide more details about feature weighting functions in section
3.4).

Representation Domain The components of the vectors are usually scalar
values, either derived from direct frequency counts (which generate values in the
domain [0, ∞[), or resulting from the application of a specific feature weight-
ing function to raw-frequency data, (which can generate values in]−∞, ∞[).
When vectors have components ranging in any of these domains, we call the

3.2. VSM Parameters and Distance Metrics 29

corresponding vector spaces Real-Valued Vector Spaces. It is possible to bina-
rize a Real-valued Vector Space applying a threshold function to the real-valued
components of all vectors, thus generating a Binary Vector Space. In Binary
Vector Spaces, the values of the components of feature vectors are either “1” or
“0”. In other words, the only information stored in the vector is the existence
of a component regarding a specific feature (i.e. dimension). Despite this ap-
parently excessive information loss, Binary Vector Spaces are successfully used
in many data mining scenarios. There are situations in which the correspond-
ing vector spaces are high-dimensional and sparse, and, therefore there is a very
low probability of overlap between non-nil components of any two vectors. In
such situations, the mere fact that two vectors share specific non-nil components
might be more relevant than the scalar values that those components have, since
overlap itself is a very rare event. Additionally, Binary Vector Spaces are very
convenient from a computational point of view: they allow very efficient memory
representations (e.g. bitmaps). Also, bit-level operations are extremely efficient
at CPU level. In practice, Binary Vector Spaces can be interesting options.

Other Thresholds For practical reasons, there are also several cut-off thresh-
olds that can be used for controlling which feature vectors are actually included
the Vector Space. These thresholds are important when there is not enough fea-
ture information to ensure a faithful vector representation. Adding such under-
specified vectors to the Vector Space might lead to faulty conclusions when trying
to compute certain vector operations. Therefore, low-frequency lexical items are
usually excluded from the Vector Space. Feature vectors with a relatively low
number of non-nil components (i.e. do not carry enough diversity), also tend to
be kept out of Vector Spaces.

Distance Metrics

Since we are focusing on computing similarities between lexical items – l�i,�i, l�j ,�j ,
... l�n,�n – the fundamental isomorphic operation to be performed on the VSM is
computing the distance between the corresponding vector representations – l�i,�i ,
l�j ,�j , ... l�n,�n . Therefore, the choice of a specific distance metric for comparing
the (weighted) vectors is crucial. As detailed in section 3.5, there are two basic
groups of metrics: geometry-based distance metrics and probabilistic-inspired met-
rics. Geometry-based distance metrics, such as Euclidean Distance (L2 distance)
or the cosine metric [SM86], assume that vector space is Euclidean. On the other
hand, probabilistic-inspired metrics, such as Jensen-Shannon Distance [Lin91] or
the Skew-Divergence [Lee01], do not make such assumption.

As shown in various works (see for example Curran [Cur04]), global perfor-
mance of VSM approaches depends on the combination of a specific weighting
function and a specific distance metric, and there is usually an optimal combi-
nation for each task. For instance, the best combination of feature weighting

30 Chapter 3. The Vector Space Model

function and distance metric for computing the degree of synonyms between lex-
ical items might not be (and probably is not) the best combination for finding
co-hyponyms.

3.3 Feature Context

The fundamental concept of the Vector Space Model is to use vectors of features as
summarized representations of objects in order to simplify a set of operations we
wish to perform over them. The vector description used can be seen as a sample
of the complete description of the object (which might even not be possible to
formalize completely) and should contain the appropriate feature information to
faithfully represent the object in the Vector Space.

Feature information can be collected from the environment in which the object
exists. In our case, objects are lexical items and the environment is a given text
base, such as the Web or a specific-domain document collection. Potentially,
feature information includes all sort of information that can be extracted from
the text environment to describe relevant properties of the lexical item at stake.
The concrete set of information sources on the environment actually used for
extracting feature information is called feature context.

3.3.1. Definition. Let l�i,�i be an arbitrary lexical item belonging to a given
Lexicon, ℒ. Let ℰ be a text environment in which one can find information
related to l�i,�i . The feature context is a restriction over ℰ from which we can
collect feature information regarding l�i,�i in order to build the corresponding
feature vector representation, l�i,�i, on Vector Space V.

A certain feature context is said to be directly observable when feature infor-
mation can be readily extracted from the feature context. That is, for example,
the case of frequency counts regarding the co-occurrence of lexical items. If, on
the other hand, some form of linguistic processing is required for extracting such
features (e.g. POS annotation, syntactical parsing or dependency parsing), the
feature context is said to be indirectly observable.

3.3.1 Directly Observable Feature Contexts

Directly Observable Feature Contexts allow feature information to be directly
extracted from the text environment with no (or only very simplistic) linguistic
pre-processing. Directly Observable Contexts are very convenient when large
amounts of text data need to be processed, since no sophisticated linguistic tools,
which may be expensive from a computational point of view, need to be used.
However, Vector Spaces generated using Directly Observable Feature Contexts
tend to have very high-dimensionality and are usually sparse. Consequently,

3.3. Feature Context 31

operations on such spaces require efficient vector representations and may need
significant computational resources.

An example of a Directly Observable Feature Context is Window Context. In
this case, the set of features generated for a given lexical item at position k in a
specific text block, lk�i,�i

, are the frequencies of the lexical items that immediately
surround it within a pre-defined lexical window. Usually, the context window is
defined by two numbers that identify which lexical items in the neighbourhood
of item lk�i,�i

should be considered for generating the feature: (i) the number of
lexical items that precede lk�i,�i

, and (ii) the number of lexical items that follow
lk�i,�i

. For example, if we consider a [-1, +2] window, item lk�i,�i
(at position

k) would generate one count for the feature [lk−1
�ℎ,�ℎ

, lk+1
�j ,�j

, lk+2
�l,�l

]. As it is easy to
understand, for a lexicon ℒ of size ∣ℒ∣ a vector space created using [-1, +2] context
window can potentially reach a dimensionality of ∣ℒ∣3. In practice, such value is
never reached but the dimensionality of space will still be extremely high.

Another example of a Directly Observable Feature Context is the Co-occurrence
Context. In this case, the features that can be observed are all lexical items that
co-occur with the lexical item at stake, within a given text block (e.g. a sentence).
In its simplest from, the Co-occurrence Context Scope comprises only informa-
tion about the form and frequency of the co-occurring Lexical Units. There are
several variations that also consider information regarding the relative position
of the co-occurrences (after or before), or the distance in number of items at
(positive or negative values) which the co-occurrence is detected.

3.3.2 Indirectly Observable Feature Contexts

Whenever linguistic analysis tools are available, it becomes possible to use in-
formation from Indirectly Observable Feature Contexts. This allows us to build
feature vectors using higher-level information, which is possible to extract from
the environment after some linguistic processing has been performed.

For example, part-of-speech tagging allows to obtain the grammatical category
of a lexical item. These can be seen as higher-level linguistic features that abstract
the lexical instantiation found in text (i.e. the directly observable features). Thus,
the number of different features at stake (i.e. components in the Vector Space)
is significantly lower, allowing more compact vector representations. Notably, a
Window Context can still be used to collect valid feature information (e.g. the
POS tags of the previous and the two following a lexical items).

If a syntactical analyser or a dependency parser is available, then it is possible
to obtain feature information with an even higher-level of abstraction, since the
resulting features do not depend on the position of the lexical items as much as
features extracted with fixed-size windows do. We name this type of contexts as
Relational Feature Context because they are based on the relations that a given
lexical unit establishes with other lexical units within a certain text block (usually
a sentence or a short phrase).

32 Chapter 3. The Vector Space Model

The work developed by Lin [Lin98] is one example of how a Relational Feature
Context is used. The author used the Minipar parser to identify several types
of syntactical relations (subject of, object of, modified by, etc.) in a corpus.
Data obtained for each word was then used to compile feature vectors containing
information about all the words with which the word at stake is grammatically
related to. Based on these feature vectors, the authors were able to calculate
semantic similarity (i.e. content similarity) between words.

3.3.3 Partially Observable Feature Contexts

There are some cases where the distinction between directly observable and indi-
rectly observable feature context is not so clear. In practice, the linguistic pro-
cessing involved in order to obtain “higher-level features” might be quite simple
if some approximations or heuristics are applied. Such features context can thus
be considered Partially Observable Feature Contexts.

For example, Widdows and Dorow draw attention to the importance of a
very specific grammatical relation - the coordination - as source for compiling
feature Vectors [WD02]. The authors used the syntactic annotation provided
in the British National Corpus (BNC) to extract all pairs (Noun , Noun) that
are connected in coordination (“and” or “or”). Using this information, the au-
thors are then able to cluster nouns. The authors claim that this simple method
achieves good results in building certain semantic sets/clusters. However, since
coordination can be easily identified in many languages due to the presence of
explicit (and mostly unambiguous) connectors (“and” or “or”), it is possible to
build simple lexical filters to “process” a corpus and extract such features, even if
some noisy information is generated. Such a simple approach achieved interest-
ing results for Portuguese [Sar06b], with coordination pairs being extracted using
lexical patterns and lists of stop-words over a 6GB collection of web documents,
WPT03 [MS04].

3.4 Feature Weighting Functions

As seen in the in section 3.3, raw feature information can be obtained by ex-
tracting information from several types of contexts. But, because raw feature
information is based on individual frequency counts, it does not express the sta-
tistical significance of the co-occurrence between the item and the feature. For
example, in Portuguese most nouns are preceded by a pronoun, so the existence of
a feature “preceded by pronoun x” would be common to most nouns and, there-
fore, it provides almost no useful information when comparing vectors of two
nouns.

The purpose of a feature weighting function is to promote or demote the
importance of specific features in vector descriptions of (lexical) items, in order

3.4. Feature Weighting Functions 33

to reflect which features are actually worth to be taken into account (or not) while
comparing them. Feature weighting is common need in many fields, so there is a
broad range of weighting functions proposed in literature from a wide variety of
fields. Tan et al. compare twenty one feature weighting functions used in data
mining [TKS04], while Evert presents twenty weighting function that are more
frequently used in computation linguistics [Eve05]. In the next section, we will
focus on several weighting function that are used in this thesis.

3.4.1 Observations, Contingency Table and Estimations

Weighting functions are based on different assumptions regarding how to make
use of the raw counts. While some functions are borrowed from Statistics, others
are based on concepts from Information Theory. There are also many weighting
functions that are heuristic or ad-hoc variations of the previous ones.

Most of the feature weighting functions can be expressed in terms of four
values related to the frequency of four different cases of co-occurrence between a
given feature, fj, and a lexical item, l�i,�i:

1. o(l�i,�i , fj): frequency of observation of feature fj within the context of l�i,�i .
This is usually the value that is observed from the text.

2. o(l�i,�i , !fj): frequency of observation of features other than fi in the context
of l�i,�i. Usually computed by:

o(l�i,�i, !fj) = o(l�i,�i, ∗)− o(l�i,�i, fj) (3.1)

3. o(!l�i,�i , fj): frequency of observation of feature fj in contexts other than
that of l�i,�i. Usually computed as:

o(!l�i,�i , fj) = o(∗, fj)− o(l�i,�i , fj) (3.2)

4. o(!l�i,�i , !fj): frequency of all observations that do not involve neither l�i,�i

neither fj . This is usually obtained by computing:

o(!l�i,�i, !fj) = O − (o(!l�i,�i, fj) + o(l�i,�i, !fj) + o(l�i,�i, fj)) (3.3)

with O being the total number of observations made (i.e. for all lexical
items and all features).

The values of these observations (obtained for each possible pair of lexical
items and features) are usually compiled in a Contingency Table:

Tcont(l�i,�i, fj) =

[

o(l�i,�i, fj) o(l�i,�i, !fj)
o(!l�i,�i , fj) o(!l�i,�i, !fj)

]

=

[

a b
c d

]

(3.4)

34 Chapter 3. The Vector Space Model

with values a, b, c and d being abbreviations for the four observation values
presented before (O = a + b + c + d). In some cases, weighting functions are
expressed using values of probabilities. These can be readily obtained using a
Maximum Likelihood Estimator :

p(l�i,�i, fj) =
o(l�i,�i , fj)

O
=

a

O
(3.5)

p(l�i,�i) =
o(l�i,�i, fj) + o(l�i,�i , !fj)

O
=

a+ b

O
(3.6)

p(fj) =
o(l�i,�i , fj) + o(!l�i,�i, fj)

O
=

a + c

O
(3.7)

3.4.2 Significance Tests as Feature Weighting Functions

Significance Tests are statistical tools that allow making informed decisions about
the nature of the process that generated the observations (stored in a Contingency
Table). More specifically, they allow us to reject or confirm a given hypothesis
about the process that generated such observations.

For using Significance Tests as Weighting Functions, one has to model the
event of observing feature fj in the context of lexical item l�i,�i as a random
process. The event of observing feature fj (in the context of any lexical item) has
probability p(fj), given by Equation 3.7. Likewise, observing lexical item l�i,�i

(associated with any feature) has probability p(l�i,�i), and is given by Equation
3.6. We can then formulate the Null Independence Hypothesis, H0 that assumes
that the occurrence of lexical item l�i,�i and the occurrence of feature fj are two
independent events. Then, under H0, the probability of co-occurrence is given by:

p0(l�i,�i , fj) = p(l�i,�i)× p(fj) (3.8)

which according to Equations 3.6 and 3.7 can be expressed using the values of
the Contingency Table:

p0(l�i,�i, fj) =
a + b

O
× a+ c

O
(3.9)

Then, we can compute the probabilities of the three remainder events, assuming
that H0 holds. These are given by:

p0(l�i,�i, !fj) =
a + b

O
× b+ d

O
(3.10)

p0(!l�i,�i, fj) =
c+ d

O
× a + c

O
(3.11)

p0(!l�i,�i, !fj) =
c+ d

O
× b+ d

O
(3.12)

3.4. Feature Weighting Functions 35

From these, and from the total number of observations, we can derive the expected
number of observations under the Null Hypothesis, H0:

o0(l�i,�i, fj) =
(a + b) ⋅ (a+ c)

O
(3.13)

o0(l�i,!�i) =
(a + b) ⋅ (b+ d)

O
(3.14)

o0(!l�i,�i, fj) =
(c+ d) ⋅ (a + c)

O
(3.15)

o0(!l�i,�i, !fj) =
(c+ d) ⋅ (b+ d)

O
(3.16)

Alternatively, we can express such information in the form of a Contingency Table
of expected observations :

T 0
cont(l�i,�i, fj) =

[

o0(l�i,�i, fj) o0(l�i,�i, !fj)
o0(!l�i,�i, fj) o0(!l�i,�i, !fj)

]

(3.17)

Significance Tests measure how significant is the difference between the ob-
servation values that are expected under the Null Hypothesis, T 0

cont(l�i,�i, fj), and
the values actually observed, Tcont(l�i,�i, fj). These tests provide a value that
quantifies how much certainty there is in rejecting the Null Hypothesis. In other
words, the value of the significance test provides a measure of how much the co-
occurrence of the item l�i,�i and feature fj is not a matter of chance, but is in fact
a relevant event. Such value can then be used as the weight of vector component
for the corresponding feature: the stronger the Null Hypothesis is to be rejected,
the more relevant is that feature for describing the lexical item at stake.

One can find in literature three types of Significance Tests :

1. Likelihood Tests: Likelihood Tests aim at computing the probability of
observing the values expressed in the Contingency Table Tcont(l�i,�i, fj) if the
Null Hypothesis is actually true. Such probability is known as Likelihood.
Low values for the Likelihood suggest that H0 is probably not true.

2. Exact Hypothesis Tests: Exact Tests compute the probability of a Type I
Error when taking a decision about the validity of the Null Hypothesis, H0.
A Type I Error occurs when the H0 hypothesis is incorrectly rejected. For
that, Exact Tests add evidence against the Null Hypothesis for all possible
Contingency Tables that could be generated for the event at stake. This
usually involves a significant computational effort for exploring the space of
the possible Contingency Tables.

3. Asymptotic Hypothesis Tests: Asymptotic Tests are simplifications,
which can be applied under certain conditions, of the Exact Tests. When the

36 Chapter 3. The Vector Space Model

sample size is large enough, the Normality Assumption becomes valid and
the computations performed by Exact Tests can be greatly simplified. These
tests are, thus, used in many fields. Asymptotic Hypothesis Tests compute
a statistic that allows to check how well the frequency values observed are
close to what is theoretically expected under H0. For this reason, these
tests are frequently mentioned as goodness-of-fit tests.

In practice, because of their simplicity, Asymptotic Tests are the most fre-
quently used ones. Next, we present several of these Asymptotic Tests, which are
commonly used as feature weighing functions.

Pearson �2 Test

Pearsons �2 Test is a statistic based on the differences between the values ob-
served, o(i), and the values expected under H0, o0(i):

�2 =

k
∑

i=1

(o(i)− o0(i))
2

o0(i)
(3.18)

In our case, the summation is to be made over the elements of both Contingency
Tables: Tcont(l�i,�i, fj) and T 0

cont(l�i,�i, fj). For a 2 × 2 Contingency Table, such
as the ones used in feature weighting, the �2 statistic can be re-written using the
abbreviated notation shown in Equation 3.4:

�2 =
(a ⋅ d− b ⋅ c)2 ⋅ (a + b+ c+ d)

(a+ b) ⋅ (a + c) ⋅ (b+ d) ⋅ (c+ d)
=

=
(a ⋅ d− b ⋅ c)2 ⋅ O

(a+ b) ⋅ (a + c) ⋅ (b+ d) ⋅ (c+ d)
(3.19)

The value of �2 statistic is a random variable that can be approximated by
the �2 distribution with v = (r − 1) ⋅ (c − 1) degrees of freedom, with r and c
corresponding to the number rows and columns of the Contingency Table. Thus,
in our case v = 1. When the value of the �2 statistic is low, we can say that the
observations follow the theoretical model and H0 can be considered valid. On
the other hand, if the �2 statistic is higher than a given threshold, H0 cannot be
considered valid, meaning that there is a strong association between the feature
fj and the lexical item l�i,�i. The �

2 test can thus be directly used as a weighting
function.

However, approximating the �2 statistic by the �2 distribution is only safe
when the number of degrees of freedom at stake is sufficiently large. For the cases
in which v = 1, Equation 3.18 suffers a small change known as Yates Correction:

�2
Y ates =

k
∑

i=1

(∣o(i)− o0(i)∣ − 0.5)2

o0(i)
(3.20)

3.4. Feature Weighting Functions 37

The Yates Correction factor is insignificant when the value of the expected fre-
quency, o0(i) is very high. For low values of o0(i), the Yates Correction factor is
important. For cases where o0(i) ≤ 5, i.e. “rare events”, there may be significant
deviations even when using the correction factor.

�2 Coefficient

The �2 is a statistic often used as an association measure between two binary
variables. The �2 statistic is related to the �2 statistic by:

�2 =
�2

O
(3.21)

Thus, by using Equation 3.19 for the �2 statistic, we can express �2 in an abbre-
viated notation:

�2 =
(a ⋅ d− b ⋅ c)2 ⋅ O

((a + b) ⋅ (a+ c) ⋅ (b+ d) ⋅ (c+ d)) ⋅ O =

=
(a ⋅ d− b ⋅ c)2

(a+ b) ⋅ (a + c) ⋅ (b+ d) ⋅ (c+ d)
(3.22)

Contrary to the �2 statistic, the �2 statistic is bounded between 0 and 1. Church
and Gale have used this statistic as a measure of association for the purpose of
finding bilingual matches. The authors claimed that the �2 statistic is appropri-
ate for this type of tasks since it makes a good use of the diagonal cells of the
Contingency Table, i.e. b and c, which usually have relatively high counts and,
thus, provide better support for estimations [CG91].

The Z-Score

The use of the Z-Score statistic in computational linguistics dates back to the 70’s
[BR73], and it has been, since then, a popular choice for identifying collocations
(e.g Smadja’s Xtract system [Sma93]).

The Z-Score is related with the Central Limit Theorem. When nsmp samples
are drawn from a population whose distribution is unknown but whose average,
�pop, and standard deviation, �pop, are known, the distribution of the average value
of the nsmp samples, �smp, tends to a Normal Distribution with average �pop and
standard deviation �pop /

√
namo. Therefore, the statistic:

Z =
�smp − �pop

�pop /
√
nsmp

(3.23)

tends to a Standard Normal Distribution (i.e with � = 0 and � = 1). When
considering the co-occurrence of lexical items and features, the “sample” is the
text environment (e.g. corpus) from which we are building feature vectors. Thus,

38 Chapter 3. The Vector Space Model

there is only one sample, i.e. nsmp = 1. In this case, the Z-Score statistic is only
applicable if the population itself follows a approximately normal distribution.
For very large amounts of text it is possible to approximate the discrete distri-
bution that is usually used for modelling the co-occurrence of lexical items and
features, the Binomial Distribution, by a Normal Distribution, keeping the same
average and standard deviation parameters.

The Z-Score statistic can be used as a feature weighting function, by taking
its value when used for testing the validity of the H0 hypothesis. If the occurrence
of the lexical item l�i,�i and feature fj are independent, then:

p0(l�i,�i, fj) = p0(l�i,�i) ⋅ p0(fj) (3.24)

The expected value for the number of co-occurrences in the text environment for
a population of size O:

�smp = O ⋅ p0(l�i,�i, fj) = e0(l�i,�i, fj) (3.25)

Then, if the population follows a Binomial Distribution, whose parameter pbin
is assumed to be p0(l�i,�i , fj), the variance of the population should be given by:

�2
pop = O ⋅ p0(l�i,�i, fj) ⋅ (1− p0(l�i,�i, fj)) =

o0(l�i,�i, fj) ⋅ (1− o0(l�i,�i, fj)/O) (3.26)

Since �smp = o0(l�i,�i, fj) and n = 1:

Z =
o(l�i,�i, fj)− o0(l�i,�i, fj)

√

o0(l�i,�i, fj) ⋅ (1− o0(l�i,�i, fj)/O)
(3.27)

The higher the value of the Z-Score, the less likely is the Null Hypothesis to
be valid.

The Equation 3.27 is the most frequent formulation found in literature for
the Z-Score statistic (e.g. Schone and Jurafsky [SJ01] or Pearce [Pea02]). Evert
presents a simplification for this formulation based on the fact that the total
number of observations for all lexical items and features, O, is much larger than
the number of observations for any individual combination of lexical item and
feature, o0(l�i,�i, fj) [Eve05]. Thus, if O ≫ o0(l�i,�i , fj):

�2
pop = o0(l�i,�i, fj) ⋅ (1− o0(l�i,�i, fj)/O) ≃ o0(l�i,�i, fj) (3.28)

and Equation 3.27 can be simplified to:

Z =
o(l�i,�i, fj)− o0(l�i,�i, fj)

√

o0(l�i,�i, fj)
(3.29)

Finally, we can formulate Equation 3.29 using the simplified notation to express
the values of the Contingency Table:

Z =
a− (a+b)(a+c)

O
√

(a+b)(a+c)
O

=
a ⋅ O − (a+ b)(a + c)
√

O ⋅ (a+ b)(a + c)
(3.30)

3.4. Feature Weighting Functions 39

Student’s t-test

Student’s t-test is widely used in statistics for comparing two samples drawn from
the same population. It can be used to test if the average of two such samples is
significantly different or not. Contrary to the Z-score, the t-test does not assume
that the standard deviation of the population is known, and thus it assumes that
its value should also be estimated from the samples. The t-test is, therefore, a
significance test that makes less assumptions about the population at stake than
the Z-Score. The t statistic is given by:

t =
�smp − �pop

Spop/
√
nsmp

(3.31)

with:

∙ �smp being the average of the sample

∙ �pop being the average of the population, which is assumed to be the value
expected under the H0

∙ nsmp being number of samples taken

∙ Spop being an estimate of the standard deviation of the population (�pop)
computed from the nsmp samples taken.

The t-test follow a Students-t Distribution with v = nsmp − 1 degrees of free-
dom. As mentioned by Evert ([Eve05], pag. 82), in theory, the t-test is not
applicable to frequency data taken from a corpus (i.e. one sample) since this
test was developed to compare nsmp > 1 independent samples from the same
population. However, the t-test can be seen as an heuristic variant of the Z-
Score. Assuming that the parameter of the Binomial Distribution that describes
o(l�i,�i , fj) (i.e. the p(l�i,�i, fj) parameter) can be estimated from the values ob-
served using a maximum likelihood estimator, we have p(l�i,�i, fj) = o(l�i,�i, fj)/O.
Then, we obtain (for a Binomial Distribution):

Spop = O ⋅ p(l�i,�i, fj) ⋅ (1− p(l�i,�i, fj)) = o(l�i,�i, fj) ⋅ (1− o(l�i,�i, fj)/O) (3.32)

and, by making nsmp = 1 in Equation 3.31, we can derive:

t =
o(l�i,�i, fj)− o0(l�i,�i, fj)

√

o(l�i,�i, fj) ⋅ (1− o(l�i,�i, fj)/O)
≃ o(l�i,�i , fj)− o0(l�i,�i, fj)

√

o(l�i,�i, fj)
(3.33)

It is possible to find in literature both the exact and approximate versions of the
t-test shown before (Equation 3.33). By using the simplified notation to express
the values of the Contingency Table, we can obtain the following equation for the
approximated value of the t-test:

t =
a− (a+b)(a+c)

O√
a

=
√
a− (a + b)(a+ c)

O
√
a

(3.34)

40 Chapter 3. The Vector Space Model

The Log-Likelihood Ratio Test (G2)

As mentioned by Dunning [Dun93], the �2 and Z − Score tests are based on the
assumption that the random variables at stake follow a Binomial Distribution,
which can be safely approximated by a Normal Distribution. In such case, it is
possible to assume that the random variable follows the Normality Assumption,
a condition that is required for ensuring the validity of the �2 and the Z −Score
tests.

However, using a Normal Distribution to approximate the values of a Binomial
Distribution is only valid when the value of the variance of the underlying Bino-
mial Distributions are higher than a given threshold (usually 5). Thus, for “rare”
events (i.e. those whose frequency and variance are relatively low) the Normality
Assumption does not usually hold, meaning that in practice the results of the �2

test and Z − Score tests are likely to be invalid.
For that reason, Dunning proposes the Log-Likelihood Ratio test, which does

not depend on the Normality Assumption. The goal of Log-Likelihood Ratio test,
or G2 test, is to measure how “surprising” is a given event, even if it occurs only
once. Whenever the Normality Assumption is in fact valid, the G2 test tends to
the �2 test.

Likelihood Function and Likelihood Ratio The Log-Likelihood Ratio test
has a complex formulation. Let us assume that the occurrences of a certain event
follow a given parametric statistical model ℳ, i.e. they follow a probability
function with one or several model parameters, m1, ..., mn. The probability of a
given set of occurrences described as k1,, km, taking into account the parametric
model ℳ is given by the Likelihood Function of the model:

Hℳ(m1, ...mn; k1, ...km) (3.35)

Defining ! as one possible instantiation of parameters within the parameter space
Ω, and � as a set of specific occurrences in the occurrence space K, we can
represent the Likelihood Function in a more compact format as:

Hℳ(!; �) (3.36)

The Likelihood Ratio � is the relation between the maximum value of the Like-
lihood Function within a given parameter subspace Ω0 defined by a hypothesis
under test, H0, and the maximum possible value of the Likelihood Function within
the totality of the parameter space Ω:

� =
maxΩ0

Hℳ(!; �)

maxΩHℳ(!; �)
(3.37)

One important property of the Likelihood Ratio, �, is that the statistic:

−2 ⋅ log(�) (3.38)

3.4. Feature Weighting Functions 41

converges asymptotically to the �2 distribution. The convergence is very fast,
even for binomial or multinomial distribution. The practical consequence of such
fast convergence is that it becomes possible to perform an efficient hypothesis test
even when the sample is relatively small or the expected and observed values under
test are low. In other words, the Normality Assumption is not a pre-requisite for
the validity of this test.

Using the Likelihood Ratio to Measure Association The Likelihood Ra-
tio can be used for measuring the association between the occurrence of a lexical
item, l�i,�i, and a feature, fj , (and thus it can be used for feature weighting), using
a formulation different from the previous three tests. Under the Null Hypothesis,
H0, we have

p0(l�i,�i) = p0(l�i,�i ∣fj) = p0(l�i,�i∣!fj) (3.39)

Also, let us assume that, generically, the number of occurrences of l�i,�i , oi,
on a given text environment (e.g. a corpus) follows a Binomial Distribution with
parameter pi

Pi(oi = k) =
(

O
k

)

pki (1− pi)
O−k (3.40)

with O being the total number of observations made on such environment. We
can now define two probability functions, one for the event of l�i,�i co-occurring
with fj and the other for the event of l�i,�i of not co-occurring with fj :

P(i,j)(oi = k1∣fj) =
(

O1

k1

)

pk1(i,j)(1− p(i,j))
O1−k1 (3.41)

P(i,!j)(oi = k2∣!fj) =
(

O2

k2

)

pk2(i,!j)(1− p(i,!j))
O2−k2 (3.42)

These functions correspond to the observation of k1 occurrences of l�i,�i along with
fj in O1 observations, and k2 occurrences of l�i,�i not co-occurring with fj , in O2

observations. The Likelihood function for two binomial probability functions is
given by:

H(p(i,j), p(i,!j); k1, O1, k2, O2) = (O1

k1
)pk1(i,j)(1− p(i,j))

O1−k1 ⋅ (O2

k2
)pk2(i,!j)(1− p(i,!j))

O2−k2

(3.43)
The Null Hypothesis, H0, assumes that the parameters p1 = p2 = p0 are equal,
meaning that the occurrence of l�i,�i is as probable with or without fj . Thus the
Likelihood Ratio can be formulated by:

� =
maxp0H(p0, p0; k1, O1, k2, O2)

maxp1,p2H(p1, p2; k1, O1, k2, O2)
(3.44)

The maximum values for each of Likelihood Function are obtained with:

p0 =
k1 + k2
O1 +O2

(3.45)

42 Chapter 3. The Vector Space Model

and

p1 =
k1
O1

(3.46)

p2 =
k2
O2

(3.47)

which allows further simplification of Equation 3.44 to:

� =
L(p0, k1, O1) ⋅ L(p0, k2, O2)

L(p1, k1, O1) ⋅ L(p2, k2, O2)
(3.48)

with L(p, k, n) = pk(1 − p)n−k. Finally, the Log-Likelihood Ratio, or G2, can be
computed by making −2 ⋅ log�:

G2 = 2 ⋅ [logL(p0, k1, O1) + logL(p0, k2, O2)− logL(p1, k1, O1)− logL(p2, k2, O2)]
(3.49)

Since this formulation is extremely complex and does not relate to the values held
by the Contingency Table, several authors (e.g. [Eve05]) have proposed other
less compact, yet more explicit, formulations. If we take into account the values
observed (i.e Tcont(l�i,�i, fj)) and the values expected under the Null Hypothesis
(i.e. T 0

cont(l�i,�i, fj)) we can rewrite Equation 3.49 as:

G2 = 2 ⋅ [o(l�i,�i, fj) ⋅ log
o(l�i,�i, fj)

o0(l�i,�i, fj)
+ o(l�i,�i, !fj) ⋅ log

o(l�i,�i , !fj)

o0(l�i,�i, !fj)

+ o(!l�i,�i, fj) ⋅ log
o(!l�i,�i, fj)

o0(!l�i,�i , fj)
+ o(!l�i,�i, !fj) ⋅ log

o(!l�i,�i, !fj)

o0(!l�i,�i, !fj)
] (3.50)

By applying the simplified notation, we obtain the following formulation:

G2 = 2 ⋅ [a ⋅ log(a) + b ⋅ log(b) + c ⋅ log(c) + d ⋅ log(d)
− (a + b) ⋅ log(a+ b)− (a+ c) ⋅ log(a+ c)

− (b+ d) ⋅ log(b+ d)− (c+ d) ⋅ log(c+ d)

+ (a+ b+ c+ d) ⋅ log(a+ b+ c+ d)]

(3.51)

3.4.3 Weighting Functions based on Information Theory

In this section, we mainly focus on association measures based on concepts bor-
rowed from the Information Theory, such as Entropy or Information Gain. Ba-
sically, when applied to lexical items and corresponding feature, these measures
try to quantify how much a given feature fj is “typical” (or not) of the lexical
item l�i,�i, by measuring how much information does the occurrence of one give
about the occurrence of the other. The value of such measure is then used as the
weight of the feature.

3.4. Feature Weighting Functions 43

Pointwise Mutual Information

Pointwise Mutual Information2 is one of the classical association measures that
is used as a feature weighting function [CH90]. It relates the probability of co-
occurrence of two elements with the probabilities of occurrence of each of them
individually. Therefore, assuming such elements are the lexical item l�i,�i and
feature fj extracted from the context, the Pointwise Mutual Information is given
by:

MI(l�i,�i, fj) = log2
p(l�i,�i, fj)

p(l�i,�i) ⋅ p(fj)
(3.52)

If the occurrence of l�i,�i is independent of the occurrence of fj then

p(l�i,�i, fj) = p(l�i,�i) ⋅ p(fj) ⇒ MI(l�i,�i, fj) = log2(1) = 0 (3.53)

On the other hand, if there is a significant dependence between l�i,�i and fj :

p(l�i,�i , fj) > p(l�i,�i) ⋅ p(fj) ⇒ MI(l�i,�i , fj) > 0 (3.54)

We can express Pointwise Mutual Information between l�i,�i and fj in an alter-
native way that allows straight-forward computation using the values stored in
the Contingency Table (see Equation 3.4):

MI(l�i,�i, fj) = log2
a ⋅ O

(a+ b) ⋅ (a+ c)
(3.55)

Issues concerning Pointwise Mutual Information One of the main criti-
cism to Pointwise Mutual Information is the fact that it tends to over-estimate the
degree of association between elements, whenever the events are “rare”, i.e. when-
ever the values of p(l�i,�i) or p(fj) are very low [Dun93]. In fact, if p(l�i,�i) ≃ 0
or p(fj) ≃ 0 Pointwise Mutual Information will be asymptotically high, which
tends to promote the association of rare occurrences, such as those with infre-
quent words, or even spelling mistakes and other idiosyncrasies, instead of truly
significant co-occurrences3.

Another criticism to Pointwise Mutual Information is its inability to produce
satisfactory rankings by degree of association [CG91]. Furthermore, this measure
does not make the best use of the b and c values of the Contingency Table, whose
values are usually relatively high, and thus support better estimates than those
supported by a (which usually is much lower than b or c).

2In computational linguistics and text-mining fields, Pointwise Mutual Information is often
mentioned as “Mutual Information”. We also follow that convention, and every reference to
Mutual Information in this thesis should be understood as Pointwise Mutual Information

3To compensate for such effect Lin and Pantel propose a correction factor to the original
equation [LP02].

44 Chapter 3. The Vector Space Model

Mutual Dependency

Mutual Dependency was proposed by Thanapoulos et al [TFK02] and is based
on the observation that Mutual Information is mainly a measure of independency
rather than a measure of dependency. A measure of dependency can be obtained
by subtracting the value of Auto-Information to the value of Mutual Information.
Auto-Information is one of the classic measures from the Information Theory, and
is defined as:

AI(Z) = − log(Z) (3.56)

Mutual Dependence (MD) is defined as:

MD(l�i,�i, fj) = MI(l�i,�i, fj)− AI(l�i,�i, fj) (3.57)

By expanding each of the terms we can transform Equation 3.57 in:

MD(l�i,�i, fj) = log2

(

p(l�i,�i , fj)

p(l�i,�i) ⋅ p(fj)

)

+ log2(p(l�i,�i, fj))

= log2

(

p(l�i,�i, fj) ⋅ p(l�i,�i, fj)

p(l�i,�i) ⋅ p(fj)

)

(3.58)

Using the simplified notation to express Mutual Dependency as a function of the
values of the Contingency Table:

MD(l�i,�i, fj) = log2

(

a/O ⋅ a/O
(a+ b)/O ⋅ (a+ c)/O

)

= log2

(

a ⋅ a
(a+ b) ⋅ (a+ c)

)

(3.59)

If used for ranking associations, Mutual Dependency leads to approximately
the same results as those obtained when using Pointwise Mutual Information. In
fact, Mutual Dependency is essentially a rescaling of Pointwise Mutual Informa-
tion function.

3.4.4 tf-idf as a Feature Weighting Function

In this section we focus on the term frequency-inverse document frequency (tf-
idf) function, which can used for feature weighting although it was not initially
formulated with that purpose. The original purpose of tf-idf function was to
weight the relevance of the terms inside a document in a document collection,
but can be easily adapted for weighting features in generic vector descriptions.
The value of tf-idf function for a term ti in document dj is given by:

tf-idf(i, j) = tfi,j ⋅ idfi (3.60)

with tfi,j being the normalized frequency of term ti in document dj (ni,j is the
number of times that term ti occurs in document dj):

tfi,j =
ni,j

∑

i ni,j
(3.61)

3.5. Vector Distance Measures 45

and idfi being the normalized inverse document frequency, i.e. the inverse of the
fraction of documents in the collection containing term ti:

idfi = log

(∣D∣
∣d : ti ∈ d∣

)

(3.62)

with ∣D∣ being the total number of document in the collection, and ∣d : ti ∈ d∣
being the number of documents in the collection containing ti.

We can formulate feature weighting as a process similar to term weighting.
The goal is to measure the “relevance” of feature fj (which is treated as the
analogue of the term) within the vector description of lexical item l�i,�i (which is
treated as the document). Thus, we define relative feature frequency as4:

ffj,i =
o(l�i,�i , fj)

o(l�i,�i)
(3.63)

Likewise, inverse item frequency is the fraction of lexical items with which feature
fj co-occurs:

iifj = log

(∣L∣
∣l : o(l�i,�i, fj) > 0∣

)

(3.64)

with ∣L∣ being the total of lexical items being weighted (i.e. for which features
were extracted), and ∣l : o(l�i,�i, fj) > 0∣ being the number of lexical items for
which feature fj was extracted.

Following the tf-idf formula, the weight, w, to be assigned to feature fj in the
vector description of l�i,�i is given by:

w(l�i,�i , fj) = ffj,i ⋅ iifj (3.65)

3.5 Vector Distance Measures

One of the essential assumptions for using the Vector Space Model relies on the
ability to measure “distances” between vectors. One can find in literature a great
number of vector functions for measuring the “distance” between two vectors, or
for measuring other related concepts, such as vector divergence or vector dissimi-
larity. Other functions measure the opposite concept, i.e. the vector proximity or
vector similarity between vectors. Depending on the authors and subject field of
the publication (i.e. computational linguistics, data-mining, information theory,
etc.) we encounter different names for these functions: distance measures, vector
divergence measures, vector dissimilarity measure, vector similarity measures or
vector proximity measures. In practice, it is generally possible to trivially convert

4In order to follow previous notation, lexical items are generically denoted by l�i,�i
while

features are generically mentioned by fj . Because of this, the indexes i and j used in Equation
3.63 are changed in relation to Equation 3.61

46 Chapter 3. The Vector Space Model

measures of distance (or dissimilarity) into measures of proximity (or similarity).
Therefore, in the next descriptions we do not treat such functions separately ac-
cording to that criterion, but we explicitly state the type of each function at
stake (i.e. distance vs. proximity). Additional information and comparisons be-
tween some of these measures can be found in works by Lee [Lee99], Dagan et al.
[DLP99], Weeds et al. [WWM04], Strehl et al. [SGM00] and also St-Jacques and
Barrière [SJB06].

There are several vector distance functions specially designed for Real-valued
Vector Spaces and others for Binary Vector Spaces. Most measures for Real-
Valued Vector Spaces can also be used in Binary Vector Spaces. In the next
sections, we present an overview of several vector distance (or proximity) mea-
sures.

3.5.1 Distance Measures over Real-Valued Vector Spaces

We consider two different approaches for measuring distances in Real-Valued
Vector Spaces: Geometric Measures and Probabilistic Measures. The following
notation conventions are used:

∙ x is the vector representation of item x

∙ x(k) is the value of the element at component k of vector x

∙ ∣∣x∣∣ is the Euclidean Norm of vector x

∙ x ⋅ y is the dot product of vectors x and y

∙ abs(x) is the absolute value of the scalar x

∙ ∣V∣ is the dimensionality of the Vector Space V

Geometric Measures

These measures are based on traditional concepts about space in Euclidean Spaces:

L1 Distance The L1 Distance, also known as Block Distance, Manhattan Dis-
tance or Variational Distance is given by:

DL1(x, y) =

∣V∣
∑

k=0

abs(x(k)− y(k)) (3.66)

0 ≤ DL1(x, y) < +∞ (3.67)

3.5. Vector Distance Measures 47

L2 Distance The L2 Distance, or Euclidean Distance, is one of the most ele-
mentary distance measures, and it is simply the norm of the difference between
the two vectors:

DL2(x, y) = ∣∣x− y∣∣ =

√

√

√

⎷

∣V∣
∑

k=0

(x(k)− y(k))2 (3.68)

0 ≤ DL2(x, y) < +∞ (3.69)

Cosine Measure The Cosine Measure [SM86] is a very widespread measure
of proximity. For two vectors, this measure gives the value of the cosine of the
angle between them. The Cosine Measure is given by:

cos(x, y) =
x ⋅ y

∣∣x∣∣ ⋅ ∣∣y∣∣ =
∑∣V∣

k=0(x(k) ⋅ y(k))
√

∑∣V∣
k=0 x(k)

2 ⋅
√

∑∣V∣
k=0 y(k)

2

(3.70)

The Cosine Measure is a very convenient measure because contrary to the Eu-
clidean Distance that is unbounded, it produces values in the interval [-1,1]. If
two vectors are parallel on the hyperspace, then the value of the cosine is either
1, if they have the same direction, or -1 if they are in opposite directions. A value
of 1 means that the two vectors have the same features in the same proportions,
i.e. they differ only by a positive scaling operation. A value of -1, means that
vectors have the same features but with symmetric values. A value of 0 means
that the vectors are totally perpendicular, i.e. they have no common features at
all.

Extended Jaccard Similarity Although the “original” Jaccard Similarity
measure (which is presented in section 3.5.2) was initially conceived as a measure
for binary attributes, an extended version for real-valued attributes has been pro-
posed by Strehl and Gosh [SG00]. The Extended Jaccard Similarity is described
by the following formula:

Jext(x, y) =
x ⋅ y

∣∣x∣∣ ⋅ ∣∣y∣∣ − x ⋅ y (3.71)

Probabilistic Measures

Another way of comparing vectors in Real-Value Vector Spaces consists in formu-
lating such task as a problem of comparing two probability distributions. One of
the first descriptions of such an approach for word clustering purposes is given by
Pereira et al. [PTL93]. In this work, the authors tried to classify a set of nouns
ni ∈ N according to their distribution as direct objects of a set verbs vj ∈ V. A

48 Chapter 3. The Vector Space Model

parser was used to compile the frequency of co-occurrence of pairs (vj, ni), fvjni
.

Then, for each ni ∈ N , its empirical verb distribution is given by:

pn(v) =
fvn

∑

v fvn
(3.72)

The comparison between distribution pn and distribution qn (i.e. verb distribu-
tions for two nouns) is done using the Kullback-Leibler (KL) distance:

DKL(p∣∣q) =
∑

v

pn(v) log
pn(v)

qn(v)
(3.73)

There are some advantages in using such types of measures. The main advantage
is that they all naturally operate over Real-valued Vector Spaces, eliminating the
need for a threshold operation over the Vector Space, and thus avoiding introduc-
ing undesirable non-linearity in the Space.

Another advantage is that these measures, contrary to the Cosine Measure or
the Euclidean Distance, do not assume an Euclidean Space. The assumption that
the Vector Spaces we are considering are in fact Euclidean is not well justified,
although many works so far have accepted it as granted (refer to [PTL93] for a
list of other important advantages).

However, one problem with Kullback-Leibler Distance is that it is not defined
when qn(v) = 0 but pn(v) > 0. This problem can be alleviated by using smoothing
techniques for zero frequencies, but it involves additional complexity. Description
of such techniques is out of the scope of this document.

Next, we describe some other measures that are related to the Kullback-Leibler
Distance.

Information Radius or Jensen-Shannon Distance The Information Ra-
dius or Jensen-Shannon Distance [Lin91] is a dissimilarity measure that is directly
related to KL by the following formula:

DJS(p∣∣q) =
1

2
DKL(p∣∣m) +

1

2
DKL(q∣∣m) (3.74)

where M is the average of the two distributions:

m =
1

2
(p+ q) (3.75)

Contrary to the KL Distance, the Jensen-Shannon Distance is a symmetric mea-
sure.

Skew Divergence The Skew Divergence is yet another formula derived from
the Kullback-Leibler Distance [Lee01]. It is defined as:

s�(p, q) = DKL(p∣∣�q + (1− �)r) (3.76)

For � = 1 it becomes the KL Distance.

3.5. Vector Distance Measures 49

Confusion Probability The Confusion Probability is a similarity measure
that estimates the probability of lexical item l1 being “confused” for lexical item
l2, based on feature information extracted from their contexts [ES92]. A large
value of confusion probability indicates that the two lexical items l1 and l2 appear
mostly in similar feature contexts so that they can be “easily confused” (or sub-
stituted). The confusion probability can be expressed by (fi is one of the possible
features):

PConf (l1, l2) =
∑

i

P (l1∣fi)P (fi∣l2) (3.77)

Tau Metric Kendall’s � Metric [Ken38] is a measure of association between
two random variables that can be used to calculate distributional similarity. It
is used to compare different rankings (orderings) and to measure their agreement
/ correlation. However, it has been applied to measure distributional similarity
of features, under the following assumption: if the probability functions p and q
that describe the occurrence of the features of two lexical are similar, then the
rankings of the features of each lexical item, based on the frequencies observed
in a corpus, should be the same, independently of the actual frequencies found.
The � metric is often given by:

�(p, q) =

∑∣V∣
i

∑∣V∣
j sign [(p(fi)− p(fj)) ⋅ (q(fi)− q(fj))]

2 ⋅ (∣V∣
2)

(3.78)

This formula means that for each pair of features fi and fj , we check if their rela-
tive positions in terms of ranking (i.e. lower or greater probability) are the same
for both distributions, p and q. If so we add one, otherwise we subtract 1. The
denominator of the equation is the number of all possible pairings times 2 because
the summation repeats the comparison in both ways. An easier formulation is
given by:

� =
nc − nd

∣V∣ ⋅ (∣V∣ − 1)
(3.79)

where nc number of concordant pairs (ranked consistently) and nd is the number
of discordant pairs (i.e. ranked differently).

Therefore, for exactly similar rankings, we will have �(p, q) = 1, indicating
total similarity between distributions. For totally opposite rankings, we will have
�(p, q) = −1, indicating that the distributions are totally dissimilar.

3.5.2 Distance Measures over Binary Vector Spaces

Next, we present some of the most frequent distance vector metrics used in binary
vector spaces. The following notation conventions are used:

∙ ∣∣x∣∣ is the binary norm of vector x, that is the number of “1” elements in
vector x

50 Chapter 3. The Vector Space Model

∙ x
∩

y is the intersection between vector x and vector y, that is the number
of common “1” elements in vector x and vector y.

∙ x
∪

y is the union between vector x and vector y

Matching Coefficient The Matching Coefficient is the most elementary mea-
sure of similarity, but it has several important drawbacks: (i) it does not take
into account the length of the vectors, (ii) it does not consider the total number
of non-zero elements, and (iii) it is not normalized. It is given by:

M(x, y) = ∣∣x
∩

y∣∣ (3.80)

The Matching Coefficient is mentioned here mainly for reference purposes and for
a better understanding of the following measures.

Dice Coefficient The Dice Coefficient is a very popular measure of similarity.
It is an improvement of the Matching Coefficient because it provides a normalized
value in [0,1] range. It is given by:

D(x, y) =
2 ⋅ ∣∣x∩ y∣∣
∣∣x∣∣+ ∣∣y∣∣ (3.81)

Overlap Coefficient The Overlap Coefficient is variation of the Matching Co-
efficient that takes into account the maximum possible value of the intersection,
which is limited to min(∣∣x∣∣, ∣∣y∣∣). The Overlap Coefficient is defined as:

O(x, y) =
∣∣x∩ y∣∣

min(∣∣x∣∣, ∣∣y∣∣) (3.82)

The Overlap Coefficient has a value of 1 whenever one of the binary vectors is
completely included by another, that is x ⊆ y or y ⊆ x.

Jaccard Coefficient The Jaccard Coefficient or Jaccard Index, J, is the ratio
between the module of the intersection of two vectors and the module of their
union:

J(x, y) =
∣∣x∩ y∣∣
∣∣x∪ y∣∣ (3.83)

The Jaccard Coefficient ranges from 0, meaning total dissimilarity between the
binary attributes, and 1, in case all attributes match (except when they are all
0). It penalizes a small number of shared entries more than the Dice Coefficient
because the union of the vectors is used instead of the average of their norms.

The Jaccard Distance is given by:

J�(x, y) = 1− J(x, y) =
∣∣x∪ y∣∣ − ∣∣x∩ y∣∣

∣∣x∪ y∣∣ (3.84)

3.6. Conclusion 51

Estimating Proximity of Binary Vectors by Min-Hashing Instead of
directly comparing two vectors, there are ways of estimating the distance / prox-
imity using statistical approaches that allow significant computational savings.
These approaches are particularly useful when the number of vectors to be com-
pared is very high and there is only the need to obtain an approximate list of
the nearest-neighbours (i.e closest vectors). Min-Hashing (Min-wise Independent
Permutation Hashing) is a Locality Sensitive Hashing scheme that can be used
for such purpose [IM98].

The key component of Min-Hasing is a hash function, ℋ(x), that returns
the index of the first non-null component of a given feature vector x from the
space. It is possible to show – see Broder [Bro97] and Indyk and Motwani [IM98] –
that, when random permutations on the positions of the components of the vector
space are performed, the probability of two vectors hashing to the same value, i.e.
ℋ(x) = ℋ(y), is equal to their Jaccard coefficient J(x, x). Conversely, the Jaccard
Coefficient of two vectors can be estimated by repeating the random permutation
process and checking the fraction of times in which the values of the corresponding
hashes collide. The number of repetitions can be set according to the desired
precision of such estimate and to a pre-defined limit on the computational effort.

Since only positions of components are taken into account, and not their
values, Min-Hashing is especially suited for Binary Vector Spaces.

3.6 Conclusion

In this chapter we summarized the basic concepts regarding the use of the Vector
Space Model as the fundamental mathematical tool for grounding the computa-
tion of similarity. We provided a detailed description and explanation of the main
parameters of the VSM namely feature contexts, feature weighting functions and
vector distance measures.

We described several possibilities for defining features contexts. The choice
of the appropriate feature context is one of the main issues addressed from Part
II to Part IV. Despite the fact that the information regarding feature weighting
functions and vector distance measures presented here does not constitute an
original contribution, our main achievement in this chapter is to have presented
a comprehensive overview of relevant information spread throughout a vast body
of literature.

Chapter 4

Evaluation

In this chapter, we address several issues regarding the evaluation of procedures
for computing similarity between lexical items. We begin by differentiating direct
and indirect evaluation strategies. Then, for direct evaluation strategies, we dis-
cuss the most common evaluation scenarios and, for each, present performance
measures (essentially those that are used in the remainder of the thesis). We pro-
ceed by describing resources that can be used as gold-standard references in evalu-
ation procedures. We divide these resources in three different groups, depending
on the type of lexical items for which they provide gold-standard information:
common lexicon, named-entities and Web 2.0 tags. Finally, we present a formal
description of indirect evaluation strategies, and we discuss possible performance
criteria that can be applied in such evaluation scenarios.

4.1 Direct vs. Indirect Strategies

There are two main evaluation strategies: direct and indirect evaluation. Direct
evaluation strategies consist in directly comparing the output of a given procedure
(in our case one for computing a certain notion of similarity between lexical items)
against a ground-truth reference or gold-standard resource containing explicit in-
formation about the correct output(s) expected. On the other hand, indirect
evaluation presupposes that the procedure being evaluated is part of a larger
processing chain whose result is the one that will be (directly) evaluated. Thus,
when indirect evaluation strategies are used, the performance of the procedure
under evaluation is only assessed through the quality of the results to which it
contributes, which themselves have to be evaluated appropriately.

Direct evaluation strategies are particularly suited for assessing the perfor-
mance of procedures related with content or type similarity. For example, for
evaluating the performance of a synonymy finding procedure, one can directly
compare the results obtained with the information contained in a WordNet-like
resource. In this case, the challenge consists in obtaining an appropriate gold-

53

54 Chapter 4. Evaluation

standard resource, which may not exist or may not be easily (or freely) available.
Whenever available, this type of resources might still have significant recall gaps
that impact negatively in the results of the evaluation. Alternatively, different
sources of ground-truth information may be used, such as, for example, standard
language tests (e.g. TOEFL tests [Tur01]), or psycholinguistic evidence indicating
how people “perceive” the degree of similarity between words.

Procedures for computing functionally similarity fit almost perfectly in in-
direct evaluation strategies. For example, a procedure for finding functionally
similar keywords for query expansion can be evaluated in a traditional IR set-
ting. A better procedure should provide better functional equivalents that should
lead to better retrieval results, which can be measured. However, indirect evalua-
tion strategies have their own set of challenges. First, they usually require a more
complex set-up, comprising both the similarity computation procedure (under in-
direct evaluation) and the system which depends on the results of such procedure.
Second, the evaluation of the external system may itself be complex and require
gold-standard resources that might also be hard to obtain. Finally, and more im-
portant, it might not always be possible to establish a clear and direct correlation
between a change in the performance of the external system and the performance
of the procedure being evaluated. There simply may be too many factors that are
difficult to isolate or control. Thus, indirect evaluations usually involve a larger
number of performance measures to allow tracking multiple dimensions of the
system.

One can generically say that direct evaluation is preferable since it provides a
more straightforward way of comparing the performance of a function to the gold-
standard without interferences from other factors. While this is indisputable, one
should also not forget that gold-standards are usually created manually following a
given set of (linguistic) assumptions, which imprints them a certain semantic bias
(see [VPF91]). Depending on whether the same bias is followed (or not) by the
procedure being evaluated, direct evaluation may overestimate (or underestimate)
the true performance of the procedure. Direct evaluation over multiple gold-
standard resources, when available, may help to alleviate this type of problems.

On the other hand, when there is a text processing goal at stake, the “quality”
of the specific similarity computation function is not relevant per se, because only
the final result of a longer processing chain is what really matters. In that case,
the performance values obtained when using direct evaluation may not be signif-
icant in comparison with those obtained through indirect evaluation. Thus, it is
important to consider both strategies, since different scenarios require different
evaluation needs.

4.2. Direct Evaluation Strategies 55

4.2 Direct Evaluation Strategies

Given a procedure to compute content or type similarity between lexical items,
there are essentially three possible evaluation scenarios depending on the output
of such procedure:

1. Pairings: The simplest situation is when the procedure produces pairing
information taking into account a certain notion of similarity, as, for ex-
ample, a pair of synonyms or co-hyponyms. In this situation, evaluation
focus on determining whether such pairings are true or not, and whether
all correct pairings have been found.

2. Ranked Lists: In other cases, the procedure outputs a ranked list of items
according to their similarity to a given input item, such as for example, a list
of synonyms with a grade indicating how similar the items in the list are to
a reference word. Evaluation consists in measuring not only the correctness
and completeness of the items in the ranked list, but also measuring how
accurate is the ranking.

3. Clusters: In other situations, the procedure under evaluation generates
clusters of lexical items (e.g. synsets) based on some similarity criteria. In
such cases, evaluation consists in verifying whether these clusters are valid
based on a number of quality criteria (e.g. “purity”).

In the next sections we formalize these three scenarios and present possible eval-
uation measures.

4.2.1 Evaluating Pairings

Let �i be a list of pairings (possibly only one) that was returned by a procedure
that finds items to be matched with lexical item li according to a given notion
of similarity. Let i be the gold-standard set containing a list of correct pairings
(ideally all) for lexical item li. We can compute Precision, p, and Recall r figures
for the results of the pairing procedure for items li as:

p(�i, i) =
∣�i ∩ i∣
∣�i∣

(4.1)

r(�i, i) =
∣�i ∩ i∣
∣i∣

(4.2)

with ∣�i∣ and ∣i∣ being the number of pairing in �i and i respectively, and ∣�i∩i∣
being the number of correct pairs found in �i.

If we now consider n lexical items and we wish to evaluate the list of pairings
produced for them, Π = [�1, �2...�n], against the corresponding gold-standard

56 Chapter 4. Evaluation

pairing sets, Γ = [1, 2...n] we can compute global precision and recall measures
by micro-averaging :

Pmicro(Π,Γ) =

∑n
i ∣�i ∩ i∣
∑n

i ∣�i∣
(4.3)

Rmicro(Π,Γ) =

∑n
i ∣�i ∩ i∣
∑n

i ∣i∣
(4.4)

Alternatively, we can compute global precision and recall figures bymacro-averaging :

Pmacro(Π,Γ) =
1

n
⋅

n
∑

i

∣�i ∩ i∣
∣�i∣

(4.5)

Rmacro(Π,Γ) =
1

n
⋅

n
∑

i

∣�i ∩ i∣
∣i∣

(4.6)

4.2.2 Evaluating Ranked Lists

Let �i be a list of lexical items returned by a procedure that identifies items
similar to a given input lexical item li:

S(li) → �i (4.7)

Let element in �i, sij, be ranked by degree of similarity to li, sij :

�i = [(li1, si1), (li2, si2), ... (lim, sim)] (4.8)

with:

sij ≥ sik ∀ j < k (4.9)

Let i be the gold-standard set for li, i.e. the set of lexical items actually known to
be similar to li (i does not contain any information about the degree of similarity
between its elements and li, so there is no ranking in i):

i =
[

li1, l

i2, ...l

ig

]

(4.10)

Usually, the number of elements in �i is much larger than the number of elements
in the gold-standard:

∣�i∣ ≫ ∣i∣ (4.11)

The scenario we have just describe is typical of a traditional information retrieval
setting, in which we wish to evaluate the performance of the retrieval system that
generated a ranked (and long) list of documents in response to a query. Therefore,
we can adapt IR performance measures to evaluate �i given i.

4.2. Direct Evaluation Strategies 57

More specifically, we can compute three precision figures. The first is Precision
at Rank 1, P@1(�i, i), which consists in checking whether the top ranked element
of �i is part of the gold-standard i or not:

P@1(�i, i) =

{

1 if li1 ∈ i
0 if li1 /∈ i

(4.12)

We can extend the previous measure to compute a more comprehensive pre-
cision figure that takes into account other elements than just the top ranked one.
Let �r

i be a list resulting from the truncation of �i to the top r elements (i.e.
containing only elements li1 to lir). Precision at Rank r, P@r, is given by:

P@r(�i, i) =
∣�r

i ∩ i∣
r

(4.13)

Since there are ∣i∣ items in the gold-standard, and usually ∣i∣ ≪ ∣�i∣, one par-
ticularly useful point at which precision can be computed is at rank ∣i∣:

P@∣i∣(�i, i) =
∣�∣i∣

i ∩ i∣
∣i∣

(4.14)

P@∣i∣ maximizes the use of the gold-standard information available. Finally, Av-
erage Precision, Pavg(�i, i), provides a global view of the precision by combining
the values of the precision at various ranks:

Pavg(�i, i) =

∑R
r=1 P@r(�i, i) ⋅ rl@(�i, i, r)

∣i∣
(4.15)

with R being the number of elements in �i to be considered (R ≤ ∣�i∣) and
rl@(�i, i, r) being a binary function indicating if the element of �i at rank r is
an element of i (1) or not (0):

rl@(�i, i, r) =

{

1 if lir ∈ i
0 if lir /∈ i

(4.16)

If we now consider the scenario where there are n ranked lists to be evaluated,
Λ = [�1, �2...�n], against the same number of gold-standard sets, Γ = [1, 2...n],
we can compute global performance measures by averaging the values obtained
with Equations 4.12, 4.14 and 4.15 for the n corresponding lexical items, i.e. l1,
l2 ... ln. We can thus define three global precision figures:

1. Average Precision at Rank 1, P avg
@1 (Λ,Γ):

P avg
@1 (Λ,Γ) =

∑n
i P@1(�i, i)

n
(4.17)

58 Chapter 4. Evaluation

2. Average Precision at Rank ∣∣, P avg
@∣∣(Λ,Γ):

P avg
@∣∣(Λ,Γ) =

∑n
i P@∣i∣(�i, i)

n
(4.18)

3. Mean Average Precision, MAP:

MAP (Λ,Γ) =

∑n
i Pavg(�i, i)

n
(4.19)

The previous measures can only be computed for lexical items for which there
is gold-standard information. However, usually the overlap between the set of
lexical items for which ranked lists where generated and those for which there
is gold-standard information is only partial. If L is the list of lexical items for
which ranked lists were generated, and G is the list of lexical items for which
there is gold-standard information, the measures previously presented can only
be applied to a sub-set of L, Leval, such that:

Leval = L ∩G (4.20)

Taking into account the number of lexical items that can be evaluated, we can
thus propose an additional measure of performance, coverage (C), which quantifies
the fraction of entries in gold-standard covered by the automatic procedure:

C =
∣L ∩G∣
∣G∣ (4.21)

4.2.3 Evaluating Clusters

Evaluating clusters is a complex problem. When no gold-standard clusters are
available, the quality of clusters can only be assessed based on internal criteria,
such as intra-cluster similarity, which should be high, and inter-cluster similarity,
which should be low. However, these criteria do not necessarily imply that the
clusters obtained are appropriate for a given practical application [MRS08]. In
our case, internal criteria might not reflect the performance of the similarity
computation procedure that leads to the generation of the clusters.

When gold-standard clusters are available, one can perform evaluation based
on external criteria by comparing clustering results with the existing gold-standard.
Several measures have been proposed for measuring how “close” test clusters are
to reference (gold-standard) clusters.

Simpler measures are based on frequency counts. For example, Pair Measures
[HBV01, Mei07] evaluate each pair of items taking into account whether they
belong (i) to the same test cluster and the same gold cluster; (ii) to different
test clusters and different gold clusters; (iii) to the same test cluster but different

4.2. Direct Evaluation Strategies 59

gold clusters, or (iv) to different test clusters but the same gold cluster. Several
clustering quality evaluation measures can be computed based on these four con-
tingency values (e.g. Jaccard Coefficient or Rand Coefficient). However, these
measures are not invariant under scaling, i.e., they are sensitive to the number of
items being evaluated.

Entropy-based measures, on the other hand, are invariant under scaling, so
many authors have proposed entropy-based options. For example, Information
Variation (IV) [Mei07] measures how much information we gain or lose if we
remap items from test clusters to gold clusters. If the two sets of clusters are
exactly the same, IV is zero, otherwise, IV is a positive value. IV has several
interesting mathematical properties including the fact that it is a metric, and it
has provable bounds.

Another alternative for evaluating clustering results is the B-Cubed algorithm,
which was initially proposed for evaluating results of co-reference resolutions algo-
rithms. The B-Cubed algorithm differs from other methods because it computes
precision and recall figures for each item in the test clusters. For example, preci-
sion for item ii of class cj, which is part of test cluster tk, is obtained by:

P (ii) =
number of elements in tk of class cj

number of elements in tk
(4.22)

An equivalent recall figure can be also computed. Then, global evaluation figures
can be obtained by performing a weighted average over all items (usually using
uniform weights).

Amigó et al. propose four formal constraints that are based into simple intu-
itions about quality of clusters [AGAV08]: (i) cluster homogeneity, (ii) category
connectedness, (iii) existence of a “rag bag” (loose elements being grouped to-
gether instead of being incorrectly assigned to “good” clusters) and (iv) item
distribution (cluster size vs. number of clusters). They compare several measures
regarding the satisfaction of the previously defined constraints and concluded that
only B-Cubed metrics are able to satisfy all constraints simultaneously, while oth-
ers have to be combined in order to capture all aspects of clustering quality.

However, even with several possible available measures, extrinsic evaluation
of clustering is still not trivial since multiple equivalently good, yet different,
solutions may exist. Additionally, there may be hidden dependencies between
the data to cluster, the algorithm and the measures used for evaluation. Delling
et al. present a clustering evaluation framework that tries to incorporate these
dependencies and isolate them in specific unit-tests [DGG+06]. Haldiki et al.
make a comprehensive analysis of different evaluation measures on several types
of clustering algorithms [HBV01].

60 Chapter 4. Evaluation

Two Entropy-based Measures: Cluster Entropy and Class Dispersion

In this thesis we opted for entropy-based measures because they are invariant to
scale, i.e. they do not depend on the number of items being clustered but only on
item distribution. Let us assume that there is a procedure that produces clusters
of lexical items taking into account a specific notion of similarity in relation to
a given input lexical item li. We wish to evaluate clusters produced for lexical
item li, i.e. the test clusters Ti with ∣Ti∣ clusters, using the corresponding set of
gold clusters, Gi with ∣Gi∣ clusters. In other words, we wish to evaluate how well
clusters in Ti, t1, t2,...t∣Ti∣ represent the clusters in Gi, g1, g2,... g∣Gi∣. For that, we
first obtain the Intersection Matrix, I, with ∣Ti∣ lines and ∣Gi∣ columns. Elements
ixy of matrix I indicate the number of items in common between the test clusters
tx and gold clusters gy.

Ideally, all the elements in a given test cluster, tx, should belong to only one
of the gold clusters. Such tx cluster is considered “pure” if it contains only items
of a unique gold cluster as defined by the gold-standard. If, on the other hand,
elements from tx are found to belong to several gold clusters, then the clustering
algorithm was unable to correctly delimit the class at stake.

To quantify how elements in test cluster tx are distributed over the gold-
standard clusters, we use the entropy of the distribution of the elements in tx
over all the clusters gy. High quality clusters should be very “pure”1 and thus
have very low entropy values. Let It(x) be the total number of elements of cluster
tx that were found in gold clusters. Then, the Impurity of cluster tx is the entropy
of cluster tx over all gold-standard clusters, and is given by:

et(tx) =

∣Gi∣
∑

y=0

− ixy
It(x)

⋅ log2
(

ixy
It(x)

)

(4.23)

This measure depends solely on item distribution and not on the sizes of
clusters. For all test clusters obtained for item li, we can compute Impurity
Et(Ti, Gi) as the weighted average of the entropy values et(tx) obtained for each
test cluster, tx:

Et(Ti, Gi) =

∑∣Ti∣
x=0 ∣tx∣ ⋅ et(tx)
∑∣Ti∣

x=0 ∣tx∣
(4.24)

with ∣tx∣ being the number of items in cluster tx, including those not found in
gold clusters, and ∣Ti∣ the number of test clusters obtained for item �i. Good
quality clusters imply low (i.e. close to zero) Impurity values.

We also need to measure if elements of gold-standard clusters are dispersed
throughout the test clusters produced. Again, we would like to have all elements

1The notion of Purity here defined is distinct from what is used in [ZK01], which measures
the relative weight of majority class inside each cluster, while Inverse Purity measures the
relative weight of the larger cluster for each class.

4.2. Direct Evaluation Strategies 61

belonging to each gold-standard cluster concentrated in the least number of test
clusters possible, ideally only one. Then, for each gold cluster, gy, we can also
compute the entropy value, eg(gy), to measure how the elements of a gold-standard
cluster gy are spread over the clusters we are testing. The Dispersion of gold
cluster gi, eg(gy) can be computed by a formula similar to that of Equation 4.23,
substituting references to test cluster by reference to gold clusters, and vice-versa:

eg(gy) =

∣Ti∣
∑

x=0

− ixy
Ig(y)

⋅ log2
(

ixy
Ig(y)

)

(4.25)

Similarly, a global Dispersion figure for li, Eg(Ti, Gi), can be obtained by perform-
ing a weighted average over the Dispersion figures found for each gold cluster,
eg(gy), (similar to Equation 4.24):

Eg(Ti, Gi) =

∑∣Gi∣
y=0 ∣gy∣ ⋅ eg(gy)
∑∣Gi∣

y=0 ∣gy∣
(4.26)

Good quality clusters imply very low levels of Dispersion.
Finally, we need to evaluate recall, i.e., the proportion elements in gold clusters

that are in fact found in any test cluster. If Ig(y) is the total of elements in cluster
gy that are found in test clusters, we may define the item recall metric for gold
cluster gy as:

rg(gy) =
Ig(y)

∑∣Gj ∣
y=0 ∣gy∣

(4.27)

An overall Recall figure for the lexical item li, R, could be obtained again by
doing a weighted average of rg(gy) over all gold clusters:

Rg(Ti, Gi) =

∑∣Gi∣
k=0 ∣gy∣ ⋅ rg(gy)
∑∣Gi∣

j=0 ∣gy∣
(4.28)

We can now consider a generalized scenario where clusters are produced
for n lexical items, i.e. l1, l2 ... ln. The corresponding set of test clusters
[T1, T2, T3, ...Tn] is denoted by T, and the matching set of gold-standard clus-
ters [G1, G2, G3, ...Gn] is denoted by Γ. Three global performance metrics can be
computed by averaging performance figures obtained for each lexical item li:

1. Average Impurity, Eavg
t (T,Γ):

Eavg
t (T,Γ) =

∑n
i Et(Ti, Gi)

n
(4.29)

2. Average Dispersion, Eavg
g (T,Γ):

Eavg
g (T,Γ) =

∑n
i Eg(Ti, Gi)

n
(4.30)

62 Chapter 4. Evaluation

3. Average Recall, Ravg
g (T,Γ):

Ravg
g (T,Γ) =

∑n
i Rg(Ti, Gi)

n
(4.31)

Ideally, Average Impurity, Eavg
t (T,Γ) and Average Dispersion, Eavg

g (T,Γ), should
be as low (i.e. close to 0) as possible, while Ravg

g should be close to 1.

4.2.4 Gold-Standard Resources for Direct Evaluation

The performance measures presented in the previous sections require gold-standard
resources against which results of automatic procedures can be directly com-
pared. While in some situations there may exist gold-standard resources that
exactly match the evaluation we wish to perform (e.g. a WordNet-like structure
for evaluating procedures to identify synonyms), in other cases gold-standard re-
sources need to be created specifically for the evaluation at stake, by collecting
or adapting information from other resources.

In the next sections, we briefly describe several resources that can be directly
used as gold-standard, or as source for deriving custom gold-standard information.
We divide these resources into three groups, according to the type of lexical items
and corresponding similarity relations for which they can provide gold-standard
information: (i) common lexicon, (ii) entity names and (iii) Web 2.0 tags.

Gold-Standard Resources for Common Lexicon

The main source of gold-standard information concerning similarity relations be-
tween words of the common lexicon, mainly nouns, adjectives and verbs, are
thesauri and WordNet-like resources. Such type of resources contain information
about synonyms (e.g. synonyms pairs or synsets), antonyms and co-hyponyms
(usually by hypernymy/hyponymy links), so they are particularly suited for eval-
uating procedures for computing content and type similarity between items from
the common lexicon. We focus mainly on resources for the Portuguese language,
since it is the main language addressed in this thesis (in [TSO10] we report the
results of comparing four of these resources in term of the verb synonym infor-
mation they contain). In all cases, however, there are versions of similar, or
alternative resources, for other languages. In fact, in many situations it is much
easier to find gold-standard resources for other languages, especially for English,
than it is for Portuguese.

Wiktionary Wiktionary is a community-edited resource that stores a wide va-
riety of information about words, such as grammar, pronunciation, etymology,
definitions, a list of synonyms, a list of related terms, a list of derived terms, and
also translations to other languages. The Wiktionary project started in 2002, and

4.2. Direct Evaluation Strategies 63

it currently has more than 6.9 million entries for 172 languages. The Portuguese
version of Wiktionary2 was started in 2004 and contains approximately 92,000
entries.

PAPEL PAPEL (Palavras Associadas Porto Editora Linguateca) is a freely
available3 lexical database for Portuguese, automatically constructed by extract-
ing relations from a large commercial Portuguese dictionary [OSGS08]. The pro-
cess consisted in parsing 237,246 dictionary definitions (using a chart parser),
and using a set of manually-developed lexical-syntactical patterns to mine 10 se-
mantic relations: (i) hypernym, (ii) cause of, (iii) part of, (iv)means to end, (v)
place of, and its corresponding inverse relations. PAPEL contains information
about 99,783 words: 55,372 are nouns, 24,089 verbs, 18,933 adjectives and 1,389
adverbs. It contains 79,035 pairs of synonym relations.

TeP TeP (Thesaurus Electrônico para o Português do Brasil) is a freely-available4

electronic thesaurus for the Brazilian Portuguese, strongly inspired by WordNet
[dS00]. TeP development was based on four dictionaries (used as reference cor-
pora) and relies on three main concepts: (i) synsets, i.e. sets of synonyms, (ii)
the lexical matrix, which defines a biunivocal correspondence between synsets
and senses, (iii) and the index, which establishes the antonymy relation by using
indexes. TeP contains information about approximately 44,000 words: 17,000
nouns, 15,000 adjectives, 11,000 verbs and 1,000 adverbs.

OpenThesaurusPT OpenThesaurusPT is the official Portuguese thesaurus
used for OpenOffice, and is freely available online5. The OpenThesaurusPT
project started as an effort to migrate the German OpenThesaurus project [Nab04]
to the Portuguese Language. The structure of the OpenThesaurus project is based
on WordNet, using synsets to hold information about synonyms and antonyms.
It also stores some information about superordinate/subordinate (i.e. hyper-
nymy/hyponymy) relations between synonym sets. The current available version
of OpenThesaurusPT dates from 2006-08-17, and contains 4,010 synsets for 12,941
words.

Gold-Standard Resources for Entity Names

Usually, resources related to common lexicon, as the ones we described in the
previous section, do not include information about names or about the corre-
sponding entities. Traditionally, information about entities is compiled by au-

2http://download.wikimedia.org/ptwiktionary/20090809/

ptwiktionary-20090809-pages-articles.xml.bz2
3http://www.linguateca.pt/PAPEL/PAPELv1.0.zip
4http://www.nilc.icmc.usp.br/tep2/download.htm
5http://openthesaurus.caixamagica.pt/index.php

64 Chapter 4. Evaluation

thoritative resources such as encyclopaedias or domain-specific ontologies. This
type of resources usually group entities in classes according to a given taxonomic
(similarity) criteria, and store information about several relations between then
(e.g. “equivalent to”, “related to”). Such information can be readily used as
“high-quality” gold-standard information.

More recently, with the advent of Web 2.0, several domain-specific social net-
works have been created (e.g. music, computer games) allowing the community to
add information about relevant entities for the domain at stake, and to explicitly
(e.g. by cross-linking) or implicitly (e.g. by tagging) establish relations between
entities. Although there is no assurance about the quality of the information
stored in community-edited resources, these tend to become broad repositories of
information, and are, thus, potentially interesting for being used as gold-standards
for very specific domains.

General and Domain-Specific Ontologies One of the largest freely available
ontologies is OpenCyc6, which is the open source version of the Cyc general and
common-sense ontology, for English7. OpenCyc contains hundreds of thousands
of terms and millions of relations between them. Alternatively, there are several
domain-specific ontologies. One of the domains with more resources available is
the geographic domain. There are several gazetteers and geographic ontologies
freely available, such as Getty Thesaurus of Geographic Names8 the Alexandria
Digital Library Gazetteer Server 9 or, focusing on Portuguese geographic scope,
GeoNet.pt10. These geographic ontologies can be used, for example, as gold-
standard for algorithms that compute type-similarity between entities (i.e. cities
within a certain geographic scope). There are also ontologies for other domains
that are useful when evaluating algorithms for computing equivalent names for
the same entity (i.e. content similarity). One example is the MeSH ontology that
contains entries about medical subjects (names of diseases, substances, etc.) and
includes information about equivalent alternative names, such as, for example,
“[Vitamin C] ↔ [Ascorbic Acid]”.

The Wikipedia Probably one of the broadest and most versatile resources that
can be used as gold-standard is Wikipedia. There are Wikipedia versions for more
than 270 languages, containing a total of more than 14 million articles. The En-
glish Wikipedia contains more than three million articles, and the Portuguese con-
tains more than half a million. Because they are community-edited resources, the
multiple versions of Wikipedia are constantly growing in size, diversity and den-
sity. Most of the articles in Wikipedia refer to entities from a very wide spectrum

6http://www.opencyc.org
7There is no similar resource for the Portuguese language.
8http://www.getty.edu/research/conducting_research/vocabularies/tgn/
9http://www.alexandria.ucsb.edu/gazetteer/

10http://linguateca.di.fc.ul.pt/index.php?l=geonetpt

4.2. Direct Evaluation Strategies 65

of entity types that ranges from people to bacteria, from astral bodies to computer
games, and many others. Besides the actual content of the article, Wikipedia
provides also a broad classification scheme that allows users to connect an ar-
ticle to categories. For example, the Wikipedia article about the famous music
group “The Beatles” is linked to several categories, as “English musical groups”,
“Music from Liverpool”, “1960s music groups”, “Parlophone artists”, “Rock and
Roll Hall of Fame inductees”, “Grammy Award winners”, among others. The
categories assigned to each article can be used as gold-standard information re-
garding the type-similarity or relatedness between entities: the more categories
in common, the more similar the entities should be. From a different perspective,
all entities that have been assigned to a given category form an explicit set of
type-similar entities (under the category at stake). The categories can correspond
to rather generic concepts (e.g., “List of English novelists”), as well as to very
specific topics (e.g., “List of fractals by Hausdorff dimension”). This grouping
information can be directly used as gold-standard information for procedures that
compute type similarity. There are also several equivalence links between names
of entities that can be used as gold-standard information for content similarity.
Finally, Wikipedia provides valuable information regarding ambiguous names, by
listing all possible entities in a single “disambiguation” page. For example, there
are several dozens of well-known entities named “Paris” with one dedicated article
in Wikipedia, and they are all listed along with a small differentiating description
in a dedicate disambiguation page11.

One of the main obstacles in using Wikipedia as a gold-standard is the fact
that Wikipedia articles are formatted in a special mark-up language that does
not allow an easy programmatic access to all potentially relevant information.
The DBPedia project12 was started with goal of extracting information from
Wikipedia articles and store it tabular format to allow simple access, hence facil-
itating the use of information from Wikipedia for a variety of purposes, including
for serving as gold-standard. However, the DBPedia project has essentially fo-
cused in producing tabular information from the English and German versions
of Wikipedia. Thus, the amount and variety of tabular information available in
other languages (including Portuguese) is significantly inferior.

Social Networks There are several social networks focusing on a particular do-
main that foster the development of knowledge resources, which can later be used
for gold-standard purposes. For example, Last.fm13 is a Web 2.0 radio platform
that allows users to listen to music and, at the same time, tag both artists and
songs. Users are able to associate different types of tags to artists such as those
referring to music genre (e.g. “acid jazz”), locale (e.g. “japan”), artist/band

11http://en.wikipedia.org/wiki/Paris_(disambiguation)
12dbpedia.org
13http://www.last.fm

66 Chapter 4. Evaluation

structure (e.g. “duo”) or instrumentation (e.g. “guitar”). This allows, for exam-
ple, creating groups of artists based on the tagging provided by the community
of users (e.g. all artists tagged “acid jazz”). Since this information is usually
made available for download, it can be used as gold-standard for procedures that
compute type similarity between this type of entities. There are many other
domain-specific social networks that allow users to tag or relate items and which
can be source of gold-standard information, such as Shelfari14 or Library Thing15

for literature, books and writers, The Internet Movie Data Base16 for movies,
actors, etc. or Snooth17 for wines.

Gold-Standard Resources for Web 2.0 Tags

The best source of gold-standard information for evaluating procedures that com-
pute similarity between Web 2.0 tags is the tag information itself extracted from
social networks. There are two options for extracting such information. The first
is to directly use information about “similar tags” that Web 2.0 sites usually
provide. This is interesting if the procedure that is used by the Web 2.0 site
to compute tag similarity combines evidence from multiple sources, namely from
community usage patterns, and is thus different from the procedure whose results
are being evaluated. For example, Last.fm web radio computes artist similarity
taking into account several sources of evidence including the preferences that
users explicitly or implicitly express (which Last.fm keeps private) when listening
to the radio stream. Also, Last.fm makes available through a web-service API18 a
procedure that returns the list of (type) similar artists for each artist, along with
a normalized similarity value. This data can be used for evaluating procedures
for computing type similarity in the domain of music artists.

The second option consists in using diachronic information about tag assign-
ment. Let �(i, t0) be the set of tags associated with a given element ei of the
network, at time t0, and �(i, t1) be the set of tags associated to the same ele-
ment, ei, in a later point in time, t1 > t0 (e.g. six month after). The difference
between the two sets, �diff (i) = �(i, t1)− �(i, t0) contains important information
about tags that the users believed to be important to add to or replace from the
tag bag of item ei during that time interval. Thus, from �diff (i) we can obtain
gold-standard information asymptotically validated by the community users, for
evaluating procedures aiming at automatically expanding �(i, t0), i.e. procedures
that find tags functionally similar to �(i, t0) (functional in the sense that tags
are mainly used for aiding item retrieval).

14www.shelfari.com
15http://www.librarything.com
16http://www.imdb.com/
17http://www.snooth.com
18http://www.lastfm.com.br/api

4.3. Indirect Evaluation Strategies 67

4.3 Indirect Evaluation Strategies

Indirect evaluation of a given procedure presupposes the existence of an applica-
tion that consumes the result of the procedure under evaluation. It is, thus, the
most appropriate type of evaluation either for procedures related to functional
similarity, or whenever there is not a very clear notion of what the “true” value of
similarity is but, instead, there is a notion of what should be the correct behaviour
of a broader system that uses such similarity information.

Let S(x) be a procedure for performing a similarity based computation on
a given input x (e.g. a list of lexical items). Let A(y) be an application for
achieving some higher-level language processing goal. Indirect evaluation consists
in evaluating S(x) by evaluating rS , the result of A(S(x)):

rS = A(S(x)) (4.32)

There are mainly two possible evaluation sub-scenarios for indirect evaluation.
In the first scenario, rS is evaluated individually, either against a gold-standard
resource (customized for A(y)) or compared against some desired target perfor-
mance values (e.g. number of correct factoids extracted, if A(y) is an information
extraction application).

The second sub-scenario consists in performing a comparative evaluation against
the results obtained by a reference input, yref or, more generically, by a reference
function Sref (x) (e.g. a baseline or a legacy function). Let rref be a reference
value produced when Sref(x) is the input of A(y):

rref = A (Sref(x)) (4.33)

Then, rS can be compared to rref using the appropriate gold-standard A(y). If
no such gold-standard exists, then rS and rref can be compared according to a
pre-defined set of performance criteria.

However, by moving the focus of the evaluation from a low-level procedure
to a higher-level procedure or application, we transform a relatively constrained
performance measurement into a much broader evaluation exercise, which may
include, for example, assessing facets that are relevant to end-users of such ap-
plication. The set of criteria used for evaluating the performance of higher-level
application tends to be multi-faceted and, thus, more difficult to establish. Some
potentially interesting criteria to evaluate results achieved with A(y) may be
related to:

∙ user satisfaction: is rS a better result than rref from the point of view
of the user of application A(y)? For example, if A(y) is an information
retrieval application, do documents in rS represent better answer to the
user’s information need (does he/she clicks more on those documents)?

68 Chapter 4. Evaluation

∙ computational performance: does S(x) allow A(y) to be computed more
efficiently (CPU / RAM / Storage) that Sref(x) for the same or equivalent
results?

∙ engineering requirements : is S(x) easier to set up, to integrate or to main-
tain within A(y) architecture in comparison with Sref(x) for the same or
equivalent results?

∙ economic factors : if A(y) generates revenue, does the integration of S(x) in
A(y) lead to higher revenues, even if S(x) is less accurate from a conceptual
point of view than Sref?

4.4 Conclusion

In this chapter, we summarized the main concepts regarding direct and indirect
evaluation of procedures for computing similarity between lexical items. One of
the main contributions of this chapter is the systematization and formalization
of several possible evaluation strategies and scenarios, including related perfor-
mance criteria and measures. Another important contribution presented is the
comprehensive overview of resources that can provide gold-standard information
for direct evaluation settings, specially, but not only, when considering the Por-
tuguese language. We divided those resources in three groups based on the type
of lexical items for which they provide gold-standard information, namely com-
mon lexicon, names of entities and Web 2.0 tags. Additionally, we explained how
to adapt or derive gold-standard information from those resources when such
information is not directly accessible.

Part II

Common Lexicon

69

71

In this part of the thesis, we focus on the computation of similarity-based
functions for problems involving items of the Common Lexicon, i.e. the lexicon
of common words. In chapter 5, we address a quite traditional task, namely
automatically finding synonyms, more specifically for verbs. We use a Vector
Space Model (VSM) approach, and we perform an exploration over the parameter
space of the VSM in order to find the best configuration for the specific problem
at stake. In chapter 6, we focus on the problem of inferring rules for generating
paraphrases of job titles. Basically, given a set of job title noun-phrases, we wish
to learn rules for generating other equivalent job titles.

Both of these problems have many things in common. The first one, more
obvious, is that both involve issues related with content similarity. In one case,
we wish to find verb synonyms. In the other, we wish to be able to generate
paraphrases, i.e. two equivalent expressions. The second thing in common is that
both of these problems have been inspired by very practical needs related to two
information extraction tasks over on-line news sources.

In fact, the need for automatically finding verb synonyms comes from an
applications that constantly mines on-line news for quotations (e.g. “Obama says
that...”). We had no verb dictionary available containing a large enough number
of verbs related to speech-acts for supporting the quotation extraction procedure.
We, thus, decided to infer a network of verb synonyms, and then use such network
to find relevant verbs starting from a small set of known verbs related to speech-
acts and following the synonymy links that were obtained automatically.

The work regarding the inference of rules for generating paraphrases of job
titles was also motivated by practical questions related to an entity tracking task.
Because there are so many distinct ways of expressing equivalent job titles – which
are required for finding indirect mentions to a set of target entities – the problem
of entity tracking on media sources becomes very difficult to solve. Since manual
development of rules for dealing with such variation is not practical, we opted
for automatically inferring such relations. Thus, we developed a data-driven way
of acquiring valid rules for paraphrasing job titles that allows generating a large
number of valid job title variations for a given entity, starting from a set of a few
known ones (e.g. the most frequently used ones).

Chapter 5

Identification of Verb Synonyms

In this chapter1 we assess the virtues (and limitations) of the Vector Space Model
(VSM) in helping to solve a long standing problem in semantics, namely that
of automatically finding synonyms. As explained in chapter 2, synonymy is an
instantiation of content-similarity. We focus on a specific case: finding synonyms
for verbs in Portuguese. The motivation for finding verb synonyms came from
the need to expand a lexicon of verbs related to communication (i.e. speech-acts)
that is used in a quotation extraction application2.

The traditional approach for finding synonyms using the VSM consists in
projecting feature information in the Vector Space and then computing distances
between Feature Vectors. Therefore, our main research questions at this stage
are related to quantifying the impact of several core parameters of the VSM in
the final result of the synonym pairs obtained. For practical reasons, we use
only directly observable features and, thus, avoid the need for complex linguistic
pre-processing. We investigate which feature weighting function (see section 3.4)
leads to better results, and which type of context window (see section 3.3) contains
more information. We also test the impact of considering only feature vectors with
a given minimum number of features, so as to estimate which is the minimum
amount of vector information that is required for the task of synonym finding.

To allow a comprehensive parameter exploration, we perform automatic eval-
uation of the VSM-based synonym computation procedure, using gold-standard
information from two publicly available thesaurus. As it will become clear, au-
tomatic evaluation of synonymy procedures is extremely challenging since most
gold standard resources lack many important synonym relations. Nevertheless,
automatic evaluation is enough for the purpose of optimizing parameters. Next,
for obtaining a clearer notion of the real performance of the VSM-based approach

1Most of the material found in this chapter was presented in Lúıs Sarmento, Paula Car-

valho and Eugénio Oliveira “Exploring the Vector Space Model for Finding Verb Synonyms in

Portuguese” [SCO09].
2See http://verbatim.labs.sapo.pt

73

74 Chapter 5. Identification of Verb Synonyms

we propose, we manually evaluate the synonyms obtained for two sets of verbs:
declarative verbs and psychological verbs. These sets of verbs pose different chal-
lenges to the automatic synonym finding procedure: while it should be relatively
hard to automatically find synonyms for psychological verbs, since they are highly
polysemous and almost always have several antonyms, declarative verbs are ex-
pected to be easier to tackle since they do not exhibit such high levels of polysemy
nor they tend to have so many antonyms. Results obtained for these verbs al-
low us to estimate the best and worst case scenario for the task of automatically
finding verb synonyms in Portuguese, using direct data-driven approaches.

5.1 Introduction

Large-coverage and fine-grained linguistic resources are crucial for the majority
of the applications in natural language processing, but they are still scarce and,
in most cases, they do not satisfy every particular information need. Manual cre-
ation of linguistic resources is time-consuming and requires linguistic expertise.
Therefore, there is a rising interest in developing automatic or semi-automatic
methods and techniques for building language resources with minimal human in-
tervention. However, automatic methods usually involve a large set of parameters,
whose impact on final results is difficult to assess, and thus to optimize. In this
chapter, we address the task of automatically creating a lexicon of verb synonyms
for Portuguese using the Vector Space Model (VSM). We explore the impact of
three of the core parameters of the VSM on the quality of the final synonymy re-
lation obtained. The parameters explored are: (i) the context used for extracting
vector features, (ii) the function used for weighting features, and (iii) the cut-off
threshold for removing vectors with insufficient feature information. We rely on
n-gram information collected from a large dump of the Portuguese web, in order
to obtain distributional statistics for verb lemmas. For performing parameter
exploration, we evaluate results automatically using gold-standard information
extracted from the OpenOffice thesaurus and from Wiktionary. Fine-grained
evaluation is achieved by manually assessing the synonym candidates obtained
for a sample of two syntactic-semantic classes of verbs: psychological verbs and
declarative verbs.

We chose these two specific verb classes for two reasons. First, they exhibit
different syntactic and semantic behaviour, and thus present different challenges
for the task of synonymy finding. In fact, psychological verbs do not have a
prototypical syntactic structure and they usually convey a plurality of meanings,
which can only be disambiguated in context. In contrast, declarative verbs are
less ambiguous and the syntactic structure where they occur is better defined.
Second, these two verb classes are crucial in several information extraction tasks
such as, for example, quotation extraction from news or opinion mining, so they
provide a realistic and practical test-bed.

5.2. Related Work 75

To the best of our knowledge, this study is pioneer for the Portuguese lan-
guage. Since our approach relies only on minimal linguistic processing, the results
presented can be considered a baseline for other methods that try to perform the
same task, using additional linguistic information.

5.2 Related Work

Curran follows an experimental methodology for testing several parameters of
the VSM in the process of automatically computing a language thesaurus – the
context for extracting features, functions for weighting those features, functions
for computing vector similarity, cut-off thresholds for input data and algorithms
for computing pairwise vector similarity [Cur04]. The author performs large scale
experimentation on the parameter space and evaluates results automatically by
computing precision at several ranks, inverse ranks (InvR) and direct comparison
with a gold standard built by aggregating 5 thesauri: the Roget’s Thesaurus,
the New Roget’s Thesaurus, the Moby Thesaurus, the New Oxford Thesaurus
of English and the Macquire Encyclopedic Thesaurus. WordNet was also used
to automatically check if results on synonymy are contaminated with antonyms,
hyponyms or meronyms. Detailed error analysis was performed for a sample of
300 words. Results show that when the number of features associated to vector
drops below 1000, or for words with frequencies below 5000, performance decays
significantly. Additionally, direct comparison and InvR measures tend to increase
for words with multiple senses with larger number of senses while the precision
measures are fairly stable. Results also demonstrate that it is more difficult to
find synonyms for words related with certain Wordnet classes such as entities and
abstractions.

Sahlgren builds vector spaces for capturing either paradigmatic or syntag-
matic relations, and tests how such spaces can then be used for different tasks
– thesaurus generation, synonym finding, antonym detection and POS guessing
[Sah06]. The author evaluates the impact of several VSM parameters such as (i)
the type of context (paradigmatic vs. syntagmatic), (ii) the size of the context
window (narrow vs. wide and small vs. large) and (iii) the weighting of the win-
dows (constant vs. aggressive decay) feature weighting functions (raw frequency
vs. binary vs. tf-idf vs. logarithmic). For the specific task of finding synonyms,
the author concludes that spaces built using paradigmatic contexts clearly out-
perform those built using syntagmatic contexts. Additionally, vectors built by
extracting word features from narrow windows (with two or three context words
around the headword) lead to better performance. Interestingly, wide windows
lead to better results for the task of finding antonyms.

im Walde presents a set of experiments on clustering German verbs (by syn-
onymy) [iW06]. Verbs are described by vectors whose features are extracted from
3 types of contexts with increasing levels of semantic information: (i) syntactical

76 Chapter 5. Identification of Verb Synonyms

relations (from a set of 38 possible frames); (ii) syntactical relations plus infor-
mation about prepositional preferences, and (iii) 15 possible semantic categories
of the verb arguments (mostly nouns and noun phrases) taken from GermaNet.
In a first experiment, a set of 168 German verbs was manually classified into
43 semantic classes, to be used as gold-standard for the clustering experiments.
On a second experiment, clustering of 883 verbs (including the previous 168)
was attempted. Clustering was performed using the k-means algorithm. Several
parameters related to clustering (k-means initialization, linkage, metric) and to
the set of features used (i.e. context) were experimented. The author concludes
that the addition of more informative features – from (i) to (iii) – has a positive
effect on clustering results. Also, she observes that (a) similarity metrics such as
the Kullback-Liebler and its variants tended to produce better results in larger
data-sets, and (b) low-frequency verbs have a negative impact in the quality of
the clusters. More importantly, she concludes that the choice of features and the
overall success of the clustering approach greatly depends on definition of verb
group one wishes to replicate automatically.

Takeuchi describes a co-clustering approach to building sets of verb synonyms
in Japanese [Tak08]. A dependency parser is used to extract verb-name struc-
tures, and a information theoretic co-clustering procedure is then applied to clus-
ter both the verbs and the nouns simultaneously. The author experiments apply-
ing the co-clustering algorithm over frequency and binary vector representations,
and perform additional comparison with a vector-based approach (Probabilistic
Latent Semantic Indexing - PLSI). Evaluation is performed by comparing clus-
ters obtained automatically using several different corpora with a manually con-
structed thesaurus containing 4400 verbs, and computing Purity. Results show
that both co-clustering configurations outperform the vector-based approach, and
the frequency-based vector representations outperform binary-based representa-
tion in the co-clustering approach. However, performance figures are always mod-
est with the best configuration achieving a value of Purity of 0.234.

There are also other works that deal with verbs but in different settings. For
example, the work by Chklovski and Pantel addresses the problem of automati-
cally finding several semantic relations between verbs, namely similarity, strength,
antonymy, enablement and happens-before [CP04]. The procedure involves query-
ing a search engine for co-occurrences of pairs of verbs in specific lexical-syntactic
patterns that indicate that the verbs might establish one of such relations. Results
were evaluated by human assessors. The work by Resnik and Diab focus essen-
tially of method comparison and evaluation [RD00]. They compare the results of
applying three different automatic methods for establishing verb similarity against
ratings provided by 10 human assessors. Methods compared include measuring
similarity using (i) taxonomic information from WordNet, (ii) distributional in-
formation extracted from a corpus and (iii) lexicon with semantic frames. They
concluded highest correlation with human assessors was obtained with methods
relying on WordNet.

5.2. Related Work 77

Even more generic, Riloff and Shepherd present a bootstrapping method for
automatically expanding sets of semantically related words [RS97]. The system
receives as input a seed set that defines extensively a category and expands that
list using distributional information taken from corpus. Evaluation was made
by human assessors. A similar bootstrapping method is presented by Roark and
Charniak, also involving manual evaluation [RC98]. Lin uses a broad-coverage
parser to obtain grammatical relationships between pairs of words [Lin98]. Each
word is then represented by a vector whose features are derived from the set
grammatical relations it establishes with other words. Raw frequency values
are weighted using a variation of the Mutual Information function. Pairs-wise
similarity between nouns, verbs and adjectives/adverbs that occurred at least
100 times was computed, using several similarity metrics. Then, for each word,
a thesaurus entry was created using the top most similar words. Evaluation was
performed using WordNet and the Roget Thesaurus.

Related work on VSM generally takes advantage of significant linguistic infor-
mation, usually extracted from annotated corpora. In this study, we rely mostly
on the information derived directly from data, in particular, on raw n-grams
statistics taken from a large non-annotated collection of web documents. Apart
from dictionary-based filtering and lemmatization, no additional linguistic pro-
cessing (e.g. POS annotation, word-sense disambiguation) is used. Given the in-
creasing availability of large databases of n-grams computed from non-annotated
terabyte web collections (e.g. Goolge’s N-gram database) and the lack of publicly
available resources for Portuguese with refined semantic information, we believe
that this is a promising approach.

Also, in our work we do not follow a clustering approach for computing word
synonyms, as it is done in several other related works. In fact, for tasks of finding
pairs of synonyms there is no need to perform any clustering procedures since we
are only interested in finding weighted links between pairs of words, and not groups
of semantically related words. Given the weighted links between words, i.e. the
link graph, there are several graph-based clustering algorithms that can be used
for finding the clusters – and dealing with other situations such as ambiguity (e.g.
[WD02]) – which could eventually be applied. However, the scope of our study is
solely that of exploring parameters related to the task of finding the set of nearest
synonyms for verbs ranked by degree of similarity, such as in [Cur04] and [Sah06].
Although some clustering-based approaches to the same task are possible, they
introduce additional parameters to the problem (e.g. stopping criteria, strategy
for dealing with outliers, option between “hard” and “soft” clusters) that are
difficult to set and to correlate with the quality of final results.

78 Chapter 5. Identification of Verb Synonyms

5.3 VSM for Verb Synonyms

As mentioned before, we wish to investigate the impact of considering different
feature contexts for the task of finding verb synonyms. Concretely, we confined
the context window to the four words around the verb, i.e. a [-2 : +2] window.
Since Portuguese is a Subject Verb Object (SVO) language, we believe that such
context contains, in the majority of the cases, relevant information about verb-
object and subject-verb relations3. The right and the left contexts are specially
important for the case of transitive and intransitive verbs, respectively. We also
assume that features extracted from such contexts might be compiled indepen-
dently, so that feature vectors can be created by aggregating the two sources of
statistical evidence.

For obtaining verb context information we used BACO [Sar06a], a database
of n-gram statistics compiled from a dump of the Portuguese web, totalling about
1000 million words. We scanned 3-gram information of the form ⟨w1, w2, w3, f⟩ for
cases where either w1 or w3 were verbs. N-gram information in this collection is
not POS-tagged. Nevertheless, since the majority of verb forms are inflected, they
can be unambiguously recognized using a simple dictionary (at least for the vast
majority of possible forms). Hence, we used a dictionary to filter out ambiguous
verb forms – i.e. those that could not be uniquely assigned to an unique (verb)
lemma – so that only the 3-grams matching either of the two following selection
patterns were chosen (vuf = unambiguous verb form):

∙ Pattern 1 = [w1 = vuf & w2 = * & w3 = *]

∙ Pattern 2 = [w1 = * & w2 = * & w3 = vuf]

Verb forms (at w1 or at w3) are lemmatized in order to obtain feature tuples
of the form ⟨ verb lemma, “X w2 w3”, frequency ⟩ and ⟨ verb lemma, “w1 w2

X”, frequency ⟩, with X signalling the original position of the verb in relation
to the extracted features. Feature information extracted for the various forms of
the same lemma is merged so to that a single feature vector is obtained for each
verb lemma. At this point, feature vectors contain raw frequency information
regarding features extracted from the two words before the verb and from the
two words after the verb. Features can then be weighted according to given
weighting function to produce weighted feature vectors, which should be able to
reflect more faithfully the association between verbs and features.

Next, weighted feature vectors are compared so that we obtain all pairwise
similarities. Synonyms for verb vi are obtained among the other verbs, vj, whose
feature vectors vj are more similar to vi. By this procedure, we are not producing
closed sets of verb synonyms. Instead, we are building a network of similarities

3It should be stressed, however, that this context window is not sufficient for all cases,
namely when there is a modifier between the verb and one of its arguments.

5.4. Evaluating Verb Synonyms 79

which enables a verb to be synonym of many other verbs, depending on the
different senses it conveys.

The overall procedure we use to automatically compute the verb thesaurus
for Portuguese can be described by the four following steps:

1. compile feature vectors by filtering the 3-gram database with selection pat-
terns;

2. compile statistics regarding the feature and generate the set of weighted
feature vectors using a given weighting function;

3. compute pairwise vector similarity using the metric of choice (e.g. cosine
metric);

4. for each verb vi obtain the top n vectors closest to its word vector, keeping
the corresponding words as “verb synonyms”.

However, we know in advance that the context scope chosen will not allow to
differentiate between synonyms and antonyms. Opposite sense verbs tend to oc-
cur in the same contexts, since they usually select identical arguments and allow
the same modifiers (e.g. “Please, open the door!” and “Please, close the door!”).
Nevertheless, we decided to analyze how VSM performs in the detection of syn-
onyms in Portuguese and assess the true impact of this limitation. Furthermore,
we assume that antonyms could be identified in a subsequent post-processing step
by using techniques based on typical lexical-syntactic patterns such as the ones
described in [CP04].

5.4 Evaluating Verb Synonyms

We used a publicly available resource as a gold-standard for automatic evaluation:
the OpenOffice thesaurus for Portuguese4. From the OpenOffice thesaurus we
collected ⟨ verb → list of synonyms ⟩ mappings for 2,783 verbs, each having 3.83
synonyms in average. However, this information refers only to about 50% of
the verb lemmas one can find in standard on-line dictionaries for the Portuguese
language (e.g. [AP94]). More important, there are serious recall problems for
the mappings collected. For example, many high-frequency verbs have only one
synonym in OpenOffice thesaurus: “ganhar” (to “win”) → “poupar” (“to save
(money)”);“afirmar” (“to state”) → “declarar” (“to declare”); “chamar” (“to
call”) → “invocar” (“to invoke”), among many others. In order to minimize this
problem, we extracted additional verb synonym information from the Portuguese
version of the Wiktionary project5. We thus obtained additional (verb → list

4Available from http://openthesaurus.caixamagica.pt/. The most recent version is dated
from 2006-08-17.

5Available at http://download.wikimedia.org/ptwiktionary/

80 Chapter 5. Identification of Verb Synonyms

of synonyms) mappings for 2,171 verbs, each having in average 1.95 synonyms.
By merging mappings extracted from both resources we obtained a larger gold-
standard covering 3,423 verbs, with 4.53 synonyms per verb. This larger gold-
standard still has coverage and recall problems, but we believe that it provides a
good solution for the purpose of performing parameter exploration.

Nevertheless, we chose to perform a more thorough evaluation by manually
analyzing results obtained for two subclasses of verbs. We selected two groups of
verbs with different syntactic and semantic properties (see Table 5.1). The first
group includes 25 declarative verbs, such as “dizer” (“to say”) or “mencionar”
(“to mention”), and will be referred as Vcom. The second group includes 25
psychological verbs, such as “gostar” (“to like”) and “envergonhar” (“to shame”),
and will be mentioned as Vemo. Vemo are related to the expression of a sentiment
or an emotion, which can be experienced by the human noun occupying the
subject or the complement position, according to the verb at stake. The level
of polysemy of verbs in Vcom is relatively low. On the other hand, verbs in
Vemo are highly polysemous. This fact is somehow reflected by the vast list of
possible antonyms, with various degrees of strength, that can be associated to
verbs in Vemo. Sets Vcom and Vemo can be placed in opposite ends of the spectrum
regarding the performance that one expects to achieve in the task of synonym
finding: performance for Vcom should be higher than for Vemo.

Table 5.1: Verb groups chosen for manual evaluation.
Verbs

Vcom acrescentar, adiantar, afirmar, alertar, anunciar, avisar, comunicar, confes-
sar, contar, comentar, declarar, defender, destacar, dizer, esclarecer, explicar,
frisar, indicar, mencionar, nomear, responder, referir, revelar, salientar, subli-
nhar

Vemo aborrecer, adorar, agradar, amar, angustiar, assustar, atemorizar, chatear,
decepcionar, detestar, emocionar, enternecer, entristecer, entusiasmar, enver-
gonhar, fascinar, gostar, humilhar, impressionar, intimidar, irritar, lisonjear,
orgulhar, preocupar, ridicularizar

Performance Metrics

Let Vgold be the set of verb entries in the gold standard verb thesaurus, and let
Vauto be the set of verb entries for which synonyms mappings were obtained by
the automatic method. Also, let Sgold(vi) be the set of verb synonyms defined for
entry vi in the gold standard thesaurus (i.e. the “true” synonyms), and Sauto(vi)
be the set of synonyms inferred automatically for vi. As a result of the automatic
process, elements in Sauto(vi) are ranked according to the degree of synonymy
they have with vi. Thus, traditional metrics used in information retrieval can
be used for evaluating the ranked sets of verb synonyms, Sauto(vi), against those

5.5. Experimental Setup 81

in Sgold(vi). Because verb mappings contained in the gold standard are far from
being complete, we will not compute recall figures and we will mainly focus on
evaluating precision.

More specifically, for each verb entry vi ∈ (Vauto ∩ Vgold), we will compute
three precision figures. The first is Precision at Rank 1, P@(vi, 1) (see Equation
4.17). The second is Precision at Rank Ngold(vi) , P@(vi, Ngold(i)), with Ngold(vi)
being the number of true synonyms contained in Sgold(vi) (see Equation 4.18).
The third is Average Precision, AP (vi), which gives a global view of the precision
by combining the values of the precision at various ranks (see Equation 4.19).

Global performance figures can be obtained by averaging each of the previous
metrics, i.e. P@(vi, 1), P@(vi, Ngold(vi)) and AP (vi), over all entries for which
evaluation was possible, i.e. for vi ∈ (Vauto ∩ Vgold). This allows us to compute
three global precision figures: P avg

@ (1), P avg
@ (N) and MAP . A global coverage

figure, C, can be computed by dividing the number of entries evaluated by the
total number of entries in the gold standard thesaurus: C = ∣Vauto ∩ Vgold∣/∣Vgold∣.

For manual evaluation, we are no longer limited by the number of “true”
synonyms contained in the gold standard for a given entry, so we can compute the
value of precision at several ranks up to a reasonable value (although we still can
not list all possible synonyms of a verb). We chose to compute precision at ranks
1, 5, 10 and 20, which will be represented by Pman

@ (vi, n), with n ∈ {1, 5, 10, 20}.

5.5 Experimental Setup

The main goal of this work is that of evaluating the impact of three of the core
parameters of the VSM on the overall quality of the synonymy mappings than
it allows to obtain. Thus, we performed three sets of experiments, one for each
parameter at stake.

Experiments Set 1 First, for assessing the impact of different weighting func-
tions, we will run the complete procedure for automatically generating synonym
mappings iteratively, keeping the same context scope – a window of [−2,+2]
words – while using different feature weighting functions. We will try several
weighting functions documented in chapter 3, namely: tf-idf [SM86], Log-Like-
lihood Ratio (LL) [Dun93], Z-Score [Sma93], Pearson’s �2 test, �2 test [CG91],
[Eve05], Student’s T test [Eve05], Mutual Information [CH90] (MI) and Mutual
Dependency (MD) [TFK02]. We also run the complete experiment without using
any weighting function, i.e. using raw frequencies. For this set of experiments,
we arbitrarily set the cut-off threshold on the minimum number of features to 1.
Additionally, pairs with cosine similarity lower than 0.1 will be excluded (which
can lead to different coverage values).

82 Chapter 5. Identification of Verb Synonyms

Experiment Set 2 The second parameter to be explored is the context window
used for extracting features. Experiment Set 2 consists in executing the complete
synonymy finding procedure using only features extracted from a [−2, 0] window
(i.e. the two words preceding the verb) and from a [0,+2] window (i.e. the two
words following the verb). These experiments will be run using the best perform-
ing weighting function found in the previous experiment. The third parameter we
wish to investigate is the cutoff threshold to be applied to raw frequency feature
vectors based on the number of non-null features.

Experiment Set 3 In Experiment Set 3 we will select the best performing
weighting function found in Experiment Set 1, and repeat the complete synonym
finding process with increasing cutoff thresholds. We expect to obtain increasing
precision values, while coverage should slowly decrease.

Finally, for refining the figures obtained by automatic evaluation, we will man-
ually evaluate two subsets of verbs that lie on the opposite ends of the spectrum
in what performance is concerned. The main purpose is to define a possible base-
line for the task of automatic synonym finding, knowing in advance that the VSM
approach we used is almost purely lexical (it relies on a minimal set of linguistic
features) and does not try to address issues related with antonymy and ambi-
guity. We will chose the best performing configuration found in Experiment 3
in terms of P avg

@ 1, and manually evaluate candidate synonyms found for 25 Vcom

verbs (related to communication) and 25 Vemo verbs (related to the expression of
emotion). Results for verbs in Vemo are expected to be substantially worse than
those for Vcom.

5.5.1 Feature Information

Feature information was obtained from our n-gram database ([Sar06a]). There
are 173,607,555 distinct 3-grams available in the database. The Selection Pat-
tern 1 (see section 5.3) allowed collecting feature information for 4,972 verbs,
described in a space with 2,002,571 dimensions. Likewise, Selection Pattern 2
allowed to collect feature information for 4,962 verbs over 2,066,282. Globally, by
aggregating information from both patterns, we were able to collect information
for 5,025 verbs in a space with 4,068,853 dimensions.

Table 5.2 presents an histogram regarding the number of word vectors per
number of features.

5.6 Results and Analysis

Global precision figures P avg
@ 1, P avg

@ N and MAP (mean average precision) for
Experiment Sets 1, 2 and 3 (automatic evaluation) are presented in Tables 5.3,
5.4 and 5.5. Results of manually evaluating synonym identification for the 25

5.6. Results and Analysis 83

Table 5.2: Number of vectors per number of features
feat. # vec.

< 10 541

10 - 19 220

20 - 29 145

30 - 39 136

40 - 49 112

50 - 99 353

100 - 199 471

200 - 499 777

500 - 1k 580

1k - 2k 456

2k - 5k 497

5k - 10k 306

10k - 50k 382

≥ 50k 49

verbs related to communication, Vcom, and the 25 verbs related the expression
of emotion, Vemo, are presented in Table 5.6 (synonym candidates were obtained
by setting the cutoff threshold to 200, i.e. corresponding to best P@1 found in
Experiment Set 3).

The most relevant, yet expected, fact regarding results from automatic eval-
uation is that precision values are all quite low, even for the best configurations
(simeq0.22). This is not surprising since the gold standard used has serious recall
gaps, so it is possible that many correct top found synonyms can be evaluated,
thus decreasing precision figures. In [Sah06], even lower precision figures are re-
ported. Also, we knew in advance that the context chosen for generating feature
vectors does not allow to effectively differentiate between a verb and its possible
opposite senses. Still, performance values obtained can be interpreted from a
relative point of view.

Results presented in Table 5.3 confirm that the impact of the weighting func-
tion is very relevant. The best performing weighting function (Mutual Informa-
tion) leads to a Mean Average Precision figure that outperforms the one obtained
using the worst performing weighting function with comparable coverage (Log-
Likelihood) by over 300%. Notably, the two best performing weighting functions
are Mutual Information and Mutual Dependency, both grounded in information
theoretic concepts (the two metrics are actually very similar). A well-known ef-
fect of these types of metrics is that they tend to asymptotically over-promote
rare features. This suggests that rare features might be of crucial value in the
task of finding semantically similar verbs.

It is also quite surprising to see that most weighting functions score worse

84 Chapter 5. Identification of Verb Synonyms

Table 5.3: Experiment Set 1: context = [-2, +2] and cutoff threshold = 1

.

Weighting P
avg
@ 1 P

avg
@ N MAP C

MI 0.221 0.121 0.125 0.800

MD 0.164 0.083 0.083 0.800

Z 0.134 0.096 0.067 0.712

�2 0.087 0.075 0.030 0.392

�2 0.084 0.075 0.027 0.375

raw 0.083 0.041 0.043 0.798

tf-idf 0.076 0.038 0.039 0.800

T 0.073 0.040 0.040 0.800

LL 0.059 0.034 0.037 0.796

than performing no weighting at all (raw). This happens even in the case of
popular weighting functions such as tf-idf. One possible reason for this is having
set the cut-off threshold on the minimum number of non-nil features to 1, which
resulted in considering many verb vectors with insufficient statistical information
(see Table 5.2). Some of the weighting functions used seem to be particularly
sensitive to this effect, and actually lead to worse results than performing no
weighting at all. Another observation is that the coverage obtained using the �2

and �2 weighting functions was approximately half of that obtained for the others.
Since coverage is a functions of the minimum cosine similarity (which was kept
0.1 for all weighting functions), we confirms that there is in fact a considerable
interaction between the choice of the weighting function and the similarity metrics
used.

Results from the Experiment Set 2 (Table 5.4) show that using feature infor-
mation from both the left and the right sides of the verb lead to better results that
using any of the two sides individually. From a relative point of view, the two
words following the verb (i.e. context [0, +2]) appear to carry more information
regarding verb synonymy than the two previous words (i.e. context [-2, 0]), which
seems quite natural since most verbs are transitive.

Table 5.4: Experiment Set 2: weighting function = Mutual Information and cutoff
threshold = 1

.

Window P
avg
@ 1 P

avg
@ N MAP C

[-2, 0] 0.136 0.078 0.079 0.779

[0, +2] 0.196 0.107 0.111 0.798

[-2, +2] 0.221 0.121 0.125 0.800

As for Experiment Set 3, results shown in Table 5.5 confirm expectation:
increasing the cutoff threshold lead to better precision values, at the cost of re-
ducing coverage. However, if threshold is set too high (≥ 200), values of precision

5.6. Results and Analysis 85

do not increase anymore, while the global coverage figure falls continually. For
even higher thresholds (≥ 500), precision figures actually drop, since by excluding
word vectors below the threshold we are also removing correct word synonyms
of verbs that were not filtered out, leading to a decrease in precision values for
these more frequent verbs.

Table 5.5: Experiment Set 3: weighting function = mutual information and con-
text window [-2, +2]

.

cut. P
avg
@ 1 P

avg
@ N MAP C

1 0.221 0.121 0.125 0.800

10 0.251 0.136 0.136 0.783

20 0.263 0.142 0.141 0.767

50 0.277 0.149 0.149 0.736

100 0.288 0.154 0.154 0.695

200 0.297 0.155 0.155 0.632

500 0.297 0.146 0.146 0.507

1000 0.290 0.141 0.141 0.398

2000 0.294 0.140 0.141 0.300

Results shown in Table 5.6 suggest that automatic evaluation underestimates
performance. This is due mostly to the low recall of the gold-standard used. Also
performance achieved for Vcom is very high. Top ranked synonyms found for Vcom

are correct most of the times. More specifically, the values of Pman
@ 1 (0.88) and

Pman
@ 5 (0.71) confirm that antonyms seem not to represent such a severe problem

for the case of Vcom. On the other hand, for verbs in Vemo, antonyms populate the
top ranked positions, and in some cases are best ranked candidate. An interesting
case in Vemo is the verb “gostar” (“to like”), which scored 0, or close to 0 precision,
at all ranks tested, despite being a very frequent verb. As expected, performance
figures obtained for Vemo are much lower than those obtained for Vcom. Due to the
simplicity of the VSM approach we followed, the figures obtained for Vemo can be
considered baseline values for other automatic approaches aiming at finding verb
synonyms for Portuguese.

Table 5.6: Manual evaluation of sets Vcom and Vemo

Group Pman
@ 1 Pman

@ 5 Pman
@ 10 Pman

@ 20

Vcom 0.88 0.71 0.56 0.44

Vemo 0.60 0.44 0.37 0.27

86 Chapter 5. Identification of Verb Synonyms

5.7 Conclusions

We confirmed that the weighting function chosen has a crucial impact on the per-
formance obtained when using the VSM for finding verb synonyms in Portuguese.
Results achieved by combining the cosine distance with the Mutual Information
weighting function suggest that the low frequency features carry most of the in-
formation regarding verb similarity. We showed that information obtained from
both sides of the verb is important for identifying possible synonyms, but the two
following words seem to carry more information than the two preceding words.
Also, we showed that it is beneficial to exclude word vectors with less than 50
non-nil features, but when the cutoff threshold is set too high, both precision
and coverage figures will be affected. Manual evaluation showed that the perfor-
mance obtained by the VSM approach varies greatly depending on the linguistic
and semantic properties of the verbs at stake. Results for verbs related with
communication show that the VSM approach can potentially lead to very high
performance figures. Results with the much more complex class of psychologi-
cal verbs related with the expression of emotion exposed the limitations of this
method in coping with antonymy. Because of the almost absence of linguistic pre-
processing of our approach, such results – specially P@1 ≃ 0.60 and P@5 ≃ 0.45 –
can be seen as baseline values for the task of automatically finding verb synonyms
for Portuguese.

Chapter 6

Paraphrasing Job Titles

In this chapter we focus on additional issues related to content-similarity, which,
again, have been motivated by practical problems encountered in an entity-
tracking task. Entity-tracking consists in identifying all references made to Named
Entities (NE’s) within a certain text, including not only those references made
by name but also those made by different sequences, such as job titles. However,
since job titles might be relatively long noun-phrases, they usually have multi-
ple paraphrases, which greatly complicates the task of identifying them robustly.
Generically, job titles paraphrases can be generated by performing chunk substi-
tutions using (i) synonyms, (ii) equivalent formulations (e.g. acronyms) or (iii)
alternative formulations with different degrees of specialization (e.g. hypernym
noun-phrases). In this sense, the content-similarity situations that we are ad-
dressing in this chapter are more generic than the ones presented in the previous
chapter, which focused on one relation only (synonym), and on one particular
class of words (verbs).

Robust entity tracking requires being able to match all these possible job title
paraphrases for each entity being tracked. In practice, this involves generating
all possible valid paraphrases for the entities at stake in order to be able to
match them in text. The problem is that it is obviously not feasible to manually
create rules for generating all possible job title paraphrases. Such rules would
not only be too many, but they would also require the knowledge about certain
equivalence relations (including synonymy and hyponymy/hypernymy relations)
that are usually domain-specific, and can sometimes even be highly metaphorical.

We use a data-driven method for inferring such domain-specific substitution
rules. The method takes as input a set of known job titles paraphrases for several
entities. For each entity, we pair the corresponding job titles that have partial
overlap and extract the differences between them. We expect some of these
different substrings to be interesting short paraphrases. For finding those that
are actually short paraphrases and, from them, inferring valid substitution rules,
we use a well-known data mining algorithm: the Apriori rule inference algorithm.

87

88 Chapter 6. Paraphrasing Job Titles

Again, evaluation is a challenging issue, since no gold standards exist for
assessing the validity of this type of rules. Therefore, we perform two types of
evaluation procedures. First, multiple judges manually check the rules inferred
to test their correctness. Then, we use the rules obtained to generate paraphrases
of job titles of entities frequently mentioned in news, and we test the validity of
such paraphrases over a corpus of news.

6.1 Introduction

Many Information Extraction (IE) applications focus on monitoring on-line news
sources to find relevant information (events, quotations, opinions) related to spe-
cific human entities. Named entity recognition and resolution are crucial pre-
processing tasks, identifying relevant (mentions to) entities in text and then as-
sociating them with a real-world referent. This involves processing both direct
mentions, such as proper names (e.g. “Obama”), and indirect mentions, such as
job titles (e.g. “the U.S. President”). Processing indirect mentions is particu-
larly challenging because they are usually compositional constructions, allowing
a wide range of lexical and syntactic variations. In some cases such variations
follow a more or less predictable structure. For example, adjectives of national-
ity can be paraphrased by a noun phrase headed by the correspondent locative
name (e.g. Barack Obama is frequently mentioned by “the (American∣US∣U.S.)
(president∣leader)” or “the president of the (US∣United States)). Nevertheless, in
some cases variations might involve some domain-specific knowledge (e.g. “the
2009 Nobel Peace Prize winner”, for mentioning the president Barack Obama)
and the use of commonly accepted metaphors (e.g. mentioning a political party
by a color, or a soccer team by a nickname).

A basic approach to deal specifically with job title variation would consist in
compiling extensive lists of job titles for each relevant entity, in order to build
a comprehensive database of possibilities. However this does not ensure that all
possible job title paraphrases are covered for all entities and it does not allow
generalizing the process through which paraphrasing job titles is achieved. More
specifically, it does not allow to generalize the process through which paraphrasing
job titles is achieved. Thus the knowledge about a large number of valid job
paraphrases for one specific entity can not be used for paraphrasing the job titles
of other entities. For example, if a given entity has the job title “president of
X”, and if we know of several other valid job titles for the same entity that are
based on paraphrasing “X”, then it should be possible to apply such knowledge
to obtain valid job titles for another entity who is known to be “vice-president of
X”.

Hence, we propose an unsupervised method for inducing sets of substitution
rules that govern the generation of paraphrases for job titles. Our method takes
as single input a large list of tuples of the form ⟨entity name, job title⟩. We

6.2. Related Work 89

assume that if there are several job titles associated to a specific entity, then they
are supposed to be top-level paraphrases of each other (i.e. they are different
formulations of the same job title). Thus, using the Apriori algorithm [AS94],
we try to infer word or phrase substitution rules of the form X ⇒ Y, that allow
transforming these job descriptions into their corresponding paraphrases. The
substitution rules we seek to infer are not necessarily symmetric, that is, they
do not need to relate two synonyms : they might relate hyponyms/hypernyms,
allowing valid job title generalizations. As we will show, this method makes it
possible to infer hundreds of correct domain-specific substitution rules. This leads
to the generation of previously unknown job title paraphrases for a significant
number of entities contained in the input set. We will also demonstrate that the
new job titles generated are both correct and productive, by checking the number
of occurrence of pairs ⟨entity name, new job title⟩ in news corpora.

6.2 Related Work

Our work has connections with research on (i) for automatic detection of para-
phrases in news sources, (ii) finding alternative names with different levels of
formality, and, indirectly, (iii) matching name variations and performing name
normalization.

Shinyama et al. present an approach for automatically acquiring domain-
specific paraphrastic expressions from news articles [SSS02]. Their method con-
sists in trying to match sentences found in articles from different newspapers but
covering the same topic. The key assumption is that references to named entities
(people, locations, values, etc.) are expected to be preserved among paraphrastic
sentences. Therefore, two sentences mentioning the same entities, but belonging
to different news articles covering the same topic, have a certain likelihood of
being paraphrases. For each paired sentence a dependency tree is computed and,
if the number of common named entities in certain parts of each tree exceeds a
certain threshold, then such parts are considered paraphrases. The authors ex-
perimented their method on a corpus containing news published during one year
in two Japanese newspapers: 294 pairs of articles describing arrest events and
289 articles describing personal affairs (hiring and firing of executives) were re-
trieved. After running an information extraction system on these texts for finding
relevant patterns, they were able to automatically match 136 pairs of potential
paraphrases. Manual evaluation showed that this method achieves 49% precision
in finding paraphrases for the arrest events and 94% for personal affairs events.
One of the reasons for the worse performance in finding paraphrases for arrest
events was the large number of sentences describing these events involving one
NE (e.g. “NE was arrested”). Such sentences end up being matched to other
sentences that mention the same entity but do not convey comparable informa-
tion. Ironically, another limitation of this system is that it is not able to deal

90 Chapter 6. Paraphrasing Job Titles

with paraphrases related with the names of the entities such as “New York City”,
“NYC” or “the city”.

Barzilay and Lee propose a more general procedure for finding sentence-level
(i.e. long) paraphrases [BM01]. The procedure has three steps and involves com-
parable corpora. For each corpus they obtain lattices (graph representations)
from groups of structurally similar sentences. The lattices are obtained by first
clustering sentences reporting similar events (based on n-gram overlap and sub-
stituting named-entities by generic tokens) and then finding multiple sequence
alignments, which expose commonalities. These lattices can then be transformed
into patterns taking into account the variability found for each possible slot: a
large variability in a given section of the lattice will correspond to an argument in
the pattern. The next step consists in pairing the lattices found in the two com-
parable corpora. Two lattices are matched if by assigning the same parameters
to the corresponding slots they instantiate sentences from news of the same day
on the same topic (yet belonging to different corpus). Generating paraphrases
becomes then straight-forward: each path of one of the matched lattices can be
paraphrased to any of the paths of the other. The system was evaluated on a pair
of comparable news corpora: Reuters and Agence France-Presse (AFP). Among
the 43 slotted lattices found for Reuters and 25 for AFP it was possible to match
25 lattices. These 25 matched lattices allowed the generation of 6,534 paraphrase
pairs. Then, the authors adapted the DIRT system ([LP01]) for producing para-
phrase pairs on the same data set. The top scoring 6,534 pairs where selected
and a sample of 500 paraphrases from both systems was manually evaluated by 4
judges. Results show that the system proposed by the authors outperforms DIRT
by 38% in generating correct paraphrase pairs. The proposed system was also
compared against a baseline system that generates paraphrase by performing sub-
stitution using synonym information from WordNet. Results achieved revealed
that the proposed system consistently outperforms the baseline showing that it
is able to generate paraphrase that go beyond simple synonym substitutions.

Elhadad and Sutaria [ES07] propose a method for matching technical terms
with lay equivalents. The authors start by aligning 367 news stories summarizing
research in the field of coronary diseases with the abstracts of the technical papers
that report such research (this process required some manual intervention since,
although mentioned in the news piece, the papers are not linked). Term iden-
tification on both news and abstracts was made with the support of the UMLS
ontology (only terms related to diseases and therapies were considered). Then for
all pairs of technical terms (i.e. terms occurring in at least one paper abstract)
and lay terms (i.e. terms present in at least one news story) contingency statistics
based on the co-occurrence of such terms in aligned documents were computed.
For matching the equivalents, the authors used a combination of three different
association measures (�2, � and odds-ratio) and a filter based on the semantic
type of each concept as provided by the UMLS (two terms can only be equivalent
if the semantic types are the same). Evaluation against a gold standard set for

6.3. Method Description 91

all possible pairs of equivalents revealed that the method could match the correct
equivalent with a precision of 57.9% and a recall of 77%, thus clearly outperform-
ing the baseline method (equivalent pairs directly provided by the UMLS for the
terms under evaluation).

Ananthanarayanan et al. manually define a set of rules for generating syn-
onyms / paraphrases of known named entities, in order to be able to match such
entities with potential variation found in technical documentation [ACDK08].
The proposed rules try to cope with several spelling variations, sub-entity/super-
entity mentions and abbreviations. The results obtained show a significant im-
prove in the recall of entity recognition. Jijkoun et al. [JKMdR08] start by
presenting a baseline name detection and normalization method for noisy user-
generated content that combines a series of in-document heuristics (e.g. trying
to find in the document a candidate for the complete name given a possible last
name), with attempts to match the name with Wikipedia titles. Then addi-
tional heuristics were added to the method such as, for example, (i) attempting
soft-matches against a list of known entities to identify name variations (using
Levenshtein distance), and (ii) using the text of anchors in Wikipedia that some-
times link incomplete versions of a name to the page that refers the normalized
entity name. These additional heuristic led to improvements in precision, recall
and accuracy of name recognition / normalization over the baseline method.

As Barzilay and Lee, we wish to automatically generalize paraphrase match-
ing by learning domain-specific substitution rules, in order to make possible to
generate paraphrases combinatorially. In spite of seeking relatively short para-
phrases, as in Elhadad and Sutaria, our approach does not require any manual
intervention, and is not dependent on any external knowledge resources. We wish
to follow, as much as possible, a data-driven approach and avoid manually defin-
ing rules for identifying potential paraphrases, as done in Ananthanarayanan et
al.

6.3 Method Description

The method we propose takes as input a list of pairs of the form ⟨ni, tij⟩, where
ni is the canonical name of a certain entity and tij is a distinct job title for
that entity. By canonical name, we mean a two name expression such as “Hilary
Clinton” or “Lady Gaga”. The core of the method lies in the observation that each
entity may have several valid job titles, and most of them are likely to be mutual
paraphrases. For now, we assume that names of entities in the input list are not
ambiguous, i.e. that there are no two entities sharing the same canonical name.
We thus assume that there are not two radically different job titles under the
same name, each one referring to two different entities possessing the same name.
Although this might look like a very strong simplification at first, in practice, the
vast majority of the entities that are frequently mentioned in the news are not

92 Chapter 6. Paraphrasing Job Titles

ambiguous when referred by the canonical name (i.e. an expression with at least
two names), despite some notable exceptions (e.g. “George Bush”). Our method,
however, does not require the existence of a single name per entity (the opposite
situation to ambiguity). If one entity is frequently mentioned by two different
canonical names, which can happen due to different transliterations of the same
name (e.g. “Viktor Yushchenko” vs. “Victor Iuchenko”) or because some middle
name is optionally used (e.g. “George Bush” vs. “George W. Bush”), this will
not represent much of a problem to the mining process, if enough valid job titles
are known for each of those possible names.

6.3.1 Finding Potential Short Paraphrases

The algorithm for finding potential short paraphrases is relatively straightforward.
For each name ni, we first group all (distinct) job titles, tij , to obtain the list Ti:

⟨ni, Ti⟩ = ⟨ni, [ti1, ti2...tinmax
]⟩ (6.1)

where Ti is the list of top-level paraphrases from which we obtain shorter para-
phrases that will allow us to infer a set of substitution rules. From Ti we proceed
by generating Pi, the list of all possible combinations of pairs of distinct job titles
for the name ni:

Ti −→ Pi = [⟨ti1, ti2⟩, ...⟨ti1, tinmax
⟩, ⟨ti2, ti3⟩...⟨ti2, tinmax

⟩, ...] (6.2)

For all pairs of job titles we look for partial alignments between distinct substrings
of each job title. This is done by first identifying the longest common substring
between each pair of job titles. Let t1 and t2 be two paired job titles. Without
any loss of generality, we can represent these two job titles as t1 = L1CR1 and
t2 = L2CR2 with C being the longest common substring between t1 and t2, and L1

/ L2 and R1 / R2 being the corresponding substrings positioned at left and right
side of C (C can be an empty string, and if not, any of L1, L2, R1 and R2 can also
be empty). For example, let t1 be “recently elected president of the U.S.” and t2
be “president of the United States of America.” The longest common substring,
C, will be “president of the”. For t1 we will have L1 = “recently elected” and R1

= “U.S.”, while for t2 we will have L2 = “” and R2 = “United States of America”.
For producing potentially interesting substring alignments (i.e. those that can

yield shorter paraphrases), we have to consider three possible cases (see Figure
6.1):

(a) parallel alignments - the substrings on the left side (L1) and right side (R1)
of the longest common substring from one job title (t1) are aligned with the
corresponding left (L2) and right (R2) substrings of the other job title (t2).
This case covers situations such as “the leader [of the] communists” and
“the general-secretary [of the] communist party.”

6.3. Method Description 93

(b) cross alignments - the substrings on the left side (L1) and right side (R1)
of the longest common substring from one job title (t1) are aligned with the
substrings on the opposite sides (i.e. R2 and L2, respectively) of the other
job title (t2). The cross alignment is useful for matching cases such as “the
French [First Lady]” and “[First Lady] of France.”

(c) merge alignments - a merge alignment consists in removing the longest
common substring of both job titles and producing a single alignment be-
tween the concatenation of the remainder substrings. This case is intended
to deal with situations such as “the Brazilian Minister [of Defense]” and
“the Minister [of Defense] of Brazil.”

Figure 6.1: All potential segment alignments that can be derived from a pair of
top level paraphrases: parallel alignments (a), cross alignments (b) and merge
alignments (c).

Using these three alignment strategies, we can generate pairs of substring align-
ments, ⟨s1i, s2i⟩ from each pair of job titles, ⟨t1, t2⟩:

⟨t1, t2⟩ −→ [⟨s11, s21⟩, ⟨s12, s22⟩...⟨s1n, s2n⟩] (6.3)

These alignments are expected to be (potentially interesting) short paraphrases,
i.e. s1i can potentially be a valid substitution for s2i, and vice-versa. In some
cases, either s1i or s2i can be an empty string. This can occur if after finding
a common string between two job descriptions, one of the remainder substrings
– R1, R2, L1 or L2 – is empty. This happens, for instance, when attempting a
parallel match between ”the recently elected [President of] U.S.” and “[President
of] the United States”, where “the recently elected” needs to be matched with
an empty string (i.e. “NULL”). These cases are likely to occur when of the job
descriptions being matched have a higher degree of specialization, or provide an
additional, yet dispensable, piece of information.

6.3.2 Inferring Substitution Rules

Given pairs of string alignments ⟨s1i, s2i⟩, we wish to mine substitution rules.
There are two possible scenarios regarding how substitutions between s1i and s2i

94 Chapter 6. Paraphrasing Job Titles

can occur:

Implication, s1i ⇒ s2i: s1i is a specialization of s2i. Therefore, despite some
loss of information, s1i can always be replaced by s2i, but not the reverse.
For exemple, “president” ⇒ “leader”, or “midfielder” ⇒ “(soccer) player”.

Equivalence, s1i ⇔ s2i: s1i and s2i are strict paraphrases in the sense that they
convey the same information. They are always valid substitutions of each
other. This includes (i) pairs of names and corresponding acronyms (e.g.
“U.S.” ⇔ “United States”) (ii) shorter versions / simplifications of the same
name (e.g. “Popular Republic of China”⇔ “China”) or (iii) domain-specific
synonyms (e.g. “red” ⇔ “communist”).

Inferring implication rules from data sets is a relatively well-known problem
(equivalence rules can obviously be seen as bidirectional implication rules). One
of the most well studied settings is mining association rules of the form whoever
buys X also (very likely) buys Y (i.e. X ⇒ Y) over basket data. Basket data is
the aggregation of information regarding transactions made by buyers. Typically,
the information kept for each transaction is the list of identifiers of the products
bought, b1, b2 ... bn and a unique identifier for the transaction, idi, such as:

id1 → [b1, b2 ... bi]
id2 → [bj , bk ... bl]

...
idx → [bm, bn ... bq]

There are several algorithms for mining association rules from these data sets.
We chose one of the well-known algorithms, the Aprori algorithm [AS94]. The
application of Aprori algorithm to our problem is straightforward, since each
pair of short paraphrases ⟨s1i, s2i⟩, obtained as explained in section 6.3.1, can
be seen as one transaction (each substring is seen as a “product”). The Apriori
algorithm will then infer rules of the form s1i ⇒ s2i (or s2i ⇒ s1i). Simultaneously,
the algorithm will compute the values of support – the number of transactions
in which such rule is observable – and the value of confidence – the probability
P (s2i∣s1i) (or P (s1i∣s2i)). If the values of support and confidence for a given
association rule are considered to be high enough, then the rule can be adopted.
If both s1i ⇒ s2i and s2i ⇒ s1i are adopted, then we conclude that s2i ⇔ s1i.

6.4 Experimental Setup

For obtaining ⟨name, job title⟩ tuples to serve as input to our rule inference
process, we mined news corpora for two specific patterns often found in news:

1. “... the [potential job title] [name] [speech act]”
(e.g. “... the British Prime-Minister Gordon Brown announced ...”)

6.4. Experimental Setup 95

2. “[name], [potential job title], [speech act]”
(e.g. “... Carla Bruni, the French First Lady, said...”)

where [potential job title] is a sequence of words containing at least one known er-
gonym (i.e. a title, a position or designation such as “minister”, “soccer coach”),
and [speech act] is one of 118 possible verbs related to communication (which
were manually selected). These patterns have very high precision, at the cost
of a relatively low recall, as confirmed in previous work. However, since we are
mainly looking for high-quality ⟨name, job title⟩ tuples, this pattern matching
process fulfils our needs. The news corpus consists of a database of news snippets
(title plus one to three sentences) collected from the official RSS feeds of eight
Portuguese news sources (news agencies, newspapers, TV and Radio Broadcast)
between 11/20/2008 and 12/23/2009. The database contained about 245.200
short news from which we extracted 2615 distinct ⟨name, job title⟩ tuples for a
total of 1730 names, by matching the two previously mentioned patterns. Since
the names with only one job title do not contribute to the rule inference pro-
cess, we only consider the names that are associated to two or more job titles:
1279 ⟨name, job title⟩ tuples for 394 names (which shows the lack of job title
alternatives for the vast majority of the names extracted).

Initial experiments showed that both cross alignments and merge alignments
were not productive enough and led to the inference of mostly incorrect rules.
We thus decided only to use parallel alignments in the remainder of our exper-
iments. By running the alignment algorithm for the 1279 job titles found for
the 394 names, we generated 1781 alignment pairs (i.e. transactions). Running
the Apriori algorithm and imposing no threshold on the minimum amount of
support and confidence we obtained 2234 rules. We then tried to select a smaller
set of rules that combined a reasonable value of support (si) and confidence (ci).
This was done by selecting those rules, ri, for which the value of the heuristically
defined utility function:

ui = ci × si
2 (6.4)

is higher than a predefined threshold tmin (ui ≥ tmin). In our experiments we set
tmin = 0.25 and we obtained 843 rules with supports varying from 1 to 30. Table
6.1 shows a sample of the rules inferred (and one possible translation to English1),
ranked by the value obtained by the utility function (Equation 6.4). Rules of the
type “X ⇒ NULL” mean that the “X” element in a job description can simply
be removed, hopefully generating a valid yet more generic job description.

1In some cases there is no direct translation to English, so we try to provide an expression
that conveys similar meaning. We will adopt this strategy in all other situations where a
translation to English is required.

96 Chapter 6. Paraphrasing Job Titles

Table 6.1: Sample of the 843 substitution rules selected, ranked by the value
given by the utility function ui = ci × si

2.
ui si ci substitution rule

1 14.2 16 0.94
“eleições europeias” ⇒ “europeias”

(“European elections” ⇒ “European (elections)”)

2 10 10 1
“cabeça de” ⇒ “ĺıder da”

(“head of (list of candidates)” ⇒ “leader of”)

3 10 10 1
“ainda” ⇒ NULL

(“in exercise” ⇒ NULL)

4 8 8 1
“da América” ⇒ NULL
(“of America” ⇒ NULL)

5 7.74 30 0.51
“às eleições europeias” ⇒ NULL

(“to the European elections” ⇒ NULL)

6 7.6 14 0.74
“social-democrata” ⇒ “do PSD”

(“Social Democratic” ⇒ “from/of PSD”)

7 7.11 16 0.67
“europeias” ⇒ “eleições europeias”

(“European (elections)” ⇒ “European elections”)

8 7 7 1
“Municipal de Lisboa” ⇒ “de Lisboa”
(“Municipal of Lisbon” ⇒ “of Lisbon”)

9 7 7 1
“Estados Unidos” ⇒ “EUA”
(“United States” ⇒ “USA”)

...

36 4 4 1
“PSD/Porto” ⇒ “Porto do PSD”

(“PSD/Porto” ⇒ “Porto (section) of PSD”)

37 3.72 9 0.64
“secretário-geral” ⇒ “ĺıder”

(“general secretary” ⇒ “leader”)

38 3.51 13 0.52
“do PS” ⇒ “socialista”

(“of/from PS” ⇒ “socialist”)

...

129 1.68 3 0.75
“brasileiro” ⇒ “do Brasil”

(“Brazilian” ⇒ “of/from Brazil”)

130 1.68 3 0.75
“do Brasil” ⇒ “brasileiro”

(“of/from Brazil” ⇒ “Brazilian”)

...

219 1 1 1
“treinador do F. C.” ⇒ “técnico do F.C.”
(“coach of F. C.” ⇒ “manager of F.C.”)

220 1 1 1
“extremo” ⇒ “futebolista”

(“forward” ⇒ “soccer player”)

...

842 0.27 3 0.3
“de Portugal” ⇒ “português”

(“of/from Portugal” ⇒ “Portuguese”)

843 0.27 3 0.3 “CDS-PP” ⇒ “CDS/PP”

6.4. Experimental Setup 97

6.4.1 Evaluation

As pointed out by Callison-Burch et al., there is no consensus regarding the best
methodology for evaluating the quality of paraphrases, and, thus, of rules or of
systems that generate them [CBCL08]. Due to the lack of gold-standard data,
such evaluation is performed manually most of the times, with all the correspond-
ing limitations in terms of objectivity, consistency and repeatability. On the other
hand, it is extremely difficult to build gold-standards for paraphrase evaluation,
because it is infeasible to ensure that all the correct paraphrases for a given ex-
pression are contained in the gold-standard. Additionally, since paraphrases are
usually domain-specific, an hypothetical gold-standard for one domain would be
of limited applicability in other domains.

Therefore, in order to reduce the impact of the previously described method-
ological limitations, we performed two types of evaluation. First, we evaluated
the substitution rules that were automatically inferred by manually checking their
correctness. Then, we assessed the validity and usefulness of the new job titles
that can be generated using such rules, by automatically checking their produc-
tivity in the news corpus.

Evaluation of Substitution Rules

For evaluating the correctness of the rules, three judges manually checked each of
the 843 rules selected (see Equation 6.4). Since the Apriori algorithm generates
association / implication rules (i.e. s1i ⇒ s2i), we evaluated each rule according
to three possible cases:

1. correct (C): s1i can generally be safely substituted by s2i in the context of
job title paraphrases;

2. possible (P): s1i can be substituted by s2i in some specific cases, but such rule
is not safely generalizable. We also included in this category substitutions
that involved spelling mistakes (e.g. “president”⇒ “persident”), since these
idiosyncrasies were part of the original dataset;

3. incorrect (I): s1i can not be (safely) substituted by s2i.

Two precision figures can be computed based on the evaluation provided by the
judges. The first is Strict Precision which only considers valid Correct rules:

Pstr =
#C

#C +#P +#I
(6.5)

The second is Relaxed Precision which considers valid all Correct and Possible
rules:

Prlx =
#C +#P

#C +#P +#I
(6.6)

98 Chapter 6. Paraphrasing Job Titles

These two precision figures can be computed at different support and confidence
thresholds.

Evaluating new Job Titles

For testing the validity of the new job titles, we first generated a set of new job
titles for each name by paraphrasing known job titles with the previously found
rules. The new job titles were generated using a subset of 70 rules with support
equal or larger than 5. For each name, we excluded all job titles that included
or were included in any of the previously known job titles for the corresponding
name. We thus tried to generate job titles that were more than mere trivial
variations of the known job titles. Under such conditions we were able to generate
1686 new job titles for 890 names (notably, the rules were inferred from data
obtained from only 394 names). For each name, ni, we tested the productivity
of the corresponding new job titles, tnewij , by trying to match both ni and tnewij

simultaneously on the corpus. We performed such test on the corpus of 245.200
short news. In principle, if a match of both ni and dnewij occurs within such a
relatively short text passage (usually less than 300 chars), dnewij is likely to be a
valid job title for ni. Productive job titles were manually checked in the end.
However, if a new job title is not productive in the corpus, it does not necessarily
imply that it is incorrect. In any case, since we are essentially trying to determine
the usefulness and correctness of the new job titles, this simple automatic test is
adequate.

6.5 Results and Analysis

6.5.1 Substitution Rules

Each of three judges - A, B and C - separately evaluated 843 cases, following the
guidelines described in the previous section. Inter-annotator agreement achieved
was quite high. The Cohen’s Kappa Coefficient (for three classes) between judges
A and B was 0.96, between B and C was 0.92, and between A and C was 0.95.
Table 6.2 contains the values of (averaged) Strict Precision, Pstr (see Equation
6.5), and (averaged) Relaxed Precision, Prlx (see Equation 6.6), for different values
of minimum support.

Not surprisingly, the higher the support the higher the values of both Pstr

and Prlx. Also, for relatively high values of support, the difference between Pstr

and Prlx tends to decrease, since the number of “dubious cases” (i.e. those that
end up being evaluated as “Possible”) also tends to decrease. Generically, the
precision figures obtained for support larger than one are relatively high, ranging
from 0.69 to 0.86. In fact, the vast majority of the rules are correct, including
not only relatively straight-forward rules, but also some non-trivial cases.

6.5. Results and Analysis 99

Table 6.2: Strict (Pstr) and Relaxed (Prlx) Precision for the rules obtained, at
different thresholds on the corresponding minimum support value.

smin # rules Pstr Prlx

1 843 0.63 0.75
2 220 0.70 0.81
3 126 0.71 0.83
4 89 0.72 0.82
5 70 0.73 0.82
6 58 0.69 0.80
7 40 0.75 0.83
8 36 0.75 0.81
9 31 0.77 0.85
10 27 0.81 0.86

Some rules are very productive in Portuguese, and involve syntactic-semantic
strategies, such as the ones listed below:

∙ Reduction of specific modifiers, such as adjectives (e.g. “actual selec-
cionador nacional” ⇒ “treinador da selecção” / “current national team
coach” ⇒ “national team coach”; “treinador da selecção argentina” ⇒ “se-
leccionador” / “coach of the Argentina national team” ⇒ “coach”). More
complex expressions, such as phrases, can also be removed resulting in a
job title generalization (e.g. “presidente ainda em exerćıcio” ⇒ “presi-
dente” / “the still in office president” ⇒ “president”).

∙ Replacement of relation adjectives by equivalent noun phrases introduced by
preposition, namely the ones involving political affiliations (e.g. “democrata-
cristão” ⇒ “do CDS-PP” / “Christian Democrat” ⇒ “from CDS-PP”;
“cabeça de lista do PSD” ⇒ “cabeça de lista social-democrata” / “main
candidate from PSD” ⇒ “main social-democratic candidate”) and na-
tionality (e.g. “dos Estados Unidos da América” ⇒ “norte-americano” /
“of the United States of America” ⇒ “North-American”).

∙ Movement of constituents (e.g. “[candidato] do Bloco de Esquerda às eu-

ropeias” ⇒ “[candidato]às eleições europeias pelo BE” / “[candidate]
of Bloco de Esquerda (party) to the Europeans” ⇒ “[candidate] to the

European elections for the BE (party)”).

∙ Association of acronyms with respective expansion (e.g. “[Fe]deração [N]acional
dos Sindicatos dos [Prof]essores ⇒ FENPROF”).

∙ Substitution of words or expressions that are synonyms in Portuguese (e.g.
“primeiro ministro” ⇒ “chefe do governo” / “prime-minister” ⇒ “head

100 Chapter 6. Paraphrasing Job Titles

of government”; “antigo ministro” ⇒ “ex-ministro” / “former minis-
ter” ⇒ “ex-minister”; “candidato “número um”” ⇒ “cabeça de lista” /
“first candidate” ⇒ “top candidate in the list”). Some constituents, which
may be not equivalent when found in general compositional structures, can
be synonyms within the scope of particular job titles (e.g. “[candidato] às
europeias” ⇒ “[candidato] ao Parlamento Europeu” / “[candidate] to the
European (elections)” ⇒ “[candidate] to the European Parliament”). Par-
tial synonymy is also productive, and often involves the replacement of a
word or expression by a possible hyperonym (e.g. “presidente do Governo”
⇒ “ĺıder” / “president of Government” ⇒ “leader”; “parliamentarian of
PS who was responsible for the final report” ⇒ “report author”).

The linguistic strategies previously described can be used in combination,
resulting in paraphrases that would be difficult to identify by using simple rule-
based approaches. The most interesting cases involve the relation between free
constructions, whose interpretation requires up-to-date knowledge of the world
and society, as illustrated by the following examples:

1. “[Secretária] de Estado da nova administração de Barack Obama” ⇒ “[Se-
cretária] norte-americana de Estado” / “[Secretary] of State of the new
Barack Obama’s adminstration” ⇒ “North-American [Secretary] of State”

2. “cabeça de lista do Movimento Esperança Portugal às [europeias]” ⇒ “can-
didata independente do MEP às eleições [europeias]” / “head of the list (of
candidates) of Movimento Esperança Portugal to the European (elections)”
⇒ “independent candidate of MEP to the [European] elections”.

In the first example, the constituent of the compound noun “secretária de
Estado” (“secretary of State”) is discontinuously mentioned and the noun phrase
“nova administração de Barack Obama” (“new Barack Obama’s adminstration”)
is replaced by the adjective “norte-americana” (“North-American”), roughly equiv-
alent within this particular context. In the second example, the noun “candidata”
(“candidate”) and “cabeça de lista” (“head of the list (of candidates)” ≃ “main
candidate”) are synonyms, despite not being possible to establish this symmetric
relation in general circumstances.

There are also some typical cases of errors. One frequent error arises from the
inference of rules of the type organization A ⇒ organization B (and vice-versa).
These rules are inferred as a result of job changes, which are quite frequent in
some domains (e.g. sports or finance). For example, if a soccer manager and a
few players move from one team to another during the time period covered by our
input data set, then we will probably have tuples referring to these two teams in
the list of job titles for the corresponding names, such as ⟨ni, “manager/midfielder
of Team A”⟩ and ⟨ni, “manager/midfielder of Team B”⟩. Our method will thus
possibly derive “Team A” ⇒ “Team B” and “Team B” ⇒ “Team A”. This

6.5. Results and Analysis 101

Table 6.3: Statistics regarding simultaneous matches of names and new job titles,
⟨ni, t

new
ij ⟩, and also names and previously known job titles.

#n #(n,t) m(n,t)

⟨ni, t
new
ij ⟩ 130 175 1609

⟨ni, t
old
ij ⟩ 890 1566 33147

suggests that temporal information should be taken into account when pairing
input job titles (see Equation 6.2). One relatively simple alternative is to avoid
pairing input job titles that were extracted from news that are separated by
more than a given amount of time (e.g. a week). Another common error, which
occurred specially in rules with low support, was the inference of bidirectional
rules of the form “specific case ⇔ general case” when only one of the direction
was valid (namely the one that states “specific case ⇒ general case”). We believe
that the solution for this type of errors will be achieved by increasing the quantity
(and variety) of input data, which will allow collecting enough evidence to exclude
the incorrect cases.

6.5.2 Evaluating new Job Titles

Table 6.3 shows statistics regarding the simultaneous match of both the name, ni,
and the new job title tnewij , against the corpus of short news. We had previously
obtained 1686 new job titles. The table contains information about (i) the number
of names for which a match and a new job title was found, #n, (ii) the number
of distinct ⟨ni, t

new
ij ⟩ matched, #(n,t), and (iii) the total number of matches in the

corpus for all the ⟨ni, t
new
ij ⟩ combinations, m(n,t). For comparison purposes, we

performed the same matching procedure using the initially known job titles (i.e
those that where used as input for the inference process), toldij , for each of 890
names under test (for which new job titles could be generated using rules with
support ≥ 5).

About 10.4% (175 in 1686) of the new ⟨ni, t
new
ij ⟩ tuples were productive on this

corpus. This represents 11.2% of the total number of previously known patterns,
⟨ni, t

old
ij ⟩, that were also matched (1566). The number of matches produced using

the newly found job titles was 1609, while the number of matches obtained using
the previously known patterns, which are supposed to be the most frequently used,
was 33147. Basically, we were able to increase our ability to detect references to
entities by about 10.4% in number of distinct job titles and about 4.8% in number
of matches.

Another relevant fact is that at least one new job title was productive for 130
names, i.e. about 14% of the names. For some entities the number of new job titles
found was quite high. For example, there were 10 new valid job titles for Vital
Moreira, who was the “socialist main candidate for the 2009 European Elections.”
Our input data contained 18 possible job titles, including others not related to

102 Chapter 6. Paraphrasing Job Titles

the elections. The 10 new productive job titles were generated as a result of
having inferred rules for substituting many sub-sections of the complete job title
(i.e. for “socialist”, for “main candidate” and for “2009 European Elections”).
As a rule of thumb the number of productive job titles generated is proportional
to the relevancy/coverage of the entity at stake and to the length (in words) of
its previously known job title.

Manual evaluation of the 175 productive ⟨ni, t
new
ij ⟩ tuples showed they were

all correct (see Table 6.4 for some illustrative examples) except for 3 cases. For
Barack Obama, Hugo Chávez and Lula da Silva, one of the productive job titles
found was “leader”, which was generated from one of the most frequently matched
rules we inferred: “president” ⇒ “leader.” Although not incorrect, we believe that
this job title is too generic to be useful in finding additional references of each
of these entities, since they can be used to refer any other leader that might be
present in the context. This is partially shown by the relatively high number of
matches found. This type of generic job titles can be filtered out in a subsequent
step by checking the number of different names for which they were generated. If
many entities have such a job title, then it is probably too generic and should be
excluded or marked as so.

6.6 Conclusions

We presented an unsupervised method that takes as input a list of valid ⟨name,
job title⟩ tuples and infers substitution rules for paraphrasing known job titles
into new and valid ones. We showed that the rule inference process is capable
of obtaining hundreds of correct rules with precisions over 70%. We also showed
that the subset of productive job titles generated from these rules is almost 100%
correct, and leads to a 10% increase in the overall number of distinct job titles
that were previously known. Although our experiments have been developed in
the Portuguese language, we believe that our method can be easily ported to
other languages, with similar results.

6.6. Conclusions 103

Table 6.4: The list of new job titles (tnewij) found to be productive for a sample of
names. The number of matches for each job title is shown in round brackets.

name (ni) new job title paraphrase matched (tnewij)

Alex Ferguson

técnico (11)
(manager)
técnico do Manchester United (1)
(manager of the Manchester United)

Barack Obama

ĺıder (76)
(leader)
ĺıder dos Estados Unidos (1)
(leader of the United States)
ĺıder dos Estados Unidos da América (1)
(leader of the United states of America)
ĺıder dos EUA (1)
(USA leader)
ĺıder norte-americano (3)
(North-American leader)

Eric Holder

procurador-geral dos EUA (4)
(Attorney General of the USA)
procurador-geral norte-americano (6)
(North-American Attorney General)

Gerry Adams
presidente do Sinn Féin (1)
(president of the Sinn Féin)

Malam Bacai Sanhá
presidente da Guiné-Bissau (20)
(president of Guinea-Bissau)

Max Mosley
ĺıder da FIA (3)
(leader of FIA)

Robert Gates
secretário da defesa dos estados unidos (2)
(Secretary of Defense of the United States)

Part III

Names and Entities

105

107

Most of the contents on the Web are not about abstract concepts nor about
deep theoretic formulations : they are about everyday entities, specially about
people, locations and organizations. Undoubtedly, practically all news content
focus essentially on these types of entities, so an important function of any news
monitoring application is actually processing the names of (such) entities. But, if
we widen the scope of what an entity can be, to include types of entities other than
just the more traditional ones (i.e. people, locations and organizations), then one
must recognize that virtually every facet of the Web is essentially about entities.
For example, web-commerce sites are about products, which have names. Media
content sites are about movies, music tracks, bands, which also have names. If
we look at more recent web phenomena, we can see that blogging and micro-
blogging environments provide platforms for people expressing opinions about
anything from software components to biking parts, while social network sites
connect people that share information about common interests, whatever these
may be. All these have names.

Automatically processing mentions of entities is very challenging, particularly
in the Web environment. There are many reasons for this, namely:

1. The universe of possible entities to be tracked is extremely large and is al-
ways expanding, contents regarding new entities are always being produced.
Additionally, the set of types in which such entities can be classified is also
very large and expanding.

2. The set of names used for referring those entities is also extremely large, and
only partially known, which makes dictionary-based approaches infeasible.

3. The relation between names and entities is far from being a simple 1-1
mapping: a single entity can be mentioned by several different names, and
the same name can be used to mention an indefinite number of entities,
possibly of different types (name ambiguity).

4. The mapping between entities and the corresponding set of names used to
mention them is also very dynamic, as people tend to use metaphors and
other linguistic phenomena (e.g. metonymy) to produce (instant) alterna-
tives for mentioning entities.

5. Names, especially names of foreign entities and commercial products, are
sometimes hard to spell. The amount of variations that such names can
suffer is significant, even in industrial media (e.g. on-line news). In user-
generated contents the problem is even worse since standard spelling con-
ventions, such as capitalization, are not followed. Thus, the apparently
trivial task of robustly identifying names is not a simple one.

108

In this part, we try to contribute to the solution of some of these problems.
In chapter 7, we focus on the development of a technique for finding type sim-
ilar entities, i.e. those that can be said to belong to the same type (or class).
This problem is important for gazetteer creation and named-entity recognition:
knowing that an unknown entity is type-similar to another known entity (e.g. a
soccer team) allows us to tag its type based on such similarity. We propose a
data-driven approach to infer the degree of type similarity between entities. The
method uses information about how entities co-occur in coordination structures,
which can be obtained using very simple methods.

In chapter 8, we propose a solution to the Named-Entity Disambiguation
(NED) problem on the Web: do two occurrences of the same name in different
Web documents refer to the same entity or not? This is an extremely important
question in the scope of Web document retrieval in general, and in entity track-
ing applications in particular, especially when merging information from different
documents is required. We propose a clustering-based approach to the NED prob-
lem, in which we try to group mentions of the same name that exhibit enough
(distributional) similarity so as to be considered to refer to the same entity. Since
we are trying to tackle named-entity disambiguation in the Web, several algorith-
mic issues need to be addressed in order to allow efficient scaling of our method
to such a large data set.

In both works, we follow data-driven approaches and we use the Vector Space
Model as the main framework for computing similarity. Also, in both works, eval-
uation is performed using gold-standard information extracted from Wikipedia.

Chapter 7

Finding Type Similar Entities

In this chapter1 we focus on type similarity (see section 2.3.2). Our goal at this
stage is to develop a corpus-based mechanism for inferring the degree to which
a set of entities can be considered type similar, or, alternatively, the degree to
which they belong to the same class. The core of this mechanism is a membership
function (see Equation 2.11), which allows us to grow a set of type similar entities,
given an initial set of seeds that represent (by extension) a target class. The
membership function we propose relies on information about the co-occurrence
of names in corpora in the scope of coordination structures. Our hypothesis is that
coordination structures tend to relate entities of the same type (e.g. “I visited
[Rome] and [Paris]”) and, thus, provide the information needed for inferring type
similarity. Under certain conditions, coordination structures are relatively simple
to identify from corpora (i.e. they are partially observable features as described
in section 3.3.3), which allows an easy deployment of out method in a practical
application scenario, such as, for example, the semi-automatic construction of
gazetteers.

The expansion method itself is based on the Vector Space Model. Having
extracted features for representing name/entity items as vectors, the membership
function is computed by calculating distance between two vectors: the one refer-
ring to the items being tested, and the one representing the reference class (by
aggregating the seed elements). For evaluating our method we use information
taken from Wikipedia, namely lists that aggregate entities that are supposed to
belong to some class (e.g. “List of English novelists”). We evaluate our method
by choosing a couple of elements from the gold-standard list to serve as seeds,
and then checking how much of the initial list can be reconstructed using the
expansion mechanism proposed. The evaluation scheme we used is one of the
major contributions of this work.

1The material contained in this chapter was published in Lúıs Sarmento, Valentin Jijkoun,

Maarten de Rijke, Eugénio Oliveira. ““More like these”: growing entity classes from seeds”

[SJdRO07]

109

110 Chapter 7. Finding Type Similar Entities

7.1 Introduction

Lexical resources such as thesauri and ontologies form essential ingredients of
many intelligent information access applications, including question answering,
digital libraries, and cross-lingual search engines. Creating, maintaining, and
expanding such lexical resources by manual means is a tedious, time-consuming
and expensive task. As a consequence there has been a lot of research on finding
methods for automatically extending lexical resources. Traditionally, a significant
portion of this line of work has focused on learning taxonomic relations and
constructing semantic hierarchies; see e.g. [Car01, CW03, GBM03, RC98, SJN04].

We focus on a different, yet related problem in the setting of lexical acquisition:
extending classes with type-similar items. We are aiming specifically at expanding
sets of entities. Given a set of seed lexical items referring to entities, Es =
{es�1,�1, e

s
�2,�2 , ...} that are supposed to belong to some unknown class ci, and a set

Ec of candidate entities, Ec = {ec�1,�1
, ec�2,�2

...}, we wish to determine which of
the entities in Ec belong to class ci

2. In other words, we want to “grow” a class
ci from a few seed examples, Es, by choosing elements from Ec. An example
is provided by the seed set {Raphael, Michelangelo, Leonardo da Vinci}, which
might be expanded so as to include for example Sandro Botticelli.

We propose and evaluate one corpus-based method that uses a small seed
set obtained from the user and “grows” those seeds into sets of similar entities,
together forming the extension of some implicit concept. The actual extension
depends on the specific corpus used, since it may contain different entity informa-
tion. Therefore, the previous seed set could be expanded with other non-Italian
yet Renaissance, artists such as El Greco or Jan van Eyck. One advantage of our
method is that it can be deployed on arbitrary text collections, almost regardless
of the language. Another important and original contribution in this chapter is
the innovative evaluation framework for this type of task, based on list data from
Wikipedia.

7.2 Related Work

Automatic and semi-automatic extraction of (typed) lexicons from free text has
received a good deal of attention in the natural language processing community.
For example, Roark and Charniak [RC98] describe a corpus-based method for
expanding a nominal category from a small set of exemplar “seed” words. The
method selects new members of the category by looking how often they co-occur
with the seed words. The co-occurence statistics is based on noun conjunctions,
lists and appositives. Unlike in our work, though, [RC98] focuses on common
nouns (“car”, “pickup trucks”) and does not report results for named entities.

2The notation used for identifying entities (e�i,�i
) is intended to be compatible with the

notation presented in chapter 2.

7.3. Expansion using Membership Functions 111

A similar bootstrapping approach, due to Thelen and Riloff [TR02], relies on
a large body of extraction patterns that capture information about behaviour
of a word. For example, such patterns as “X was arrested” or “murdered X ”
are likely to extract candidates of the category People. A word is considered
a good candidate to include in a category if it is extracted by patterns that
also have a tendency to extract known category members. This bootstrapping
method requires a large set of linguistic patterns that allows it to identify entities
of a specific category. It is sensitive both to the language of the corpus and the
specificity of the categories.

Ghahramani and Heller propose a probabilistic Bayesian framework for the
task of expanding a class from seed entities [GH05]. The method estimates prob-
ability that a candidate belongs to a (hidden) class, based on the available in-
formation. The authors compare their class expansion algorithm to Google Sets3

and show a significant improvement.

Finally, the task we are addressing in this chapter is similar to the List Com-
pletion task 4 that is to be evaluated at INEX (Initiative for the Evaluation of
XML Retrieval) [FL07] in 2006.

7.3 Expansion using Membership Functions

In principle, the task of expanding a set of seed entities, Es, which implicitly
defines a class ci, by adding elements from a set of candidate entities, Ec, can be
tackled as a binary classification problem: elements of Ec need to be classified
as being of class ci or not. However, this view on the class expansion task is
problematic. First, ci is only implicitly defined, and its size is unknown. Second,
there might be many different meaningful, but distinct, classes that contain Es.
Thus, we approach the class expansion problem by making used of the class mem-
bership functions we defined in section 2.3.2: �(e�i,�i, ck, C) (see Equations 2.10.
For simplification purposes, in this chapter, we ignore the role of the context, C,
in the computation of the membership function. Henceforth, we use the following
more compact notation: �(e�i,�i, ck).

However, since in the class expansion task the actual class, ck, is not known,
we approximate �(e�i,�i, ck) by �(e�i,�i, E

s), the latter function using Es, the set
of seeds, as a model for ci. If, given Es, we can compute the value of �(e�i,�i, E

s)
for any candidate entity ec�1,�1

in Ec, then we can obtain the ntℎ-expansion of Es

by collecting the set of n elements of Ec with the highest �(e�i,�i, E
s) values. The

problem of class expansion of Es given Ec, becomes thus reduced to the task of
computing �(e�i,�i, E

s) for all e ∈ Ec.

3http://labs.google.com/sets
4http://inex.is.informatik.uni-duisburg.de/2007/xmlSearch.html

112 Chapter 7. Finding Type Similar Entities

7.3.1 Implementing a Class Membership Function

We consider the membership function as a kind of similarity function between
a set of seed entities, ES, and a single candidate entity, ec. We propose to
compute the values of the membership function using the vector space model
(VSM) approach (see chapter 3). We will represent both the seed set Es and
the candidate entity ec by a vector of numerical features, and then use standard
vector distance measures, such as the cosine similarity, to compute similarity.

Based on the fact that humans easily group and list similar objects, we assume
that many explicit enumerations of entities that we find in text are in fact lists of
objects of similar classes. Therefore, if we can identify such enumerations in text,
we may be able to gather information about class similarity between the elements
contained in such lists. Our assumption (also used in, e.g., [RC98, TR02]) is that
if two elements consistently co-occur in lists, they are likely to be of a similar
semantic class.

This assumption may be seen as a particular case of Harris’ Distributional
Hypothesis [Har54], according to which words that occur in the same “contexts”
tend to have “similar” meanings. In our case, the context being considered is
“occurrence in the same lists,” which, we argue, is closely related to type (or
class) similarity.

7.3.2 Identification of Lists

Identification of lists in text may not be trivial. If we consider semi-structured
text, such as HTML documents, we might find some explicit clues about lists
that might enable list extraction. But even in HTML documents, lists may be
expressed in tables or without any specific layout clues. For unstructured text, a
complete identification of lists might require robust parsing tools since lists can
be expressed in a variety of ways.

We do not aim at solving the full list identification problem for free text.
Instead, we propose a simple approximation that tries to identify pairs of elements
that belong to textual lists. We assume that lists are composed of sequences of
pairs of coordinated elements which are either connected by explicit coordination
elements (“and”, “or” . . .) or by commas. Note that this intuition has been
corroborated by other studies that focus specifically on using information about
coordinated words to cluster them in semantic categories [WD02].

In order to identify entity pairs that belong to lists, we look for structures like
“... ea, eb and ec...” where ea, eb, etc are named entities. E.g., “I’ve lived in NY,
Paris and Amsterdam.” Another possibility would be “...ea, eb or ec ...” as in
“Experience with Oracle, PostgreSQL or MySQL is required”). When instances
of such patterns are found in a corpus, we can easily conclude that the pairs
(ea, eb) and (eb, ec) co-occur in coordination. Note that in our method we will not
make any conclusions about ea and ec, since, for simplicity reasons, we are only

7.3. Expansion using Membership Functions 113

looking for entities that co-occur contiguously.

7.3.3 Building Feature Vectors

Having extracted such co-occurrence information for all entities in the corpus,
we can represent our entities and entity sets as vectors encoding the frequency
of co-occurrence. Specifically, if e1, . . . , eN are all (named) entities in the corpus
that occur in coordination constructions, then the j-th component of the vector
ei is defined as the number of times ei and ej co-occur in coordination. Similarly,
for an entity set Ek, Ek(j) is defined as the number of times nj co-occurs with any
element of Ek in coordination. The dimension of the vectors used to represent
our elements is, thus, equal to the number of distinct entities in the corpus that
occur in coordination constructions at least once (i.e., N).

For instance, in the example above, if nea, neb and nec are all named entities
Sab = {ea, eb}, and we have encountered a single occurrence of “... ea , eb and
ec...” in our corpus, the vector space VS ′ will have three dimensions and the
elements will be represented as follows:

nea = (0, 1, 0)
neb = (1, 0, 1)
nec = (0, 1, 0)
Sab = (1, 1, 1).

(7.1)

One might argue that pairs of elements connected by comma are subject to
a lot of noise. In fact, surface text structures of the form “... X, Y, ...” may
occur often without implying any class similarity between “X” and “Y ”, but
introduce, e.g., apposition, or clarification, instead. Therefore, a possible option
may be to take only information about pairs connected by explicit coordination
such as “... ea and eb ...” or “... ea or eb...”. The features collected with this
additional restriction are likely to be less noisy but, on the other hand, less feature
information will be collected, which can lead to recall problems later. Using the
same examples given previously, we would obtain the following representations in
the restricted vector space VSX :

nea = (0, 0, 0)
neb = (0, 0, 1)
nec = (0, 1, 0)
Sab = (0, 0, 1).

(7.2)

Note that this representation is sparser: the feature vectors contain more zeros.
From now on, we will refer to vector spaces built using only explicitly coor-

dinated pairs by VSX , and to those build from explicit coordinations or commas
as VS ′. It is important to note here that, when applying our method, we will
always be able to guarantee that “X” and “Y” are, in fact, named entities (as we
explain later in section 7.5.1).

114 Chapter 7. Finding Type Similar Entities

7.3.4 Calculating membership function

With a fixed feature representation and a vector space, the membership function
(that relates a candidate entity to an entity set) can be computed using one of
the standard distance measures for vector spaces. In our experiments we used
the cosine similarity measure [SM86]. For calculating the degree of membership
of entity ec, to the (model) entity set E, we can simply compute the value of the
cosine between the two corresponding vectors ec and E:

�(ec, E) = cos(e, E) (7.3)

Depending on the vector space used to obtain the vector representation of the
entities and sets, we can have different definitions of the membership function.
We will differentiate between �′, which is calculated using vector spaces generated
with the explicit coordination connectors and the comma (i.e.,VS ′

EN and VS ′
PT),

and �X , which is calculated using the vector spaces generated considering only
pairs of entities connected by explicit coordination connectors (i.e., VSX

EN and
VSX

PT). We will use � when this difference is immaterial.

7.4 Evaluation Using Wikipedia

In this section, we present an evaluation framework for the class expansion task
that is based on information extracted from Wikipedia. We choose Wikipedia
for several reasons. First, as we described in section 4.2.4, Wikipedia contains
many human-generated lists that can serve as gold standard for class expansion
algorithms. Therefore, we can obtain test data from different domains and of
different levels of specificity.

Second, Wikipedia has explicit information regarding the delimitation of named
entities in text. We can explore the fact that many articles in Wikipedia actually
correspond to named entities, and moreover, articles explicitly link to each other.
Whenever in the text of an article, A1, we find a (hyper)link to another Wikipedia
article, A2, such that the anchor text of the link starts with a capital letter, we
can safely assume that the anchor text is a mention of the named entity: the title
of article A2. Using this simple heuristic, we automatically identify and delimit
mentions of named entities in the content of Wikipedia articles. This allows us to
circumvent the problem of identifying named entities in text and focus on eval-
uating membership functions and class expansion algorithms, rather than entity
extraction.

Moreover, Wikipedia editors often assign each article to one or more Cate-
gories. We will use this explicit category information in section 7.4.3 to develop
a simple baseline for the membership function.

7.4. Evaluation Using Wikipedia 115

7.4.1 Test sets and performance measures

From the definition of the class expansion task (section 7.3), we see that there
are three inputs at stake: (i) the set of seed entities Es, (ii) the set of candidates
entities Ec, and (iii) the number of elements n that one intends to add to Es.
However, the Wikipedia lists that we will use to create our test sets are not
guaranteed to be complete. Therefore, we chose not to rely on the exact sizes of
these lists and we will not evaluate the resulting expanded set directly. Instead,
we will evaluate the quality of rankings over Ec produced by our membership
functions.

Specifically, for a gold standard class cgold, which corresponds to a Wikipedia
list, we will pick a subset, P, containing only positive examples of entities of such
category (P ⊂ cgold). We will also construct the N set that contains entities
outside class cgold, but which are somehow related to elements of cgold. In general,
∣N ∣ ≫ ∣P∣.

For a given cgold class, and the corresponding sets of positives, P, and negatives,
N , we define test case as a seed set taken from P, Es

gold ⊂ P. To evaluate the
quality of a membership function � on this test case, we construct the set of
candidates Ec

gold = P ∩N ∖Es
gold, rank the elements Ec

gold by �(⋅, Es
gold) and assess

the quality of the resulting ranking R using Average Precision (see Equation
4.15). A test set is a collection of all test cases for a given cgold, P and N . The
overall quality of a membership function � on a test set can be assessed using the
Mean Average Precision of the rankings produced for all test cases (see Equation
4.19).

7.4.2 Test Set Construction using Wikipedia

The construction of the actual test sets was done in two stages, and was based
on XML encoded dumps of Wikipedia5. We produced test sets for English and
for Portuguese. Table 7.1 gives some descriptive information about the English
and Portuguese XML dumps used.

Table 7.1: Sizes of the Wikipedia dumps.
Lang. files paragraphs text in MB
EN 1602048 8763404 2,950
PT 209198 757712 227

5Available from the University of Amsterdam in March 2007: http://ilps.science.uva.
nl/WikiXML.

116 Chapter 7. Finding Type Similar Entities

List Extraction from Wikipedia

First, we detect lists in Wikipedia pages. Such pages can be easily identified by
an expressive title: “List of...” for English and “Lista de...” for Portuguese. We
only consider the subset of those pages which present information using explicit
HTML list structures. All Wikipedia pages which present list information using
tables are ignored because the extraction of their elements is not trivial in most
of the cases. The title of the list is saved for future identification of the test set.

Then, for each element of the extracted lists we obtain (i) the corresponding
frequency in Wikipedia (i.e. number of times that it occurs as a link, as explained
previously), and (ii) the URL of the Wikipedia article that addresses that entity.
For the elements that do not posses a corresponding article in Wikipedia (i.e.
point to a page were the user is invited to start an article about that topic) we
still extract the element but we keep information regarding the absence of the
article. Elements that are entirely numeric are ignored, to avoid long lists of
dates or other numerical values (e.g. telephone codes) which are useless for our
evaluation purposes.

Table 7.2 presents some statistics regarding the lists extracted from the En-
glish and the Portuguese Wikipedia. We will name these set of lists as ℒen and
ℒpt. The statistics address the number of lists extracted, the average number
of elements (named entities) in those lists, and the average number of elements
which have a dedicated article in Wikipedia. The last column is the overall aver-
age of frequency of the elements in lists, considering only the elements for which
there is a page in Wikipedia.

Table 7.2: Statistics of lists extracted from Wikipedia
Lang. Lists #NE NE w/ art. avg f(NE) w/ art.
EN 17594 92.4 58.4 286.2
PT 1390 90.3 43.4 32.5

The number of lists extracted from the English Wikipedia is obviously much
larger, despite the fact that the average number of named entities contained in
each list is quite close. The great difference however is in the average frequency
of the elements contained in list, which is much higher for English.

Construction of P and N sets

To generate the sets of positives, P, and the corresponding sets of negatives, N ,
from the previously extracted lists, ℒen and ℒpt, we followed several steps. We first
selected only those lists which contained a minimum number of elements – mina

– with a dedicated Wikipedia article. This filtering was done to guarantee that
the topic addressed by the list is reasonably well covered in Wikipedia. We set
mina = 10 for English and Portuguese and we thus obtained two more restrictive

7.4. Evaluation Using Wikipedia 117

sets of list, ℒmina
en and ℒmina

pt , which were then processed in order to obtain the
final P and N sets.

For each list �(i) in ℒmina
en and in ℒmina

pt the following procedure was executed:

1. Choose all items in �i that have a dedicated article and whose frequency
in Wikipedia is higher than a given threshold fmin. These will constitute
Pcand(i), the candidates to set P.

2. For each element in Pcand(i) extract all entities from the corresponding
Wikipedia article. Add such entities to set Ncand(i), except those that
belong to list �(i). The set Ncand(i) will thus be composed by all sort of
entities related to elements from Pcand(i) but which are known not to belong
to the initial list �(i). We also keep information about the number of times
each element in Ncand(i) is found in the pages corresponding to elements
in Pcand(i). This information reflects the degree of “relatedness” that each
element of Ncand(i) has to the overall concept addressed by �(i).

3. Since sets Pcand(i), Ncand(i) can be extremely large the final P(i) and N (i)
test sets are obtained by truncating the candidate sets. Thus, only the top
np most frequent elements from Pcand(i) are chosen (if there are less than
np, all are chosen). These will become set P(i). Again, we are trying to
ensure that the membership function � is tested on sufficiently frequent
items. From Ncand(i), we choose the top nn most “related” elements (as
previously explained) with nn being set to twice the number of elements in
P(i). These elements will become set N (i).

4. Exclude all P(i) and N (i) sets for which the number of elements in P(i) is
less that 5.

We set fmin = 100 both for English and Portuguese. Also, in both cases we
set np = 20. For practical reasons, this number can not be higher because the test
procedure will involve combinations of elements of P(i), which grow very quickly
with np. Table 7.3 presents some statistics regarding the test sets generated and
also some details about the corresponding P(i) sets.

Table 7.3: Statistics regarding test sets generated
#P=20 10≤ #P ≤ 19 5≤ #P ≤9 f̄avg

EN 3219 35% 29% 36% 1758.3
PT 75 36% 20% 44% 623.6

The number of tests generated for English is obviously much higher. We would
be able to generate more tests for Portuguese if we lowered the fmin threshold. For
example, fmin = 50 would allows us to generate 167 tests. We decided, however,
to keep the same settings for English and for Portuguese because, for now, we

118 Chapter 7. Finding Type Similar Entities

do not have an informed way of defining an appropriate fmin value (based for
example on parameters such as the size of the Wikipedia collection at stake).

It is possible to see that only about one third of the tests do actually reach the
np limit. There seems to be also a difference between the two test sets regarding
the relative weight of smaller tests (5 ≤ #P ≤ 9). For Portuguese, almost half
the tests involve P(i) with 9 or less elements. This is related with the fact that we
ended up setting a proportionally higher value for fmin (given the relative size of
the collections) and this excluded many possible elements from the initial Pcand(i)
sets. Another important difference is on value f̄avg . This value is the average over
all P(i) of the average frequency of its elements and can be seen as an indicator
of how frequent are the elements in the P(i) sets. For English this value is much
higher, which reflects the fact that the English Wikipedia is not only larger in
size, but is also much denser in entities than the Portuguese Wikipedia.

7.4.3 A Baseline using Wikipedia Categories

The set of Wikipedia Categories to which a given article is assigned provides
valuable information that can be used for devising a simple baseline membership
function. We observed that in the English Wikipedia there are a total of 172,762
categories and each article is assigned in average to 3.0 categories (in March 2007).
For the Portuguese Wikipedia the total number of categories is 20,736, and the
average number of categories to which an article is assigned is 2.2.

Let us represent the complete set of categories of Wikipedia by

Cwk = {cwk
1 , cwk

2 , ...cwk
w } (7.4)

For a given article Az, describing entity ez, let ewk
z be a binary vector of the same

dimension of Cwk that contains information regarding the Categories to which
article Az has been assigned. If Az is assigned a given category cwk

j , then the

value of ewk
z at index j is 1, otherwise is zero.

Let us now consider the set Ewk
k composed of an arbitrary set of named entities,

each addressed by an article in Wikipedia. The corresponding set of articles is
denoted by AEwk

k
. Let us now define Ewk

k as binary vector of the same dimension

of Cwk that contains information about the categories to which the articles in
AEwk

k
were assigned. The value of Ewk

k at position j will be one if and only if at

least one element of AEwk
k

is assigned to category cwk
j . If not, the value of Ewk

k at
position j will be 0.

If there is a high degree of overlap between the category vectors ewk
z and Ewk

k ,
as calculated by a standard vector distance measure, then we may conclude that
the corresponding articles, Az and AEwk

k
, are assigned to many common categories.

In that case, we obtain a strong indication that the entity ez has been assigned
many of the same categories that have been assigned to entities in Ewk

k . The

7.5. Experimental Setup 119

higher the overlap between the category vectors, the higher should be the degree
of membership of ez to the set Ewk

k .
We thus propose �base(e�i,�i, E

s), a baseline membership function based on
the categories vectors obtained for the article addressing entity ei, and for the
articles addressing the entities contained in the set Es (which we will now denote

by ewk
i and Ewk

s). We chose to calculate overlap between ewk
i and Ewk

s using the
Jaccard coefficient over such vectors:

�base(ei, E
s) = J(ewk

i , Ewk
s) (7.5)

The Jaccard coefficient produces values in the range [0,1] so direct comparison
between �(e�i,�i, E

s) and �base(e�i,�i, E
s) is possible.

7.5 Experimental Setup

7.5.1 Extracting entities and features

We collected pairs of coordinated named entities both for the English and for
the Portuguese, based on the previously described Wikipedia XML dumps. The
fundamental reason for having chosen Wikipedia as source corpus for grounding
our membership function � is that we can thus avoid the complex problem of
identifying / delimiting named entities in text. As explained in section 7.4, by
using a very simple heuristic based on links found in Wikipedia, we can easily
identify named entities in the articles.

We should emphasise that the only source of information used for extracting
the pairs of coordinated named entities was the text contained in paragraphs
inside articles (e.g., excluding category and language links, information boxes,
etc.). Explicit list information (lists and tables) was also filtered out.

For both languages, the paragraphs of wikipedia articles were scanned for
structures of the form “(ea) (coordination connector) (eb)”. Pairs (ea, eb) were
extracted, counted and stored in a database. We separately compiled data using
only explicit coordination connectors, and using both explicit coordination con-
nectors and the comma connector, so as to be able to create two different vector
spaces for each language, as described in section 3. We used the following sets of
explicit coordination connectors:

∙ for English: “and the”, “and a”, “and”, “or the”, “or a”, “or”,

∙ for Portuguese: “e o”, “e um”,“e a”, “e uma”, “e do”, “e da”, “e”, “ou
o”, “ou um”, “ou a”, “ou uma”, “ou”.

We extracted features defining four vector spaces: VSX
EN and VSX

PT (using only
explicit coordination), and VS ′

EN and VS ′
PT (using explicit coordination and

comma). Table 7.4 provides some basic statistics about these spaces. The number

120 Chapter 7. Finding Type Similar Entities

Table 7.4: Statistics about the named-entities extracted from Wikipedia for the
corresponding Vector Space

NE Pairs Distinct NE Pairs Dim(VS)
VS ′

EN 2,172,790 1,255,204 819,379

VSX
EN 1,755,603 516,415 500,980

VS ′
PT 154,836 119,174 85,494

VSX
PT 44,919 36,751 46,601

of distinct NEs defines the dimension of a vector space, and the number of distinct
pairs is the number of non-zeros in the vector representations of all NEs. Not
surprisingly:

1. The dimension of English Vector Spaces is substancially larger than for
Portuguese ones, since English Wikipedia is also about 13 times larger;

2. The dimensions of Vector Spaces built using only explicit coordinations
is inferior to the dimension of the Vector Spaces built using both explicit
coordination and commas (61% for English and 54% for Portuguese)

To illustrate the extracted data, below we show the top 10 most frequent
coordination pairs compiled for each of the four cases, together with their counts:

VS ′
EN : (Black, African American, 6157), (Ontario, Canada, 3631), (Pennsylva-

nia, United States, 2610), (Minnesota, United States, 2514), (New South
Wales, Australia, 2442), (London, England, 2325), (British Columbia, Canada,
2164), (Biographies, Books, 1995), (Books, Companies, 1995), (Companies,
Fiction, 1995)

VSX
EN : (Black, African American, 6156), (British, Commonwealth, 1327), (United

States, Canada, 1202), (Australia, New Zealand, 897), (England , Wales,
486), (World War I, World War II, 424), (Europe, Asia, 413), (Canada,
United State, 405), (United States, United Kingdom, 308), (India, Pak-
istan, 299)

VS ′
PT : (Rio de Janeiro, Brasil, 135), (São Paulo, Brasil, 127), (Rio Grande do

Sul, Brasil, 125), (Curitiba, Paraná, 113), (Portugal, Espanha, 90), (Los
Angeles, Califórnia, 89), (São Paulo, Rio de Janeiro, 87), (Paris, França,
85), (Hyuuga Neji, Rock Lee, 84), (Londres, Inglaterra, 83)

VSX
PT : (Momochi Zabuza, Haku, 82), (Jiraya, Tsunade, 81), (Portugal, Es-

panha, 66), (BR-101, RS-389, 64), (Arizona, Novo México, 44), (Estados
Unidos, Canadá, 42), (Espanha, Portugal, 42), (Santa Catarina, Rio Grande
do Sul, 40), (Rio de Janeiro, São Paulo, 39), (Gagaúzia, Transńıstria, 39)

7.5. Experimental Setup 121

Despite the fact that we are just observing a very small sample of the coordination
pairs obtained, the pairs obtained for VS ′

EN and VS ′
PT seem to be much noisier

than those obtained VSX
EN and VSX

PT . Some of the most frequent tuples for
VS ′

EN and VS ′
PT do not express the type similarity relation we are looking for.

One of the most frequent noisy cases is the (location, wider location) pair which is
collected from text passages such as “... Ontario, Canada...”. On the other hand,
as explained in section 7.3.3, VSX

EN and VSX
PT tend to be much sparser than

VS ′
EN and VS ′

PT , so one should also expect the latter spaces to have, globally,
more information for inferring type similarity.

7.5.2 Evaluation setup

We conducted evaluation of our membership function � for both types of spaces,
for English and Portuguese. We will use �X when referring to the cases where
� is computed over VSX

EN or VSX
PT , and �′ when � is computed over VS ′

EN and
VS ′

PT . Evaluation was performed using all pairs of sets P(i) and N (i) obtained
for each language. Each P(i) set had up to a maximum of 20 elements and each
N (i) set had exactly twice as many elements as the corresponding P(i).

One important parameter in this experimental set-up is the size of the seed
sets. Due to the combinatorial nature of the evaluation procedure we restricted
the size of the seed sets to only two elements. Increasing this value would greatly
increase the time required for evaluating the membership functions over the en-
tire test-set collection. One might argue that using only two values is an ad-hoc
decision, which does not guarantee the definition of the class(es) underlying a
given seed set: “growing” such small set might lead to many possible (yet admis-
sible) sets, so evaluation becomes rather fuzzy. However, one might also argue
that it makes sense to evaluate the membership functions under such extreme
conditions. The reason is that, in practice, for very specific classes it might be
very difficult to obtain a larger set of seed examples, so evaluating a membership
function with small seed set can be closer to an actual application scenario.

For each pair of P(i) and N (i) set the following procedure was followed:

1. Generate all possible seed combinations of 2 elements from P(i) (which
would never be more than 380 combinations). For each combination of seed
entities, Es

k do:

(a) Obtain Es
k the vector representation of Es

k in the corresponding Vector
Space (VS ′ or VSX).

(b) Use �′ and �X to compute the degree membership of each of the ele-
ments in (P(i) ∖Es

k) (i.e. all positive elements except seed entities) to
the set Es

k. For that we use the vector representations of each element
of the set (P(i) ∖Es

k) taken from the corresponding Vector Space (VS ′

or VSX).

122 Chapter 7. Finding Type Similar Entities

(c) Likewise use �′ and �X to compute the degree of membership of each
of the elements from set N (i) to the set Es

k.

(d) Rank all elements of sets (P(i) ∖Es
k) and N (i) according to the previ-

ously computed value of membership. Compute Average Precision for
this seed combination.

2. Compute Mean Average Precision using all values of Average Precision
obtained for each seed combination.

A similar procedure was followed for obtaining the performance of the baseline
function �base. Thus for each pair of sets P(i) and N (i), i.e. 3219 for English
and 75 for Portuguese, we obtained the values of MAP of the three membership
function �′, �X and �base.

7.6 Results

Table 7.5 contains the average values of MAP computed over all test sets. In order
to provide a more encompassing outlook, Figures 7.1 and 7.2 show the values of
Mean Average Precision for �′, �X and �base for all English and Portuguese test
sets (test set are ordered by performance of �′).

Table 7.5: Average values of MAP on the entire test sets for EN and PT
#test �′ �X �base

EN 3219 0.424 0.289 0.399
PT 75 0.542 0.426 0.333

For both languages the average performance obtained by �′ is higher than the
performance obtained for �X (+0.135 for English and +0.116 for Portuguese).
According to the one-tail sign test, the difference is consistent in both cases,
�′ (p < 0.0001 in both cases). This probably results from the fact that, as
mentioned before, �X is operating over much sparser spaces. When comparing to
the baseline, �′ outperforms �base but the difference for English (+0.025) is not as
expressive as it is for Portuguese (+0.209). However �X is not able to outperform
the baseline function �base in the case of English. The baseline function obtains
a higher score for English than for Portuguese.

In the case of Portuguese, the results regarding �′ and �X are significantly
better than for English. One possible reason for this is related to the frequency
threshold used for selecting the elements that compose the set of Positives, P(i),
which was the same both for the English and the Portuguese test sets (fmin =
100). This means that threshold was relatively higher for Portuguese than for
English, taken the relative sizes of both Wikipedias. Therefore, the resulting
test sets for Portuguese tend to contain elements that are very frequent, from a

7.6. Results 123

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 100 200 300 400 500 600 700 800 900 1000

tests

MAP for u’, u_x and u_base

u’
u_x

u_base

Figure 7.1: Plot of Mean Average Precision for �′, �X and �base obtained for the
3219 test sets prepared for English (order by performance of �′)

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 10 20 30 40 50 60 70 80

test

MAP for u’, u_x and u_base

u’
u_x

u_base

Figure 7.2: Plot of Mean Average Precision for �′, �X and �base obtained for the
75 test sets prepared for Portuguese (order by performance of �′)

124 Chapter 7. Finding Type Similar Entities

relative point of view, in the Portuguese Wikipedia which benefit corpora-based
methods such as the one we propose.

7.6.1 Results on least frequent elements

In order to further assess the importance of the frequency values in the perfor-
mance of �, we developed additional test sets for Portuguese. In the previous set
of tests, the elements chosen for the sets P(i) (i.e. the positives) were the most
frequent elements (up to a maximum of 20) from the sets of candidates Pcand(i)
(elements in sets Pcand(i) were already restricted to those whose frequency in
Wikipedia is higher than fmin = 100). For this second set of experiments we
generated test sets composed by less frequent elements, by choosing this time the
least frequent elements found in Pcand(i) (also with fmin = 100). This allowed
us to obtain new P(i) sets that contained exactly the same number of elements
as in the previous test, but with a lower average frequency (for those Pcand(i)
set which had less than 20 elements, there is no change). From now on we will
refer to these newly created set of Positives as P−(i). The corresponding sets of
negatives, N (i), was kept the same: the only difference between the new test sets
and the previous ones is that we have now another set of Positives, P−(i). The
value of f̄−

avg (average over all P−(i) of the average frequency of its elements) for
the new test sets dropped to 327.6, which is approximately 53% of the previous
f̄−
avg (see Table 7.3). This clearly indicates that we are now dealing with sets of
Positives containing much less frequent elements.

We repeated the evaluation procedure for all the membership functions �′, �X

and �base on the newly created test sets. The results, along with those obtained
with the previous tests sets, are show in Table 7.6:

Table 7.6: Average values of MAP on the entire test sets(P−, N) and (P, N) for
Portuguese.

#tests f̄avg �′ �X �base

(P, N) 75 623.6 0.542 0.426 0.333
(P−, N) 75 327.6 0.499 0.328 0.344

Δ 296.0 0.043 0.099 -0.011

The performance of both �′, �X decreases for the test sets (P−, N). The
decreases occur consistently over the 75 test sets, as illustrated by the values of
the test sign: p < 0.01 for �′ and p < 0.0001 for �X). The drop for �X is more
significant, which seems quite understandable since the associated vector space
VSX

PT is much smaller than VS ′
PT , and the probability of not finding a vector

representation for some of the entities test has increased.
However, only 28 of the new tests (P−, N) are actually different from the

previous (P, N) because, as indicated in Table 7.3 only 36% the original PCand

7.7. Conclusions 125

had more than 20 elements. Considering only the test sets that refer to those
28 cases (we will denote them by (P28, N28) and (P−

28, N28)) the results become
more extreme (Table 7.7). On one hand, the performance of both �′ and �X

over the sets (P28, N28) is the highest of all the tests. On the other hand, the
results over (P−

28, N28) drop significantly. Again, �X is more sensible to changes
with performance dropping sharply to 46.5% of the value obtained in the original
test, while �′ also drops for 78.8%. In both cases the changes are consistent and
significant as assessed by the sign test (p < 0.0001).

These changes confirm that the performance of proposed membership func-
tions frequency increase with frequency of the elements to be tested.

Table 7.7: Average values of MAP on the test sets(P−
28, N) and (P28, N) for

Portuguese.
#tests f̄avg �′ �X �base

(P28, N28) 28 982.2 0.547 0.493 0.290
(P−

28, N28) 28 189.4 0.431 0.229 0.320

Δ 792.8 0.115 0.264 -0.030

7.7 Conclusions

In this chapter, we presented a corpus-based method for the class expansion task:
given a number of seed entities for a class, our method selects additional candi-
dates for inclusion in the class. The method uses a class membership function,
estimated from the co-occurrence statistics in a text corpus, more specifically,
co-occurrence of named entities in coordination constructions. Results show that
coordination information does in fact convey information about type similarity for
a wide variety of entity classes. We also presented an original evaluation frame-
work based on entity lists automatically extracted from Wikipedia. The method
presented outperforms a simple baseline that uses category tags of Wikipedia ar-
ticles assigned by human editors. The performance of the method improves as the
frequencies of the candidate entities in the text corpus (which are related to the
corpus size) increase. Thus, having large enough corpora available, the method
presented here can effectively be used for helping the expansion of lexicons, or
their enrichment with information about type similarity.

Chapter 8

Web-Scale Entity Disambiguation

In this chapter1 we address ambiguity, one of the fundamental issues in natural
language. We propose a solution to some ambiguity situations related to names
of entities : many distinct entities share the same name, and hence, a mention
by name in two different documents can not be univocally matched to an entity.
This task is generally known as Named-Entity Disambiguation (NED).

Ambiguous situations regarding names can be quite complex. They occur not
only intra-type, i.e. when the entities that could be mentioned by certain name
all belong to the same type or class (e.g. people with the same name), but also
inter-type, when the entities with the same name belong to different types (e.g.
“Pluto” can be the name of an astral body, a Roman God, any of several existing
rock bands, a fiction character, among many other possibilities2).

As explained in section 2.4, disambiguation procedures can be formulated as
a similarity search among ambiguous items. Thus, disambiguating mentions (i.e.
occurrence of a name in a certain document) can be achieved by finding those
mentions in different documents whose profile is similar enough to be considered
references to the same entity. On the other hand, mentions whose profiles differ
substantially are probably references to different entities.

Following this rationale, we propose a clustering approach to NED. The goal
is to cluster together ambiguous mentions (i.e. those made using the same name)
so that each cluster contains mentions of only one entity, while different clusters
group mentions of different entities. The key point in this approach is choosing
the appropriate set of features to describe the mentions. We use information
regarding name co-occurrence. Our hypothesis is that entities exhibit a more or

1The material in this chapter results from work developed during a six-month internship at
Google NY in 2007. Most of this material was presented in two papers published during 2009:
(i) Lúıs Sarmento, Alexander Kehlenbeck, Eugénio Oliveira and Lyle Ungar “An Approach to

Web-scale Named-Entity Disambiguation” ([SKOU09a]), and (ii) Lúıs Sarmento, Alexander

Kehlenbeck, Eugénio Oliveira and Lyle Ungar “Efficient clustering of web-derived data sets”

([SKOU09b]).
2Check http://en.wikipedia.org/wiki/Pluto_(disambiguation)

127

128 Chapter 8. Web-Scale Entity Disambiguation

less stable and distinctive entity co-occurrence profile. Thus, different entities
(with the same name) will tend to co-occur in text with different sets of entities.
Therefore, name co-occurrence information should help us to differentiate between
“Paris”, “France” from “Paris”, “Texas”, since they are expected to co-occur
with different sets of entities ([“Eiffel Tower”, “Moulin Rouge”, etc.] vs. [“Lamar
County”, “East Texas”, etc.]).

Although conceptually elegant, clustering approaches face several practical
barriers, specially when attempting named-entity disambiguation on the whole
Web, as we do: the number of documents to be processed, the number of men-
tions to be processed and the size of information contained in the feature vectors
that need to be compared represent serious challenges to the scalability of any
algorithm. We propose a solution that involves the partition of the problem
in several small chunks, and then merging the partial results in a subsequent
operation. Also, we take advantage of intrinsic distributional properties of Web-
derived data to propose an optimized strategy for performing vector comparisons
that scales relatively well in our scenario, specially when compared with naive
vector comparison strategies (e.g. all-against-all).

But, as we show, scaling NED to the Web involves more than just algorithmic
challenges. In fact, during our experiments, we noticed that the performance of
our method did not increase with the size of the web sample to be disambiguated
as much as we expected. This was a somewhat surprising due to the data-driven
nature of our our approach. Manual inspection of the clustering results led to
some interesting conclusions regarding (i) the sets of features required for actually
performing realistic NED at Web-scale in an efficient fashion, and (ii) about the
definition of the named-entity disambiguation task itself.

8.1 Introduction

Realistic named-entity disambiguation (NED) of Web data involves several chal-
lenges that have not yet been considered simultaneously. First, when moving
NED to the web we need to deal with very high levels of ambiguity. Since there
are so many documents in the Web, the same name will often refer to hundreds of
different entities. This makes the problem much harder as compared with NED
approaches for small collections where one needs to disambiguate only among a
few possibilities. Second, distributions of mentions on the web are highly skewed.
For each ambiguous name, there are usually one or two dominant entities to
which the vast majority of mentions refer, even when many entities share the
same name. For example, most mentions of the name “Paris” found on the web
refer to the capital of France (and a smaller number to Paris Hilton), while there
are dozens of well-known entities with that name3. Table 8.1 shows hit counts

3See the Wikipedia disambiguation page for “Paris”: http://en.wikipedia.org/wiki/

Paris_(disambiguation)

8.1. Introduction 129

for five queries sent to Google containing the word “Paris” and additional (po-
tentially) disambiguating keywords. These values are merely indicative of the
orders of magnitude at stake, since hit counts are known to change significantly
over time. The real challenge is to be able to disambiguate between mentions
of the less frequently mentioned entities, for which there is proportionally much
less information and more noise. Third, most solutions to NED presented so far
involve processing relatively small data-sets. Realistic NED involves processing
web-scale collections (terabyte size), requiring computationally efficient ways of
representing and processing data and, sometimes, involving practical decisions
that might affect negatively final results for some cases.

Table 8.1: Number of Google hits obtained for several entities named “Paris”
query # hit count (x106) %
paris 583 100

paris france 457 78.4
paris hilton 58.2 9.99

paris greek troy 4.130 0.71
paris mo 1.430 0.25
paris tx 0.995 0.17

paris sempron 0.299 0.04

There are also other fundamental questions that have not yet been investi-
gated. Many of the solutions to NED involve data-driven techniques, such as
clustering. Such techniques usually benefit from processing larger amounts of
data. Therefore, one would expect to obtain better NED results as the size of the
collection to be disambiguated increases. However, as the size of the collection
to be disambiguated becomes larger, the variety of different entities and contexts
that have to be dealt with also increases. As the contexts in which mentions
occur become more diverse, data-driven approaches potentially become harder.
The exact balance between these two effects has yet to be quantified.

In this chapter, we present a clustering-based approach to disambiguating
entities on the Web. The algorithm we propose is capable of dealing with an
arbitrarily high number of entities types, is scalable to the number of mentions
on the web, and can be distributed over a cluster of machines to process large
web collections. For evaluating the results of the disambiguation procedure we
developed a gold standard based on entity information extracted from Wikipedia.
We experimented disambiguating samples of the web with increasingly large sizes
to test how well the algorithm scales and whether or not more data leads to
better results. Results suggest that as the size of the collection increases, more
complex cases of ambiguity emerge, making the definition of the NED task itself
less clear. This seems to be an intrinsic characteristic of highly heterogeneous
document collections, and suggests the existence of fundamental upper limits

130 Chapter 8. Web-Scale Entity Disambiguation

on the performance of clustering-based approaches to NED based only on name
co-occurrence information.

8.2 Related Work

There are currently two main lines of research that explore different strategies.
The more traditional (e.g. [GA04, Mal05, MY03, YE07]), involves a clustering
approach: the hypothesis is that mentions of the same entity share a significant
amount of contextual features that allows to cluster them together. Mentions
clustered together should refer to the same entity and each cluster is related
with a single disambiguated entity. The other line of work (e.g. [BP06, Cuc07,
DEG+03]) focuses on using external sources of knowledge containing information
about entities of the world (e.g. Wikipedia) to perform disambiguation. The
core of these methods consists in trying to project each mention found in text on
the external knowledge source by comparing the corresponding feature profiles.
Usually, these methods achieve full entity resolution because mentions found in
text are matched with a specific entity contained in the knowledge resource.

8.2.1 Approaches based on clustering

Mann and Yarowsky present a disambiguation procedure focused on personal
names [MY03]. An hierarchical clustering procedure is used to group Mentions
referring to the same entity. The clustering is achieved in three steps. In the first
step all Mentions are compared using an all-against-all strategy (cosine measure
over vector representation), and clustering proceeds until a given proportion of
the Mentions are clustered and the corresponding clusters achieve a minimum
relative size. These first seed clusters are expected to be “pure” and represent
already the main entities. In a second step the remainder Mentions are assigned
to these seed clusters using a nearest neighbor policy. This step tries to solve the
problems associated with outliers and Mentions with an insufficient number of
features. In a third step clustering proceeds until no more clustering is possible.
The final clusters are expected to represent each of the (main) entities involved.
The authors tested the performance of the method using several different fea-
tures to describe the Mentions, ranging from a simple bag-of-words approach
to a combination of statistically filtered words, co-occurring proper names and
automatically extracted biographic features. These biographic features are ex-
tracted using patterns learned thought a bootstrapping approach. Results show
that using biographic features, in combination with other features, improve per-
formance. Evaluation is made both against a test set of ambiguous pseudo-names
(documents referring two different people are shuffled and each Mention of the two
different names is replaced by a unique random pseudo-name to artificially cre-
ate ambiguity), and against 4 sets of 60 documents containing ambiguous names

8.2. Related Work 131

which had been manually disambiguated.
The method, however, has two important limitations. First, it makes a very

strong simplification by considering that the disambiguation involves deciding
only between two classes, corresponding to only two distinct entities, or in the
best case three classes which also include an “other entity” class. This is not
the case for most of the personal names. The other limitation is the fact that
the method performs an all-against-all comparison between Mentions prior to the
first stage of clustering. Such a procedure is certainly not scalable, since for very
large data sets names can easily be mentioned millions of times.

Another set of clustering methods aiming at person name disambiguation is
presented by Gooi and Allan [GA04]. Each Mention is described by a vector
composed of the terms taken from a 55 word window centered around it. Each
term is tf-idf weighted taking into account its in-windows occurrence, the num-
ber of documents and the global number of documents that contain the term.
The authors compare three different clustering methods based on this set of fea-
tures. The first method, named incremental vector space, uses a variation of
stream-clustering technique. The first feature vector is taken from the set to
be disambiguated and is considered a cluster (chain). Each of the subsequent
vectors is compared with all the mentions of the existing clusters (initially only
one), using an average-link comparison strategy and the cosine metric. If a vec-
tor is far from any of the existing clusters, a new cluster is created containing
only this vector. Otherwise the vector is assigned to the closest cluster. The
second method varies from the previous one by modeling each feature vector as
a probability distribution and by comparing each of these distributions using the
KL divergence measure (with auxiliary smoothing to deal with 0 probabilities).
A similar incremental approach is used. This time, however, instead of keeping
information about all probability distributions contained in a given cluster, each
cluster is described by a probability distribution that results from the aggregation
of each of its individual distributions (i.e. a “centroid” probability distribution).
Subsequent probability distributions are compared only with this aggregate dis-
tribution and are included in the closest cluster if distance is below a pre-defined
threshold. Since the first two methods are very sensitive to outliers and are de-
pendent on the order in which Mentions are processed, Gooi and Allan propose
a third method based on an agglomerative clustering. In each step all clusters
are compared with each other using the cosine metric, and the two closest are
merged, if their distance is below a given threshold. The procedure is repeated
until no more merging is achieved.

The authors evaluated the three methods against two test-sets. The first
was the “John Smith” corpus (first presented by Bagga and Baldwin [BB98b])
which is composed by a set of 197 articles containing mentions of the naturally
ambiguous name ”John Smith” and its variations. There are 35 different entities
name “John Smith” in this corpus. The second corpus, the “person-x corpus”
is an artificially ambiguous corpus generated by conflating Mentions of different

132 Chapter 8. Web-Scale Entity Disambiguation

name into a ambiguous “person-x” name. The corpus contained 33.404 entity-
annotated documents, and from each one a single person entity was randomly
selected in order to be made ambiguous. All Mentions of the selected name
in the document (along with several obvious variations) where replaced by the
ambiguous “person-x” name. Reference to the original name was kept, and when
the same name was found in multiple documents, the authors manually checked to
see if it really referred the same person. This procedure generated 34.404 mentions
corresponding to 14.767 entities. 46.66% of the names selected only occur once,
but 16.67% occur 9 or more times. Performance of the disambiguation task was
measured the using B-CUBED algorithm [BB98a]. Results achieved show that
the agglomerative clustering method leads to better precision and recall figures
on both test corpora, and it showed higher stability to changes in parameters
(similarity threshold and test corpora partitioning). In general both vector space
approaches seemed to lead to better results that the KL-Divergence approach.
Additionally, the authors compared the three methods with the method presented
in [BB98a]. This method had only been evaluated against the “John Smith”
corpus and, interestingly, when re-evaluated against the larger “Person-X” corpus
it was not able to achieve a comparably good performance, especially regarding
recall and precision trade-off. This led the authors to suggest that methods that
are successful in small corpora might not be able to maintain their performance
in larger corpora.

Despite the fact that the approaches presented by Gooi and Allan do in-
volve the disambiguation of names into many possible entities (up to 9 in the
“Person-X” test set), they only consider person entities (although an extension
to other types looks possible). Additionally, the best-performing methods show
serious scalability problems that would not allow them to deal with web-scale
disambiguation.

In [YE07], Yates and Etzioni present RESOLVER, a system focusing on a
related, yet different problem: Synonym Resolution. In this case the goal is to
find alternative forms of names that refer the same entity. The definition of the
task, as defined by the authors, does not involve solving the name ambiguity
problem (several entities may be referred by the same name). However, because
the Synonym Resolution can be seen as a subtask of a complete disambiguation
procedure and because this is one of the few works that actually tries to deal
with a web-scale data set we will make a brief revision of this work. Each name is
initially considered to refer to a different entity and synonym resolution process is
achieved through name clustering. Names are compared using a combination of
two pieces of evidence: (i) similarities between strings - String Similarity Model
(SSM) - and (ii) the distributional similarity of the set of relations found for each
name using IE techniques - Extracted Shared Property Model (ESPM). The String
Similarity Model aims at solving situations that involve lexical variations of the
same name: substrings, acronyms, abbreviations, etc. The probability of two
names being synonyms is computed by a formula that includes contributions of

8.2. Related Work 133

the Monge-Elkan and the Levenshtein string similarity functions, and other user-
defined parameters. On the other hand, the Extracted Shared Property Model
is intended to deal with the situation where a completely different name is used
to mention the same entity, such as for example, “Mars” and “Red Planet”. In
this case, assertions like ⟨lacks, Mars, ozone layer⟩ and ⟨lacks, Red Planet, ozone
layer⟩, which can be extracted from large corpora using IE techniques, would
provide evidence that “Mars” and “Red Planet” are names that might mention
the same entity. The probability of two different strings being synonyms based
on the existence of common relations follows a comprehensive model based on
the work initially presented by Downey et al. ([DES05]).

The RESOLVER system combines evidence from the two probabilistic models
into a joint probability. This probability is then generalized to allow estimating
the probability of the two clusters including synonyms. RESOLVER uses an
agglomerative clustering algorithm, which relies on this last probability function
to compare clusters, to iteratively merge clusters (initially each name is a single
cluster). Iterations run in O(N log N) on the number of extracted assertions. The
authors report that RESOLVER usually finishes in a few iterations (maximum
found was 9). The performance of RESOLVER was tested using a data set of 2.1
million assertions extracted from a Web crawl. From this data set only assertions
that included name strings and relation strings whose frequency was higher than
25 were considered. The test set contained assertion relating 9.797 distinct object
strings and 10.151 distinct relation strings. For control purposes, the authors also
tested the performance of the method using only one of the two available models
(the SSM and the ESPM). The Cosine Similarity Metric (CSM) was also used as
a simple baseline method for cluster comparison. A gold standard was manually
created by starting from the top 200 most frequent object strings. For each of
these strings, the authors manually matched their synonyms taken from the set
of remainder names (approximately 9.600 names) included in the test set. Fifty-
one clusters of size greater than one were found, with the average cluster size
being 2.9. Performance of the 4 models (1 combination + 2 partial + 1 alternate)
was measured by comparing all generated hypothesis clusters (of size greater
than two) which contained at least one high frequency name among the gold
standard clusters. Results show that the full RESOLVER system significantly
outperforms all other options. However, rather surprisingly the simpler SSM
model outperforms the ESP in the synonym resolution task, which author argue
that is mostly due to noisy input. ESP had superior performance than the CSM
baseline. Error analysis showed two main types of errors: (i) incorrect resolution
of names that share a large number of relations because they are entities of the
same (very specific) type (“US News” vs. “World Report”), and (ii) problems that
arise precisely from ambiguous names (“President”, “Army”, “President Bush”).

Two other methods based on clustering and graph partitioning are presented
and compared by Malin ([Mal05]). As in most of the other works, the disam-
biguation is done exclusively over personal names. The basic principle is, again,

134 Chapter 8. Web-Scale Entity Disambiguation

using information regarding social networks to disambiguate person entities. Such
information is inferred from the names with which the possible ambiguous name
co-occurs. The first approach is based again on document clustering. Each source
(i.e. document) si, from a set of sources S, is represented by a binary vector
containing information about the names it contains (each name is considered un-
ambiguous inside each document): si = {ei1, ei2, ...ein}, where eij is 1 if the name
ej is found is source si. In this research the author only considered sources having
no more than a single occurrence of an ambiguous name (according to a ground
truth test-set which we will explain later). Sources are then clustered using an
hierarchical clustering procedure. Each cluster is initially composed by one source
and clustering is achieved iteratively by merging the most similar clusters into
one new cluster. Clusters are compared using an average linkage criterion and are
merged if their distance is below a given threshold. Cluster distance is the aver-
age distance of all pair-wise distances between elements of each cluster, measured
using the cosine similarity between (binary) vectors. Clustering proceeds until a
given stopping criteria is achieved or a unique big cluster is obtained. The second
method uses a random walk strategy over a graph and tries to incorporate in the
disambiguation process not only information about name co-occurrence within
the same page but also information regarding indirect connections among social
networks. Disambiguation is achieved by partitioning the graph into separate
connected components, each hopefully corresponding to one entity.

A social network is built by taking each name in S and making a node in a
graph. An edge exists between any two nodes if they co-occur in at least one
source. The weight between the nodes is adjusted inversely to the number of
names that exist in the corresponding source, so that if two names co-occur in
a document that contains a very large number of other names (e.g.: a list of
names), such co-occurrence is considered as less relevant, and a smaller weight is
assigned to the edge. A separate social network is built for each ambiguous name.
Each occurrence of a ambiguous name in the set of sources (i.e. each Mention)
leads to a separate node in the graph. Therefore, ambiguous names generate
multiple nodes in the graph. The overall goal of the method is to partition
such graph so that mentions corresponding to the same entity end up in the
same connected component. To achieve that goal, a random walk is started from
each ambiguous name observation. The probabilities of transition between to
nodes are normalized taking into account the weight assigned to each node. The
random walk continues either until another ambiguous node is found or until a
maximum number of step is reached (the limit was 50). When the random walk
finishes the probability of reaching an ambiguous node from any other node have
been calculated. These probabilities are taken as similarity levels between two
(ambiguous) nodes for a single link clustering procedure. Edges corresponding
to similarity levels below a given threshold are removed. Each of the resulting
connected components will contain disambiguated mentions to a given entity.

Malin used a subset of the data contained the Internet Movie Database (IMDB),

8.2. Related Work 135

which holds references to manually disambiguated entities (each entity in IMDB
has a unique id). The subset chosen includes about 37000 movies with more
than one author made between 1994-2004 (10 years) and includes about 180000
distinct entities. To create an ambiguous set, entities were replaced by their last
names, resulting in about 85000 distinct names. The resulting set included about
12000 names ambiguous between two entities. The F-score was used to evaluate
the performance of the clustering methods. For each cluster produced, cj , Recall
and Precision figures are computed. Let tj be the set of sources in cluster cj, ei be
a given ambiguous entity and si be the set of sources which mention the ei entity
(using the ambiguous name). Then Recall is calculated as R(ei, cj) = ∣si∩ tj ∣/∣si∣
and Precision is calculated as P (ei, cj) = ∣si ∩ tj ∣/∣tj∣. These values are used
to calculate a F-score for each pair (ei, cj). For each entity ei the cluster with
highest F-score, max(F (ei, cj)), is chosen as the best match for ei. An overall
F-score for all entities is calculated by doing a weighted average over all the cor-
responding max(F (ei, cj)). Additionally, two simple baselines were created. For
one of the baselines all ambiguous names are considered different entities (AllS-
ingletons baseline) while for the other all names where considered a single entity
(OneClusterOnly baseline).

Results show that agglomerative clustering only outperforms the baseline
OneClusterOnly baseline when the similarity threshold higher than 0.8. On the
other hand, if the similarity threshold becomes too high (> 0.99) the results tend
to all AllSingletons baseline. However, the best results with agglomerative clus-
tering do not go better than F = 0.7. The random walk method seems to perform
significantly better, with F-scores higher than 0.8 for a considerable interval of
threshold values. It reaches very high performance levels even when the threshold
(below which edges are removed) is still relatively low. A performance peak was
observed when such threshold is set to 0.12. As the threshold increases, the re-
sults of the random walk method tend to the AllSingletons baseline. The author
conclude that the use of indirect information, through social networks, provides
an advantage over using direct features for comparing similarity and achieve dis-
ambiguation. They also point out the limitation of their work that results from
considering only situations where only one name is ambiguous, which in practice
should not be the case since most (all?) the names are ambiguous to a certain
extent. Again, because the work addresses a very small data-set with only 12000
ambiguous names and about 37000 documents, authors did not focus on compu-
tational efficiency and scalability issues, which is fundamental in order to process
web-scale data sets.

8.2.2 Approaches using external knowledge

Bunescu and Pasca present two approaches to disambiguation based on entity
information taken from Wikipedia ([BP06]). The authors first create a dictionary
of names by extracting information from the title of Wikipedia articles, using a

136 Chapter 8. Web-Scale Entity Disambiguation

set of heuristics (e.g.: capitalization in title and in article) to select which strings
are in fact names. The mapping between the name, qi, and the article ek (which
refers to an unambiguous entity) is kept, so as to maintain a relation between
names and to the entities mentioned by that name. Then for each 1-to-n pairing
⟨qi, ek⟩, a feature vector is created that includes information about all words
found in the Wikipedia article ek inside a 55-word window around the occurrence
of the name qi (tf-idf weighting is used). This will be the disambiguation data
set. Mentions found in text will be compared against the disambiguation data set
using their corresponding feature vector (built in a similar way from the context).
Disambiguation, or rather full entity resolution, is achieved by ranking entities
from the disambiguation data set according to the similarity of their feature
vectors to that of the Mention to be disambiguated. Vectors are compared using
the standard cosine metric.

Because this context-only method seems to be unable to solve many cases,
especially in situations where the Wikipedia article used to build the disam-
biguation vector is too short or incomplete, or when the context taken from
the mention contains equivalent but different wordings (synonyms), the authors
left this method as a simple baseline method and propose an alternative one.
The new method tries to reduce the possible mismatch between the features in
context vectors (from mention and from disambiguation data set) by using ad-
ditional information from Wikipedia categories. The intuition is that certain
context words (e.g: “conducted”, “concert”) are more strongly correlated with
certain Wikipedia categories (e.g: “Musicians”, “Composers”) than with others
(e.g. “Professional Wrestlers”), and can thus provide information that allows
disambiguating between two entities whose articles are indexed under two differ-
ent Wikipedia categories (e.g.: a musician vs. a professional wrestler with the
same name). A taxonomy kernel composed by the combination of the previously
defined cosine-based similarity and a weight vector model for the word-category
correlation was trained using the SVM-light package. Disambiguation is achieved
by projecting the context vector of the ambiguous mention over the disambigua-
tion data set using the learned taxonomy kernel: mentions are considered to refer
the top ranked entity in the data set. Entities not found in Wikipedia are dealt
with by considering an “out-of-wikipedia” generic entity eout, to which mentions
are assigned whenever the maximum similarity obtained by the taxonomy kernel
is below a given minimum threshold.

Evaluation of both the cosine metric and the taxonomy kernel was made un-
der four evaluation scenarios. In each scenario the disambiguation data ⟨qi, ek⟩
is split into two disjoint sets: the training and the testing set. Only ambiguous
names qi were chosen, and names are either in the training set or in the testing
set. In scenario S1, the set of categories considered included only the top 110 level
categories (in number of articles) under People by Occupation (12288 mentions
for training and 48661 for testing). Scenario S2 generalizes S1 by considering all
categories under People by Occupation that have at least 200 articles, which lead

8.2. Related Work 137

to 540 categories (17970 mention for training and 70468 mentions for testing).
Scenario S3 generalizes even further S2 by including all categories under People
by Occupation that have at least 20 articles, resulting in 2847 categories (21185
mentions for training and 75190 for testing). To make the evaluation more re-
alistic the authors created scenario S4 that contained the same categories as in
S2 with an additional 10% of mentions from articles that do not belong to the
People by Occupation category. Disambiguation performance was measured us-
ing an accuracy value that is basically the Precision achieved in entity resolution
(computed by dividing the number of mentions correctly resolved by the total
number of mention to resolve). Results show that the taxonomy kernel clearly
outperform the cosine similarity baseline in the first three scenarios (S1: 77.2%
vs. 61.5%; S2: 68.4% vs. 61.5%; S3: 68.0% vs. 55.4%), while the improvement
was not so substantial in S4 (84.8% vs. 82.3%). Bunescu and Pasca claim that
results do confirm the intuition that word-category correlations help the disam-
biguation process, but simple methods based on cosine similarity may be good
enough for cases where disambiguation decisions are to be made over only two
possible target entities, as was the case of most mentions in the disambiguation
set.

Another disambiguation approach based onWikipedia is presented by Cucerzan.
In [Cuc07], Wikipedia is used to extract information that will be allow building
vector representations of entities against which vector representations of ambigu-
ous mentions will be compared. However, the method does not rely on direct com-
parison between vector representations of entities and each individual mentions
but, instead, it tries to maximize the agreement between all the disambiguation
hypothesis of all mention in the document simultaneously (i.e. disambigaution
is formulated as a sort of global optimization problem to be solved at document
level). Also, this method attempts to solve both name ambiguity (the same
name is used to mention different entities) and name variation (the same entity
is mention using several different names) problems. The method relies on several
relevant pieces of information extracted from Wikipedia. The first step consist
of obtaining a mapping between surface forms and entities using the link infor-
mation in Wikipedia articles. The various names found in internal links pointing
to the same Wikipedia article (which represent one unambiguous entity) were
collected. This allowed not only finding ambiguous names, but also finding the
several alternative name spellings for the same entity. The mapping obtained
contained information about 1.4 millions entities with an average of 2.4 names
per entity. Then, for each entity found two sets of features were extracted: (i)
the related category tags and (ii) the information about entities co-occurring in
certain contexts. The titles of the Wikipedia pages containing lists (e.g.: “List
of animated television series”) were used to tag all entities included in the list.
540k ⟨entity, tag⟩ pairs were created this way. A larger number of category tags
were extracted from the user-added tags attached to each article. Because some
of these tags are irrelevant for disambiguation purposes (e.g.: “Articles with un-

138 Chapter 8. Web-Scale Entity Disambiguation

sourced statemets”, “1929 births”), some basic filtering was made to exclude
noisy tags. 2.65 million (entity, tag) pairs with 139.029 distinct category tags
were found.

Context information for each entity was extracted both from the correspond-
ing Wikipedia article and from other articles that point back to it. First, the
appositives contained in the title of the article were extracted and saved as con-
textual features. For example, “TV Series” is extracted as contextual feature for
the entity “Texas (TV Series)”. The other features were based on information
about co-occurring entities. All entities mentioned in the first paragraph of the
article were included in the context feature set. Additionally, all entities found
in the entity’s article whose pages point back to it are also considered relevant
contextual features. Thirty-eight million (entity, context) pairs were extracted
according to these rules. Let T = {t1, t2, t3, ..., tN} be the set of Wikipedia
categories tags found and C = {c1, c2, c3, ..., cM } the set of extracted contexts.
Then, each entity will thus be represented by a feature vector binary vector
�e ∈ {0, 1}N+M , indicating the presence (1) or absence (0) of the N tag features
feature and M context features.

The actual disambiguation procedure over a given document D is performed
after named-entity recognition and in-document co-reference resolution. The sys-
tems start by retrieving all possible disambiguation options for each surface form
in D, sj . Each surface form will possibly lead to multiple disambiguation op-
tions. Then, all the associated feature vectors �ei (one for each possible entity
for all disambiguation forms) are combined in a extended document vector. The
key point here is that within one document, all possible disambiguation forms
will converge on one feature centroid for a certain number of compatible fea-
tures, because incompatible disambiguation options will tend not to contribute
with the same features for the extended document vector, and will thus become
“background noise”. Disambiguation is achieved by comparing the vectors of
all possible entities for each surface form and maximizing the similarity to the
extended document vector.

The method was evaluated using two different test collections. The first col-
lection was a set of 350 of Wikipedia articles from which links to other Wikipedia
articles had been taken. The disambiguation procedure implied finding the origi-
nal links, which pointed to unambiguous entities. The automatic evaluation was
made over 5.131 surface forms. The second test collection was a set of 20 news
stories containing 629 surface forms for test. In this case, evaluation was made
by manually checking the output of the system. In both scenarios, the system
was compared with a simple baseline method whose output was the most fre-
quently mentioned entity in Wikipedia for the ambiguous surface form at stake.
The disambiguation accuracy for the set of Wikipedia articles was 88.3% for the
system and 86.2% for the baseline method. The author points out that the small
difference in performance is not significant and that such result is due to the fact
that the most of the surface forms in the test set were not ambiguous. The dif-

8.3. A Clustering Approach to NED 139

ference between both systems becomes significant when the test is restricted to
a smaller subset containing only ambiguous forms. The accuracy obtained in the
news stories test set was 91.4% against 51.4% for the baseline method. In this
case the system clearly outperformed the baseline.

One interesting point about this work is that it tries to perform disambiguation
(resolution) of an open set of entity types, not just People. However, it does fails
to illustrate “large-scale” disambiguation since the method was not tried on a
large collection.

8.3 A Clustering Approach to NED

In this work we focus on the disambiguation problem, that is, the problem of
determining whether occurrences of the same name in different documents refer
to the same entity, or to different ones that share the same lexical representation
(following standard practice – [GCY92] – we assume that a name inside a doc-
ument can only refer to one entity). For example, the name “Amsterdam” can
be used refer to many different geographic locations, to a novel, to several songs,
to a ship, to a pop music band, and to many other entities4. We do not address
the related problem of conflating mentions that use different names to refer the
same entity (e.g., “George W. Bush”, “George Bush”, “Mr. Bush”, “President
Bush”, “the President”, “Dubya”). Solution to the name conflation problem can
be built on top of the solution provided for the name ambiguity problem (for an
interesting approach to large-scale name conflation check [YE07]).

NED can be formulated as a clustering task. Let mij represent a mention, i.e.,
the occurrence of name ni in document dj, and let Mall = {m11, m21, ...mik} be
the set of all mentions found in a given document collection C = {d1, d2, ...dk}.
Disambiguation can be achieved by clustering together all mentions in Mall that
refer to the same entity ej . The goal is to partitionMall in several disjoint clusters
of mentions, M1, M2, M3 ... Mn, so that each of them contains mentions that
refer to one and only one entity ej . Also, all mentions of a given entity ej should
end up in a single cluster.

8.3.1 Feature Vector Generation

We start by assuming that a mention of a given name can be disambiguated
using information about the names with which it co-occurs within the same doc-
ument. For example, mentions of “Amsterdam” that refer to the capital of the
Netherlands will probably co-occur with mentions of “Netherlands”, “Utrecht” or
“Rijksmuseum”, while those mentions of Amsterdam that refer to the novel, will
probably co-occur with “Ian McEwan” or “Amazon”. Under this assumption, de-
scribing mentions using the set of co-occurring names as features ({“Netherlands”,

4Check http://en.wikipedia.org/wiki/Amsterdam_(disambiguation)

140 Chapter 8. Web-Scale Entity Disambiguation

“Utrecht”, “Rijksmuseum”...} vs. {“Ian McEwan”, “Amazon”...}) should lead
clusters that group mentions that refer unambiguously to one specific entity (the
capital of the Netherlands vs. the novel).

Let N(dk) be the set of names found in document dk. The mention of name nj

in document dk, mjk will be described by a feature vector of name - value pairs,
(ni, vi):

mjk = [⟨n1, v1⟩, ⟨n2, v2⟩, ⟨n3, v3⟩, ...⟨ni, vi⟩] (8.1)

with ni ∈ N(dk) ∖ nj , and vi being a value obtained through a generic feature
weighing function (for example TF-IDF or Mutual Information).

The input for our clustering procedure is an annotated collection of docu-
ments, Cannot. Therefore, it requires names to be previously identified in each
document, although type classification is not needed.

8.3.2 Clustering Procedure Overview

The procedure we propose for performing NED over a collection of annotated
documents Cannot starts by extracting all names from each document dk to gen-
erate mention feature vectors mjk (a mention is the occurrence of a name in a
document). Feature vectors are then grouped by name, so as to have a set of
mention feature vectors per name: M(nj) = {mj1, mj2...mjx}. Vectors inside
each set M(nj) are then compared according a given comparison strategy and
similarity metric sim(mnj , mnk) (e.g: Cosine or Jaccard Distance). Finally a
clustering algorithm is applied to each M(nj), using information about vector
similarity computed in previous step.

The algorithm itself is generic in the sense that it does not establish any
specific strategy for comparing feature vectors prior to clustering, nor a specific
choice for the clustering technique. At this point, we assume only that an efficient
algorithm exists for performing vector comparison and clustering. For example,
Min-Hash techniques [IM98] provides a efficient way for computing an approxima-
tion to the nearest-neighbor problem, which can be used for computing distances
between vectors. Clustering by Committee [PL02] and variations of streaming
clustering techniques [GMM+03] might be an option for the clustering stage. In
any case, one important advantage of this algorithm is that it provides a natu-
ral way for distributing computational load. Since feature vectors are grouped
by name, all information that is required to resolve ambiguity for each name is
aggregated and can be processed separately: both the calculation of vector simi-
larities and the clustering process can be distributed over a cluster of machines,
on a per-name basis, thus helping scalability.

8.4. Clustering-based Approaches to Web-Scale NED: Challenges 141

8.4 Clustering-based Approaches to Web-Scale

NED: Challenges

As explained, the size of the clustering problem at stake - millions of names and
thousands of millions of mentions - requires distributed algorithms that can be
deployed on large computer clusters. Right from the beginning our method was
designed to be run on a Map-Reduce [DG04] platform, a data intensive supercom-
puting paradigm that simplifies the distribution of data (hundreds of gigabytes)
and tasks over thousands of computer nodes (typical commodity computers).
Map-reduce provides a generic framework for scaling algorithms to very large
data sets but in order to choose an appropriate clustering method for NED, some
specific characteristics of the dataset and of the problem should be taken into
account.

First, the mention distribution is highly skewed, and is dominated by one or
two most popular entities. Thus, the clustering algorithm chosen should be able
to handle unbalanced data distributions and still produce correct clusters both
from dominant and non-dominant entities. Second, the number of entities in
which the set of mentions M(nj) should be mapped, and thus the final number
of clusters, is not known in advance. Therefore, the stopping criteria for the
clustering procedure should not depend on a predefined number of final clusters
desired, which is difficult to estimate. Instead, it should depend on parameters
related with input data and cluster properties.

Finally, web-derived datasets usually involve sparse, high-dimensional feature
spaces. To illustrate this, we took a sample of 2.6 million name-annotated web
documents, with 5.1 million mentions annotated corresponding to 52,000 names.
We then generated feature vectors according to the procedure explained in section
8.3.1 (the corresponding feature space has dimension 52,000). Table 8.2 shows
the number of feature vectors per interval on the number of features. About
63% of the features vectors have fewer than 100 features, and another 20% have
between 100 and 199. The vast majority of feature vectors have fewer than 1%
of the possible features. On the open Web, the set of possible names - and hence
the feature space dimensionality - is on the order of millions, so sparsity becomes
especially severe.

In such spaces, comparing items (which is required for clustering) is particu-
larly challenging, not only because of problems arising from high-dimensionality
[AHK01], but also because is it very likely that the corresponding feature vectors
share only very few or none common attributes, even when the items being com-
pared belong to the same class. In other words, two mentions of the same name
referring to the same entity, may co-occur with two totally different set of names,
and thus the corresponding feature vectors will not share any common attribute.
When comparing such feature vectors, the similarities will be zero, despite the
fact that they are related to the same entity.

142 Chapter 8. Web-Scale Entity Disambiguation

Table 8.2: Distribution of the number of features in mention vectors extracted
from a 5.2 million documents web sample

features # mentions % mentions
1-99 3235958 63.47

100-199 1022151 20.05
200-299 386880 7.59
300-399 165384 3.24
400-499 84528 1.66
500-599 55905 1.1
600-699 32941 0.65
700-799 28938 0.57
800-899 16997 0.33
900-999 10088 0.2

The impact of these false negatives during item comparison can be extremely
damaging for the computational performance of clustering algorithms. We showed
elsewhere – [SKOU09b] – that streaming clustering methods [GMM+03], which
because they have linear computational complexity and modest RAM require-
ments (under ideal conditions) are usually considered viable options for cluster-
ing very large date sets, tend to perform sub-optimally when exposed to the false
negative problem. Therefore, clustering methods for performing NED on the
Web need to be both computational efficient and robust to the idiosyncrasies of
Web-derived data.

8.5 Efficient Web Clustering by Finding Con-

nected Components

We propose using a graph-based clustering approach for performing NED on
the Web. For each name nj , we start by computing pairwise distances between
feature vectors to build the link graph G(nj). Two mentions are linked in the
graph if their similarity is higher than a given threshold smin. Then, we find
the connected components of the Link Graph G(nj). The retrieved connected
components represent the clusters we seek. The only parameter of this approach
is smin; there is no need to set the target number of clusters to be produced. So far
we have not yet found an automatic method for estimating the smin parameter.
Values used in our experiments range from 0.2 to 0.4.

Naive approaches to building G(nj) would attempt an all-against-all compar-
ison strategy. For large data sets that would certainly be infeasible due to time
and RAM limitation. However, an all-against-all strategy is not required. If our
goal is simply to build the Link Graph for finding the true connected compo-

8.5. Efficient Web Clustering by Finding Connected Components 143

nents, then we only need to ensure that we make enough comparisons between
items to obtain a sufficiently connected graph, Gmin(nj), which has the same set
of connected components as the complete Link Graph G(nj). This means that
Gmin(nj) only needs to contain the sufficient number of edges to allow retriev-
ing the same connected components as if a complete all-against-all comparison
strategy had been followed. In the most favorable case, Gmin(nj) can contain
only a single edge per node and still allow retrieving the same connected com-
ponents as in G(nj) (built using an all-against-all comparisons strategy). Since
efficient and scalable algorithms exist for finding the connected components of a
graph ([CLR90], [HT73]), the only additional requirement needed for obtaining a
scalable clustering algorithm that is robust to the problem of false negatives is a
scalable and efficient algorithm for building the link graph.

The fact that the distribution of mentions among the entities is highly skewed
turns out to be advantageous for building the link graph G(nj). If we pick men-
tions randomly from the set M(nj), for any of the mentions belonging to the
dominant entities (one or two) it should be possible to quickly find another one
that turns out have a higher than threshold similarity (because there are so many
of them). Then, for mentions of the dominant entities, we can obtain a signifi-
cant decrease in the number of comparisons while almost surely keeping enough
connectivity to retrieve the connected components. For mentions belonging to
non-dominant entities many more comparisons will be needed to find another
“similar enough” mention, since such mentions are, by definition, rare. But since
rare items are rare, the total number of comparisons is still much lower than what
is required under a complete all-against-all-strategy.

We use a simple procedure: for each mention keep comparing it with the other
items until kpos similar mentions are found, so as to ensure enough connectivity
in the Link Graph.

More formally, we will start by shuffling items in setM(nn) to obtainMrand(nn).
Each mention mni in Mrand(nn) is given a sequential number i. Then, for all the
mentions starting with i = 0:

1. take item at position i, mni

2. Set j = 1

3. Repeat until we find kpos positive comparisons (edges)

(a) Compare item mni with item mn(i+j)

(b) Increment j

One can show (Appendix A) that the average computation cost under this “amor-
tized comparison strategy” is:

Õ

(∣M(nn)∣ ⋅ ∣E(nn)∣ ⋅ kpos
1− pfneg

)

(8.2)

144 Chapter 8. Web-Scale Entity Disambiguation

with ∣M(nn)∣ being the number of mentions for name nn, ∣E(nn)∣ the number
of different entities for that name, pfneg is the probability of false negatives and
kpos the number of positive comparisons, corresponding to the number of edges
we wish to obtain for each item. This cost is vastly lower than what would
be required for a blind all-against-all comparison strategy, without significantly
reducing the chances of retrieving the same connected components. Notice that
computation cost is rather stable to variation of pfneg when pfneg < 0.5. For
pfneg = 0.5 the cost is just the double of the ideal case (pfneg = 0). One can also
show (Appendix A) that the expected value for the maximum number of mentions
that have to be kept in memory during the comparison strategy, mRAM is equal
to E(mRAM) = kpos/(pmin ⋅ (1 − pfneg)), where pmin is the fraction of mentions
that correspond to the least frequent entity. If only 0.1% of the mentions to
be disambiguated belong to such entity, and if kpos = 1 and pfneg = 0.5, then
E(mRAM) = 2000. It is perfectly possible to hold information in RAM for that
many vectors with standard computers. Imposing a hard-limit on this value (for
e.g. 500 instead of 2000) will mostly affect the connectivity for less represented
classes.

Another important property of this strategy is that link graphs produced this
way do not depend too much on the order by which mentions are picked up to
be compared. One can easily see that, ideally (i.e., given no false negatives), no
matter which mention is picked up first, if we were able to correctly identify any
pair of mentions of the same class as similar, then the link graph produced would
contain approximately the same connected components although with different
links. In practice, this will not always be the case because false negatives may
break certain critical edges of the graph, and thus make the comparison procedure
order-dependent. A possible solution for this issue is to increase the number of
target positive comparison, kpos, to create more alternatives to false negatives and
thus reduce the order dependency.

8.6 Additional Scalability Issues

There are still some important scalability problems that we need to solve. First,
there are so many mentions on the web for the most frequent names that the
corresponding feature vectors cannot be simultaneously fit into the RAM of a
single machine to perform comparisons between them. For illustration purposes,
we present in Table 8.3 the number of documents (hence mentions under our
definition) found by Google for a few very frequent, and ambiguous, names (we
use the number of possible entities found in the corresponding Wikipedia disam-
biguation page for each name as a rough indicator of its ambiguity). Second,
even if they did fit simultaneously in RAM, processing these very frequent names
would require much more time than processing less frequent names (which may
have only a few hundred mentions), leading to extremely long tails in the overall

8.6. Additional Scalability Issues 145

processing time. Therefore, we need to break the set of mentions for each name
into smaller partitions, each with nmax mentions, so that they can be distributed
more evenly across machines.

Table 8.3: An illustration on the number of Google hits found on the web for some
frequent names (hits may change), and the corresponding number of entities found
in Wikipedia.

name # Wiki Entities Google Hits (×106)

Paris 90 583

Amsterdam 35 185

Jaguar 34 73.4

Pluto 25 13.8

However, by splitting the data into multiple partitions and placing them in
different machines, we loose the ability to compare all mentions that would be
required to find appropriate (i.e. complete) clusters. In fact, for each (frequent)
name we are breaking the corresponding clustering problem into several inde-
pendent clustering problems. Many of these partitions will produce clusters that
correspond to the same entity, and so they need to be merged afterwards. Since
after the first clustering pass we should have many fewer clusters than mentions,
re-clustering these clusters is certainly a more tractable problem. Clusters can
be described by the feature vectors generated from the aggregation of feature
vectors of the mentions they contain (e.g., their centroid). Comparisons can then
be made using any vector distance metric over such vector descriptions, also on
a per-name basis.

After the first stage of clustering, the size of the resulting clusters should also
follow a highly skewed distribution. There will be several larger clusters corre-
sponding to the few dominant entities, and many smaller clusters corresponding
both to non-dominant entities and to (small fragments of) dominant entities.
Taking into account this typical distribution (that we systematically found in our
experiments), we developed a dedicated re-clustering procedure to merge results
from partitions. This procedure is applied independently for each name, and thus
it can be trivially run in parallel. For each name, we group all clusters obtained
in each partition and divide them in two groups: Big Clusters, Cbig and Small
Clusters, Csmall. Cbig is composed of the 10% biggest clusters produced in the first
clustering pass, while all others are included in Csmall. We then use the following
re-clustering strategy:

1. Pre-assign Small Clusters to Big Clusters: Start by trying to assign
each small cluster to one big cluster. This assignment is made using a
nearest neighbor strategy (with a minimum similarity threshold), and thus
tends not to make many incorrect assignments, while greatly reducing the
total number of clusters. Cluster descriptions are updated accordingly.

146 Chapter 8. Web-Scale Entity Disambiguation

2. Merge Small Clusters: Try to merge all the unassigned small clusters
with each other. The main goal here is to make sure that some of the
less represented entities grow into medium size clusters, so they get enough
“critical mass” to be kept, even if we simply filter out the smaller clusters.
Cluster descriptions are updated accordingly.

3. Merge Big and Medium Clusters: Try to re-cluster the medium and big
clusters based on only a few top features. The intuition is that big clusters
can usually be “described” by a small number of features (e.g., their top 3),
which will be highly discriminative for the entity at stake. We thus achieve
cluster consolidation, while reducing the risk of performing incorrect merge
operations due to noisy features.

4. Repeat 2 and 3 to reduce fragmentation.

Note that Big clusters and Small Clusters are never compared simultaneously,
(i.e. all-against-all), which avoids the problems that might come from comparing
elements of with significant size differences.

8.7 Evaluation Framework

As mentioned in section 4.2.3 there are several methods and metrics can be used
for evaluating clustering. We will use the two entropy-based metrics to be com-
puted against gold-standard (which will be described next). For each name, nj ,
we will compute:

∙ Et(nj): Cluster Entropy of the obtained (test) clusters over the gold-standard
clusters (see Equations 4.23 and 4.24); and

∙ Eg(nj): Class Dispersion of the gold-standard clusters over all clusters ob-
tained (see Equations 4.25 and 4.26).

As mentioned before, the advantage of these metrics is that they are dependent
only on the distribution of items and not on the sizes of clusters. Ideally, the values
of Class Entropy and Class Dispersion should be as close to zero as possible.

For evaluating mention recall obtained for each name, Rm(nj), i.e. the pro-
portion mentions from gold cluster that are in fact found in any of the resulting
clusters, we will use the item recall measure presented in Equations 4.27 and
4.28. Similarly, we can compute Re(nj) which measures how many of the entities
included in the gold standard clusters for nj are found in the corresponding test
clusters. This figure is important because mention distribution among entities is
expected to be very unbalanced.

The previous figures are calculated for each name, nj ∈ N . For assessing the
global performance of the clustering-based NED procedure for all names in N ,

8.8. Experimental Setup 147

we need to combine the performances obtained for the individual names, ni. To
do so, we use the arithmetic average of the previous metrics over all names: Et,
Eg, Rm and Re.

8.7.1 Preparing the Gold Standard

The English version of the Wikipedia served as the basis for developing a gold
standard for evaluating NED (although the procedure can be replicated for other
languages). The basic assumption is that each article in Wikipedia can be related
to one unambiguous entity / concept. Let Wseed(nj) be the set of Wikipedia
articles found for name nj (nj can usually be easily identified by the article
title). If the number of articles for nj is greater than one, then nj is know to
be ambiguous, and each possible entity is unambiguously related to one of the
articles.

The set Wseed(nj) can be used as seed for obtaining more documents that un-
ambiguously refer entities mentioned using name nj . For each page in Wseed(nj),
which refers to an unambiguous entity ek, we find all its immediate neighbours
in the web link graph, both inside and outside Wikipedia. These linked pages
will probably have mentions of the name nj , which can be assumed to refer to
the same entity ek described by the Wikipedia article to which they are linked.
The output of the expansion procedure is a set of gold clusters for each name,
nj . These gold clusters are a set of pages that mention name nj and that can be
uniquely assigned to one Wikipedia article (which stands for a specific entity).
A problem arises when such pages are linked to more than one Wikipedia article
that describes entities mentioned by the same name, i.e. to more than one ar-
ticle from the same seed set Wseed(nj). In those cases, we cannot automatically
decide which entity is in fact being mentioned, and thus all occurrences of the
corresponding name in that document have to be considered ambiguous. Thus,
those documents are excluded from the gold clusters for the name at stake (nj).
Using such expansion and filtering procedures, we obtained a gold standard with
around 9.3 million mentions for about 52,000 ambiguous names5.

In Table 8.4 we present the distribution of the gold names in four classes based
on the entropy of the corresponding gold clusters. Low entropy values correspond
to names where there is clearly one dominant entity to which the vast majority of
the mentions belong, while high entropy values are related with names for which
mention distribution among entities is less skewed.

8.8 Experimental Setup

In order to investigate how scalable our algorithm is and whether or not NED
performance improves as the amount of data to be disambiguated grows, we

5This gold-standard information was made available by Nemanja Petrovic (Google @ NY).

148 Chapter 8. Web-Scale Entity Disambiguation

Table 8.4: Internal entropy of the names in the gold standard
Entropy # names % names

0 to 0.1 768 1.5

0.1 to 0.5 7610 14.5

0.5 to 1 29304 56.0

1 or more 14657 28.0

experimented clustering different portions of a large web collection with over a
billion documents (in English). The web collection had been previously analyzed
by a wide scope named-entity recognition system [WKPU08], so we were able
to use name annotations in each document to produce feature vectors for the
clustering procedure. We first took a 1% sample of the complete web collection
(randomly choosing 1% of the documents) and we performed the complete NED
procedure several times while slowly increasing the value of the smin parameter,
i.e. the minimum similarity for two mention vectors to be considered linked in
the Link Graph. This allowed us to obtain several reference points for the values
of Et, Eg, Rm and Re for a 1% sample. We then proceeded by performing NED
over samples of different sizes - 0.5%, 2% and 5% - so that we could compare
the results with the ones previously obtained for 1%. To allow a fair comparison,
we matched the results obtained for the 0.5%, 2% and 5% samples with those
obtained for one of the 1% samples with the closest value for Et, i.e., similar
“purity” values. Results were evaluated against the gold standard (see section
8.7.1).

All code was implemented in the Map-Reduce [DG04] paradigm and experi-
ments were run in parallel over 2048 machines. Because of limited RAM and load
balancing issues, names were divided in partitions of maximum size 3000. For
very frequent names, this may lead to a considerable fragmentation, because there
can be hundreds of thousand of mentions for such names. Each mention vector
was limited to having, at most, 5000 features (i.e., corresponding to co-occurring
names in the same document). We use the Jaccard Metric to compare vectors (we
previously perform filtering of less significant features based on minimum tf-idf
and frequency values). At the end of first stage of clustering, all clusters with
less than 5 elements are filtered out to reduce the total number of clusters to
be processed in the second stage. This can have obvious impacts on final recall
values, if there are too many such small clusters at the end of the first stage.

8.9 Results and Analysis

Table 8.5 contains the values for Et, Eg, Rm and Re for the 0.5%, the 2% and
the 5% samples, and corresponding values for the 1% samples with the closest Et

obtained. It also presents the value of smin with which each result was obtained,

8.9. Results and Analysis 149

and the clustering ratio parameter, Crat, which gives the relation between the
number of clusters obtained (after filtering) and the number of clusters in the
gold standard.

Table 8.5: Performance metrics for three different comparison scenarios.
%@smin Et Eg Rm(%) Re(%) Crat

0.5@0.3 0.0003 0.0056 0.024 1.16 1.23

1.0@0.4 0.0001 0.0085 0.055 1.74 1.82

1.0@0.25 0.0042 0.0226 0.135 3.70 2.06

2.0@0.3 0.0042 0.0312 0.294 5.43 3.27

1.0@0.2 0.0103 0.0212 0.186 5.00 2.18

5.0@0.3 0.0140 0.0797 0.912 12.4 6.91

One first observation is that for keeping the values of Et comparable, the smin

parameter of the larger sample has to be higher than that of the smaller sam-
ple. This was expected, because as the number of mentions to be disambiguated
increases, the corresponding vector space tends to become more dense. Thus,
in order to avoid noisy clusters we need to increase smin to make sure that only
mention vectors that are really close in the vector space actually become linked
in the Link Graph, and thus generate pure clusters. Increasing smin should, how-
ever, lead to higher fragmentation and to producing many small clusters. The
Crat parameters increases both when the size of the sample increases, and when
smin increases for the same sample size (the 1% sample), which confirms that
fragmentation does in fact increase.

Recall values, Rm and Re, seem very low. However, one has to take into
account that the number of gold standard documents in the sample is proportional
to the sample size. Thus, for the 1% sample, recall values cannot be higher than
1% (if sampling is unbiased as we expect it to be). We are primarily interested in
observing the relative changes of recall with sample size. For that, we computed
the ratios between the recall figures (Rm and Re) obtained for the larger and the
smaller samples that are being compared in each pair of rows. Table 8.6 shows
the value of these two parameters r

+/−
m , r

+/−
e for the three comparison situations.

For the 0.5% vs 1% and the 1% vs 2% scenarios, we can see that even with better

Table 8.6: Ratio between Recall values Rm and Re of larger and smaller samples.

% vs % r
+/−
m r

+/−
e

0.5% vs. 1.0% 2.28 1.5

1.0% vs. 2.0% 2.17 1.48

1.0% vs. 5.0% 4.9 2.48

(i.e., lower) values for Et, the mention recall Rm increased faster than the data

size; in both cases the recall ratio r
+/−
m is higher than the data increase ratio

150 Chapter 8. Web-Scale Entity Disambiguation

(twice as many documents). For the 1% vs 5%, the 5-fold increase in the number
of documents did not lead to a 5-fold increase in Rm, although it almost did.
However, if we look at the r

+/−
e ratio for the entity recall, we see that it is not

increasing as fast as the data size is, meaning that we are losing entities (found
in the gold standard) as we process more data. The combination of these two
factors indicates that for the entities being kept we are able to cluster more and
more mentions, but we are losing all the mentions for some more obscure entities.
Additionally, recall ratios are systematically decreasing as we increase the size of
the data sets to be disambiguated. We believe that there are two main reasons
for this.

The first reason is a consequence of the compromises we had make in our
algorithm to allow it to process web-scale collections. As we increase the size of
the sample, and thus the number of mentions to be disambiguated, the number of
partitions made for each name also increases (each partition has 3,000 mentions).
The overall clustering problem is thus divided into a large number of smaller in-
dependent clustering problems whose solutions should ideally be merged in the
re-clustering stage. However, for less frequent entities, the partitioning procedure
will disperse the mentions over too many partitions, which, in combination with
high values for smin, will lead to generation of more but much smaller clusters.
Chances are that most of these clusters end up being filtered out after the first
stage of clustering and do not even get the chance of being merged in the second
clustering stage. Since our gold standard contains some quite exotic entities men-
tioned in Wikipedia that are probably under-represented in the web collection,
the corresponding clusters will be relatively small and will eventually be com-
pletely filtered out. This progressively affects Rt, and also Rm, as we the sample
gets larger, compensating possible positive effects that would result from having
more data and a more dense vector space. These positive effects were only visible
when partitioning was not too problematic (i.e., for the 0.5%, 1.0% and 2.0%
samples).

The second reason has to do with a more fundamental issue for NED, and
it only became obvious after manually inspecting the results for very frequent
names, such as “Amsterdam”. As we increased the size of the data to be disam-
biguated, and smin accordingly, we noticed that results for such type of names
were composed of many clusters concerning the several possible entities, as ex-
pected, but for the dominant entities at stake (for example Amsterdam, the Dutch
capital) there was a surprisingly high number of medium and large clusters. These
clusters should have been merged together into a single very large cluster since
they all rather obviously (based on inspection of their features) seemed to refer
to the same (dominant) entity.

However, each of these clusters appeared to contain mentions that referred to
specific scopes to which the entity occurs, or to different facets that the entity
could assume. For example, some clusters referred to “Amsterdam” as world
capital, for which the typical features of the clusters (co-occurring names) were

8.9. Results and Analysis 151

other large cities of the world, such as “Paris”, “New York” or “London”, while
others clusters would refer to “Amsterdam”, a city in the Netherlands, and would
have as typical features names of cities in the Netherlands. In other cases, the
clusters produced had features that apparently were not related to the entity,
but that were in fact associated with specific contexts of the entity at stake.
For example, since there are many scientific editors based in Amsterdam, we
found relatively large clusters whose typical features are names of editors (such as
“Elsevier” or “Elsevier Science”), and other names related to scientific conferences
and societies. There are many other similar examples, where the clusters refer
to distinct possible facets of the entities, such as different geographic scopes or
different times in history (“Paris” nowadays v.s during the French Revolution).
Interestingly, most clusters corresponding to different and highly specialized facets
of a dominant entity contained many more mentions than the “main” clusters of
non-dominant entities (e.g. “Amsterdam” the novel, or “Paris” of Troy from
Greek mythology).

From a clustering point of view, the different, yet consistent, name co-occurrence
patterns that dominant entities exhibit can be seen as distinct “sub-entities”,
leading to smaller clusters in both clustering stages. The resulting fragmentation
effect only becomes obvious when one tries to disambiguate very large and het-
erogeneous data-sets such as the web: as the size of the corpus increases, more
facets of the same entity tend to emerge and make this fragmentation effect more
visible. The key point is that, even if we had enough RAM and CPU resources
to avoid the partitioning of mentions, fragmentation for these dominant entities
would probably still occur. The problem arises from the features used to describe
each mention, i.e., the set of co-occurring names, which does not carry sufficient
information for merging the existing facets.

Conceptually, this situation is close to the homonymy vs. polysemy problem
([Kro97]), which is often encountered in word-sense disambiguation tasks. While
homonyms have no related senses (“river bank” vs. “bank account”), polysemous
words do share some relation (“the Stoic school” vs. “the school room”). In our
case, different entities with the same name (“Amsterdam” the city vs. “Ams-
terdam” the novel) should be seen as homonynmy, while the multiple “facets”
found for the same entity can be seen as the multiple “senses” of a polysemous
name (“Amsterdam” a world capital vs. “Amsterdam” a city in the Nether-
lands). Recently, some Named-Entity Recognition (NER) evaluation programs,
such as ACE [DMP+04] and HAREM [SSCV06], have recognized the existence of
inherently ambiguous situations, especially those that exhibit a more or less sys-
tematic pattern. For example, ACE introduced the notion of geo-political entities
for entities such as countries, that contain a population, a government, a physical
location, and a political existence, and that can thus be mentioned by several
different facets. However, the large number of possible facets that we observed
in our experiments, some quite specialized (e.g. “Amsterdam” as an important
city in the field of scientific publishing), does not allow a simple and systematic

152 Chapter 8. Web-Scale Entity Disambiguation

identification of all relevant cases.
Ideally, we would want to merge all facets belonging to the same entity but

still keep information about the distinct facets (whose meaning might be under-
standable at a later stage). What our results show is that name co-occurrence
information is not sufficient for merging facets and that more specialized infor-
mation is required. For instance, e-mail addresses or biographic features might
help merging different facets of people entities, as geographic related information
(geo-codes) might help in the case of locations. More generally, web link infor-
mation might provide good clues for merging facets of arbitrary types of entities.
Mentions of the same name in highly connected parts of the web graph indicate
that we are probably dealing with the same entity, even if the corresponding men-
tions have been placed in different clusters. All this additional information might
be used in a third clustering stage to merge potential facets (i.e. clusters) of the
same entity.

8.10 Conclusion

We have presented a wide-scope NED algorithm that is scalable and explicitly
handles the power law distribution of entities in the web, allowing us to cluster a
billion mentions. We also presented a novel evaluation strategy that uses infor-
mation extracted fromWikipedia to automatically generate a gold-standard. Our
experiments do not provide a complete solution to web-scale NED. Instead, they
raise several fundamental questions (both theoretical and practical) that have so
far been neglected by most approaches to NED. We showed that NED on the
web involves dealing not only with obvious scaling issues, but with less obvious
and more fundamental problems related to the intrinsic variety of web data. As
the data volume grows, new facets of entities become apparent, making NED a
more complex and less clearly defined task. We showed that name co-occurrence
information is not sufficient for merging distinct facets of the same entity.

Part IV

Labels, Web 2.0 Tags and other
User-Generated Keywords

153

155

Contrary to what we presented in parts II and III, in part IV we focus on
lexical items that are less typical of traditional text but which are very popular
in the Web: Labels, Web 2.0 Tags and other types of user-generated keywords.
These types of lexical items are essentially used with a functional purpose. Labels
are assigned by content developers (e.g. newspaper editors) to their own content
(e.g. news items) to help indexation and subsequent retrieval. Tags are used
for characterizing possibly complex media elements (e.g. music tracks, videos),
and are assigned and updated by the Web community. Other types of user-
generated keywords are used with other functional goals, ranging from “hidden”
terms placed in web pages for influencing search engine rankings, to keywords
assigned to ads so that these can be properly matched to web pages or queries.

Apart from their essentially functional nature, these types of lexical items
share another two characteristics, namely the loosely-defined semantics and the
minimalistic syntactic system. Each individual keyword – either a label, a tag
or other user-generated keyword – can virtually represent any type of referent,
or can describe any property the corresponding referent. Obviously, these two
characteristics have the advantage of making keywords very simple to use for all
types of users. This is probably the main reason for their global dissemination
over the Web.

However, the loose semantics and the almost absence of syntax create a series
of problems. One of those problems is inconsistency in usage: different users
exhibit different keyword usage behaviours. Actually, the problem is even more
complex since individual users also show inconsistencies in how they use keywords.
For example, when assigning a topic label to a specific news item, a journalist
can either assign one label characterizing the broad subject of the news (e.g.
“Sports”), or assign one characterizing it in a more specific way (e.g. “African
Cup”). Or, instead categorizing the topic, the journalist may assign a label that
characterizes a different facet of the news, such as for example the location of the
event reported. In any case, the choice is left to the journalist, and there is no
guarantee that he/she will be consistent in similar situations.

Another important characteristic of user-generated keywords is the inevitable
presence of many idiosyncrasies. Besides frequent spelling mistakes, and irregular
use of common writing conventions (e.g. non-standard capitalization), users tend
to use a lot of creativity when assigning keywords (e.g. swapping characters
while keeping equivalent phonemes, use of excessive punctuation, use of emoticons,
etc.). In fact, these idiosyncrasies are such an intrinsic part of this type of lexical
items that users already account for them. For example, when assigning trigger
keywords to web ads, advertisers often include keywords with spelling mistakes in
order to match potential spelling mistakes by the users (e.g. in a search query).

In this part, we address some issues related to this type of user generated
contents. First, in chapter 9, we focus on topic labels assigned to news items by
editors. The problem here is that topic label assignment is performed in a very

156

inconsistent way: very similar news items (possibly covering the same event) are
labelled differently (though compatibly) by different news sources (or even by the
same news source). Different labels can result from different topic assignment
policies, or from different spelling conventions. In any case, when trying to use
label information to learn automatic topic classifiers, we face several problems.
First, there is an extremely large number of distinct labels, (i.e. classes) and
the vast majority of them have only a few positive examples. From the point
of view of classification, this is already quite problematic. Additionally, since
label assignment tends to be inconsistent, very similar items can be found in
“different”, although in practice similar, classes. This inconsistent item-to-class
assignment creates even more problems to classification procedures. Thus, we
propose a method for solving some of these inconsistencies, and automatically
increasing the number of labels assigned to each news item, so that each class
holds more positive examples.

Next, in chapter 10, we look at a different problem: how can we automatically
expand the set of the tags assigned by the community to a given media object,
in order to improve the (tag) description of the media object? This is specially
useful in cases where users have assigned only a few tags to the items. Having less
tags, these items tend not to become as accessible to users as others, and, as a
consequence, the chances being retrieved and potentially receiving additional tags
are lower. This leads to a starvation effect. We focus on one specific application
scenario: tags attributed to artists by the Last.fm radio community. Our strategy
consists in using an external knowledge resource, Wikipedia, for finding tags that
are functionally similar to ones already attributed to media items. Tag informa-
tion is extracted from the abstract of the Wikipedia article that describes each
artist. Evaluation of this tag expansion procedure is made using diachronic data
from Last.fm, allowing us to check if we can replicate the real tagging behaviour
of users.

Finally, in chapter 11, we address yet another problem related to the expan-
sion of lists of user-generated keywords. Web advertisers need to assign good
trigger keywords to their ads. Since this, however, is not an easy task, we pro-
pose a method for generating keyword suggestions. Our method mines a database
containing a data set of ads previously submitted by advertisers, and infers rela-
tions of functional similarity between keywords. Then, using these relations, it
becomes possible to suggest relevant and non-trivial keywords to advertiser, who
only need to provide a few seed keywords. The mining process tries to find key-
words that advertisers use alternatively while characterizing ads (i.e. they may
assign either one of them to the same ad). We call these keywords local synonyms,
since they can be replaced by each other in this specific (i.e. local) context. One
interesting point in this chapter is the evaluation methodology : we compare our
keyword suggestion system against a legacy suggestion system in a real-world on-
line scenario. Also, we propose several novel metrics for evaluating these types of
systems in on-line environments. As in chapter 10, we believe that the evaluation

157

methodology presented, and more specifically the set of performance measures
proposed, is a significant contribution of this thesis.

Chapter 9

Conflating News Topic Labels

In this chapter1, we focus on a problem related to text classification, which has
been motivated by the need to perform fine-grained topic classification of quota-
tions in an automatic quotation extraction application (see http://verbatim.

labs.sapo.pt). Our initial goal was to use topic labels that editors implicitly
assign to news items, by prepending those label in the titles of some news items,
to automatically generate a data set for training a news classifier. However, we
soon realized that several inconsistencies in this label assignment process made
by editors generated many problems to our approach. In some cases, different
synonym or quasi-synonym label were being assigned to practically equal items
(e.g. two news items covering the same issue). In other cases, labels assigned had
different degrees of specialization. Yet in others, labels assigned to very similar
items were related with two distinct possible facets (e.g. topic vs. location).
Finally, all examples where only partially labelled : only one label is assigned by
the editors when several labels are possible. As a result, item to class assignment
is incomplete, inconsistent and very fragmented (the number of classes is almost
on the same order of magnitude as the number of items).

In this chapter, we investigate how to solve some of these problems. Our strat-
egy consists in introducing a pre-processing stage, before generating the training
set, in which we try to propagate label information among news items. This should
help us increase the number of labels assigned to each item. As a consequence
we can increase the number of positive examples for each label (i.e. class), and
thus reduce the fragmentation problem. Also, in this way it becomes possible to
identify distinct labels that are not incompatible. Some of these non-incompatible
labels are domain-specific synonyms, which can potentially be merged in a sub-
sequent step, and thus reduce the number of classes that actually exist in this
classification problem.

1The material presented in this chapter is based on Lúıs Sarmento, Sérgio Nunes, Jorge

Teixeira and Eugénio Oliveira “Propagating Fine-Grained Topic Labels in News Snippets”

[SNTO09].

159

160 Chapter 9. Conflating News Topic Labels

From the point of view of similarity, our problem is that of trying to find
functionally-similar labels (including content-similar ones) by looking at a set
of labelled news items. Again, we will support our method in the Vector Space
Model. The work presented in this chapter is mainly that of exploring the best
features for grounding the discovery of functional similarity in this particular
scenario. Our exploration will be made only over directly observable features (see
section 3.3.1), namely 1-grams, 2-grams, 3-grams and 4-grams taken from the
title and the body of the news item. Due to the lack of gold-standard resources,
we will have to perform manual evaluation of our propagation method.

9.1 Introduction

News feed items are usually composed by a title, a short body (1-3 sentences) and
some meta information, such as date, source or authorship. In some cases, these
items also include a label that describes the high-level topic of the news – such
as “Sports” or “Politics” – usually associated with a specific thematic section
of the news source that published the feed. More focused topic information is
sometimes found in the title of the news feed item, when the title begins by a
label that provides additional fine-grained description of the topic (e.g. “G20 :
spotlight falls on police again”2 or “Centres de rétention: la Cimade dénonce une
“mascarade” de l’appel d’offre”3).

However, attempts to use such fine-grained topic labels for feed classification
face several challenges. First, one can easily find hundreds or thousands of such
very specific topic label in a given set of RSS (Really Simple Syndication) feeds, as
opposed to only few dozen high-level topic labels that are usually associated with
news sections. Second, many fine-grained topic labels can potentially be assigned
to a given news source with different scopes of specialization. For example, for
a news item describing a soccer match between two teams playing the European
Champions League, it is possible to find in its title labels such as [Sports], [Soccer],
[Champions League], or the name of any of the two teams. In other cases, title
labels may express different, yet compatible, perspectives about the event covered
in the news item. For example, a news source might label news regarding the
pirate attacks on ships in the coast of Somalia either by the theme – [Piracy]
or [Pirate attack] – by geography – [Somalia] or [Indian Ocean] – or by specific
event – [Liberty Sun]4. For classification algorithms this may represent a problem,
since very similar items (i.e. RSS feeds from different news source reporting
the same event) are considered to belong to different classes (i.e. were assigned
different topic/class labels). This problem is worsened by the fact that when
labeling with such fine-grained topic labels, it becomes very difficult to maintain

2Taken from the http://www.guardian.co.uk.
3Taken from the http://www.lemonde.fr.
4Liberty Sun is a U.S.-flagged cargo ship attacked by Somali pirates in April 2009.

9.2. Related Work 161

a consistent label assignment policy among annotators over time, even inside
the same news source. If multiple spelling conventions or (domain dependent)
synonyms are used, then the classification problem becomes even harder since
multiple “equivalent” classes are labelled differently.

In this chapter, we present an approach that tries to reduce the impact of
topic label fragmentation for classification purposes. The motivation for this
work comes from previous work done on quotation extraction from on-line news
feeds [SN09]. In this context, extracted quotations are classified into specific top-
ics (i.e. someone said something about a specific topic), and the fine-grained topic
labels found in news titles are used to train the topic classifier. Because of the
previously described problems, only the larger classes are kept (i.e. those associ-
ated with more frequent topic labels) during training and classification. However,
due to the Zipfian-like nature of topic distribution, this strategy leaves out many
interesting topics. In a nutshell, we investigate if we can automatically assign ad-
ditional topic labels to a given news feed in order to improve the description of the
feed with labels related with alternative but equally valid scopes or perspectives,
and thus reduce the problem of topic fragmentation.

9.2 Related Work

Most of the work that has some connection to ours has been developed in the
field of Topic Detection and Tracking. Pons-Porrata et al. [PPBLRS03] propose
an incremental hierarchical clustering algorithm for news with the purpose of or-
ganizing news items both in a hierarchy that includes news topics (e.g. “Kosovo
- Peace Agreement”) and events that occur under such topics (e.g. “Agreement
Sign”). News items are represented by a vector containing three types of fea-
tures: (i) document terms, (ii) temporal references (dates) and (iii) geo-entities.
Document similarity is computed by a function that explicitly takes into account
document content and temporal-spatial proximity. Evaluation of the clustering
algorithm is performed on a collection of 452 newspaper documents covering 48
topic and 68 non-unitary events. Results show that temporal information is ben-
eficial for the news clustering process while spatial information tends to generate
noisy results.

An algorithm for performing unsupervised discovery of topics labels from news
is presented by Sista et al. [SSLM02]. The system is trained in three steps. First,
it finds descriptive phrases in the collection of training documents, including
names of entities (people, places and organizations) and n-grams with high level
of lexical cohesion. Second, an initial set of topic labels is assigned to each training
document based on the descriptive phrases they contain. Finally, the Estimate-
Maximize procedure is used to find the support words associated with each topic.
Final topic label assignment is performed using these support words. Thus, a
topic label can be assigned to a document that does not include it. Evaluation

162 Chapter 9. Conflating News Topic Labels

was performed by manually computing label assignment precision at ranks 1-5
for a sample of 100 documents from two collections of newspaper documents in
English and Arabic. Precision values ranged from 96% to 82% for English and
88% to 75% for Arabic. Entity name features were found to contribute only
marginally to overall precision.

Bigi et al. [BBH+01] compare five statistic models for topic identification
on newspaper text using a text-classification framework approach. Models were
trained using a 80M words corpus divided in seven topics, and each news item had
either one or two manually assigned label. The best results in topic propagation
were achieved with an unigram “cache” model that is dynamically updated over
time. However, results for all five models in assigning the two correct labels to
the corresponding texts were quite modest (precision < 45%).

Overall, our work differs from existing research since we are explicitly devel-
oping an unsupervised pre-processing step for optimizing subsequent text clas-
sification procedures. As far as we know, this is a novel approach since most
news classification systems avoid dealing with such a large number of classes by
truncating them to the top frequent ones. Also, contrary to most related works,
we are processing very short texts (40-60 words), while dealing with thousands
of classes.

9.3 Propagating Topic Labels

We explore the fact that news about the same topics should have similar contents.
This should be specially so for news provided by different sources but covering
the same event. If two news feeds items are found to have very similar content
but have lexically different topic labels, we might assume that the topic label of
each feed item can be propagated to the other, so that both of them will have
one additional (hopefully valid) topic label.

More formally, let ℱ = {f1, f2, ...f∣ℱ∣} be a set of ∣ℱ∣ news feed items. Each
feed item, fi = [li, ti, bi], is composed of a topic label, li, a news title, ti, and a
short text body bi (we will ignore related metadata in this work). Let fi be a
vector representation of the content of the feed item fi, which includes features
extracted from both the title ti and the body bi. For example, fi can be a bag-of
words representation of ti and bi, with features weighted by tf-idf [SM86] over the
feed set ℱ . The content of two news feeds, fi and fj, can be compared by using a
vector similarity metric over the corresponding vector representations, fi and fj .
Using such vector representation and similarity metric, it is possible to obtain all
the pairwise similarities between news feeds in ℱ .

Let N (fi) be the ordered set of neighbours of fi, i.e. the set of feeds item in
ℱ ordered by degree of similarity with fi. Let N1(fi) be the nearest neighbour
of fi in such metric space. N2(fi) will be the second nearest neighbour, N3(fi)
the third and so on. For each feed item fi, let li1, li2 ... lik be the topic labels

9.4. Experimental Set-Up 163

associated with each of its neighbours, N1(fi), N2(fi) ... Nk(fi). We will define
ltopi as the label of the closest neighbour of fi whose label is different from li, given
that the inter-item distance (or inter-item similarity) is lower (or higher) than a
pre-defined threshold. Thus, ltopi can be considered the best option for assigning a
new topic label to fi. Our method consists in propagating the ltopi to fi. We will
not immediately propagate li back to the closest neighbour of fi, f

ngbr
i , because

fi might not be its closest neighbour (there might be other feed items closer to
fngbr
i).

9.4 Experimental Set-Up

We collected RSS feeds from eight distinct mainstream Portuguese news sources
for a period of about 6 months (mid November 2008 to mid April 2009). This
allowed us to collect 90,780 feeds items. Among these, a significant fraction
(30.4%) had titles with the structure we wish to explore, i.e. “[topic label]: re-
mainder of the title...”. The use of this pattern in titles varied greatly, ranging
from less than 1% in two cases to more than 70% in one news source. We per-
formed additional filtering using a dictionary containing names of entities that
are frequently mentioned in news to exclude cases where the title actually refers
to a quotation (e.g. “Obama: Economy improving, crisis not over”). In the end
we obtained 18,309 news feeds containing a valid topic label corresponding to
3,082 different topic labels ranging from very frequent and generic labels, such
as “Futebol/Soccer” (886 items), “Música/Music” (393) or “EUA/USA” (386)”,
to long tail labels that were found in only one document such as “Cogumelos
silvestres/Wild Mushrooms”, “Grammy Awards” or “Botox”.

News feed items were vectorized by generating n-gram features from the title
and the body (we differentiate features coming from the title from n-grams coming
from the body). In our experiments we explored 4 different types of features:
(i) unigram features, (ii) 2-gram features, (iii) 3-gram features and (iv) 4-gram
features. With these four options we wish to measure the balance between a more
compact feature set which ignores all word ordering information (i.e. unigram
features) and order sensitive yet much sparser feature set (i.e. 4-gram features).
In any case, these four options represent a rather straight-forward approach, which
does not require any more sophisticated language pre-processing. Features were
weighted by tf-idf to demote those that occur in many news items. The resulting
vectors were compared using the cosine metric [SM86].

We evaluate the propagation of topic label by manually comparing ltopi with
the originally assigned label li and consider 5 different possibly correct (C) cases:

C1: Different Perspective – ltopi addresses an alternative perspective of the news
(e.g. location vs. time);

C2: Generalization/Specialization – ltopi is a generalization or a specialization of

164 Chapter 9. Conflating News Topic Labels

the concept described by li (e.g. “Sports” vs. “Soccer”);

C3: Non-Obvious Synonym – ltopi is equivalent to li but there is no lexical in-
tersection (i.e. words in common) between both labels that would suggest
such equivalence beforehand.

C4: Obvious Synonym – ltopi is equivalent to li, but there is sufficient lexical
overlap between both to make such equivalence rather obvious (e.g. ltopi is
lexically included in li).

C5: Spelling Variation – ltopi and li differ only in minor spelling variations (some-
times one is a misspelled version of the other).

Deciding cases C1, C2 and C3 may require consulting external sources (for ex-
ample the corresponding complete news item). All other possibilities not listed
before are considered incorrect (I).

We compared the results of the label propagation algorithm using the four
different options for generating vector features (unigrams, 2-grams, 3-grams and
4-grams). The four runs were configured to obtain almost equal recall figures so
that the corresponding values of the precision regarding ltopi could be compared.
The relation between desired recall and precision can be controlled by setting
a threshold on the minimum value of similarity between feature vectors. The
larger this threshold, the less probable is to obtain false positives – which can
result from noisy or ambiguous features – and the higher should be the value of
precision at the cost of recall. We are mostly interested in looking at the high-
precision section of the precision-recall curve since ltopi is intended to be used as
class label in subsequent text classification procedures.

9.5 Results and Analysis

Table 9.1 presents results (in %) regarding the propagation of ltopi (cases C1 to C5
described before), for each of the four feature generation options experimented.
Manual evaluation was performed over a random sample of 30% of the result-
ing topic label attributions. The position on the recall vs. precision curve was
controlled by manually setting the minimum inter-item similarity threshold pa-
rameter in order to achieve high precision (≃90%) at comparable recall values.
The minimum value for the inter-item similarity (i.e. cosine) varied from to 0.2
(for unigram features) to 0.33 (when using 4-gram features). The resulting recall
values obtained oscillated between 7.1% and 7.2% for all the runs (approximately
to 1,310 ltopi label assignments in a set of 18,309 news feeds), which allowed a fair
comparison of the corresponding precision values achieved.

Results show that for equivalent recall figures, precision achieved by using 2-
gram and 3-gram features is significantly higher than that obtained using either
unigram or 4-gram features. This result is important since it is very common

9.5. Results and Analysis 165

to use unigram features in several news classification procedures, when, as seen,
2-gram and 3-gram features seem to carry more information about the topics.
There may be several reasons for this, but the fact that 2-gram and 3-gram
features keep the names of most entities mentioned in news feeds intact (specially
names of people and organizations) may be particularly significant. On the other
hand, on such small text snippets, 4-gram features tend to generate a too sparse
feature space which affects the efficiency of feature vector comparison, since it
tends to relatively promote the importance of topic-unrelated features, such as
common stylistic formulations or language specific fixed-expressions. Also, most
label propagations added information either about different perspectives (case
C1) or different scopes. Still for about 5% of the cases the methods propagated
non-obvious synonyms (C3).

Further analysis of incorrect label propagation revealed two major type of
errors, which were common to the four runs. The first, and by far the most
common, was related to news about local events. These news usually refer to
accidents (e.g. car accident or a burning house) or crimes events (e.g. a shop rob-
bery) that occurred in a specific city or neighbourhood and are usually labeled
using the name of that location. In many cases, the topic label that was propa-
gated to these feeds items is actually the name of another and unrelated location
(e.g. another city). The reason for this lies in the fact that, apart from mention-
ing different locations, most news about accidents and crime events at local level
are actually quite similar in structure and content, i.e. they report very similar
occurrences using similar wordings. Also, they include mentions to certain typical
entities (e.g. the Police or the Fire Department) and describe common standard
procedures (e.g. an arrest). This specific type of errors can probably be avoided
by using a geographical ontology to identify such news and either excluding the
assignment of incompatible labels (e.g. by taking into account distance of the
locations) or by only propagating labels that refer to different perspectives (e.g.
“Crime”).

The second most frequent type of error was the propagation of an incorrect yet
related label. For example, news about the European Euromillion Loto received

Table 9.1: Precision (in %) at Recall 7.1%-7.2%.
unigram 2-gram 3-gram 4-gram

C1 24.9 31.1 33.9 30.7
C2 42.0 39.6 35.5 30.7
C3 6.3 4.8 4.6 6.1
C4 8.7 8.0 11.6 11.6
C5 7.9 10.4 8.3 9.7
∑

C 89.8 93.9 93.8 88.7
I 10.2 6.1 6.2 11.3

166 Chapter 9. Conflating News Topic Labels

labels that are associated with the Portuguese Loto (which is independent of the
european one), or news about a specific soccer club or player were assigned a label
about another soccer club or player. This type of errors seems to be more difficult
to solve and might require looking to labels other than the top suggested one,
ltopi , and using more complex criteria to select the correct label (e.g. minimizing
the distance to several news feed items simultaneously).

9.6 Conclusions

We showed that it is in fact possible to automatically propagate topic label be-
tween news items using an unsupervised process based on the content of the news.
The majority of labels propagated add relevant perspective or scope information
to items. We also showed that 2-gram and 3-gram features seem to carry more
topic-related information, and can thus be used in subsequent classification tasks.

For improving one of the major limitations of this work, the low recall, we
can change the label ranking procedure so that information coming from multiple
neighbours is combined: if a new label is found in several of the nearest neighbours
of an item, then it might be considered a good topic suggestion even if it is not
the top ranked one. We can also perform multiple iterations of the algorithm to
propagate novel label information to nodes which could already be close enough
to their neighbours but had the same label.

Chapter 10

Expanding User-Defined Tag Sets

In this chapter1, we address a problem that results from the distributed nature
of the tag assignment process made by the community of users of Web 2.0 sites.
Because no uniform tag assignment procedure is enforced, tag distribution within
such sites is not evenly balanced : while the most popular items tend to receive
many tags (which then go through several iterations of validation), the least
popular items usually have few or no tags, since only a small number of users
actually interacts with them, and only a small fraction of these is willing to
assign tags. The problem is that less tagged items have less chances of being
retrieved, and thus tend to maintain only a small number tags. Such a short-loop
starvation cycle is difficult to be broken spontaneously.

For solving this cycle we propose a strategy for automatically assigning addi-
tional tags to items. These tags are supposed to be functionally-similar to those
already assigned to the items at stake (or other items within the same Web 2.0
site). Tag assignment is made taking into account information mined from knowl-
edge resources external to the site affected by the problem, but which potentially
contain alternative information regarding the same universe of items.

We will focus on one particular Web 2.0 site that suffers from the starvation
effect described before: Last.fm, a web radio community. In this specific scenario,
we will try to assign additional descriptive tags (e.g. “indie”, “pop rock”) to the
artist profiles indexed by Last.fm, some of which do not have any tags assigned.
Information about new tags will be mined from the abstracts of the Wikipedia
articles that address the artists.

Using this Wikipedia-based method, we will attempt to obtain new tags for a
list of artists crawled from Last.fm in February 2008. For evaluating the tag sug-
gestions generated by our method, we will compare them with the ones that were
actually assigned by real users during a period of ten months. The information
about the tags assigned by users was by obtained by performing another crawl

1This chapter is based on the following paper: Lúıs Sarmento, Fabien Gouyon and Eugénio

Oliveira “Music Artist Tag Propagation with Wikipedia abstracts” [SGO09].

167

168 Chapter 10. Expanding User-Defined Tag Sets

in October 2008 and computing the difference in relation to the tag information
obtained originally. This evaluation methodology, which involves comparing an
automatic tagging procedure with diachronic data reflecting the behaviour of real
users, is, to our better knowledge, an original contribution of this thesis.

Results show that the tag assignment strategy we propose, i.e. mining infor-
mation from other knowledge resources to complement tag descriptions in Web
2.0 sites, is in fact capable of suggesting valid and non-trivial new tags to a sig-
nificant percentage of artist profiles in Last.fm site, including to those that had
only very few tags assigned.

10.1 Introduction

One of the most interesting advances of the Web 2.0 is the possibility for users
themselves to add and edit meta-information about content by assigning descrip-
tive tags to media items. Such social tagging process leads to the emergence of
meaningful textual descriptions of web content that can be extremely helpful in
information retrieval tasks, especially when automated content analysis is still not
accurate enough (e.g. video or music). However, social tagging mechanisms tend
to lead to unbalanced tag distributions: while popular items are abundantly de-
scribed with tags, less popular items might not have enough tags — both in quan-
tity and diversity — to have meaningful, and stable descriptions. Some authors,
such as Schein et al. [SPUP02], Lamere [Lam08] and Turnbull et al [TBL08],
refer to this as the “cold start problem”. If tag information is used for retrieval,
then less popular items will probably be retrieved less times, degenerating in a
retrieval starvation effect. If tags are used for (e.g. music) recommendation, the
most tagged items (e.g. artists) end up biasing recommendations (see Park and
Tuzhilin [PT08] and Celma and Cano [CC08]).

In this work we focus on a specific Web 2.0 music site, http://www.last.fm,
which allows users to tag both artists and songs. As mentioned by Lamere
[Lam08], the type of tags that users associate to artists is varied, and includes tags
related to: music genre (e.g. “acid jazz”), locale (e.g. “japan”), artist/band struc-
ture or instrumentation (e.g. “duo”), personal experiences (“seen live”), opinion
(“weird”) and all sorts of miscellaneous tags (e.g. “Eurovision”). Figure 10.1
shows the distribution of the number of artists with respect to the number of
user-assigned tags for a universe of 583,497 artists, using data taken from Last.fm
webservice in February 2008 (see section 10.4). The vast majority (almost 80%)
of the artists in this data set has 5 or less tags, and 47% has not been tagged at
all. This denotes a “Long Tail” distribution, typical of many social phenomena.

We propose an information extraction approach for tackling the problem of
unbalanced tag distribution. We use Wikipedia abstracts (in English) to extract,
rank and finally assign one additional tag to Last.fm artists, including artists
which had not been previously tagged by users. We do not address the subse-

10.1. Introduction 169

Figure 10.1: Distribution of the number of artist by number of tags (logarithmic
scale) in Last.fm (tags per artists are limited to a maximum of 100.

quent problems of tag-based item retrieval or recommendation. Furthermore our
method is community-contained in the sense that it only suggests tags that are
already part of the Last.fm artist tag folksonomy.

It is not obvious that the idea of pulling information from one repository of
socially-edited data, such as Wikipedia, and using it to leverage data sparsity
in another repository can actually lead to useful results: items with incomplete
descriptions (i.e. “not popular”) in one social data repository (e.g. Last.fm)
might very well be “not popular” in other ones (e.g. Wikipedia). Last.fm and
Wikipedia are developed independently and they turn out to represent quite
different (musical) universes: about 95% of the artists listed in Last.fm are not
matched by any page in the English Wikipedia. On the other hand, this means
that Wikipedia may still be helpful for around 5% of Last.fm entries, many of
which have still no user-assigned tags. In fact, around 33% of the Last.fm artists
for which there is a page in the English Wikipedia have 5 or less tags in Last.fm,
and can thus be considered to lie in Last.fm’s Long Tail.

Additionally, despite the fact that current work only uses the English version
Wikipedia, it is likely that a significant number of Last.fm artists, in particular
less popular ones (i.e. with few tags) are better described in Wikipedia pages
written in other languages. Preliminary tests show that over 1/3 of Last.fm
artists present in the Portuguese Wikipedia pages do not have any information
associated in English Wikipedia pages. This is also true for Last.fm artists present
in the French Wikipedia pages. Analysis and extraction of potential niches of data
in repositories of different languages is left for future work.

170 Chapter 10. Expanding User-Defined Tag Sets

10.2 Related Work

There are a number of proposals in the literature for suggesting tags to web items
(e.g. Xu et al. [XFMS06], Calefato et al. [CGL07], Symeonidis et al. [SNM08]).
Tag suggestion is especially important for recommendation systems working with
sparsely categorized data (e.g. Park and Tuzhilin [PT08] and Gunawardana and
Meek [GM08]). Assigning automatically relevant tags to a specific web item
for specific users usually implies discovering inter-user, inter-item or inter-tag
similarities, hence calling for some modeling of users and user behaviors (e.g.
collaborative filtering) and/or modeling of items, and/or tags (e.g. content-based
analysis) ([SPUP02] [SNM08]).

Recent efforts have also been made in the specific domain of music data,
including the issues linked to unbalanced tag distributions of music items. For
instance, following image tagging research (von Ahn et al. [vAGKB07]), some
authors propose to add information to music items via entertaining games (Law
et al. [LvAD07]), Mandel and Ellis [ME08] and Turnbull et al. [TLBL07].

Another line of work focuses on propagating tags from popular artists (i.e.
tagged frequently) onto other, less frequently tagged artists. A technique to do
this is to project artists into a similarity space, and to propagate tags to close
neighbours in that space. Such a similarity space can be constructed by content-
based similarity computation such as in Sordo et al. [SLC07] or Bertin-Mahieux
et al. [BMEML08], i.e. by assuming that music items that “sound alike” should
be tagged alike (this has been referred to as autotagging). Alternatively, the sim-
ilarity space can be obtained via collaborative filtering or co-occurrence analysis
(Celma and Lamere [CL07]), by assuming that music items that are commonly
found together in different users’ playlists or in webpages [SKPW08], should be
tagged alike. Hybrid methods combining content and context description have
also been advocated (Symeonidis et al. [SNM08]), such as for example.

For a complete review, and list of applications of music social tagging, we
refer to [Lam08]. Data and bibliographic links can also be found on http://

SocialMusicResearch.org.

10.3 Tag Propagation Method

Let ℬlast(ai) be the “bag” of user-defined tags found in February 2008 on Last.fm
for artist ai. Our approach consists in using semi-structured third-party infor-
mation sources to perform tag propagation on Last.fm artists. Namely, we mine
abstracts from the English Wikipedia for ai to find relevant tags to be added to
ℬlast(ai).

For example, the Wikipedia abstract for the band “!!!” is: “!!! (pronounced as
chk chk chk, to simulate mouth-clicking sounds) is an American dance-punk band
that formed in autumn 1996 from the former band members of The Yah Mos,

10.4. Data 171

Black Liquorice and Popesmashers.” This small text passage contains informa-
tion that could be used for tagging “!!!”, namely [American] and [dance-punk].
From Last.fm page dedicated to “!!!” we can in fact confirm that users assigned
both [american] and [dance-punk] to the band (i.e. these tags are indeed included
in ℬlast(!!!)). More important cases are those for which there are no user-defined
tags in Last.fm. For example, at the date of writing, there are no Last.fm tags for
the band “Brixx” (i.e. ℬlast(Brixx) is empty), while the corresponding Wikipedia
abstract describes the band as follows: Brixx was a Danish pop group which rep-
resented Denmark in the Eurovision Song Contest 1982, in which it sang “Video,
Video”. This contains valuable tagging information as e.g. [Danish pop], [Den-
mark], [Eurovision Song Contest 1982].

Because tags can be extremely diverse in nature, we opted for considering
only those tags that have already been assigned to some artist in Last.fm. This
can be achieved by building a Tag Dictionary, Tlast, from tags used in Last.fm,
and matching only elements that are part of that dictionary against Wikipedia
abstracts. The tag propagation procedure for a given Last.fm artist ai can thus
be performed using the following procedure:

1. Check if there is a Wikipedia article written in English for artist ai. This
is done by matching the artist name with the article title and ensuring
that certain music-related words (e.g., “singer”, “band”, “music”, “artist”,
“composer”, “group”) are found in the abstract to reduce probability of
processing irrelevant / ambiguous names;

2. If a Wikipedia article is found, then try to match tags from Tlast on the
article abstract. This will create T (ai) containing all tags matched.

3. Remove from T (ai) all tags already in ℬlast(ai) and rank each remaining
tag according to a relevance function (see section 10.5).

10.4 Data

Some of the data related to Last.fm radio (artist, users, etc.) is freely avail-
able through a dedicated web-service API2. For a period of approximately a week
(from January 30 to February 4 2008) we consulted Last.fm web-service to obtain
a local copy of data concerning artists and their user-defined tags. We obtained
basic information for 583,497 artists (name, “popularity” index within Last.fm
community) and information regarding 2,774,068 tag attributions. On average
we found 4.76 tags per artist, but many artists do not have any tag assigned (see
Figure 10.1). There are 208,565 distinct tags, a surprisingly high number. The 10
most commonly used tags are: “seen live” (54,660 artists), “rock” (41,854), “elec-
tronic” (33,108), “indie” (27,913), “alternative” (25,401), “pop” (24,010), “punk”

2http://www.audioscrobbler.net

172 Chapter 10. Expanding User-Defined Tag Sets

(20,555), “electronica” (18,781), “metal” (17,419) and “experimental” (16,680).
The most frequently used tags describe common music genres. Interestingly, the
most used tag is “seen live”, which reflects previous experience of listeners with
these artists.

Part of Wikipedia’s content has been converted into tabular format by the
DBpedia3 project [AL07], allowing a simple access to certain parts of the content
(e.g. infoboxes) without the need for performing complex parsing operations. In
our work, instead of directly consulting Wikipedia articles, we used the short ab-
stract data (only those written in English language) provided by DBpedia, which
contains abstracts (1-3 sentences) for 2,491,442 entities/concepts identified by
Wikipedia page title (the data we used was downloaded on October 20 2008).
The short abstract information was chosen because it provides very focused in-
formation about the artist, therefore reducing the chances of matching tags that
are irrelevant for that artist (e.g. from other artists that are also mentioned in
the complete Wikipedia article).

10.5 Experimental Setup

Our Tag Dictionary Tlast is composed by 182,556 tags: 71,875 with 1 word, 77,643
with two words and 33,038 with 3 words (all tags were converted to their low-
case representation to avoid duplication derived from case variation). We ignored
longer tags (4+ words) to optimize the matching procedure. For each tag tj in
Tlast we computed #last(tj), the number of artists in Last.fm tagged with it by
users. This statistic reflects the importance of tag tj in Last.fm user-defined tag
folksonomy. From the initial set of 583,497 artists we matched 28,607 with a
Wikipedia abstract. A successful match between an artist and its corresponding
article required two conditions to be fulfilled. First, the name of the artist had
to match the title of the article. Second, in order to avoid incorrect matches
due to ambiguous artist names, the abstract of the article had to contain words
that could be directly related to music artists, such as “singer”, “band”, etc.
We also excluded abstracts that contained expressions that are usually found in
Wikipedia disambiguation pages, such as “may refer” or “may stand”. Only 3
Wikipedia abstracts that fulfilled these conditions did not match any single tag
from Tlast. This was a surprisingly low number but the explanation lies in the fact
that there are many very frequent common words among user-defined tags, such
as “a”, “for”, “with”, “is”, “he”. Since we have not performed any tag filtering on
Tlast, practically every abstract matched at least one element in Tlast. However,
only 30,114 tags of the 182,556 tags in Tlast were matched. For each of the 30,114
tags matched, we computed #wiki(tj), the number of Wikipedia abstracts which
matched the tag tj. Table 10.1 shows some illustrative examples of #wiki(tj) for
several tags.

3http://dbpedia.org/

10.5. Experimental Setup 173

Table 10.1: Examples of tags, corresponding number of Wikipedia abstracts
matched (in English language) and weights computed by our ranking function.

matched tag tj #wiki(tj) w(tj)

a 24,480 0.002

band 7,831 0.066

american 3,177 2.088

rock band 2,593 0.247

songwriter 1,133 0.839

new york 517 11.520

country music 471 0.110

heavy metal band 228 0.039

classically trained 36 0.333

italian baroque 10 4.400

traditional instruments 8 1.500

swedish black metal 4 222.75

electro-indie 2 30.500

warehouse raves 1 4.000

Tags were ranked according to the following weighting function, inspired by
TF-IDF weighting:

w(tj) =
(nwrd(tj))

2 ⋅#last(tj)

#wiki(tj)
(10.1)

with nwrd(tj) being the number of words of tag tj (one, two or three words). With
this weighting function we seek to:

1. demote tags that have been matched with many Wikipedia abstracts (e.g.,
“a”, “and”, “is”, “the”, “in”, “of”), since they have a very high probability
of being noisy;

2. promote tags which we know have already been assigned by users to many
Last.fm artists, since this means they are relevant within Last.fm tag folk-
sonomy;

3. boost the relevance of relatively long tags (2 and 3 words) both because they
are naturally more informative and have less chances of being noisy (hence
the square power).

We could have used a list of stop words to filter out noisy tags. However, we
did not proceed to this step as we found defining “noisy tags” a difficult task in
the context at hand.

Using this ranking function, the top 5 weighted tags are “seen live” (w =
218, 640), “female vocalists” (w = 14, 906), “drum n bass” (w = 11, 124), “brutal

174 Chapter 10. Expanding User-Defined Tag Sets

death metal” (w = 6, 951) and “folk metal” (w = 6, 192). In the list of ranked
tags for each artist ai, all tags with w(tj) < 0.25 were removed to avoid noisy
assignments (albeit excluding some tags such as “band”, “rockband”, see e.g.
Table 10.1). Following these steps, our method could propagate one new specific
tag from Tlast onto 27,157 artists.

10.5.1 Evaluation

We performed both automatic and manual evaluation on the best ranked tag sug-
gestion only, tsug@1 (ai). Automatic evaluation consisted in comparing tsug@1 (ai) with
the new tags actually assigned by Last.fm users to artist ai between February 2008
and November 2008 (recall that ℬlast(ai) data was obtained in February 2008). For
the 27,157 artists for which our method assigned a new tag, we queried Last.fm
webservice to obtain current tag information. We found new user-defined tags
for 20,872 artists (76.8% of 27,157), each having 15.4 new tags on average. Let
us call this set of artists AS1 (for “Artist Set 1”). The remaining 6,275 artists
(not further tagged from February 2008 to November 2008) will be called AS2.
For artists ai in AS1, the set of new user-defined tags (i.e. those tags that were
not in ℬlast(ai) but that users assigned to ai since February 2008) will be named
ℬnudt
last (ai) (“nudt” standing for “new user-defined tags”).
For each artist inAS1, we computed the precision measure P exact

@1 (ai). P
exact
@1 (ai)

is 1 iif tsug@1 (ai) ∈ ℬnudt
last (ai). This measure gives us an indication on whether our

system can replicate the tagging behavior of Last.fm users during a 10-month
period. We also defined the following, more permissive, yet informative precision
measures: P all

@1(ai) and P some
@1 (ai). P all

@1(ai) = 1 iff all words of tsug@1 (ai) are com-
prised in ℬnudt

last (ai), such as, for instance, when tsug@1 (ai) is “Punk Rock” and both
“Punk” and “Rock” are in ℬnudt

last (ai). On the other hand, P some
@1 (ai) = 1 iff some

words of tsug@1 (ai) are comprised in ℬnudt
last (ai), such as when tsug@1 (ai) is “Punk Rock”

and either “Punk” or “Rock” are in ℬnudt
last (ai).

We extended these two last measures to the set of tags ℬlast(ai) (i.e. tags
assigned before February 2008) instead of ℬnudt

last (ai), defining hence P allold
@1 (ai)

and P someold
@1 (ai), so we can measure the relevance of tsug@1 (ai) taking into account

already existing tags. These five measures were computed on a mutually exclusive
basis, in the order presented above. For example, P all

@1(ai) is only computed if
P exact
@1 (ai) was found to be 0. Thus, for artist ai we can automatically compute a

global “tag propagation relevance” measure, P sum
@1 (ai), by summing all the above.

For the 6,275 artists in AS2 (those not further tagged from February 2008
to November 2008) we performed manual evaluation for a random sample of
125 artists, i.e. about 2%. Using the information available in Wikipedia and
in Last.fm artist pages, we manually computed the precision figure Pmanual

@1 .
Pmanual
@1 (ai) = 1 iff tsug@1 (ai) relates to:

1. a possible music genre for the artist, or

10.6. Results and analysis 175

2. a specific style/attitude of the artist, or

3. a geographic location relevant to the artist’s biography, or

4. relevant relations of the artist with other musical items (other artists, as
e.g. former bands, record labels, etc.).

Pmanual
@1 (ai) = 0 otherwise, i.e. incorrectly extracted, incomplete, ambiguous,

irrelevant or uninformative tags were considered incorrect.

10.6 Results and analysis

Results of automatic evaluation on AS1 and manual evaluation on AS2 are pre-
sented in Table 10.2.

Table 10.2: Results of automatic evaluation for artist set AS1 (20,872 artists)
and of manual evaluation for a random 2% sample of AS2 (125 artists).

AS1 % # artists (out of 20,872)
P exact
@1 6.30% 1315

P all
@1 11.40% 2379

P some
@1 8.05% 1681

P allold
@1 18.07% 3771

P someold
@1 3.21% 669

P sum
@1 47.0% 9815

2% AS2 % # artists (out of 125)
Pmanual
@1 56.8 % 71

Global precision is 47.0%. This can be broken down as follows: In 25.75%
of the cases, the suggested tag corresponds fully or partially to a tag actually
attributed by users in the 10-months period in question. Otherwise, in 21.28%
of the cases, some parts of the suggested tag correspond fully or partially to a
previously attributed tag. Manual evaluation of artists from AS2 yields a better
result, 56.8%. In addition to global values shown in Table 10.2, in Figure 10.2
we present the detailed performance of our tag suggestion method with respect
to the number of tags previously attributed to each artist (i.e. tags in ℬlast(ai)).
The number of tags attributed to a specific artist ranges from 0 to 100 (note
however that although the maximum number of tags allowed in Last.fm is set to
100, tags in an artist’s “tag bag” can vary over time).

176 Chapter 10. Expanding User-Defined Tag Sets

Figure 10.2: Variation of precision with respect to number of previous tags.

10.6.1 Automatic vs manual evaluations

Since there is a difference of about 10 percentage points between the results
for Pmanual

@1 and for P sum
@1 , we performed additional manual evaluation on AS1

in order to test whether such difference is due to differences between the two
artist sets AS1 and AS2, or due to a possibly restrictive nature of the automatic
evaluation procedure we proposed. By manually evaluating a 1% random sample
of AS1 (i.e. 208 artists) we found 132 relevant tsug@1 (ai) suggestions, corresponding
to a precision value of P 1%

@1 = 63.5%. This is considerably higher than P sum
@1 ,

suggesting that our automatic evaluation procedure is probably too strict (see
section 10.6.3).

10.6.2 Particular case of Long Tail artists

In Figure 10.2, we can see that our method has higher precision for artists with
larger number of tags. For instance, it appears that for artists with 5 or less tags,
our method has a precision of only around 20%. However, one should take into
account that the automatic evaluation procedure depends on the overlap between
the tags that our method suggests and the gold-standard tags (both the newly-
and previously-assigned tags). Hence, the probability of matching gold-standard
tags is naturally higher for artists with many tags, and lower for artists with
very few tags. Therefore, the apparently low precision for artists with few tags
shown in Figure 10.2 may be misleading. This led us to manually evaluate the
results of our method on a random sample of 100 artists with 5 or less tags in
ℬlast(ai). This manual evaluation resulted in a precision of 61%, confirming that
the automatic evaluation procedure is indeed too strict, especially for Long Tail

10.6. Results and analysis 177

artists, and that performance of our method on these artists is amenable to that
obtained for the “most popular” artists in Last.fm.

Furthermore, the automatic performance measure hides the fact that our data
is extremely unevenly distributed: artists with a lot of tags represent a very small
portion of the data while artists with very few tags or not at all are the great
majority. So, a smaller precision for artists with few tags may still mean many
good tag attributions. Thus, it is also interesting to look at our data under
a difference angle: considering only the 9815 artists to which our method did
suggest a correct new tag. Figure 10.3 shows the distribution of those artists
with respect to the number of previous tags.

Figure 10.3: Distribution of artists with correct tag suggestions with respect to
number of previous tags.

In Figure 10.3 we can observe that when our method does assign new correct
tags, it does so mostly at the two edges: (i) artists that had none or very few
tags and (ii) artist with many tags (> 98 tags). That is, artists in the Long Tail,
as well as “popular” artists. While there might be evaluation-dependent reasons
that can explain the performance peak for “popular” artists (e.g. larger overlap
with gold-standard), the performance for artists with few tags shows that our
method does a relatively good job in the Long Tail, which is precisely where it is
most needed.

10.6.3 Further error analysis

With the manual calculation of P 1%
@1 for a sample of 208 artists and its compari-

son with P sum
@1 , we argued above that our automatic evaluation procedure is too

restrictive, and that the manual evaluation may give a better picture of the actual

178 Chapter 10. Expanding User-Defined Tag Sets

performance of our method. Indeed, a deeper analysis of the differences between
automatic and manual evaluation unveiled many situations (42% of the 208 artists
sample) where tag propagation does add novel and relevant information about
the artist, but the 5 automatic performance measures fail to score it accordingly,
because user tagging behaviour between February and November 2008 has been
different (but not necessarily incompatible).

For example, there are several cases where tsug@1 (ai) refers to record labels (e.g.
[universal records] for the band “Denver Harbor”, or [infectious records] for “The
D4”), or to additional activities of the artist (e.g. [project runway] for artist
“Heidi Klum”, reflecting presence of the artist in a TV program). In other cases
the additional tags assigned by users are actually irrelevant while tsug@1 (ai) is correct
(e.g. [hip hop] is a valid tag suggested by our method for “Gloria Velez”, while
Last.fm users have not provided any relevant tag for the artist).

Error analysis revealed that there are two main causes of error: (i) incomplete
tag extraction in 26% of the cases, and (ii) incorrect matching of Wikipedia page
due to ambiguity in names in 8% of the cases. For instance artist “Ella Koon”
was assigned the tag [french], when the relevant tag would be [french polynesia].
However, the tag [french polynesia] does not exist in Last.fm tag folksonomy,
so only the known part of it (i.e [french]) was extracted. Another example is
the suggestion of [outstanding] to artist “Heinrich Wilhelm Ernst”, while the
relevant tag would have been [outstanding violinist]. “Oil on Canvas” is a rather
obscure band listed in Last.fm but is listed in Wikipedia as a live album by the
British band “Japan”. Our simple disambiguation mechanism based on frequent
music-related keywords, while relatively efficient in avoiding ambiguous names
from other domains, is not able to avoid these ambiguous cases inside the music
domain.

It is interesting to note that some tags considered correct by our automatic
evaluation procedure seem to be relatively uninformative. These include both
very frequently used (and thus highly ranked) tags such as “new”, “music” or
“best”, as well as relatively obscure, vague or even noisy tags such as “pablo”,
“sven”, “oc”, “e”, which end up being promoted by our ranking function because
they are included in only a small number of Wikipedia abstracts. All these tags
are, nevertheless, part of Last.fm folksonomy. Other borderline cases are those
of “redundant” tags. For example, when the tag [charlotte perrelli] is assigned to
artist “Charlotte Perrelli”, and [cowie] to “Chris Cowie”. These are valid tags (i.e.
used by Last.fm users), but we may wonder whether they are really informative
in the context of these artists.

10.7 Conclusions

We presented a method for propagating tags mined from Wikipedia abstracts to
Last.fm artists which achieved encouraging results. We showed that our method

10.7. Conclusions 179

has good performance even for artists that had very few tags previously assigned
by users. Therefore, we claim that the proposed method represents a useful
contribution for addressing the “cold-start” problem typical of Web 2.0 social
tagging environments.

We also illustrated the potential usefulness of transferring information from
one socially-edited environment to another. Thus, despite the fact that we have
only addressed one very specific scenario, i.e. we used Wikipedia to mine rele-
vant tags for artists in Last.fm, we believe that our method can be generalized
in two ways. First, we can use Wikipedia to obtain relevant tag information
about other entities (i.e. not just music artists) addressed by other Web 2.0 com-
munity sites. Second, we might use alternative socially-edited media, not just
Wikipedia, for mining additional relevant tag information (e.g. from blog RSS
feeds). With minor changes, we believe that this method can be applied to many
other situations.

Chapter 11

The Suggestion of Keywords for Ads

In this chapter1, we will continue to analyse questions related with less traditional
lexical items and, again, we will look at a practical problem: the automatic expan-
sion of a seed set of keywords to help advertisers assign the best keywords to their
on-line ads. Due to its very high economical impact on web related business, the
problem of keyword suggestion for on-line advertisement purposes has received
significant attention lately. Similarly to Web 2.0 tags and topic label, keywords
related to ads exist in a very specific semantic space and have their own set of
idiosyncratic characteristics. We will formulate the keyword suggestion task on
top of the notion of functional similarity : suggested keywords are supposed to
be functionally similar, in the scope of web advertisement, to those provided as
seed by the advertiser. We will further refine this idea and introduce the concept
of local synonym which will provide the basis for our keyword suggestion mecha-
nism. More specifically, local synonyms are lexical items that can be interchanged
seamlessly in a well defined scope (i.e. they play the same function in a certain
region of the semantic space). In this setting it becomes straightforward to use
a Vector Space Model approach for computing these local synonyms based on
information about keyword co-occurrence mined from previous ads.

What is not straightforward is how this procedure should be evaluated, since
there are no gold standards for this type of tasks, nor it is possible to manually
verify the validity of the local synonyms obtained. Thus, we propose a novel
evaluation framework for this type of systems, which consists in comparing the
proposed method against a legacy method, in a real-world on-line scenario. We will
also propose several metrics for quantifying the usefulness of method presented
from the point of view of the advertiser, and the potential impact on the revenues
of the ad broker as a result of better trigger keywords.

1Most of the material in this Chapter was originally published in Lúıs Sarmento, Paulo

Trezentos, João Gonçalves and Eugénio Oliveira “Inferring Local Synonyms for Improving Key-

word Suggestion in an On-line Advertisement System” [STGO09].

181

182 Chapter 11. The Suggestion of Keywords for Ads

11.1 Introduction

Internet advertisement is one of the main funding sources for many web services,
and is the key component for a cost-free Web for the user. There are two types
of ads: (i) display ads, which are composed by a banner (possibly animated) and
are mainly used by larger advertisers, and (ii) text ads, which include a title, a
short abstract describing the product or the service being announced, and URL
pointing to the web site of the advertiser. In this chapter, we will focus on text
ads because, typically, display ads are not based in keyword-targeting.

When setting a campaign with text ads, advertisers are asked to associate a
list of keywords2 that describe the context in which the ad should be placed3.
Keyword Targeted Advertisement Systems, such as Google’s AdWords, places ads
in the result page of web searches. They try to match search terms with the
keywords associated with the ads to select the most relevant ones. On the other
hand Content-Targeted Advertisement Systems, such as Google’s AdSense, focus
on placing ads on content-rich sites, like newspapers or web logs. These sys-
tems perform content analysis in order to extract descriptive terms that will be
matched against the keywords ads, so that the most appropriate ads for the con-
tent at stake are selected. Thus, advertisers are specially interested in describing
their ads using more and better keywords so they can increase the number of times
their ads are printed and clicked by web users, while keeping their overall cost per
click (CPC) low, and thus getting a better value for their campaigns. However,
because of lack of experience or support, in many cases advertisers end up associ-
ating only few keywords (1 to 5) to their ads, which are not enough for describing
all possible contexts where their ads would be relevant. Hence, many otherwise
relevant and highly focused ads are not even considered for placement because
the keywords provided by the advertiser are not enough (in number and diver-
sity) to be matched with the appropriate target contexts (either search terms or
descriptive terms extracted from content). When no better option exists, brokers
place generic ads, but since these are not really targeted for the specific context
at stake they have less chances of being clicked by web users. In a pay-per-click
scenario, this means less revenue for the broker. In order to reduce this problem,
brokers provide keyword suggestion tools, such as Google’s AdWords Tools4 or
Overture’s Keyword Selection Tool5. Given an initial list of keywords provided
by the advertiser, keyword suggestion tools generate a ranked list of relevant and
(ideally) non-obvious keywords for the advertiser to choose from and associate to

2The business terminology for these “keywords” is “bids”, since they are later involved in a
process where ads are chosen to be printed through an election.

3In fact, keywords (or bids) are usually associated with a group of ads that are shown
alternatively in order to provide some diversity. For simplicity reasons, throughout this chapter,
we will use the term “ad” for referring to such “group of ads”.

4https://adwords.google.com/select/KeywordToolExternal
5http://sem.smallbusiness.yahoo.com/searchenginemarketing/

11.2. Related Work 183

its ad, thus enriching the corresponding keyword description.

In this chapter, we present a keyword suggestion mechanism intended for
supporting content-targeted advertisement systems. The system proposed mines a
database containing previously submitted ads to infer similarity relations among
the corresponding keywords, and uses such information for suggesting relevant
and non-obvious keywords to assist new advertisers. By mining the ads database,
we try to identify keywords that can be interchanged, i.e. which can be considered
local synonyms in the universe of known keywords already associated to ads.
Suggested keywords are ranked using a function that takes into account both
the overlap and the average similarity with keywords provided by the advertiser.
The ranking procedure we propose provides an implicit sense-disambiguation, and
ensures that suggestions are sense-compatible with the keywords previously given
by the advertiser. We perform on-line experiments and compare the results of
our method with an alternative legacy method. Additionally, We propose several
novel evaluation measures, and we show that our keyword suggestion method
outperforms the legacy suggestion method on all these measures, in practically
all situations.

11.2 Related Work

Briefly, keyword suggestion tools operate according to few different high-level
strategies, sometimes in combination. One approach consists in using informa-
tion extracted from web search logs. Keyword suggestions are those queries that
lexically include some of the keywords given by the advertiser (e.g. “holidays in
Corfu” given “Corfu” or “holidays”). The major limitations of this strategy are
(i) the inability of the system to suggest keywords that are relevant but lexically
dissimilar, and (ii) the inability to filter out suggestions generated from ambiguous
seed keywords. Also, obtaining access to web search logs is not trivial. A second
type of approaches consists in using existing lexical-semantic resources, such as
thesauri, to perform suggestions. The main limitation of this type of methods is
the low recall of the suggestion method since existing resources usually have very
low recall and coverage (specially for languages other than English) on many im-
portant word classes, such as toponyms, names of entities, and words associated
with brands or product models (e.g. “Minolta x-700”). A third strategy, which
can be applied when the ads database has a large number of ads and enough
variety of keywords, consists in mining keyword co-occurrence information from
the ads database itself in order to infer relations between keywords chosen by
previous advertisers. New keyword suggestions are chosen taking into account
such learned keyword relations. This strategy explores the fact that keywords
stored in the ads database have been subjected to manual selection, and are thus
probably relevant for “similar” ads. In this chapter, we present a keyword sug-
gestion method that follows such strategy. However, this type of methods are

184 Chapter 11. The Suggestion of Keywords for Ads

unable to suggest keywords out of the set of those that have already been used
(although as the ads database becomes larger and more diverse this might not
be such a severe problem). To overcome such limitation, some methods try to
infer keyword relations by mining the web. In these cases, possible suggestions
are found among the keywords that co-occur with user provided keywords on a
set of documents / snippets found on the web (e.g. using a search engine). The
main problems of this type of strategies are (i) the complexity of the procedure
for extracting keywords from web documents (which can lead to many noisy sug-
gestions), and (ii) the less than ideal response times for real-time processing, since
pre-processing is not viable.

Joshi and Motwani introduce TermNet [JM06], a graph-based technique for
identifying semantic relations between keywords using information extracted from
search engines. Given a keyword ki, the method builds a characteristic document
from text snippets extracted from the top 50 documents found querying a search
engine for that keyword. Text snippets are sentences from those documents con-
taining ki. Using the corresponding characteristic documents it becomes possible
to compute the directed relevance between pairs of keywords. The authors con-
sider that relevance between two keywords should not be symmetric, in the sense
that if kj is a relevant keyword suggestion for ki, it does not necessarily mean
that ki is a relevant suggestion for kj. The directed relevance of kj to ki is com-
puted as the frequency of kj found in the characteristic document of ki. The
resulting directed graph, which expresses the directed relevance between pairs of
keywords, is used to perform suggestion. The most interesting keywords for ki are
those whose edges point to ki. Additional filtering based on tf-idf weights [SM86]
can be performed to remove very frequent, and thus less interesting, suggestions.
Evaluation is performed by comparing the list of keywords generated for 100 key-
words by TermNet and by five other systems. Manual assessors where asked to
judge the list for Relevance and for Non-Obviousness (i.e. suggestion does not
contain the initial keyword), and metrics of precision and recall for these indica-
tors were computed. For the top 50 suggestion, precision of TermNet is close to 1
for both Relevance and for Non-Obviousness. When comparing to other methods
TermNet performs better in almost all studied indicators.

Abhishek and Hosanagar present Wordy [AH07], a similar approach that aims
at suggesting keywords that are relevant but at the same time have low frequency
and, thus, smaller bidding cost for the advertiser6. For a given keyword, the idea
is to suggest many relevant words with a frequency/cost as low as possible in
order to allow the same effect of using high frequency/cost keyword, but with
much less global cost for the advertiser. Wordy starts by mining the website of
the advertiser to find a set of seed keywords based on their tf-idf values. These

6This is a rather strong simplification assumption because in practice the relation between
frequency and cost of the keyword is not direct. In fact, some low frequency keywords can have
very high bidding costs since they are very discriminative of a marketing target.

11.2. Related Work 185

will compose the initial dictionary D0. In order to expand D0, a search engine
is queried and the top ranked documents retrieved for each keyword in D0 are
added to the corpus. Filtering the corpus by tf-idf allows to expand D0. As in
[JM06], a search engine is queried for each keyword in D0, and the top ranked
documents are used to build the corresponding vector description (again weighted
and truncated by tf-idf). Pairwise keyword similarity is computed using a kernel
equivalent to inner product of the corresponding vectors. The resulting graph
is used to perform suggestions: cheaper keywords are found by searching the
graph for keywords that are similar and at the same time have lower frequency.
The author, however, does not conduct evaluation of the proposed method. In
particular, this approach can potentially lead to a decrease in the conversion
rate (the ratio of users that actually perform the desired action, such as for
example purchasing a product), since lower cost keywords may be too far away
from the initial context and thus attract users who will find themselves being
offered something that they were not expecting.

An alternative approach is proposed by Chen et al. [CXY08]. Instead of
using co-occurrence statistics for finding related keywords, the proposed method
maps seed keywords onto a concept hierarchy, which is supposed to capture the
advertisers goal better than the list of keywords. Once seed keywords have been
mapped to the hierarchy, new keywords can be suggested by selecting phrases
associated with the closest nodes in the hierarchy. The authors derive the concept
hierarchy from the Open Directory Project (ODP), which contains a large set of
web pages. First, concepts are derived from the categories of the ODP and are
assumed to be organized under a is-a hierarchy. Then, phrases associated with the
web document under each category are matched with the corresponding concept
node (and with all the parents up the hierarchy). A tf-idf -like formula is used
to compute the degree of association of phrases with each node, ensuring that
phrases that are more peculiar to a given category have a higher weight in the
corresponding node. Given a list of seed keywords, the method is able to find
the nodes in the hierarchy with higher degree of similarity with them (which may
include, for example, the common ancestor of several matching nodes), and then
suggest the corresponding phrases as keywords. When ambiguous seed words
are given (i.e. which may be mapped to nodes with distinct senses, having no
common ancestor except the top node of the hierarchy) suggestions can be made
separately, thus avoiding list of suggestions that mix multiple senses. Authors
have shown this property by comparing results of their method against suggestion
generated by Google’s, Overture’s and WordTracker’s suggestion tools for the
word “matrix”. The authors, however, do not address the issues related with the
low concept coverage that usually affects concept hierarchies.

Although not explicitly addressing keyword suggestion, the work by Carraco
et al. can be useful while developing keyword suggestion methods [CFLZ03].
The authors propose a method for clustering the advertisers × keyword bipartite
graph, with the purpose of finding sets of advertisers and sets of keywords that are

186 Chapter 11. The Suggestion of Keywords for Ads

more strongly connected than the rest of the data set. Such cluster can be seen as
submarkets, i.e. groups of advertisers that show a common bidding behaviour, and
keywords related to the same marketplace. Thus, keywords corresponding to such
well defined market places can be suggested to advertisers that have been found to
belong to the corresponding group. However, such strong stereotyping will tend
to reduce the diversity of keyword suggestion, thus, excluding many otherwise
interesting suggestions, specially for those advertisers who do not fit perfectly in
a submarket. Also, inside each submarket the cost per click for each keyword will
tend to increase, since all advertisers will be bidding for approximately the same
set of keywords.

11.3 Method Description

In this section, we will describe the keyword suggestion method we propose. Let
A be the set of advertisements composed of ∣A∣ ads A =

{

a1, a2, ...a∣A∣

}

. Each ad
can be represented by a tuple of the form ai = (ti, di, Ki), where ti is the title, di is
a short description and Ki is the list of ∣Ki∣ keywords provided by the advertiser,
Ki =

{

ki1, ki2, ...ki∣Ki∣

}

. Given a list of seed keywords K0 = {k0
1, k

0
2, ...} we wish to

develop a keyword suggestion function ℱs that generates a ranked list of keyword
suggestions ks

1, k
s
2, ks

n that are both relevant and non-obvious expansions of
the initial K0 list:

ℱs(K
0) = {ks

1, k
s
2,k

s
n} (11.1)

Let us for now assume that Kseed is composed by a single unambiguous keyword,
i.e. K0 = {k0}. Keyword ks may be considered a good suggestion for Kseed if
it is capable of describing the same context described by k0, or an alternative
but equally relevant context for the ad at stake. That is, both k0 and ks should
be comparable in terms of representing equally relevant (but not necessarily the
same) contexts for the ad, given the ads domain, A. In other words, if advertisers
could only associate one keyword from the domain defined byA to ads, they would
chose keyword k0 or keyword ks instead with approximately equal probabilities.
Keywords k0 and ks are, thus, said to be inter-changeable in the domain defined by
A. From now on, we will use the term local synonyms inA, or simply synonyms, to
refer to keywords that can be inter-changed among ads in A while maintaining the
level of relevancy of the contexts described. We will use the term synonym since
the behaviour of synonym keywords in the A domain is similar to the behaviour
of synonyms words in common language (i.e. they can be inter-changed without
adulterating meaning). Note that in this scope, synonym keywords need not, and
probably are not, equivalent to synonyms in the domain of common language.

We propose a suggestion method whose definition of relevance is related to
the notion of keyword inter-changeability: keyword s is considered a relevant
suggestion for an initial seed list K0 = {k0

1, k
0
2, ...}, if it is inter-changeable with

one or more elements from K0. Additionally, the larger the number of elements

11.3. Method Description 187

of K0 with which ks can be swapped, the more relevant will ks tend to be as a
suggestion for K0. In fact, as we will show later, when ambiguous keywords exist
in the initial seed list the level of inter-changeability can be used for suggesting
correct keywords.

11.3.1 Computing Keyword Synonymy

Two words can be considered synonyms in the domain of keywords associated
with ads set A, if they systematically co-occur with the same previously known
keywords (i.e. with those that have already been selected by advertisers up to
that point). The intuition here is that, if two keywords ki and kj are in fact
inter-changeable, advertisers will associate either one of them to an ad. Thus,
assuming that there are ads concerning the same range of product, in some cases
advertisers will choose to associate ki while in other similar ads will associate
kj, while keeping the rest of relevant keywords. Let us assume that we have
a dataset composed of a large number of ads, collected over the time. We can
compile statistics regarding the co-occurrence of keywords in the lists of keywords
associated with each ad, Kj. Let c(ki) be the vector of keyword co-occurrences
for keyword ki, which contains information about the number of ads (or keyword
lists Kj) in which keyword ki co-occurs with all other keywords:

c(ki) = [⟨k1, fi1⟩, ⟨k2, fi2⟩, ...⟨ki, 0⟩...⟨kn, fin⟩] (11.2)

Let us also assume that there is a feature weighting function W that is used to
ponder features by computing the degree of association between the co-occurring
keywords. W will allow to reduce the relative importance of the co-occurrence
of ki with very frequent, and thus less strongly related, keywords. Let cW(ki) be
the vector that results from applying the feature weighting function to c(ki):

cW(ki) = W(c(ki)) (11.3)

Some common weighting functions have been described in section 3.4. The degree
of synonymy sij between two keywords, ki and kj can now be computed by apply-
ing a generic vector similarity metric S to the two corresponding feature-weighted
co-occurrence vectors:

sij = S
(

cW(ki), cW(kj)
)

(11.4)

Possible instantiations of S have been described in 3.5. A keyword synonymy
graph, Gs, can be obtained by computing pairwise similarity between all co-
occurrence vectors. For some keywords pairs, sij will be null or very low. Filtering
by sij will allow to keep only the strongest synonym links and remove noisy edges.
To allow a more intuitive visual understanding of the graph, sij weights (corre-
sponding to strength of the synonymy relation) can be substituted by distance
weights, which vary inversely with the strength of the synonymy. Thus, nodes
with high degree of synonymy will be located closer to each other than nodes
with a lower degree of synonymy.

188 Chapter 11. The Suggestion of Keywords for Ads

11.3.2 Keyword Suggestion and Ranking

The similarity graph Gs can be used for keyword suggestion in a straight-forward
way. Given a seed keyword, k0

1, relevant keyword suggestions may be found
amongst the nodes of Gs closest to the k0

1 node, i.e. those corresponding to
keywords with highest synonymy values. Suggestions can be ranked by the length
of edges to the seed node: the best keyword suggestions will be located closer to
the seed node. Looking at Figure 11.1 this corresponds to saying that ℱs(k

0
1) =

{ks
A, k

s
B, k

s
C, k

s
D}, ranked by the order shown.

Figure 11.1: Keyword selection and ranking for one seed keyword.

If more than one seed keyword is given then more information describing the
goal of the advertiser is available, which should be used for improving keyword
suggestions. Obviously, extra seed keywords allow finding more relevant keywords
since the number of nodes around seed keywords is expected to grow. But more
important, with more keywords there is the chance of resolving possible ambiguity
related with some ambiguous seed keywords, and suggest only keywords that are
related to the sense that is relevant to the advertiser.

Figure 11.2: Keyword selection and ranking for two seed keywords.

Consider, for instance, that the seed keyword k0
1 from example given in Figure

11.1 is ambiguous, such as k0
1 = “orange” (see Definition 2.4.1). It is possible that

the set of four keywords suggested may correspond to relevant keywords, but only
relevant to one of the different senses of k0

1 (e.g. ks
A = “apple”, ks

B = “banana”,
ks
C = “yellow” and ks

D = “red”). If an additional seed keyword is known, k0
2,

11.3. Method Description 189

then it might be possible to infer which sense of k0
1 is relevant for the advertiser

and exclude incorrect suggestions that are derived from other senses. This can
be done by considering that suggestion that correspond to the correct sense of
k0
1 will probably also be synonyms of k0

2. By intersecting the sets of synonyms
of k0

1 and of k0
2 we will find such keywords, even if they are not the ones that,

individually, have the highest level of synonymy with each of the seed keywords.
Figure 11.2 illustrates on such situation (assume for example that k0

2 = “blue”
and ks

E = “green”), where keywords, ks
C and ks

D, despite not being the ones that
have higher synonymy with any of the individual seed keywords, are the ones that
are synonym with both k0

1 and of k0
2, and should thus be ranked higher than ks

A,
ks
B and ks

E .

11.3.3 Overview of the Suggestion Procedure

In summary, given a list of seed keywords, K0 = {k0
1, k

0
2, ...}, with one or more

keyword seeds k0
i , and the synonymy graph, Gs, our suggestion algorithm works

as follows:

1. for each k0
i ∈ K0 obtain the set of direct neighbours in Gs

Kn
i = {⟨kn

i1, si1⟩, ⟨kn
i2, si2⟩...}

where sij represents the degree of synonym between k0
i and kn

ij as taken
from Gs;

2. merge all sets of neighbours Kn
i in a single set KN , while computing two

parameters for each keyword kN
j ∈ KN :

(a) keyword overlap, oj , as the number seed keywords k0
i to which kN

j is
a direct neighbour (i.e. for which kN

j is found in the corresponding
neighbour set, Kn

i);

(b) average degree of synonymy, avg(sj), as the average degree of synonym
between keyword kN

j and each of the seed keywords to which kN
j is

direct neighbour.

to obtain KN =
{

⟨kN
1 , o1, avg(s1)⟩, ⟨kN

2 , o2, avg(s2)⟩...
}

;

3. Rank KN first by descending values of oi and then by descending values of
avg(si). Keyword suggestion, ks are taken from the top ranked keywords
in KN .

Therefore, keywords that are synonyms of many seed keywords always rank
higher than those that are synonyms of only a few seed keywords. As explained
before, this provides implicit filtering against irrelevant suggestion generated from
ambiguous seed keywords.

190 Chapter 11. The Suggestion of Keywords for Ads

One possible criticism regarding our method is that it might introduce certain
distortions in the bidding process, since it suggest keywords submitted by previous
advertisers to help new advertisers. In a competitive environment, as advertise-
ment bidding is, it would be unfair if new advertisers could benefit from the good
keywords ideas that were submitted by a previous advertisers, who would then
have additional competitors in the bidding process for such keywords.

However, our ranking method indirectly prevents that from happening. As
explained before, suggested keywords that overlap with several input keywords
are ranked higher than those that overlap with only a few keywords. This means
that, in practice, keywords that have already been submitted by more advertisers,
and thus co-occur with more keywords, are placed higher in the ranked lists of
suggestions (suggestions ranked lower are simply filtered out). Thus, our sug-
gestion system tends to suggest keywords that have already been submitted by
more advertisers, while keeping individual “business secrets” hidden. In certain
way, what our keyword suggestion method provides is the “wisdom of the crowd”,
specially to the less experienced advertisers.

In any case, advertisers that rely exclusively on the suggestions proposed,
are always more exposed to competitive bidding. Ideally, advertisers should ap-
ply a strategy that combines automatically suggested keywords, which represent
mainstream traffic, with more “exclusive” keywords, which are less exposed to
competition.

11.4 Evaluation: an On-line Method

Let us start by defining campaign publishing session as the complete set of steps
that an advertiser has to follow to submit one advertisement to the web adver-
tisement system. A campaign publishing session includes (i) choosing the name of
the campaign, (ii) choosing the content of the ad and (iii) choosing the keywords
for the ad, either by typing them in directly, or by selecting keywords provided
by the suggestion system. Obviously, the suggestion systems require at least one
initial seed keyword provided by the advertiser. Once a list of suggestions has
been generated, the advertiser can either pick keywords from a that list or type in
new keywords. The advertiser can then request new keywords suggestion, which
will be generated using the previously added keywords as new seeds. The process
continues iteratively until the advertiser is happy with the list of keywords chosen
and performs final submission of the ad.

Performing evaluation of keyword suggestion systems is not trivial, because it
is an highly application-oriented task, and because no well established standards
exist. Therefore, evaluation can focus on two possible perspectives: (i) semantic
(i.e. relevancy) or formal (e.g. “non-obviousness”) criteria, and (ii) user feedback
(i.e. is the system useful for advertiser?). Most works so far have performed
evaluation by manually testing a small sample of suggested keywords to check

11.4. Evaluation: an On-line Method 191

if they are relevant and non-obvious. When there are ambiguous keywords in
the seed lists, tests focus on checking if the system is able to either separate the
suggestion by possible senses, or automatically infer the sense that best expresses
the purpose of the advertiser. Frequently, authors manually compare keyword
suggestions generated by their methods against those generated by Google’s Ad-
Word’s or Overture’s suggestion tools. Instead, we will perform on-line evaluation
of our method, and compare it against a legacy keyword suggestion system that
has been providing suggestions for the http://anuncios.sapo.pt web advertise-
ment platform for about 5 years (since March 2004). Evaluation will be based
on statistics gathered directly from the behaviour of advertisers. As far as we
know, this is the first time that evaluation of keyword suggestion systems for web
advertisement platforms based on real usage is reported.

We wish to evaluate our method and compare it with the legacy suggestion
system. Moreover, both systems will be assessed regarding (i) the usefulness
of the method for the advertisers, and (ii) how much On-line impact does the
method have in the revenue it is able to generate. More specifically:

∙ Method Usefulness - Do advertisers choose keywords suggested by the new
method frequently? Do advertisers accept suggestions ranked high by the
new system, or do they choose suggestion ranked lower? What is the ratio
of the number keywords directly typed-in by the advertiser vs. the number
of automatically suggested keywords?

∙ Impact on Revenue - Are ads which received keywords suggested by the new
system selected for being printed on web pages more frequently than the
ones which received keyword suggestions generated by the legacy system?
Do they end up being clicked more often, and hence generate more revenue
for the broker?

Given a legacy keyword suggestion function, ℱL, and a new keyword suggestion
function ℱN , one can perform comparative on-line evaluation by having both
systems running in parallel and randomly choosing one or the other to assist the
advertiser in a given campaign publishing session. This means that the keyword
suggestion function is chosen for the entire session: all keywords suggested in
that session are generated by one and only one of the two competing systems.
Let ℱN be activated with probability pN , and ℱL be activated with probability
pL = 1− pN . For each new ad, ai, submitted to the system we keep information
about which function used to generate suggestions (either ℱN or ℱL). Then, for
each individual keyword that the advertiser chooses to associate with the ad, we
log if it was directly typed in by the advertiser, or if it was selected from the set
of keywords generated by the suggestion system that was previously activated for
that specific session.

192 Chapter 11. The Suggestion of Keywords for Ads

11.4.1 Evaluating Method Usefulness

For each campaign publishing session the following information is logged for all
keywords, kij , associated with ads submitted by advertisers, ai:

∙ source, ∫ (kij), whether the keyword was directly typed in by the user
(∫ (kij) = U), or was suggested by one of the two available suggestion func-
tions, the legacy suggestion function, ℱL (∫ (kij) = L), or the new suggestion
function ℱN (∫ (kij) = N).

∙ rank, r(kij): the position at which the keyword was ranked in the list of
suggestions, when suggested by ℱL or ℱN .

∙ iterations until selection, i(kij): the number of the suggestion iterations
used by the advertiser until the keyword was added to the ad.

Based on these statistics we can compute several indicators for each ad. The first
is the ratio between the number of automatically suggested keywords and the
total number of keyword associated with the ad, including those directly typed in
by the user. Let ∫user(i) be the number of keywords associated with ad ai directly
typed in by the user, and ∫auto(i) be the number of keywords suggested by either
ℱL or ℱN (only one of the suggestion function is used for each ad). Then, the
automatic suggestion ratio for ad ai is given by:

Sr(i) =
∫auto(i)

∫user(i) + ∫auto(i)
(11.5)

Values of Sr(i) will range from 0 to 1. Values higher than 0.5 mean that users are
accepting more keywords suggested by the automatic suggestion system than the
one that they are typing in. For each suggestion function, a global performance
figure, avg(Sr), can be obtained by averaging Sr(i) over all ads with keywords
suggested by that function. The suggestion function – ℱL or ℱN – that has higher
avg(Sr) can be seen as more useful for the advertiser.

Data regarding the position at which the suggested keyword was ranked in
the list of suggestions, r(kij), will help to test if ranking procedure is compatible
with implicit preferences of the advertiser. If ranking procedure is efficient, top
ranked keyword suggestions should be chosen more frequently than the others.
For each ad ai we can compute:

∙ average suggestion rank,ℛ(i): the average of rank of the suggested keywords
selected, r(kij);

∙ T@1(i): the fraction of suggested keywords at rank 1 selected by the user;

∙ T@10(i): the fraction of suggested keywords up to rank 10 selected by the
user;

11.4. Evaluation: an On-line Method 193

Again, global performance figures can be obtained for each suggestion function
by averaging the previous statistics, ℛ(i), T@1(i) and T@10(i), over all ads with
keywords suggested by that system, to obtain avg(ℛ), avg(T@1) and avg(T@10),
respectively.

Finally, the number of iterations until selection, i(kij), will allow us to evaluate
the period during which the suggestion system is capable of presenting novel
useful keywords that are still relevant to the advertiser. For each ad ai we can
compute ℐ(i), the average on number of the iterations at which the suggested
keywords were chosen (always larger that one). A global performance value for
each of the suggestion function can again be computed by averaging ℐ(i) over all
ads with keywords suggested by the system at stake to obtain avg(ℐ).

11.4.2 Impact on Revenue

We also wish to compare the impact of using the new suggestion function ℱN on
indicators associated with the revenue that ads are capable of generating. We
have the following run-time information available for all keywords, kij, associated
with an ad ai:

∙ #imp(i, j): the number of times that ad ai was selected for being printed in
a web page as a result of the bid associated with keyword ki,j;

∙ #clk(i, j): the number of clicks on ai after being printed on a web page as
a results of a bid on keyword ki,j

For each suggestion function we can compute the following set of statistics re-
garding the generated keywords:

∙ average keyword printability, avg(Pk), the average number of ad prints that
were made as result of a bid placed on a suggested keyword;

∙ average keyword clickability, avg(Ck), the average number of clicks made on
ads that were printed as result of a bid placed on a suggested keyword;

∙ keyword printabilty efficiency, �(Pk), the fraction of suggested keywords that
lead the corresponding to ad being printed;

∙ keyword clickability efficiency, �(Ck), the fraction of suggested keywords that
lead the corresponding ad being clicked;

We can also compute statistics that reflect the overall impact of the suggestion
systems on the ads. Based on counts #imp(i, j) and #clk(i, j) regarding automat-
ically suggested keywords only, we can compute:

∙ average ad printability, avg(Pa): the average number of times an ad is
printed as result of an automatically suggested keyword;

194 Chapter 11. The Suggestion of Keywords for Ads

∙ average ad clickability, avg(Ca): average number of times an ad is clicked
as a result of an automatically suggested tag;

∙ average click through rate, avg(CTR): ratio between avg(Ca) and avg(Pa)

From all these statistics, clickability related ones – avg(Ck), �(Ck) and specially
avg(Ca) – are the ones that best reflect the impact of the suggestion system on
the revenues of the broker. However, printability statistics – avg(Pk), �(Pk) and
specially avg(Pa) – are also extremely important because they reflect whether
suggested keywords help the broker in choosing content-targeted ads instead of
printing default ads, which are content-agnostic. As explained in the introduction,
the incapability for choosing appropriate content specific ads to be printed due to
the absence of keywords provided by the advertisers is one of the main problems
that brokers face.

11.5 Experimental Set-Up

For computing keyword synonymy by the process described in section 11.3.1, we
used a set of 84,180 ads, compiled over a period of about 5 years, during which
the web interface used by advertisers only had the legacy suggestion function
available. In average, these ads have 14.14 keywords, but 63% only have one
keyword associated and almost 70% have 5 or less keywords associated. Ads with
more that 75 keywords (2022) were ignored to avoid catch-all ads that have long
lists of keywords, most of them semantically unrelated. Ads with duplicate lists
of keywords (8434) were also ignored since we considered that they do not bring
useful synonym information. For the set of valid ads, we compiled all keyword
co-occurrence pairs. We obtained co-occurrence information for a set of 122,099
keywords.

Each of these keywords was represented by a feature vector whose components
are the values of the co-occurrence with other keywords (see Equation 11.2). Vec-
tors components were then weighted by Mutual Information [CH90] (see section
3.4.3). Next, all-against-all vector comparison using the cosine metric (see section
3.5.1) was performed in order to obtain the keyword synonymy graph, Gs. For
each node (i.e. keyword) we kept only the top 100 closest nodes (i.e. most similar
keywords), in order to simplify the link graph.

Given the synonymy graph, Gs, and the ranking procedure described in section
11.3.2 we set up the new keyword suggested function, ℱN running side by side
with the existing legacy function ℱL in the web platform dedicated to advertisers.
The legacy function ℱL combines three methods for suggesting keywords from the
list keywords directly typed in by the advertiser:

1. using the OpenOffice thesaurus for Portuguese7 to find related words;

7Available through ptopenthesaurus.caixamagica.pt

11.6. Results and Analysis 195

2. selecting from the query logs of a commercial web search engine the most
frequent search queries that lexically include the user defined keywords (this
tends to generate a very high number of suggestions);

3. select those keywords from the ads already in ads database that lexically
include user defined keywords.

When starting a new campaign publishing session, one (and only one) of the
two suggestion function, either ℱN or ℱL, is activated with 50% probability.
The activated suggestion function is then used throughout the entire publishing
session, so that all keywords suggested for a given ad come either from ℱN or
from ℱL.

We kept this configuration running for a period of 15 weeks. Unfortunately,
most of advertisers already have predefined lists of keywords for associating with
their ads, so only a small subset of them (approx. 5%) actually uses automatic
keyword suggestion. Therefore, we only compared 192 ads for which at least one
keyword was suggested by either one of the two suggestion function available: 69
ads have keywords suggested by ℱN and 132 ads have keywords suggested by ℱL.

11.6 Results and Analysis

We will present statistics considering two possible analysis scenarios: (1) including
all ads, even those that can be considered catch-all ads8 (ℱall

N and ℱall
L), and (2)

by including only ads with no more than 75 keywords (ℱ75
N and ℱ75

L). Table
11.1 presents some statistics about the ads analyzed in both scenarios, for each
suggestion function. We present (i) the number of ads that use each suggestion
function, #ads, (ii) the average and median number of keywords associated with
each ad, avg(#kwrd) and med(#kwrd), and (iii) the average and median number
of keywords automatically suggested by the active suggestion system, avg(#sug

kwrd)
and med(#sug

kwrd). Scenario 1 includes about 20-35% more ads than Scenario 2, i.e.
it includes those ads that can be considered catch-all ads. Also, in both scenarios
advertisers tend to select (per ad) more keywords suggested by ℱN than by ℱL,
even in Scenario 2 in which the average number of keywords per ad is similar.

However, there are less ads with keywords suggested by ℱN (69) than there
are ads with keywords by ℱL (132). One possible explanation for this is the
inability of ℱN to suggest keywords as a response to “unknown” keywords input
by the advertisers (i.e. to keywords that have not been found in ads used for
generating the link graph). If the first and only keyword directly provided by the
advertiser is one of such unknown keywords, no suggestions can be made, which
will leave the advertiser frustrated, making them possibly quit the session. When

8Catch-all ads are those ads to which advertisers have more or less indiscriminately associ-

ated hundreds or thousands of keywords in order to cover a wider range of possible contexts.

196 Chapter 11. The Suggestion of Keywords for Ads

restarting the procedure later, there are chances of ℱL being chosen as the active
suggestion function, which does not suffer from this problem so severely.

Table 11.1: Statistics about the ads compared under both scenarios.

Scenario 1 Scenario 2

ℱall
L ℱall

N ℱ75
L ℱ75

N

#ads 132 69 103 51

avg(#kwrd) 51.3 93.2 27.7 27.8

med(#kwrd) 6 11 4 8

avg(#sug
kwrd) 19.1 32.8 7.5 11.3

med(#sug
kwrd) 3 8 2 6

11.6.1 Method Usefulness

Table 11.2 shows statistics related with how advertisers use suggestion functions.
Specifically, it presents values regarding suggestion ratio, avg(Sr), average sug-
gestion rank, avg(ℛ), the ratio of keywords at rank 1 and up to rank 10 selected
by the user, avg(T@1) and avg(T@10), and the average number of the iteration at
which suggested keywords were selected, avg(ℐ).

Table 11.2: Statistic regarding advertiser’s use of the suggestion function.

Scenario 1 Scenario 2

ℱall
L ℱall

N ℱ75
L ℱ75

N

avg(Sr) 0.37 0.35 0.27 0.40

avg(ℛ) 154.9 129.1 65.1 27.6

avg(T@1) 0.09 0.14 0.06 0.32

avg(T@10) 0.17 0.20 0.22 0.49

avg(ℐ) 1.04 1.32 1.14 1.34

There are significant differences between both scenarios, which confirms that
there are in fact good reasons for considering these two separate scenarios. Except
for one case, ℱN scores better in all indicators. Statistics avg(ℛ), avg(T@1) and
avg(T@10) show that advertisers tend to pick suggestions ranked higher when using
ℱN than when using ℱL. This is specially so in Scenario 2, where comparison is
not biased by the very long lists of keywords associated with catch-all ads. The
higher value of avg(ℐ) shows that advertisers requests suggestion more often when
using ℱN . Statistic avg(Sr) relates the number of suggested keywords selected
by the user with the one he/she directly types and shows a different behaviour.

11.6. Results and Analysis 197

In Scenario 1, both ℱN and ℱL have very similar and relatively high values for
avg(Sr), which is not surprising since advertisers wishing to create catch-all ads
will tend to pick as many words as possible more or less indiscriminately. However,
in Scenario 2, where advertisers are expected to be more selective, one can see
that avg(Sr) increases for ℱN and drops significantly for ℱL. The average number
of iterations, avg(ℐ), is always higher for ℱN , but this is probably related to the
fact that the first iteration of ℱN tends to generate a small number of suggestions
if the advertiser has only given one seed keyword. Therefore, in such conditions
advertisers will almost always have to request additional suggestion iterations.

11.6.2 Impact on Revenue

Table 11.3 presents statistics about the contribution of suggested keywords to
the number of times ads are printed and clicked (i.e. all these statistics take into
account only data coming from suggested keywords).

Table 11.3: Printability and clickability statistics per keyword suggested

Scenario 1 Scenario 2

ℱall
L ℱall

N ℱ75
L ℱ75

N

avg(Pk) 6865.4 13896 1065.4 2679.0

avg(Ck) 10.0 9.7 0.80 2.35

�(Pk) 0.17 0.18 0.11 0.22

�(Ck) 0.071 0.08 0.048 0.10

There are several significant facts in these statistics. First, there is a very
large difference in the number of average prints and clicks generated by suggested
keywords between both scenarios. This basically suggests that there are a few ads
in Scenario 1 that generate an enormous amount of prints and clicks, and that
are not included in Scenario 2. We manually verified the presence of a few of such
“outliers”. The second interesting fact is that the number of prints generated by
keywords suggested by ℱN is always much higher. For Scenario 2, such difference
is more than 150%. As for the average number of clicks per ad due to suggested
keywords, avg(Ck), the situation is a bit different. While in Scenario 1, avg(Ck),
is quite similar for both ℱN and ℱL, in Scenario 2 ℱN scores almost three times
as much. If we look at keyword printabilty and clickability efficiencies (i.e. the
fraction of suggested keywords that actually generate a print and then a click),
�(Pk) and �(Ck), in all cases keywords suggested by ℱN score higher. Again, in
Scenario 2, ℱN , outperform keywords suggested by ℱL at least 100%.

Results presented in Table 11.4 summarize the impact of the suggested key-
words on the overall printability and clickability of ads. Statistics avg(Pa) and

198 Chapter 11. The Suggestion of Keywords for Ads

avg(Ca) indicate, respectively, the average number of times that ads are printed
and clicked due to a bid on any of their suggested keywords.

Table 11.4: Printability and clickability statistics for ads based on suggested
keywords only.

Scenario 1 Scenario 2

ℱall
L ℱall

N ℱ75
L ℱ75

N

avg(Pa) 131,279 450,713 7,995 30,309

avg(Ca) 191.5 312.1 5.99 26.59

avg(CTR) (×10−3) 1.45 0.69 0.74 0.87

Again, in both scenarios these printability and clickability statistics, avg(Pa)
and avg(Ca), are higher for ads with suggestions from ℱN . In Scenario 2, ads with
suggestions from ℱN are printed and clicked approximately 4 times more then ads
with keywords suggestions coming from ℱL. The click-through rate is also about
17% higher for ℱN ads. However, although in Scenario 1 ads with keywords from
ℱN do generate more prints and clicks than those with keywords from ℱL, the
click-through rate of the last is much higher than of the first. The reason for this
is related to a small set of atypical ads. Figure 11.3 compares click-through rates
(CTR) at several values for the threshold on the maximum number of keywords
for an ad to be considered valid. It shows that CTR values are higher for ads
with keywords from ℱN when the threshold is lower than 100 keywords, except
for one case (threshold=50). It also clearly shows a peak for ℱL when threshold
is set 200, as a result of a few outliers found in that range. Given these results,

Figure 11.3: CTR for ads with keyword suggested by ℱN and ℱL, at several
thresholds on the maximum number of keywords.

11.7. Conclusion 199

and excluding the influence of the outliers which we believe would be much less
significant if more data was available, it is quite reasonable to say that ℱN can
almost always lead to ads with better CTR values than those obtained by ads
with keywords suggested by ℱL. In any case, from an absolute point of view,
keywords from ℱN generate more prints and clicks in both scenarios.

We will now analyse these values taking into account statistics concerning all
ads submitted by advertisers during the test period. We will only analyse ads with
no more than 75 words. At this threshold, there are 2684 ads with no keywords
automatically suggested by any of the two systems. As it is possible to confirm,
only a small fraction of ads – 5.42% – have automatically suggested keywords.
Notably, ads with no suggested keywords have much inferior average CTR values
(0.15×10−3), which shows the usefulness of keyword suggestion systems. During
the analysis period, ads with no suggested keywords were printed 3,591,028,887
times and generated 551,864 clicks. We will start by assuming that only the
new suggestion method was available and that all the 154 ads with suggested
keywords had received the suggestions from the new suggestion method. We can
thus admit that they would all have the same average printability and clickability
statistics per ad that are seen in Table 11.4 for ℱN (i.e. avg(Pa) = 30, 309 and
avg(Ca) = 26.59). In such case, these ads would generate 2,298,301 additional
prints and 2,120 more clicks. Globally, this represents relative increases of only
0.06% prints but a 0.38% increase in clicks. Although modest at this stage, these
numbers could become much more important when the fraction of advertisers
using the keyword suggestion mechanism become higher (currently only around
5.0%).

11.7 Conclusion

We presented a keyword suggestion mechanism that mines information from a
database of previously known ads in order to infer local synonymy information
between keywords. The method exploits the fact that keywords previously as-
signed to ads have already gone through a relevancy selection procedure made
by previous advertisers, and uses synonymy information to perform relevant
(and non-obvious) suggestions, while automatically performing implicit sense-
disambiguation. We performed on-line evaluation of our system by comparing it
against a legacy keyword suggestion system. Both systems were exposed to real
advertisers during 15 weeks. As far as we know, this is the first study of this type
that is reported. We proposed a set of novel performance measures for such an
experimental setting. Using these measures we showed that keywords suggested
by our system outperform keywords suggested by the legacy system in several
parameters related to printability and clickability. Moreover, we showed that ads
with keywords suggested by our system are printed more often and clicked more
frequently than those with keywords suggested by the legacy system, and that

200 Chapter 11. The Suggestion of Keywords for Ads

they also tend to have higher CTR values.

Part V

Conclusions

201

Chapter 12

Conclusions

12.1 Overview

The central question addressed in this thesis was:

How can we decide whether, in a specific context, and according to a pre-defined
notion of similarity, the referents of two lexical items are “similar” or not?

The motivation for this work has been the belief, drawn from practical expe-
rience, that language processing applications can only be robust in real-world
scenarios if they possess the capability for calculating the semantic similarity
between lexical items. We believe that this capability is particularly relevant
for language applications operating on the Web, which, due to the large vari-
ability of contexts at stake, is an extremely harsh text processing environment.
Throughout this thesis, we presented several practical cases that required the
computation of a certain notion of similarity for solving a language processing
problem. In part I, we addressed mainly background issues. In chapter 1, we
presented a conceptual framework that unifies several concepts related to simi-
larity, namely content similarity, type similarity, functional similarity, and also
ambiguity. This encompassing framework is one of the main contributions of this
thesis. In chapter 2, we described the main mathematical tool used in this thesis,
namely the Vector Space Model. We compiled and organized a vast amount of
information about the Vector Space Model from a wide variety of sources. We
proceeded in chapter 3 to discuss methodological issues related to evaluation, and
we presented information about methods, metrics and gold-standard resources for
the evaluation of semantic-related procedures. Such a comprehensive systemati-
zation of issues related to evaluation is another contribution of this thesis. In part
II, we investigated questions related to “traditional” lexical items and to content
similarity. In chapter 5, we focused on the task of automatically finding verb
synonyms in Portuguese, using a Vector Space Model approach. By performing

203

204 Chapter 12. Conclusions

an exploration of several parameters of the VSM, we obtained a clear notion of
the feature information that is required for computing verb synonymy. Then,
in chapter 6, we turned our attention to paraphrase, motivated by the need to
identify references to entities made using job titles. We presented an unsupervised
method for inferring job title paraphrasing rules, which allows us to expand a set
of known job titles for a given entity with several new paraphrases. Since a very
significant portion of the content of the Web is directly or indirectly related to
entities, in part III we addressed similarity questions related to entities and to
their names. In chapter 7, we presented a data-driven method for expanding a set
of entities with others of the same type. The method uses information about how
names co-occur in coordination structures to detect type similarity between the
corresponding entities. Next, in chapter 8, we focused on the problem of name
ambiguity, and we propose a clustering approach to disambiguate mentions on the
Web. The scale at which we attempt to disambiguate names, i.e. the Web, not
only raised several issues regarding computational scalability, but it also exposed
the limitations of naive definitions of the named-entity disambiguation task itself.
Finally, in part IV we turned our attention to Web-specific lexical items, namely
Labels, Tags and Keywords associated to Web ads. We studied different methods
for obtaining functionally similar items in three different scenarios. In chapter 9,
we studied a solution to the problems that arise from assigning labels to news
items in a inconsistent fashion (by editors or journalists), especially those that
interfere with subsequent news classification procedures. We investigated which
features can be extracted from text to support the inference of functional similar-
ity (including content similarity) between tags, in order to reduce fragmentation
problems. In chapter 10, we presented a method that expands the tag descrip-
tion of media objects published in Web 2.0 sites, by mining functionally similar
tags in community-edited knowledge resources. Last, in chapter 11 we proposed
a method for suggesting keywords to Web advertisers using the notion of local
synonyms. In this case, evaluation was performed by running our keyword sug-
gestion method in parallel with a legacy suggestion method and comparing the
results.

12.2 Answer to Research Questions

In chapter 1 of this thesis, we raised four research questions, which we now answer
based on the conclusions we reached through each experiment presented in this
thesis.

1. Can we provide a unified conceptualization that embraces all sub-concepts
of similarity found between text elements, and, at the same time, provides
solutions to practical questions imposed by the Web?

12.2. Answer to Research Questions 205

In chapter 2, we showed that, starting from the definition of some basic con-
cepts, such as Lexical Item and Dynamic Lexicon (see section 2.2), and from a
generic definition for Semantic Similarity (See Equation 2.4), it is possible to for-
mulate additional definitions for several other more specialized concepts related
to similarity, namely Content Similarity (section 2.3.1), Type Similarity (section
2.3.2) and Functional Similarity (section 2.3.3). Furthermore, we showed that it
is possible to formulate other semantic concepts, such as ambiguity, on top of the
definition of semantic similarity (section 2.4). In parts II, III and IV we presented
several approaches for solving problems involving different situations regarding
similarity (i.e. Content Similarity, Type Similarity, and Functional Similarity).
These problems were related not only to traditional lexical units, such as verbs
and noun-phrases (part II), but also with names of entities (part III) and Web-
specific lexical units, such as topic labels, Web 2.0 tags and web ads keywords
(part IV). As shown throughout this thesis, the formalization we proposed al-
lows straightforward computational implementations. Since it explicitly includes
the role of the Context in the definitions of similarity, our framework promotes
data-driven approaches to solving practical problems. In fact, for solving all prob-
lems addressed in this thesis, we followed data-driven approaches. This comes
as a direct consequence of the encompassing formalization for similarity that we
proposed. Thus, the answer to this question is positive.

2. How does one deal with web-specific lexical items, such as tags or topic
labels? What notions of similarity can be applied to them?

In the parts II, III and IV of this thesis we focused on problems that were moti-
vated by applications intended to operate on the Web, or over web-derived data.
These problems arise from the need to deal with a wide variety of situations that
can be found on Web data, which challenge the robustness of language process-
ing applications, from the point of view of both recall and precision. In part IV,
however, we explicitly focused on Web-specific lexical items: topic labels, Web 2.0
tags and trigger keywords for web ads. We saw that, in most cases, the problems
being tackled were generically related to functional similarity, due to the func-
tional nature of this type of lexical items. We also saw that, in some situations,
notions of content-similarity are applicable (e.g. synonymous topic labels, or al-
ternative spellings for a technical tag) but in all cases such content similarity is
bound to a notion of local semantics, which might not always be compatible with
the semantics that govern traditional lexical items: a specific similarity relation in
traditional text environments might not hold in certain web-specific contexts, and
vice-versa. In part III we addressed issues related to names of entities, including
not only people, organizations and places, but also other types of entities which,
despite not being exclusive of the Web, have found a prolific ecosystem there. We
showed how the notion of type similarity is diffuse, and how it needs to be tuned
to specific contexts. Also, we showed how problems related to name ambiguity
are dramatically different on the Web. More specifically, we demonstrated that,

206 Chapter 12. Conclusions

because the number of facets that each entity might have is dependent on the
broadness of the data being analysed (e.g. a few domains vs. a significant frac-
tion of the Web), two mentions of the same entity can be seen as similar enough
or not, depending on the size of the text universe being disambiguated. This
shows that similarity is dependent not only on local semantics, but also on the
number of local semantic structures that co-exist in a given text environment. In
conclusion, while traditional notions of similarity can be applied to web-specific
items, this is only possible if local contexts are taken into account, and these
might be governed by different (and possibly incompatible semantics), and might
fluctuate with the size of the text environment at stake. These dynamics provide
a justification for our work in developing methods for (re-)computing similarity
in different semantic contexts.

3. Which information sources can be used for grounding the computation of
similarity?

One of the goals of this thesis has been to develop methods for computing the
similarity between lexical items of different types that, on the one hand, take into
account contextual information, and, on the other, involve the least human inter-
vention possible. We opted for never using pre-existing lexical-semantic resources,
such as WordNet-like resources, for computing similarity, not only because they
are not easily available most of the time, but also because this contradicts the
prerequisite of taking into account the locality of the semantics. Instead, all the
information needed by the methods we proposed is either directly extractable
from the text environment itself, or is derived from other community-edited re-
sources available on the Web (or resources compiled in an unsupervised way). We
followed a data-driven approach in all the experiments presented in this thesis.
The sources of feature information used for describing lexical items were diverse.
In some cases, we used distributional statistics regarding the co-occurrence of
lexical items:

∙ with n-gram contexts (chapter 5);

∙ with other words in the scope of coordination structures (chapter 7); and
also

∙ with names found inside the same document (chapter 8)

∙ with similar (keyword) items (chapter 11).

Alternatively, we obtained information for describing items by vectorizing docu-
ments associated with those items (chapter 9). In other cases, we mined knowl-
edge sources that were obtained using unsupervised methods (chapter 6), or which
are supported by the efforts of a large community of users (chapter 10). For com-
puting the values of the distinct similarity functions, we used such feature infor-
mation in a variety of different ways. For example, for computing content sim-
ilarity, we used information about n-gram co-occurrences (chapter 5) or aligned

12.2. Answer to Research Questions 207

data compiled from the Web (chapter 6). For disambiguating names, we used in-
formation about name co-occurrence (chapter 8). Type similarity was computed
using information about how items co-occur in coordination structures (chapter
7). And, depending on the specific scenario, we were able to compute Functional
Similarity using (i) vectorized text sources (chapter 9), (ii) community-edited re-
sources (chapter 10) or (iii) item co-occurrence information extracted from appli-
cation logs (chapter 11). In summary, among other possible sources, information
for computing similarity can be obtained, with little or no human effort, from
co-occurrence statistics compiled in certain specific contexts (different similarity
relations require different contexts), as well as from community-edited resources
and from databases compiled from the Web using unsupervised methods.

4. How can we evaluate the results of procedures for computing similarity?

A great deal of the effort involved in this thesis was invested in devising meth-
ods, selecting metrics and searching for sources of gold-standard information for
evaluating procedures for computing similarity (see chapter 3 for an overview of
methods and metrics). As we developed our work, we found numerous difficul-
ties in evaluation for which we proposed a variety of solutions. We believe that
some of these solutions are among the most useful contributions of this thesis.
The main difficulty was (and still is) the lack of solid gold-standard information,
especially for the case of less traditional lexical items. Although there are some
WordNet-like resources available containing gold-standard information for spe-
cific similarity relations (e.g. synonymy), these resources have usually significant
coverage and recall gaps that do not allow a rigorous performance assessment. In
fact, the lack of coverage and recall of the few existing lexical-semantic resources
for Portuguese was one of the main motivations for this thesis. We showed, how-
ever, how such incomplete resources can still be used for performing parameter
exploration (see chapter 5). For the specific case of similarity relations between
entities, we confirmed that Wikipedia is a direct source of valuable gold-standard
information, especially for type similarity (chapter 7). Also, by using information
about the Web graph around Wikipedia, we were able to compile gold-standard
information for named-entity disambiguation procedures. Another alternative for
evaluating procedures related to Web 2.0 Tags consists in using diachronic infor-
mation from Web 2.0 sites. The method involves extracting tag information from
a specific Web 2.0 site (via a dedicated web-service or by crawling) at multiple
points in time (e.g. every month). These snapshots provide us with informa-
tion about how the community of users is adding or revising tag information by
describing media items. These changes, especially when computed between two
relatively distant points in time in order to stabilize possible fluctuations (e.g.
six month), can be considered a gold-standard resource created by the “wisdom
of the crowds ” (see chapter 10). In any case, a more comprehensive evaluation
may require combining the assessment made with the available gold-standard
information with complementary evaluation procedures. These may include:

208 Chapter 12. Conclusions

∙ Manual Evaluation: despite the disadvantages (inconsistency, too much ef-
fort, difficulty in reproducing results), manual evaluation is a good comple-
mentary option, especially when several judges participate. Manual evalu-
ation should involve simple decisions (ideally binary decisions), in order to
avoid a large number of potentially grey areas.

∙ Generate and Test Strategies: in some cases, complementary evaluation can
be achieved by assuming that correct cases should instantiate on corpora
(e.g. chapter 6). If the correct restrictions are enforced, this strategy is
mostly conservative (i.e. incorrect cases will almost never instantiate at the
risk of many correct cases also not instantiating). Therefore, it should allow
us to find lower bounds for procedures under evaluation.

If no absolute performance standards exist, such as, for instance, when a totally
new scenario is being considered, evaluation can be made in a application-oriented
fashion, possibly comparing the results of the system under evaluation with a com-
peting legacy system (see chapter 11). However, application-oriented evaluation
may involve high-level success criteria for which it might be difficult to establish
metrics. Defining the fair and meaningful metrics may be the most challenging
issue for this type of evaluation scenario.

12.3 Main Contributions

The work presented in this thesis encompasses a number of smaller practical
problems, for which, most of the time, we were able to devise the appropriate
(practical) solutions. The work on these low-level problems was important, not
only because it led us to several specific practical contributions (outlined in the
Conclusions section of the previous chapters), but also because it allowed us
to tackle separately different facets of more fundamental problems related to
similarity. The result of this bottom-up approach can be summarized in three
main high-level contributions whose support comes from the thesis as a whole:

1. An original theoretical framework that provides formalization for several
concepts related to similarity (including ambiguity), and which provides
support for practical approaches to the computation of similarity in both
traditional and Web-based text environments.

2. A broad study of the information sources and types of features that can
(or cannot) be used for supporting the computation of different similarity
functions, in different text environments.

3. A systematic study of methods, metrics and potentially useful gold-standard
resources for evaluating similarity-related functions. Also, we the proposed
and described the implementation of several original evaluation frameworks,

12.4. Future Directions 209

which make use of different strategies for obtaining gold-standard informa-
tion from public resources, and use different validation methodologies to
assess the correctness of results.

12.4 Future Directions

The work presented in this thesis touches on many different facets of a large
body of problems related to similarity. The experiments presented here helped
us to solve some of our initial questions, but have definitely raised further and
deeper questions. While some of these new question are specific to each partic-
ular problem tackled, others are more generic, and are fundamentally related to
this complex concept that we call “similarity”. Additionally, since most of our
research has been motivated by practical questions raised during the development
of different information extraction applications, the solutions we found allowed
us to resolve certain bottlenecks in the development of such applications. Ob-
viously, this led us to find other bottlenecks in the same application, some of a
different nature, but also directly or indirectly related to similarity. Thus, and
despite several points of contact, we divide the possibilities for future work into
two groups. First, we consider High-Level Improvements in Previous Work. We
will not discuss low-level improvements here, since this has been done already
in the publications associated with each chapter. Instead, we focus on high-level
issues that could lead to global improvements in all the experiments presented in
this thesis. Second, we present New Lines of Research. These include challenges
that were not addressed in this thesis but which, in many cases, come as the nat-
ural result of the work presented. In both cases we have already begun research
on some of these lines of work, either in collaboration established with individual
researchers, or by participating in larger projects (e.g. [SCS+09]).

12.4.1 High-Level Improvements in Previous Work

Supervised Strategies & Feature Learning: Practically all the methods
presented in this thesis used unsupervised approaches. We have usually started
with a hypothesis about a specific set of features that, according to some intu-
ition about language, could potentially be useful for computing a certain similar-
ity function, and we have proceeded by applying one off-the-shelf unsupervised
method to compute the desired similarity function based on such a set of features.
This procedure usually involves some work on experimenting with different sets
of features, but it took us to interesting results. However, as “language” becomes
more idiosyncratic, and the corresponding notions of similarity become more com-
plex, good intuitions become harder to come by. In such scenarios, choosing the
best features for grounding the (unsupervised) similarity computation procedures
tends to become more a matter of art than a matter of science. In fact, in this

210 Chapter 12. Conclusions

thesis we saw that some of the features of the exeperiments were found to be
insufficient or even inadequate. Two lines of research can be followed in order to
tackle this problem. The first consists of using supervised approaches whenever
it is not too complex to obtain valid training data. Items in the training set can
be described using as many features as possible, if the classification algorithm is
capable of coping with high-dimensional feature spaces. For example, supervised
approaches could be tried for finding verb synonyms (chapter 5). A training set,
consisting of positive and negative examples of synonym pairs, could be gener-
ated using information from a thesaurus. Even if it is incomplete, the thesaurus
should provide enough information for training a classifier to decide whether two
words are synonyms (or antonyms) or not. The set of features may include dis-
tributional information taken from very large corpora, such as n-gram and word
co-occurrence frequencies. A similar approach could eventually be attempted for
finding type similar entities (chapter 7). In this case, the training data could
be obtained from the lists of entities found in Wikipedia. Similar situations are
possible for other cases. The second line of research, which could be supported by
the previous one, is the learning of features. Instead of using as many features as
possible to train classifiers (and let the classification algorithms deal with such a
high number of features) we could try to learn the best features for classification,
for each case. This would allow us to build more compact and more efficient
classifiers that could eventually be used in real-time processing.

Exploring Inverse Relations and Scope: Most of the work developed in this
thesis is concerned with computing the similarity between items that could be
considered to be at the same level in terms of polarity and scope (e.g. synonyms
or co-hyponyms). We did not explore other semantic relations that were also
found to be relevant in many of the situations that we addressed. For example,
from chapter 5 we concluded that being able to identify antonyms is extremely
important (and difficult) in order to correctly find synonyms. Antonyms can be
seen as an instantiation of content-similarity relation with inverse polarity. It
seems relatively simple to accommodate antonymy in the framework presented
in chapter 2, by considering that similarity functions can return negative values,
instead of only positive values. From a practical point of view, many questions
remain. Since antonyms and synonyms tend to share the same distributional fea-
tures, distributional approaches such as the one we followed for synonymy are
not sufficient. Thus, one interesting line of work consists in researching efficient
complementary methods for differentiating the two opposite cases. Also, from
chapters 6, 10, 11 and, more obviously, 9, we confirmed that the ability to iden-
tify hypernyms/hyponyms and the “IS-A” (instantiation) relations is very relevant
in many practical situations. The notion of type-similarity that we formalized in
chapter 2 does not explicitly distinguish the scope of the relation at stake, i.e.
it does not separate cases of co-hyponymy from cases of hypernymy/hyponymy,

12.4. Future Directions 211

which also share (partial) type-similarity. One obvious research question is related
to the introduction of the scope parameter in our formal framework. For that,
should we specialize the type similarity relation in several different functions that
explicitly quantify co-hyponymy, hypernymy/hyponymy and the instantiation re-
lation? How can we grade the relation of hypernymy/hyponymy to account for
scope? Practical research questions include developing methods for quantifying
these relations between all types of lexical items considered in this thesis (i.e. not
just “traditional” words).

12.4.2 New Lines of Research

Robust Pre-Processing of User-Generated Contents: One of the most
promising information sources for many different types of information extraction
application is user-generated content, more specifically, opinionated or personal
media such as blogs, micro-blogs (e.g. Twitter) and user comments (e.g. on
on-line news papers). However, user-generated contents pose several low-level
language processing challenges. User-generated contents:

∙ usually contain misspelled or unknown words or acronyms;

∙ are populated with media-specific symbols (e.g emoticons) or vocabulary
(e.g. “lol”) that are not always lexicalized in a dictionary;

∙ tend to suffer from inconsistent use of capitalization, and non-standard
punctuation;

∙ usually have word tokenzation problems.

All these idiosyncrasies, which are not trivial to deal with, greatly complicate
information extraction tasks. In fact, we have already encountered some of these
problems during this thesis (see part IV). Thus, an important line of future work
consists in developing methods for allowing robust processing of such contents.
The methods should aim at:

1. achieving correct tokenization;

2. correcting misspelled words (in context), or recognizing unknown (yet valid)
tokens;

3. correcting inconsistent use of capitalization; and

4. normalizing mentions to entities (see for example [JKMdR08]).

We are currently experimenting with the efficiency of several machine learning
approaches for tokenizing Twitter messages. These approaches allow us to cir-
cumvent the problem of manually developing medium-specific tokenization rules,
which are not only prone to errors, but are also very difficult to maintain.

212 Chapter 12. Conclusions

Opinion Mining in User-Generated Contents: User-generated contents
are a rich source of opinions about a wide variety of subjects, and are thus po-
tentially useful for business and marketing intelligence applications. Besides the
(low-level) challenges described in the previous paragraphs, performing opinion
mining in user-generated content raises several problems, all of them leading to
interesting research questions. One of the problems is to identify the target(s) of
the opinion (e.g. a person, a product, etc.) in a certain opinionated text (e.g.
a comment posted by a user in an on-line newspaper). This is not trivial since
the correct target(s) may be mentioned indirectly (e.g. by one of many possi-
ble job descriptions if we are dealing with people), by anaphoric reference (e.g.
“that man”), or by one of several possible nicknames that users assign to enti-
ties at any time in response to a particular event or psychological trace. Thus,
researching methods for resolving references made to entities in user-generated
contents (possibly resolving them by consulting an external knowledge source
such as Wikipedia) is an extremely useful line of research, which we wish to fol-
low. This line of work has connections with the work presented in chapters 6,
8 and 9. Another challenge in opinion-mining is identifying the polarity of the
opinion about a subject expressed in a given user-generated text snippet. This
is essentially a text classification problem, for which several approaches have
been proposed, some based on sets of manually developed rules and other using
traditional machine learning techniques. However, in any case, one important
resource for determining polarity is the knowledge of the prior-polarity of words
and expressions. Building such a lexicon involves assigning information regarding
prior polarity to each word (or frequently used expression), as well as providing
some additional information regarding restrictions and exceptions. This implies
an immense amount of work that it is infeasible to perform manually on a large
scale. We believe that a great deal of the work presented in this thesis can be
directly applied in helping to obtain polarity information for all types of lexical
items and expressions, especially by following semi-supervised approaches (e.g.
chapters 7, 10 and 11). Alternative lines of work may include experimenting with
methods for propagating polarity information taking into account information
about synonymy, obtained from a combination of resources (e.g. several on-line
thesaurus), or automatically inferred from text (such as we presented in chapters
5 and 9). Also, since machine-learning approaches to polarity detection require
annotated training data, and since it is extremely difficult to perform such an-
notation manually, one important line of research is related to devising methods
for automatically compiling training data. Some of the methods proposed so far
focus on compiling information from sites that publish product reviews (e.g. Ama-
zon), which usually match textual descriptions with explicit rating information
posted by users (e.g. “3/5 stars”). However, the resulting training sets have the
disadvantage of being specialized in a given domain (e.g. books) which makes
them quite useless for training opinion classifiers for other domains. We are al-
ready investigating methods that allow the creation of more generic training sets.

12.4. Future Directions 213

More specifically we are trying to develop bootstrapping methods, which com-
bine an initial step that uses manually developed patterns to identify an initial
set of positive and negative sentences in a large corpus of opinionated text, with
subsequent polarity propagation operation steps, where the polarity found for
specific sentences is propagated to larger sections of text. Some initial work has
already been presented [SCSdO09] and we wish to continue this line of research.
Opinion mining of user-generated content raises further additional challenges to
automatic methods: users often express their opinions metaphorically and iron-
ically. The automatic treatment of these two phenomena is complex, and not
much research has been done on these problems. Resolving metaphorical ex-
pressions might involve not only parsing the text correctly but also make use of
background knowledge. For example, in many cases an opinion about a certain
entity is expressed by comparison or association with some well-known histori-
cal or fictional entity (e.g. “this prime-minister is a real Hitler”). For assigning
polarity in such situations it is crucial to possess information about the entity
mentioned in the metaphor or comparison. We are currently experimenting with
methods for automatically obtaining polarity information about a large number
of entities (people, organizations, events) from Wikipedia using semi-supervised
methods. The use of irony also raises complex problems, since opinions expressed
ironically are usually opposite in polarity to any literal interpretation. Thus, de-
tecting irony is fundamental, since it has a huge impact on the opinion-mining
process. We have already performed some exploratory results regarding the iden-
tification of irony in user generated content [CSSdO09]. We identified several
sets of lexical features that are typically associated with ironic comments. We
wish to develop this line of research further by devising classifiers that use these
features, as well as additional contextual information, in order to automatically
detect ironic comments. We already know that this will be a very difficult task,
since even humans have problems in detecting irony.

Automatic Authorship Attribution: Due to the simplicity of copy-and-
paste text production strategies, and to the increasing amount of text contents
freely available, the demand for systems capable of performing authorship attribu-
tion is greater today more than ever before. There are many practical situations
where knowledge of whether a text can be attributed to a specific author is fun-
damental, not only in cases of possible plagiarism, but even cases involving legal
action. Research in forensic linguistics has shown that texts from a given author
exhibit consistency in several stylistic parameters, both within the same piece
of text and between two distinct text pieces. The fundamental concept in au-
thorship identification applications is stylistic similarity : two text excerpts from
the same author should be stylistic similar, while excerpts from different authors
should present differences in stylistic parameters. From a computational point
of view, authorship attribution can be seen as a text classification problem. The

214 Chapter 12. Conclusions

main questions are related to the selection of the appropriate features, in order
to capture relevant stylistic information. Such features should be immune to the
influence of other text parameters that are supposed to be independent of author-
ship (e.g. the topic of the text). We have already begun some work on this issue
[SSSG+10]. We started by experimenting with the robustness of several poten-
tially interesting stylistic features, which are relatively simple to extract from text
and are practically omnipresent in all texts (e.g. counts on punctuation, POS n-
grams, etc). Further work involves developing methods for extracting higher-level
stylistic features from text and assessing their robustness. Additionally, since tra-
ditional authorship attribution techniques focus essentially on trying to establish
the authorship of long (and relatively well-written) texts, an interesting line of
work, which has not yet been explored, consists in adapting these techniques to
micro-blogs (e.g. Twitter) and (short) comments posted to on-line newspapers.

Appendix A

Demonstrations for Chapter 8

Consider the set of ℐ containing ∣ℐ∣ items that belong to C classes c1, c2, c3,...
cC . Let pji be the probability of an item (or element) ej randomly picked from ℐ
belonging to class ci: P (ej ∈ ci) = pji with 1 < i < C.

Now consider the problem of sequentially comparing items in ℐ (previously
shuffled) in order to find items similar to the initial (target) item. If we randomly
pick one item ej from ℐ, we wish to estimate the number of additional items that
we need to pick (without repetition) from ℐ before we find another item that
belongs to the same class. For a sufficiently large set of items the probabilities
P (ej ∈ ci) do not change significantly when we pick elements out of ℐ without
replacement, and we can consider two subsequent draws to be independent.

We can thus make P (ej ∈ ci) = pi and approximate this procedure by a
Bernoulli Process. Therefore, for a given element of class ci, the number of
comparisons ki needed for finding a similar item follows a Geometric Distribution
with parameter, pi. The expected value for k is E(ki) = 1

pi
. For C classes, the

average number of comparisons is:

E(k) =

∣C∣
∑

c=1

pc ⋅ E(kc) =

∣C∣
∑

c=1

pc ⋅
1

pc
= ∣C∣ (A.1)

For sufficiently large ∣ℐ∣, the number of classes will remain constant during
almost the entire sampling process. Thus, the total number of comparisons for
the ∣ℐ∣ items is: Ncomp = ∣ℐ∣ ⋅ ∣C∣

If we extend the previous item comparison procedure to find kpos similar items
to the target item,n we can model the process by a Negative Binomial Distribution
(or Pascal Distribution) with parameters pi and kpos:

Bneg(ki, kpos) =

(

ki − 1

kpos − 1

)

⋅ pkposi ⋅ (1− pi)
ki−kpos (A.2)

In this case, the average number of comparisons made, given by the cor-
responding Expected Value is: EBneg

(ki, kpos) = kpos/pi. The longest series of

215

216 Appendix A. Demonstrations for Chapter 8

comparison will be made for the class with the lowest pi, i.e. the small class.
However, it leads us to an average number of comparisons when considering all
the ∣C∣ of classes of:

Ecomp(k) =

∣C∣
∑

c=1

pc ⋅EBneg
(kc, kpos) = kpos ⋅ ∣C∣ (A.3)

For all ∣ℐ∣ items we should thus have Ncomp = ∣ℐ∣ ⋅ ∣C∣ ⋅kpos. If we now consider
that there in a probability of pfn of having a false negative when comparing two
items, and that pfn is constant and independent of classes, the pi should be
replaced by pi ⋅ (1 − pfn), i.e. the probability of a random pick finding another
item in class ci has to be multiplied by the probability of not having a false
negative.

Then all the above equations will change by a constant factor, giving:

N ′
comp =

∣ℐ∣ ⋅ ∣C∣ ⋅ kpos
1− pfn

(A.4)

Likewise, the expected value for longest series of comparisons will be given by
performing the same substitution in Equation 10, and making pi = pmin:

Els =
kpos

pmin ⋅ (1− pfn)
(A.5)

Bibliography

[ACDK08] Rema Ananthanarayanan, Vijil Chenthamarakshan, Prasad M
Deshpande, and Raghuram Krishnapuram. Rule based synonyms
for entity extraction from noisy text. In AND ’08: Proceedings of
the second workshop on Analytics for noisy unstructured text data,
pages 31–38, New York, NY, USA, 2008. ACM.

[AGAV08] Enrique Amigó, Julio Gonzalo, Javier Artiles, and Felisa Verdejo. A
comparison of extrinsic clustering evaluation metrics based on for-
mal constraints. Information Retrieval, Volume 12(Number 4):461–
486, August 2008.

[AH07] Vibhanshu Abhishek and Kartik Hosanagar. Keyword generation
for search engine advertising using semantic similarity between
terms. In ICEC ’07: Proceedings of the ninth international confer-
ence on Electronic commerce, pages 89–94, New York, NY, USA,
2007. ACM.

[AHK01] Charu C. Aggarwal, Alexander Hinneburg, and Daniel A. Keim.
On the surprising behavior of distance metrics in high dimensional
spaces. In ICDT ’01: Proceedings of the 8th International Con-
ference on Database Theory, pages 420–434, London, UK, January
4–6 2001. Springer-Verlag.

[AL07] Sören Auer and Jens Lehmann. What have Innsbruck and Leipzig
in common? Extracting semantics from Wiki content. In ESWC
’07: Proceedings of the 4th European conference on The Semantic
Web, pages 503–517, Berlin, Heidelberg, 2007. Springer-Verlag.

[AP94] J.J. Almeida and Ulisses Pinto. Jspell – um módulo para análise
léxica genérica de linguagem natural. In Actas do X Encontro da
Associação Portuguesa de Lingúıstica, pages 1–15, Évora, 1994.

217

218 Bibliography

[AS94] Rakesh Agrawal and Ramakrishnan Srikant. Fast algorithms for
mining association rules in large databases. In VLDB ’94: Pro-
ceedings of the 20th International Conference on Very Large Data
Bases, pages 487–499, San Francisco, CA, USA, 1994. Morgan
Kaufmann Publishers Inc.

[BB98a] Amit Bagga and Breck Baldwin. Algorithms for scoring coreference
chains. In Proceedings of the LREC 1998 Workshop on Linguistic
Coreference, pages 563–566, Granada, Spain, May 28-30 1998.

[BB98b] Amit Bagga and Breck Baldwin. Entity-based cross-document
coreferencing using the vector space model. In Proceedings of the
17th international conference on Computational linguistics, pages
79–85, Morristown, NJ, USA, 1998. Association for Computational
Linguistics.

[BBH+01] Brigitte Bigi, Armelle Brun, Jean Paul Haton, Kamel Smäıli, and
Imed Zitouni. A comparative study of topic identification on news-
paper and e-mail. In Proceedings of String Processing and Infor-
mation Retrieval (SPIRE), pages 238–241, Laguna de San Rafael,
Chile, Nov 12 - 16 2001.

[BM01] Regina Barzilay and Kathleen R. Mckeown. Extracting paraphrases
from a parallel corpus. In ACL ’01: Proceedings of the 39th An-
nual Meeting on Association for Computational Linguistics, pages
50–57, Morristown, NJ, USA, 2001. Association for Computational
Linguistics.

[BMEML08] T. Bertin-Mahieux, D. Eck, F. Maillet, and P. Lamere. Autotagger:
A model for predicting social tags from acoustic features on large
music databases. Journal of New Music Research, Volume 37, Issue
2:115 – 135, June 2008.

[BP06] Razvan Bunescu and Marius Pasca. Using encyclopedic knowledge
for named entity disambiguation. In Proceedings of the 11th Confer-
ence of the European Chapter of the Association for Computational
Linguistics (EACL-06), pages 9–16, 2006.

[BR73] G.L.M. Berry-Rogghe. The Computer and Literary Studies, chapter
The Computation of Collocations and Their Relevance in Lexical
Studies, pages 103–112. Edinburgh University Press, Edinburgh,
1973.

[Bro97] Andrei Z. Broder. On the resemblance and containment of docu-
ments. In SEQUENCES ’97: Proceedings of the Compression and

Bibliography 219

Complexity of Sequences 1997 (1997), Positano, Salerno, Italy, June
11-June 13 1997.

[Car01] S.A. Caraballo. Automatic Acquisition of a Hypernym-Labeled Noun
Hierarchy from Text. PhD thesis, Brown University, 2001.

[CBCL08] Chris Callison-Burch, Trevor Cohn, and Mirella Lapata. Paramet-
ric: an automatic evaluation metric for paraphrasing. In COLING
’08: Proceedings of the 22nd International Conference on Com-
putational Linguistics, pages 97–104, Morristown, NJ, USA, 2008.
Association for Computational Linguistics.

[CC08] Òscar Celma and Pedro Cano. From hits to niches? Or how popular
artists can bias music recommendation and discovery. In NETFLIX
’08: Proceedings of the 2nd KDD Workshop on Large-Scale Recom-
mender Systems and the Netflix Prize Competition, pages 1–8, New
York, NY, USA, 2008. ACM.

[CFLZ03] J. Carrasco, D. Fain, K. Lang, and L. Zhukov. Clustering of bipar-
tite advertiser-keyword graph. In Proc. International Conference
on Data Mining (ICDM’03), Melbourne, Florida, November 2003.

[CG91] Kenneth W. Church and William. A. Gale. Concordances for par-
allel text. In Proceedings of the Seventh Annual Conference of the
UW Center for the New OED and Text Research, pages 40–62,
September 1991.

[CGL07] Fabio Calefato, Domenico Gendarmi, and Filippo Lanubile. To-
wards social semantic suggestive tagging. In Proceedings of the 4th
Italian Semantic Web Workshop, Bari - Italy, 18-20 December 2007.

[CH90] Kenneth Church and Patrick Hanks. Word association norms,
mutual information, and lexicography. Computational Linguistics,
16(1):22–29, 1990.

[CL07] O. Celma and P. Lamere. Music recommendation tutorial. In 8th
International Symposium on Music Information Retrieval, Vienna,
Austria, September 23-27 2007.

[CLR90] Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest.
Introduction to Algorithms. The MIT Press and McGraw-Hill Book
Company, 1990.

[CP04] Timothy Chklovski and Patrick Pantel. VerbOcean: Mining the
Web for Fine-Grained Semantic Verb Relations. In In Proceedings
of Conference on Empirical Methods in Natural Language Process-
ing (EMNLP-04), Barcelona, Spain, 2004.

220 Bibliography

[CSSdO09] Paula Carvalho, Lúıs Sarmento, Mário J. Silva, and Eugénio
de Oliveira. Clues for detecting irony in user-generated contents:
Oh...!! it’s “so easy” ;-). In TSA’09 - 1st International CIKMWork-
shop on Topic-Sentiment Analysis for Mass Opinion Measurement,
Hong Kong, Nov. 6 2009.

[Cuc07] Silviu Cucerzan. Large scale named entity disambiguation based on
Wikipedia data. In The EMNLP-CoNLL Joint Conference, pages
708–716, Prague, Czech Republic, June 28-30 2007.

[Cur04] James Richard Curran. From Distributional to Semantic Similar-
ity. PhD thesis, Institute for Communicating and Collaborative
Systems, School of Informatics, University of Edinburgh, 2004.

[CW03] Scott Cederberg and Dominic Widdows. Using LSA and noun co-
ordination information to improve the precision and recall of au-
tomatic hyponymy extraction. In Proceedings of the seventh con-
ference on Natural language learning at HLT-NAACL 2003, pages
111–118, Morristown, NJ, USA, 2003. Association for Computa-
tional Linguistics.

[CXY08] Yifan Chen, Gui-Rong Xue, and Yong Yu. Advertising keyword
suggestion based on concept hierarchy. In WSDM ’08: Proceedings
of the international conference on Web search and web data mining,
pages 251–260, New York, NY, USA, 2008. ACM.

[DEG+03] Stephen Dill, Nadav Eiron, David Gibson, Daniel Gruhl, R. Guha,
Anant Jhingran, Tapas Kanungo, Sridhar Rajagopalan, Andrew
Tomkins, John A. Tomlin, and Jason Y. Zien. Semtag and seeker:
bootstrapping the Semantic Web via automated semantic annota-
tion. InWWW ’03: Proceedings of the 12th international conference
on World Wide Web, pages 178–186, New York, NY, USA, 2003.
ACM.

[DES05] Doug Downey, Oren Etzioni, and Stephen Soderland. A probabilis-
tic model of redundancy in information extraction. In IJCAI’05:
Proceedings of the 19th international joint conference on Artificial
intelligence, pages 1034–1041, San Francisco, CA, USA, 2005. Mor-
gan Kaufmann Publishers Inc.

[DG04] Jeffrey Dean and Sanjay Ghemawat. Mapreduce: Simplified data
processing on large clusters. In OSDI ’ 04: Sixth Symposium on
Operating System Design and Implementation, San Francisco, CA,
pages 137–150, 2004.

Bibliography 221

[DGG+06] Daniel Delling, Marco Gaertler, Robert Görke, Zoran Nikoloski, and
Dorothea Wagner. How to Evaluate Clustering Techniques. Techni-
cal Report 2006-24, ITI Wagner, Faculty of Informatics, Universität
Karlsruhe (TH), 2006.

[DLP99] Ido Dagan, Lilian Lee, and Fernando Pereira. Similarity-based mod-
els of word cooccurrence probabilities. Machine Learning, 34:43–69,
1999.

[DMP+04] G. Doddington, A. Mitchell, M. Przybocki, L. Ramshaw,
S. Strassel, and R. Weischedel. The Automatic Content Extrac-
tion (ACE) Program–Tasks, Data, and Evaluation. pages 837–840,
2004.

[dS00] B. Dias da Silva. Construção de um thesaurus electrónico para o
português do brasil. In Processamento Computacional do Português
Escrito e Falado (PROPOR), volume 4, pages 1–10, Atibaia, SP,
November, 19-22 2000. ICMC/USP.

[Dun93] Ted E. Dunning. Accurate methods for the statistics of surprise
and coincidence. Computational Linguistics, 19(1):61–74, 1993.

[ES92] Ute Essen and Volker Steinbiss. Cooccurrence smoothing for
stochastic language modeling. In Proc. IEEE Int. Conf. on Acous-
tics, Speech, and Signal Processing, 161-164, San Francisco, CA,
USA, March 1992.

[ES07] Noemie Elhadad and Komal Sutaria. Mining a lexicon of technical
terms and lay equivalents. In Biological, translational, and clinical
language processing, pages 49–56, Prague, Czech Republic, June
2007. Association for Computational Linguistics.

[Eve05] Stefen Evert. The statistics of word cooccurrences : word pairs
and collocations. PhD thesis, Institut fur maschinelle Sprachverar-
beitung, Universitat Stuttgart, 2005.

[FL07] Norbert Fuhr and Mounia Lalmas. Advances in XML retrieval: the
INEX initiative. In IWRIDL ’06: Proceedings of the 2006 interna-
tional workshop on Research issues in digital libraries, pages 1–6,
New York, NY, USA, 2007. ACM.

[GA04] Chung Heong Gooi and James Allan. Cross-document coreference
on a large scale corpus. In Proceedings of HLT-NAACL 2004, pages
9–16, Boston, Massachusetts, USA, May 2 - May 7 2004. Associa-
tion for Computational Linguistics.

222 Bibliography

[GBM03] Roxana Girju, Adriana Badulescu, and Dan Moldovan. Learning
semantic constraints for the automatic discovery of part-whole re-
lations. In NAACL ’03: Proceedings of the 2003 Conference of the
North American Chapter of the Association for Computational Lin-
guistics on Human Language Technology, pages 1–8, Morristown,
NJ, USA, 2003. Association for Computational Linguistics.

[GCY92] William A. Gale, Kenneth W. Church, and David Yarowsky. One
sense per discourse. In HLT ’91: Proceedings of the workshop
on Speech and Natural Language, pages 233–237, Morristown, NJ,
USA, 1992. Association for Computational Linguistics.

[GH05] Zoubin Ghahramani and Katherine A. Heller. Bayesian sets. In Ad-
vances in Neural Information Processing Systems 18 (NIPS), Van-
couver, British Columbia, Canada, December 5-8 2005.

[GM08] Asela Gunawardana and Christopher Meek. Tied Boltzmann ma-
chines for cold start recommendations. In Proceedings of the ACM
Conference on Recommender Systems, pages 19–26. ACM, 2008.

[GMM+03] S. Guha, A. Meyerson, N. Mishra, R. Motwani, and L. O’Callaghan.
Clustering Data Streams: Theory and Practice. IEEE Transactions
on Knowledge and Data Engineering, 15(3):515–528, 2003.

[Har54] Zellig S. Harris. Distributional structure. Word, 10(23):146–162,
1954.

[HBV01] Maria Halkidi, Yannis Batistakis, and Michalis Vazirgiannis. On
clustering validation techniques. Journal of Intelligent Information
Systems, 17:107–145, 2001.

[HT73] John Hopcroft and Robert Tarjan. Algorithm 447: efficient algo-
rithms for graph manipulation. Commun. ACM, 16(6):372–378,
1973.

[IM98] Piotr Indyk and Rajeev Motwani. Approximate nearest neighbors:
towards removing the curse of dimensionality. In STOC ’98: Pro-
ceedings of the thirtieth annual ACM symposium on Theory of com-
puting, pages 604–613, New York, NY, USA, 1998. ACM.

[iW06] Sabine Schulte im Walde. Experiments on the automatic induc-
tion of German semantic verb classes. Computational Linguistics,
32(2):159–194, 2006.

[JKMdR08] Valentin Jijkoun, Mahboob Alam Khalid, Maarten Marx, and
Maarten de Rijke. Named entity normalization in user generated

Bibliography 223

content. In AND ’08: Proceedings of the second workshop on Ana-
lytics for noisy unstructured text data, pages 23–30, New York, NY,
USA, 2008. ACM.

[JM06] Amruta Joshi and Rajeev Motwani. Keyword generation for search
engine advertising. In ICDMW ’06: Proceedings of the Sixth IEEE
International Conference on Data Mining - Workshops, pages 490–
496, Washington, DC, USA, 2006. IEEE Computer Society.

[Ken38] Maurice G. Kendall. A new measure of rank correlation.
Biometrika, 30:81–93, 1938.

[Kro97] Robert Krovetz. Homonymy and polysemy in information retrieval.
In In Proceedings of the 35th Annual Meeting of the Association for
Computational Linguistics (ACL-97, pages 72–79, 1997.

[Lam08] Paul Lamere. Social tagging and Music Information Retrieval. In
Journal of New Music Research, volume Volume 37, Issue 2, pages
101 – 114, June 2008.

[Lee99] Lillian Lee. Measures of distributional similarity. In Proceedings of
the 37th annual meeting of the Association for Computational Lin-
guistics on Computational Linguistics, pages 25–32, Morristown,
NJ, USA, 1999. Association for Computational Linguistics.

[Lee01] Lillian Lee. On the Effectiveness of the Skew Divergence for Sta-
tistical Language Analysis. In Artificial Intelligence and Statistics,
pages 65–72, 2001.

[Lin91] Jianhua Lin. Divergence measures based on the Shannon entropy.
IEEE Transactions on Information Theory, 37(1):145–151, 1991.

[Lin98] Dekang Lin. An Information-Theoretic Definition of Similarity. In
Jude W. Shavlik, editor, Proceedings of the Fifteenth International
Conference on Machine Learning (ICML 1998), Madison, Wiscon-
son, USA, July 24-27, 1998, pages 296–304. Morgan Kaufmann,
1998.

[LP01] Dekang Lin and Patrick Pantel. DIRT - discovery of inference rules
from text. In In Proceedings of the ACM SIGKDD Conference on
Knowledge Discovery and Data Mining, pages 323–328, 2001.

[LP02] Dekang Lin and Patrick Pantel. Concept discovery from text. In
Proceedings of the 19th international conference on Computational
linguistics, pages 1–7, Morristown, NJ, USA, 2002. Association for
Computational Linguistics.

224 Bibliography

[LvAD07] E. Law, L. von Ahn, and R. Dannenberg. Tagatune: a game for
music and sound annotation. In 8th International Symposium on
Music Information Retrieval, pages 361–364, Vienna, September
23-27 2007.

[Mal05] Bradley Malin. Unsupervised name disambiguation via social net-
work similarity. In Workshop on Link Analysis, Counterterrorism,
and Security in conjunction with the SIAM International Confer-
ence on Data Mining, pages 93–102, 2005.

[ME08] Michael I. Mandel and Daniel P. W. Ellis. A Web-based game
for collecting music metadata. Journal of New Music Research,
37(2):151–165, 2008.

[Mei07] Marina Meilă. Comparing clusterings—an information based dis-
tance. J. Multivar. Anal., 98(5):873–895, 2007.

[MRS08] Christopher D. Manning, Prabhakar Raghavan, and Hinrich
Schütze. Introduction to Information Retrieval. Cambridge Uni-
versity Press, July 2008.

[MS04] Bruno Martins and Mário J. Silva. A Statistical Study of the WPT-
03 Corpus. Technical Report TR 4-4, Departamento de Informática
da Fac. Ciências de Universidade de Lisboa, Lisboa, May 2004.

[MY03] Gideon S. Mann and David Yarowsky. Unsupervised personal name
disambiguation. In Proceedings of the seventh conference on Natural
language learning at HLT-NAACL 2003, pages 33–40, Morristown,
NJ, USA, 2003. Association for Computational Linguistics.

[Nab04] Daniel Naber. Openthesaurus: Building a the-
saurus with a Web community. Technical report,
http://www.openthesaurus.de/download/openthesaurus.pdf
(acessed Nov 6th 2009), 2004.

[OSGS08] Hugo Gonçalo Oliveira, Diana Santos, Paulo Gomes, and Nuno
Seco. Papel: A dictionary-based lexical ontology for Portuguese.
In PROPOR ’08: Proceedings of the 8th international conference
on Computational Processing of the Portuguese Language, pages
31–40. Springer-Verlag, Berlin, Heidelberg, 2008.

[Pea02] Darren Pearce. A comparative evaluation of collocation extraction
techniques. In Proceedings of the Third International Conference on
Language Resources and Evaluation, pages 651–658, Las Palmas,
Canary Islands, Spain, May 2002.

Bibliography 225

[PL02] Patrick Pantel and Dekang Lin. Document clustering with commit-
tees. In SIGIR ’02: Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 199–206, New York, NY, USA, 2002. ACM
Press.

[PPBLRS03] A. Pons-Porrata, R. Berlanga-Llavori, and J. Ruiz-Shulcloper.
Building a hierarchy of events and topics for newspaper digital li-
braries. In F. Sebastiani, editor, Proceedings of 25tℎ European Con-
ference on IR Research (ECIR’03), volume 2633, pages 588–596,
Pisa, Italy, 2003. Springer-Verlag.

[PT08] Yoon-Joo Park and Alexander Tuzhilin. The long tail of recom-
mender systems and how to leverage it. In RecSys ’08: Proceedings
of the 2008 ACM conference on Recommender systems, pages 11–
18, New York, NY, USA, 2008. ACM.

[PTL93] Fernando Pereira, Naftali Tishby, and Lillian Lee. Distributional
clustering of english words. In Proceedings of the 31st annual meet-
ing on Association for Computational Linguistics, pages 183–190,
Morristown, NJ, USA, 1993. Association for Computational Lin-
guistics.

[RC98] Brian Roark and Eugene Charniak. Noun-phrase co-occurrence
statistics for semiautomatic semantic lexicon construction. In Pro-
ceedings of the 17th international conference on Computational lin-
guistics, pages 1110–1116, Morristown, NJ, USA, 1998. Association
for Computational Linguistics.

[RD00] Philip Resnik and Mona Diab. Measuring Verb Similarity. Tech-
nical Report LAMP-TR-047, UMIACS-TR-2000-40,CS-TR-4149,
University of Maryland, College Park, June 2000.

[RS97] Ellen Riloff and Jessica Shepherd. A Corpus-Based Approach for
Building Semantic Lexicons. In Proceedings of the Second Confer-
ence on Empirical Methods in Natural Language Processing, pages
117–124, 1997.

[Sah06] Magnus Sahlgren. The Word-Space Model: Using distributional
analysis to represent syntagmatic and paradigmatic relations be-
tween words in high dimensional vector spaces. Sics dissertation
series 44, Stockholm University, Sweden, 2006.

[Sar06a] Lúıs Sarmento. BACO - A large database of text and co-
occurrences. In Nicoletta Calzolari, Khalid Choukri, Aldo Gangemi,

226 Bibliography

Bente Maegaard, Joseph Mariani, Jan Odjik, and Daniel Tapias, ed-
itors, Proceedings of the 5th International Conference on Language
Resources and Evaluation (LREC’2006), pages 1787–1790, Genoa,
Italy, 22-28 May 2006.

[Sar06b] Lúıs Sarmento. A expansão de conjuntos de co-hipónimos a partir
de colecções de grandes dimensões de texto em português. In Ac-
tas de 1a Conferência em Metodologias de Investigação Cient́ıfica,
Porto, Portugal, Janeiro 2006.

[Sar06c] Lúıs Sarmento. SIEMÊS - a named-entity recognizer for Portuguese
relying on similarity rules. In PROPOR 2006 - Encontro para o Pro-
cessamento Computacional da Ĺıngua Portuguesa Escrita e Falada,
pages 31–40, ME - RJ / Itatiaia, Rio de Janeiro - Brasil, May, 13-17
2006.

[Sar07] Lúıs Sarmento. A first step to address biography generation as an
iterative QA task. In Carol Peters, Paul Clough, Fredric C. Gey,
Douglas W. Oard, Maximilian Stempfhuber, Bernardo Magnini,
Maarten de Rijke, and Julio Gonzalo, editors, 7th Workshop of the
Cross-Language Evaluation Forum, CLEF 2006. Alicante, Spain,
September 2006. Revised Selected papers, Lecture Notes in Com-
puter Science. Springer, Berlin / Heidelberg, 2007.

[SCO09] Lúıs Sarmento, Paula Carvalho, and Eugénio Oliveira. Exploring
the vector space model for finding verb synonyms in Portuguese.
In Proceedings of RANLP - Recent Advances in Natural Language
Processing, Borovets, Bulgaria, September 14-16 2009.

[SCS+09] Mário J. Silva, Paula Carvalho, Lúıs Sarmento, Eugénio Oliveira,
and Pedro Magalhães. The design of OPTIMISM, an opinion min-
ing system for Portuguese politics. In Proceedings of EPIA 2009:
Encontro Português de Inteligência Artificial (local proceedings),
Aveiro, Portugal, 12-15 October 2009.

[SCSdO09] Lúıs Sarmento, Paula Carvalho, Mário J. Silva, and Eugénio
de Oliveira. Automatic creation of a reference corpus for political
opinion mining in user-generated content. In TSA’09 - 1st Inter-
national CIKM Workshop on Topic-Sentiment Analysis for Mass
Opinion Measurement, Hong Kong, Nov. 6 2009.

[SG00] Alexander Strehl and Joydeep Ghosh. Value-based Customer
Grouping from Large Retail Data-sets. In Proc. SPIE Conference
on Data Mining and Knowledge Discovery, Orlando, volume 4057,
pages 33–42. SPIE, April 2000.

Bibliography 227

[SGCO09] Lúıs Sarmento, Fabien Gouyon, Bruno Costa, and Eugénio Oliveira.
Visualizing networks of music artists with rama. In Proceedings
of the International Conference on Web Information Systems and
Technologies, Lisbon, Portugal, 23-26 March 2009.

[SGM00] Alexander Strehl, Joydeep Ghosh, and Raymond Mooney. Impact
of Similarity Measures on Web-page Clustering. In Proceedings of
the 17th National Conference on Artificial Intelligence: Workshop
of Artificial Intelligence for Web Search (AAAI 2000), 30-31 July
2000, Austin, Texas, USA, pages 58–64. AAAI, July 2000.

[SGO09] Lúıs Sarmento, Fabien Gouyon, and Eugénio Oliveira. Music artist
tag propagation with wikipedia abstracts. In Proceeding of the
Workshop on Information Retrieval over Social Networks, Euro-
pean Conference on Information Retrieval (ECIR), Tolouse, April
2009.

[SJ01] Patrick Schone and Daniel Jurafsky. Is knowledge-free induction of
multiword unit dictionary headwords a solved problem? In Pro-
ceedings of the 2001 Conference on Empirical Methods in Natural
Language Processing, page 100–108, Pittsburgh, PA, 2001.

[SJB06] Claude St-Jacques and Caroline Barrière. Similarity Judgments:
Philosophical, Psychological and Mathematical Investigations. In
Proceedings of the Workshop on Linguistic Distances, pages 8–15,
Sydney, Australia, July 2006. Association for Computational Lin-
guistics.

[SJdRO07] Lúıs Sarmento, Valentin Jijkuon, Maarten de Rijke, and Eugénio
Oliveira. “More like these”: growing entity classes from seeds. In
CIKM ’07: Proceedings of the sixteenth ACM conference on Con-
ference on information and knowledge management, pages 959–962,
New York, NY, USA, 2007. ACM.

[SJN04] Rion Snow, Daniel Jurafsky, and Andrew Y. Ng. Learning syntactic
patterns for automatic hypernym discovery. In Advances in Neural
Information Processing Systems (NIPS 2004), Vancouver, British
Columbia, Canada, December 13-18 2004.

[SKOU09a] Lúıs Sarmento, Alexander Kehlenbeck, Eugénio Oliveira, and Lyle
Ungar. An approach to Web-scale named-entity disambiguation. In
Proceedings of the International Conference on Machine Learning
and Data Mining (MLDM) 2009, LNAI, Leipzig, Germany, July
23-25 2009. Springer Verlag.

228 Bibliography

[SKOU09b] Lúıs Sarmento, Alexander Kehlenbeck, Eugénio Oliveira, and Lyle
Ungar. Efficient clustering of Web-derived data sets. In Proceed-
ings of the International Conference on Machine Learning and Data
Mining (MLDM) 2009, LNAI, Leipzig, Germany, July 23-25 2009.
Springer Verlag.

[SKPW08] Markus Schedl, Peter Knees, Tim Pohle, and Gerhard Widmer.
Towards an automatically generated music information system via
Web content mining. In Proceedings of 30th European Conference
on IR Research, pages 585–590, Glasgow, UK, March 30-April 3
2008.

[SLC07] M. Sordo, C. Laurier, and O. Celma. Annotating music collections:
How content-based similarity helps to propagate labels. In 8th In-
ternational Symposium on Music Information Retrieval, Vienna,
Austria, September 23-27 2007.

[SM86] Gerard Salton and Michael J. McGill. Introduction to Modern In-
formation Retrieval. McGraw-Hill, Inc., New York, NY, USA, 1986.

[Sma93] Frank Smadja. Retrieving collocations from text: Xtract. Compu-
tational Linguistics, 19(1):143–177, 1993.

[SN09] Lúıs Sarmento and Sérgio Nunes. Automatic extraction of quotes
and topics from news feeds. In Proceedings of DSIE’09 - 4th
Doctoral Symposium on Informatics Engineering, Porto, Portugal,
February 5-6 2009.

[SNM08] Panagiotis Symeonidis, Alexandros Nanopoulos, and Yannis
Manolopoulos. Tag recommendations based on tensor dimension-
ality reduction. In Proceedings of the ACM Conference on Recom-
mender Systems, pages 43–50, 2008.

[SNTO09] Lúıs Sarmento, Sérgio Nunes, Jorge Teixeira, and Eugénio Oliveira.
Propagating fine-grained topic labels in news snippets. In Proceed-
ings of the Workshop on Intelligent Analysis and Processing of Web
News Content (held with WI/IAT 2009), Milan, Italy, September
2009.

[SPC06] Lúıs Sarmento, Ana Sofia Pinto, and Lúıs Cabral. REPENTINO -
A Wide-Scope Gazetteer for Entity Recognition in Portuguese. In
PROPOR 2006 - Encontro para o Processamento Computacional
da Ĺıngua Portuguesa Escrita e Falada, pages 31–40, ME - RJ /
Itatiaia, Rio de Janeiro - Brasil, May, 13-17 2006.

Bibliography 229

[SPUP02] Andrew I. Schein, Alexandrin Popescul, Lyle H. Ungar, and
David M. Pennock. Methods and metrics for cold-start recommen-
dations. In SIGIR ’02: Proceedings of the 25th annual international
ACM SIGIR conference on Research and development in informa-
tion retrieval, pages 253–260, New York, NY, USA, 2002. ACM.

[SSCV06] Diana Santos, Nuno Seco, Nuno Cardoso, and Rui Vilela. HAREM:
An advanced NER evaluation contest for Portuguese. In Nicoletta
Calzolari, Khalid Choukri, Aldo Gangemi, Bente Maegaard, Joseph
Mariani, Jan Odjik, and Daniel Tapias, editors, Proceedings of the
5th International Conference on Language Resources and Evalua-
tion, LREC 2006, pages 1986–1991, Genoa, Italy, 22–28 May 2006.
ELRA.

[SSLM02] Sreenivasa Sista, Richard Schwartz, Timothy R. Leek, and John
Makhoul. An algorithm for unsupervised topic discovery from
broadcast news stories. In Proceedings of the second international
conference on Human Language Technology Research, pages 110–
114, San Diego, California, 2002. Morgan Kaufmann Publishers Inc.

[SSS02] Yusuke Shinyama, Satoshi Sekine, and Kiyoshi Sudo. Automatic
paraphrase acquisition from news articles. In Proceedings of the sec-
ond international conference on Human Language Technology Re-
search, pages 313–318, San Diego, California, 2002. Morgan Kauf-
mann Publishers Inc.

[SSSG+10] Rui Sousa-Silva, Lúıs Sarmento, Tim Grant, Eugénio Oliveira, and
Belinda Maia. Comparing sentence-level features for authorship
analysis in Portuguese. In Proceedings of International Conference
on Computational Processing of Portuguese Language, Porto Alegre
- RS, Brazil, 27 to 30 of April 2010.

[STGO09] Lúıs Sarmento, Paulo Trezentos, João Pedro Gonçalves, and
Eugénio Oliveira. Inferring local synonyms for improving keyword
suggestion in an on-line advertisement system. In ADKDD ’09:
Proceedings of the Third International Workshop on Data Min-
ing and Audience Intelligence for Advertising, pages 37–45, Paris,
France, 2009. ACM.

[STO08] Lúıs Sarmento, Jorge Filipe Teixeira, and Eugénio Oliveira. As-
sessing the impact of thesaurus based expansion techniques in
QA-centric IR. In Carol Peters, Tomas Deselaers, Nicola Ferro,
Julio Gonzalo, Gareth J.F.Jones, Mikko Kurimo, Thomas Mandl,
Anselmo Peñas, and Viviane Petras, editors, Evaluating Systems
for Multilingual and Multimodal Information Access 9th Workshop

230 Bibliography

of the Cross-Language Evaluation Forum (Revised Selected Papers),
Aarhus, Denmark, September 17-19 2008. Springer.

[Tak08] Koichi Takeuchi. Extraction of verb synonyms using co-clustering
approach. In ISUC ’08: Proceedings of the 2008 Second Inter-
national Symposium on Universal Communication, pages 173–178,
Osaka, Japan, December 15 - 16 2008. IEEE Computer Society.

[TBL08] Douglas Turnbull, Luke Barrington, and Gert Lanckriet. Five ap-
proaches to collecting tags for music. In Proceedings of the 9th In-
ternational Conference on Music Information Retrieval, pages 225–
230, Philadelphia, USA, 2008.

[TFK02] Aristomenis Thanapoulos, Nikos Fakotakis, and George Kokki-
nakis. Comparative Evaluation of Collocation Extraction Metrics.
In LREC 2002 - 3rd International Conference on Language Re-
sources and Evaluation, volume Vol. 2, pages 620–625, Las Palmas,
Spain, May 29-31 2002.

[TKS04] Pang-Ning Tan, Vipin Kumar, and Jaideep Srivastava. Selecting
the right objective measure for association analysis. Inf. Syst.,
29(4):293–313, 2004.

[TLBL07] D. Turnbull, R. Liu, L. Barrington, and G Lanckriet. Using
games to collect semantic information about music. In 8th Interna-
tional Symposium on Music Information Retrieval, Vienna, Austria,
September 23-27 2007.

[TR02] Michael Thelen and Ellen Riloff. A bootstrapping method for learn-
ing semantic lexicons using extraction pattern contexts. In EMNLP
’02: Proceedings of the ACL-02 conference on Empirical methods in
natural language processing, pages 214–221, Morristown, NJ, USA,
2002. Association for Computational Linguistics.

[TSO10] Jorge Filipe Teixeira, Lúıs Sarmento, and Eugénio Oliveira. Com-
paring verb synonym resources for Portuguese. In Proceedings of In-
ternational Conference on Computational Processing of Portuguese
Language, Porto Alegre - RS, Brazil, 27 to 30 of April 2010.

[Tur01] Peter D. Turney. Mining the Web for Synonyms: PMI-IR versus
LSA on TOEFL. In Proceedings of the 12th European Conference
on Machine Learning, volume Lecture Notes in Computer Science,
2167, pages 491–502, 2001.

[vAGKB07] L. von Ahn, S. Ginosar, M. Kedia, and M. Blum. Improving image
search with phetch. In IEEE International Conference on Acoustics,

Bibliography 231

Speech and Signal Processing, 2007. ICASSP 2007., volume 4, pages
IV–1209–IV–1212, April 2007.

[VPF91] Paola Velardi, Maria Teresa Pazienza, and Michela Fasolo. How to
Encode Semantic Knowledge: A Method for Meaning Representa-
tion and Computer-Aided Acquisition. Computational Linguistics,
17(2):153–170, 1991.

[WD02] Dominic Widdows and Beate Dorow. A Graph Model for Unsu-
pervised Lexical Acquisition. In Procedings of 19th International
Conference on Computational Linguistics (COOLING 19), pages
1093–1099, Taipei, 2002.

[WKPU08] Casey Whitelaw, Alex Kehlenbeck, Nemanja Petrovic, and Lyle Un-
gar. Web-scale named entity recognition. In ACM 17th Conference
on Information and Knowledge Management: CIKM 2008. ACM
Press, 2008.

[WWM04] Julie Weeds, David Weir, and Diana McCarthy. Characterising
measures of lexical distributional similarity. In COLING ’04: Pro-
ceedings of the 20th international conference on Computational Lin-
guistics, page 1015, Morristown, NJ, USA, 2004. Association for
Computational Linguistics.

[XFMS06] Zhichen Xu, Yun Fu, Jianchang Mao, and Difu Su. Towards the
Semantic Web: Collaborative tag suggestions. In WWW2006: Pro-
ceedings of the Collaborative Web Tagging Workshop, Edinburgh,
Scotland, may 2006.

[YE07] Alexander Yates and Oren Etzioni. Unsupervised resolution of ob-
jects and relations on the Web. In Proceedings of NAACL HLT,
pages 121–130, Rochester, NY, April 2007.

[ZK01] Y. Zhao and G. Karypis. Criterion Functions for Document Clus-
tering: Experiments and Analysis. Technical report, University of
Minnesota, Minneapolis, 2001.

