
Erasmus scholarship

Implementation of an ontology mapping algorithm
(Internship at University Oporto from Oct-2006 to Feb-2007)

Final report

Bernd Schneiders, 2006/2007
Umwelt-Campus Birkenfeld
Applied computer science

Supervisor: Professor Eugénio Costa Oliveira

Table of Content
 1 Introduction... 3
 2 Related work..3
 3 MAS...3

 3.1 JADE..3
 3.2 Platform..3

 4 Ontology Mapping...4
 4.1 Introduction..4
 4.2 Pre-selection...6
 4.3 Matching item.. 6

 4.3.1 N-Grams...6
 4.3.2 WordNet...7
 4.3.3 Matching Description...8
 4.3.4 Matching Attributes... 8
 4.3.5 Matching item name...8
 4.3.6 Final matching result..9

 4.4 Protocol.. 9
 4.4.1 CFP...10
 4.4.2 Details for item...11
 4.4.3 Pre-selection...11
 4.4.4 Result..11

 5 Experiments... 12
 6 Conclusion... 14
 7 Acknowledgement... 14
 8 References... 14

 1 Introduction
This final report is developed from an internship (16. weeks) project at the NIAD&R
(Distributed Artificial Intelligence & Robotics Group) at University of Oporto. Aim of
this project was reimplementing an ontology mapping algorithm to the still in
developing Virtual Institution platform by NIAD&R.

First this document contains a short overview of related work, about MAS´s and the
platform. Next, the most important part, is about ontology mapping, structure, how the
algorithm works and about the protocol. The final chapter is about some experiments.

 2 Related work
This work is based on parts of an algorithm which was developed by [1] and [2]. They
developed an ontology algorithm which based on a Multi-Agent-System written in
JADE in an B2B environment.

This reimplementation of the algorithm is integrated in Virtual Institution MAS
platform of [3].

 3 MAS
A Multi-Agent-System (MAS) is a software platform which contains several similar or
different types of software agents. The platform provide a system for communication
and management. In our platform the JADE framework is used for developing a MAS.

 3.1 JADE
JADE (Java Agent DEvelopment Framework) is a software framework fully
implemented in Java language. It simplifies the implementation of multi-agent systems
through a middle-ware that complies with the FIPA specification. The framework is
released under the open source LGPL licence.

The agent platform can be distributed across machines that do not need to share the
same operating system. Only one Java application and, therefore, only one Java Virtual
Machine (JVM), is executed on each host. Each JVM is basically a container of agents
that provides a complete runtime environment for agent execution and allows several
agents to run concurrently on the same host.[6]

 3.2 Platform
The platform where the ontology mapping algorithm is implemented is written in Java
and using the JADE framework. Figure 1 show the structure and represents a Virtual
Institution that facilitates a Virtual Enterprise life cycle. It comprise several different

services like Negotiation Mediator, Notary, Contract Monitoring and a Ontology
Mapping service.

 4 Ontology Mapping
Ontology mapping is the process of finding correspondences between the concepts of
two ontologies. If two concepts correspond, then they mean the same thing or closely
related things [Dou et al., 2003].

 4.1 Introduction
There are several ontology definitions that have evolved in the last decades. However,
there is a consensus among the ontology community of researchers about their role: they
provide a common understanding regarding some domain knowledge. Diverse research
communities, such as knowledge engineering, database and software engineering, use
ontologies for many different purposes: natural language processing, electronic
commerce, knowledge management, semantic Web, etc. [1]

Figure 1: Scheme of MAS platform

Ontologies generally consist of individuals, classes, attributes and relations.

– Individuals represent an instance of an object with all attributes an their values.
(e.g. in our e-commerce scenario it represents an instance of a motor named
'motor01')

– Classes or concepts conceptualise objects which describe common properties.
These classes could consist of main classes and subclasses. 'car' as main class
and 'wheel' as a subclass of a car.

– Attributes describe characteristics of a class (e.g. 'number_of_cylinder' of the
class 'motor')

– Relations represent relationships between concepts (e.g. a Motor
'has_cylinderblock')

If two software agents want to negotiate about a product, they have to understand each
other. There are two ways to solve this problem. The first simple approach for
negotiation is to use same ontologies for both agents, customer and supplier agent to
represent their products. Each item, supplier and customer, need to abide by the exact
specification of the used ontology. It is recommend to use for every product group (e.g.
CD, wheel, etc.) a separate ontology. This approach is only practicable by simple
products, it is more difficult to represent products like a car with a public ontology.
A more realistic approach is that every agent use his own domain ontology. Only the
use of an institutional ontology is predetermined. This institutional ontology is required
to facilitate a negotiation. Institutional ontologies contains e.g. price, deliver time etc.
Developer/user of enterprise agents could now adapt the domain ontology to the product
specification or requirements.
On this approach it occur a new problem the so-called heterogeneity problem. It is more
difficult for an agent to determine if the own and the ontology of the in negotiation
involved agent represent the same item. This heterogeneity problem could be solved by
an ontology mapping algorithm. [1]

The ontology mapping algorithm is separated into two parts. First part is the pre-
selection algorithm. This algorithm allows a reduction of items to handle. The second
part, the matching algorithm, calculates a similarity between two ontologies.

Figure 2: Ontology mapping algorithm

Ontology mapping algorhithm

CFP

Supplier Enterprise Agents (1..n)

pre-selection

Matching

negotiation

 4.2 Pre-selection
The pre-selection is a simple way to reduce the amount of considered items. After CFP
the negotiation mediator only considers items of supplier enterprise agents which are in
price range of proposed item. Price range is between 75% and 125%, e.g. it is not
expected that a motor is in price range of a battery.

 4.3 Matching item
After pre-selection the remain items have to be compared to calculate a similarity. First
item name, description and the attributes by N-Grams algorithm. Then the item name
matching is performed by the semantic similarity algorithm of LCH. Last a final result
is calculated with a weighted consideration of partial results.

 4.3.1 N-Grams
The N-Grams algorithm facilitates a calculation of similarity between two strings.

The first step is to normalize both strings, i.e. delete all stop-words like “a”, “around” or
“that”, then replace all irregular like '_' or '?' with ' '. Next separate both strings into so-
called grams. These grams are sub-strings of length n.

In the next step the algorithm compares all sub-strings of first string with all sub-strings
of second string. If two sub-strings are equal a counter will be increment.

Last a value of similarity will be calculate:

value= count of matches
 number of sub-strings

The value is in range of 0.0 to 1.0. A value of 0.0 (i.e. no sub-string match with another
sub-string) is the worst case. The best case is a value of 1.0 (i.e. all sub-string of first
string match with sub-stings of second string).

It is important to divide 'count of matches' by 'number of sub-string' of the shortest
string, otherwise the value could be higher then one.

Figure 3: Matching algorithm

Matching algorithm

Description comparison

Attribute comparison

Calculate WordNet similarity

Calculate result

Return highest result

Item name comparison

Another part of this algorithm is to insert at the begin and end of the string spaces. This
is important to match sub-strings with the first and last character of a string.

N-Grams(3, 2) => 3=number of letters, 2=number of spaces

String1='frontseat' with spaces=' frontseat '
String2='backseat' with spaces=' backseat '

Grams string1=' f', ' fr', 'fro', 'ron', 'ont', 'nts',
 'tse', 'sea', 'eat', 'at ', 't '
Grams string2=' b', ' ba', 'bac', 'ack', 'cks', 'cks',
 'sea', 'eat', 'at ', 't '

count of matches=4
number of sub-strings=10

value=0.4
Table 1: Example N-Grams

In our e-commerce scenario the best parameters for N-Grams algorithm are 3 for
number of letters (i.e. length of sub-strings) and 2 for number of spaces [1].

 4.3.2 WordNet
WordNet is a free lexical database which contains semantic and lexical relations
between words.

The Perl program WordNet::Similarity use the WordNet database to calculate a
semantic similarity between two words. It facilitates different measure methods to
calculate semantic similarity. The best method in our e-commerce scenario is LCH [1].
LCH calculates a taxonomic path length between two words.

Figure 4: N-Grams algorithm

N-Grams algorithm
Normalize strings

Insert spaces

Build substring-vectors

Match both vectors

 4.3.3 Matching Description
Matching description is based on N-Grams algorithm. The idea behind this matching is
that different experts which are describing a item will use similar words in the
description.

As an example we would have the description of “Engine” as “engine is a motor that
converts thermal energy to mechanical work” and “Motor” as “motor is a machine that
converts other forms of energy into mechanical energy and so imparts motion”. Taken
out the stop-words we would have the description of “Engine” as “engine motor
converts thermal energy mechanical work” compared with the description of “Motor” as
“motor machine converts forms energy mechanical imparts motion”. [5]

 4.3.4 Matching Attributes
The idea behind matching attributes is that two experts which create a concept probably
use equal object-types for same attributes(e.g. object-type for number of wheels is
typically integer and not float). Also they use similar names for attributes.

First part of algorithm is to separate all attributes of a concept by equal attribute-type.
Next step is to build for each attribute-type a separate string. These strings contains the
names of each attribute of certain attribute-types.

Concept 1 Concept 2
int number_of_wheels
int horse_power
string color
bool has_aircondition

Int numberOfWheels
int hp
string color
bool has_ac

Ints =“number_of_wheels
 horse_power”
strings=“color”
bools =“has_air_condition”

Ints =“numberOfWheels hp”
strings=“color”
bools =“has_ac”

Table 2: Attribute matching

The final part of this algorithm is to compare the created attribute-strings of two
concepts. For this comparison the N-Grams algorithm is used.

After using N-Grams on each attribute-string an average of all types is calculated. The
final result is in range of 0.0 (not similar) to 1.0 (similar)

 4.3.5 Matching item name
To calculate similarity of item name based on WordNet, the process is divided into two
parts. The first part is integrated in the platform. This part is written in Java. To
communicate with the second part, a Perl script, the TCP/IP protocol is used. Every
time the matching item-name algorithm establish a new connection.

The Perl script provides a TCP/IP server. This server receive the request from and send
the result to the client. After receiving a request, the server call the WordNet::Similarity
module which use the WordNet::QueryData perl module to access the WordNet
database.

The reason why a client/server based system is used, is that initialising the WordNet
database need some seconds. In this approach the initiating of the database is needed
only one time at start. A request base on client/server approach require only some
milliseconds.

 4.3.6 Final matching result

Last step of this algorithm is to calculate a final result for every concerned item and
return the item with the highest result. The finial result is calculated of partial results of
item name, description, attribute comparison by N-Grams and item name comparison.

 4.4 Protocol
After initiating negotiation by a REQUEST of a Customer-Enterprise-Agent to
Negotiation-Mediator service a Negotiation-Handler will be created for negotiating. The

Figure 5: Calculate WordNet similarity

Calculate WordNet similarity

Java

Perl TCP/IP Server

TCP/IP Client

WordNet::Similarity

WordNet::QueryData

WordNet Database

Matching algorithm Hashtable

ontology mapping service try to find corresponding items between customer and
supplier. After matching, the service return if a corresponding item was found or not.
The Negotiation-Handler can now include or exclude the supplier form negotiation
process.

 4.4.1 CFP
The Initiator of negotiation is a CEAg (Customer-Enterprise-Agent). This agent send a
REQUEST message to the NegMed (Negotiation Mediator). The NegMed creates a
NegHandler (Negotiation Handler) which is controlling the negotiation process.
NegHandler sends a CFP (Call For Proposal) to all SEAg(Supplier-Enterprise-Agent) in
platform to initiate a ontology mapping process with each SEAg. Aim of this process is
to find all SEAg´s which are providing the item of interest.

After receiving CFP the SEAg will send a REQUEST to OSAg (Ontology Service
Agent) which contains as content a string “matching item <item_name>” (<item_name>
is a place holder for item name). After OSAg receiving the REQUEST the OSAg reply
with a AGREE message.

Content of CFP is the item name as a string (e.g. “engine”)

Figure 6: Ontology mapping protocol

Negotiation
Handler

Enterprise
Agent OSAg

AGREE

REQUEST “details for item”

INFORM “details for item”

INFORM “preselection”

REQUEST “preselection”

INFORM “matching item is”

FAILURE

CFP

Negtiation
Mediator

Enterprise
Agent

REQUEST

REQUEST

answ erCFP “matching item is”

answ erCFP “no matching item”

REQUEST “match item”

 4.4.2 Details for item
Next step is to get ontology which describes the item of interest. First the OSAg sends a
REQUEST to NegHandler with message content “details for item <item_name>”. Now
the NegHandler return with a INFORM message which contains all needed information
about the used ontology of CEAg which describes the product. This content use the
following structure:

whereat blue rectangles are of type string. Objects like “ints” or “float” are concatenated
strings which containsq the names of attributes separated by a blank.

 4.4.3 Pre-selection
For reducing the amount of to be considered item the OSAg request only a list of item
from SEAg´s, which are in price range of proposed item. First the OSAg send a
REQUEST with the content “preselection <price>” to each SEAg´s. Each SEAg´s
answer with an INFORM message with the content like in Figure 7.

 4.4.4 Result
After matching the pre-selected items with the considered item of CEAg the SEAg has
two possible answers. First, if the item match with the CEAg item, the SEAg will call
the answerCFP function with parameter true. Otherwise the SEAg will call the
answerCFP function with false. This function tells the NegHandler about the matching
result.

Figure 7: Structure of details for item
content

Vector

Vector
Attributes

Currency

Desciption

Price

Relations

Booleans

Floats

Ints

Strings

 5 Experiments
Some experiment have been done. First N-Grams experiments by item name,
description and attributes. Next semantic similarity by WordNet. Last matching
different items and calculate a final result.

Matching item name:

Proposed item Matching item N-Grams result
'frontseat' 'Backseat' 0.3333
'frontseat' 'front_seat' 1.0
'backseat' 'front_seat' 0.3333
'wheel' 'Backseat' 0.5555

Matching description:

Proposed item Matching item
'a simple machine
consisting of a circular
frame with spokes'

'a handwheel that is used
for steering'

'a simple machine
consisting of a circular
frame with spokes'

'a simple machine
consisting of a circular
frame with spokes'

convert to:
Proposed item Matching item N-Grams result
'simple machine consistin
circular frame spokes'

'handwheel used steering' 0.0454

'simple machine consistin
circular frame spokes'

'simple machine consistin
circular frame spokes' 1.0

Matching Attributes:

Proposed item Matching item N-Grams result
Strings: 'color' Strings: 'color material' 0.5714
Floats: 'diameter price' Float: 'diameter price' 1.0
Ints: 'quantity' Ints: 'quantity

number_of_screws'
0.8888

Total: 0.82

Matching item name (Semantic similarity):

Proposed item Matching item WordNet similarity (LCH) result
'Wheel' 'wheel' 1.01508
'backseat' 'frontseat' 'frontseat' not in WordNet database
'backseat' 'wheel' 0.4348

In this experiment the OSAg is searching a corresponding item for 'backseat'. There are
three items in stock (wheel, backseat and frontseat). After pre-selection by price two
items are remaining (backseat and frontseat). There is no description and the items have
the same attributes.

OSAg: Searching correspondent term for 'backseat' ...

preselected items for: backseat: 'Frontseat' 'Backseat'

OSAg: Pre-Selection proposed: 'Frontseat'

OSAg: N-Grams [item-name]: 0.3333333333333333

OSAg: N-Grams [descriptions]: n.a.

OSAg: N-Grams [attributes]: 1.0

* attr 1.0

ERROR: not found in WordNet.

Canceling ... since (at least one of the) words not found in WordNet.

OSAg: 'backseat' or 'Frontseat' not found in WordNet

OSAg: Final result for Frontseat: 0.6666666666666666

OSAg: Pre-Selection proposed: 'Backseat'

OSAg: N-Grams [item-name]: 1.0

OSAg: N-Grams [descriptions]: n.a.

OSAg: N-Grams [attributes]: 1.0

OSAg: WordNet-Similarity ['backseat' - 'Backseat']: 1.0150877453695204

* attr 1.0

* WordNet 1.0150877453695204

OSAg: Final result for Backseat: 1.0075438726847603

HIGHEST RESULT: Backseat 1.0075438726847603

Matching item for 'backseat' found: 'Backseat'

After matching the item with the highest result is 'Backseat' and the OSAg found item
'Backseat' corresponding with 'backseat'.

More experiments with this algorithm have been done by [1] and [2].

 6 Conclusion
At my internship I learnt a lot new things. First about software agents and their
implementation in Multi-Agent-Systems. About Virtual Institutions, working in a team
by integration a service in the platform and about ontologies, ontology mapping and
associated algorithms.

 7 Acknowledgement
I would like to thank Henrique Lopes Cardoso and Rui Neves for the good team work.
And I would like to thank Prof. Dr. Norbert Kuhn and Prof. Eugénio Oliveira to make
my intership possible.

 8 References
[1] Andreia Macucelli, “Ontology-based Services for Agents Interoperability“,
http://paginas.fe.up.pt/~eol/PUBLICATIONS/2006/Thesis_Malucelli_2006.pdf, 2006

[2] Daniel Palzer, „Ontology-based Services in Multi-Agent Systems“,
http://paginas.fe.up.pt/~eol/SOCRATES/Palzer/, 2005

[3] Henrique Lopes Cardoso, “Electronic Institution: an E-contracting Platform for
Virtual Organizations”

[4] Andreia Malucelli, Henrique Lopes Cardoso, Eugénio Oliveira, “Enriching a MAS
Environment with Institutional Services”,
h ttp://paginas.fe.up.pt/~eol/PUBLICATIONS/2006/Livro_Malucelli_LCardoso_Oliveir
a.pdf, 2006

[5] Andreia Malucelli Daniel Palzer Eugénio Oliveira, “Combining Ontologies and
Agents to help in Solving the Heterogeneity Problem in E-Commerce Negotiations”,
2005

[6] JADE, http://jade.tilab.com/

http://paginas.fe.up.pt/~eol/PUBLICATIONS/2006/Thesis_Malucelli_2006.pdf
http://jade.tilab.com/
http://paginas.fe.up.pt/~eol/PUBLICATIONS/2006/Livro_Malucelli_LCardoso_Oliveira.pdf
http://paginas.fe.up.pt/~eol/PUBLICATIONS/2006/Livro_Malucelli_LCardoso_Oliveira.pdf
http://paginas.fe.up.pt/~eol/SOCRATES/Palzer/

	 1 Introduction
	 2 Related work
	 3 MAS
	 3.1 JADE
	 3.2 Platform

	 4 Ontology Mapping
	 4.1 Introduction
	 4.2 Pre-selection
	 4.3 Matching item
	 4.3.1 N-Grams
	 4.3.2 WordNet
	 4.3.3 Matching Description
	 4.3.4 Matching Attributes
	 4.3.5 Matching item name
	 4.3.6 Final matching result

	 4.4 Protocol
	 4.4.1 CFP
	 4.4.2 Details for item
	 4.4.3 Pre-selection
	 4.4.4 Result

	 5 Experiments
	 6 Conclusion
	 7 Acknowledgement
	 8 References

