
An Exploratory Study of Relations
between Site Features and I2V Link Performance ?

Luı́s Sousa1, Pedro M. Santos1, and Ana Aguiar1,2

1 Faculdade de Engenharia, Universidade do Porto
2 Instituto de Telecomunicações

{lm.sousa,pmsantos,anaa}@fe.up.pt

Abstract. In emerging Internet-of-Things (IoT) realities, sensor nodes near roads will
leverage opportunistic connections to vehicles to forward their data to the cloud. In
planning such IoT platforms, node placement must be informed by an assessment of I2V
transfers at a tentative location. It is not feasible to measure I2V volumes at all potential
locations, so predictive models are necessary. We propose that qualitative characteristics
of a potential site, in particular the existence of traffic and fleet-related points-of-interest
(POI), can inform about the vehicles’ mobility patterns and can ultimately be related with
the quality of I2V service. In this work, we analyze a real-world dataset of WiFi I2V link
measurements in an urban setting with an urban fleet. We observe that most connections
occur with the vehicles stopped, and show that stopping regions are related with POIs.
Our conclusions include that traffic lights and fleet POIs account for a considerable part
of the collected I2V samples, whereas crosswalks account for few transfer occasions.
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1 Introduction
Smart Cities will require new solutions for connectivity and data collection inspired by the
Internet-of-Things (IoT) paradigm [1]. Opportunistic collection of data produced by road-side
IoT nodes by wireless-enabled vehicles is one of such strategies. When planning the deployment
of such road-side nodes, an important challenge is to evaluate if the node will be able to transfer
all of its data to passing vehicles. Learning this requires resource-consuming measurement
campaigns at several potential locations, or accurate estimation methods of I2V transfers that
rely on models of throughput vs. distance and mobility traces.

An alternative approach is to estimate data transfer rates and volume from relevant qualitative
characteristics of a potential deployment location. Given the vehicular nature of the receivers,
such features are typically related to mobility: these may be directly related to the vehicular
mobility patterns (e.g., speed distribution and stopped/moving periods of the vehicles), or
indirectly by mobility-affecting points-of-interest (POI), such as traffic (e.g., traffic lights, cross-
walks) and/or fleet-related infrastructure (e.g., bus stops, garbage bins). In this paper, we identify
mobility and throughput patterns that can be associated with such features, leveraging a dataset of
WiFi link characterization in I2V connections. We observe that a large percentage of connection
samples take place when the vehicles are stopped, and relate stopping areas to nearby POI.

Our main contributions are: (a) identification of mobility and throughput patterns associated
to I2V service from analysis of a real-world link quality dataset; and (b) elation of patterns and
POI of a site and break down per POI class.
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The remainder of this article is organised as follows. In Section 2 we review the literature
on this topic. We describe the I2V dataset and experimental setup, and uncovered mobility and
throughput patterns in Section 3. In Section 4, we relate identified mobility and throughput
patterns with POIs of each site. Final remarks are drawn in Section 5.

2 Related Work
In [5], the authors report a distributed mobile sensor system: data collected by sensors installed
in vehicles is offloaded to static road-side units. The work of [2] builds on the previous by
allowing vehicles to receive data from the static nodes. The performance of I2V links based
on IEEE 802.11 networks to provide Internet to vehicular users in highway scenarios has been
characterized in [8]. The authors of [4] describe range, association times, UDP and total data
volume between infrastructure and cars at different speeds. The tools to perform bandwidth
estimation include the well-established Iperf application, that attempts to send the maximum data
possible through the channel to estimate the channel capacity. WBest [6] offers an alternative
for end-to-end capacity measurements: it assumes that end-to-end capacity is defined by the
narrowest link, that “the time dispersion between the two packets is linearly related to that
narrow link capacity” [6]. To the best of our knowledge, this is the first work proposing the
estimation of I2V data transfers from site features.

3 Experimental Setup and Dataset Analysis
We use I2V measurements acquired in the context of the PortoLivingLab platform [10]. Por-
toLivingLab is a smart city-enabler IoT platform deployed in Porto, Portugal, comprised by
sub-platforms UrbanSense [7], a collection of 20 sensing units equipped with a WiFi module
and named Data Collection Units (DCUs), and BusNet, a vehicular network of 600+ on-board
units (OBUs) installed in the public transportation fleet (accounting for 400 nodes) and waste
disposal fleet of Porto, and that offer a WiFi hotspot service. An initial characterization of I2V
WiFi links in the PortoLivingLab setup is reported in [9].

The I2V experimental dataset was collected at three DCUs, deployed at three disparate
sites and refered to as “A”, “B” and “C”, from measurement sessions carried out with the
OBUs installed in the waste-disposal fleet. The DCUs, configured as WiFi clients, connected
opportunistically to passing OBUs (configured as access points – AP) to collect the GPS of the
vehicles and perform measurement sessions of Iperf and Wbest. The resulting dataset contains
collections of samples (i.e., measurement tuples) composed of timestamp, MAC address of OBU,
position and speed of vehicular node, and link quality metrics – throughput, PLR, jitter – from
both tools. The three steps – collecting GPS and running Iperf and WBest measurement sessions
– were performed sequentially and repeated in this order while the connection lasted. The time
between tuples is at least 2s, as the GPS data of the vehicle is obtained via a SSH-based query
to the OBU, and the IPerf measurement session is scheduled to last 1s. Individual connections
to OBUs are identified by aggregating samples that are temporally close (less than 60 seconds
apart). The data volume of a connection is the summation, over all samples, of the product of
each sample throughput and the time interval until the next sample. In pre-processing, samples
lacking valid GPS data were discarded. In total, we obtained 12369 link quality samples, 588
connections, and detected 16 different OBUs.
3.1 Evaluation of Bandwidth Estimation tools
As mentioned earlier, the available dataset contains channel capacity measurements from two
tools that operate in significantly different ways. Iperf injects the maximum possible data in
the channel, and it can be highly disruptive to other on-going connections. WBest proposes
a non-disruptive alternative, and thus it may be better suited when unrelated connections exist.
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(a) Slow moving vehicles. (b) Medium speed. (c) Fast moving vehicles.
Fig. 1: Comparison of Iperf/WBest measured throughput, for the same measurement tuple.

We seek to understand how similar the estimates of both tools are. In the I2V dataset, the
samples for each tool were obtained sequentially: the measurement session by Iperf, lasting
1s, is followed by a session by WBest. In Figure 1, we plot the relation of the Iperf and WBest
values for the same measurement tuple, for the cases of stopped vehicles (speeds under 1 km/h),
slowly moving (speed between 1 and 6km/h), and fast speed (over 6 km/h). Linear regression
parameters and standard deviation of residuals are also shown. Observed slopes are close to 1
for most cases, particularly for slow moving vehicles. The slope decreases as the speed increases,
indicating that WBest under-estimates the bandwidth, which in turn may be a consequence of
increased packet loss. For the remainder of this paper, we use the Iperf measurements.

3.2 Analysis of Vehicle Mobility and I2V Throughput
We analyzed the collected data by evaluating how the measured link throughput varies with
several mobility-related features, particularly the vehicles’ speed and distance to the DCU. The
speed of the vehicles during the I2V measurements is shown in Fig. 2. We observe that, across
the three sites, the large majority of samples was taken when the vehicle is stopped. The ratio
of stopped and moving intervals of the vehicles was, on average, 83.32%, so there are more
throughput samples collected when the vehicles are stopped.

We also observed the throughput samples to follow similar distributions at the three sites, as
can be seen from the throughput CDFs in Fig. 3. The performance of throughput versus distance
is depicted in Fig. 4 for 10 meter-wide bins. We observe that the communication range differs
from location to location, that can explained by the different road topologies, and that there are
distance intervals where a larger number of samples occur (see top axis of graphs), indicating
that at those distances there may be POIs (or areas affected by nearby POIs).

The two main takeaways are that: (a) in all locations, most of the connection samples occur
when vehicles are stopped; (b) sample frequency w.r.t. distance varies between distance intervals
and from location to location. These two observations lead us to conclude that, at each location,
points-of-interest at particular distances create stopping opportunities.

4 Identification and I2V Performance at POI
We hypothesize, from the previous analysis, that most data transfers occur at locations where
points-of-interest exist. We define two classes of POIs: (a) traffic-related, e.g., traffic lights,
crosswalks, etc.; and (b) fleet-related, e.g., bus stop, garbage bins.

4.1 Identifying Stopping Regions and Association to POI
We further analyzed the I2V measurement samples at which vehicles were stopped. We consider
a vehicle is “stopped” if its speed is inferior to 3 km/h. We verified by visual inspection that these
samples were not uniformly distributed over the roadways, and that their spatial density is higher
near POIs. We set out to confirm the link between POIs and “stopped” samples as follows.

In a first stage, we applied a density-based clustering technique, DBSCAN [3], to identify
areas with high concentration of samples. The DBSCAN parameters were: neighborhood
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Fig. 2: CDF of speed samples for all sites.
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Fig. 3: CDF of throughput samples for all sites.
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(c) Site C
Fig. 4: Throughput vs. distance at the selected locations (number of samples on top axis).

radius – 2.5m; minimum number of points to become a core point – 8. The original dataset
was sub-sampled prior to the cluster algorithm, to retain the highest-throughput samples. We
defined consecutive 10m-wide rings centered at the DCU location, and take only the 40%
highest-throughput samples in each ring. This approach allows us to sub-sample homogeneously
over the entire range of distances. The parameters of the sub-sampling and DBSCAN procedures
were found after iterative search: at each round, we evaluated empirically the number and size of
produced clusters. The goal was to obtain a manageable number of clusters for the subsequent
POI assignment task (as opposed to having many small clusters or few large ones).

After the clustering algorithm was applied, we established an univocal correspondence
between clusters and POIs. We identified manually, on each site, the following types of POIs:
traffic lights, crosswalks and garbage bins. We computed the Euclidean distance between cluster
centroids and POI locations, and associated the closest ones. We concluded that this approach
did not perform well in some cases. E.g., oftentimes a slender cluster, known to be caused by
a particular traffic light, presents its centroid closer to the crosswalk of a inflowing parallel street.
Thus, we associated manually POIs to clusters, taking into consideration: (a) whether POI is
inside the cluster; (b) direction of traffic flows. POIs may be assigned more than one cluster.
Table 1 presents a quantitative characterization of the datasets corresponding to each of these
steps – the initial dataset, and those associated with the produced clusters and assigned clusters.
The cluster algorithm retained between 31.9% and 38.1% of the global dataset, corresponding to
between 43.4% to 47.1% of volume transfers. Note that the clustering algorithm is only applied to
stopped “samples”, and that the sub-sampling and DBSCAN procedures can be tuned to different
results. After association to POIs, almost all cluster samples are retained, with the exception of
site A where one large cluster could not be assigned to a POI (more details on the next section).

For the samples associated to POIs, we observe a consistent behaviour of throughput versus
distance at most sites. Fig. 5 presents per-distance boxplots of transfer rates and a fitted expo-
nential curve t=aebd, where t is throughput and d distance. Sites A and C, containing samples
at least up to 50m, exhibit similar curves. Site B does not allow for extensive comparison (due
to inferior distance range), but rates at the available distances verify those of other sites.
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Site # days Total Stopped # clus. Clusters POIs Assigned
clusters

A 70
# samples 4148 75.4% (3128)

21
34.6% (1434) 16.5% (685)

18Conn. time (s) 12825 76.4% (9793) 31.1% (3984) 14.7% (1880)
Volume (Mbit) 103006 74.4% (76614) 45.2% (46528) 20.0% (20607)

B 34
# samples 1386 81.1% (1124)

11
31.9% (442) 31.9% (442)

11Conn. time (s) 4094 81.6% (3340) 29.4% (1202) 29.4% (1202)
Volume (Mbit) 31404 82.8% (25995) 43.4% (13631) 43.4% (13631)

C 61
# samples 6466 93.5% (6043)

10
38.1% (2466) 37.8% (2444)

8Conn. time (s) 19875 93.9% (18655) 32.4% (6444) 32.1% (6387)
Volume (Mbit) 170167 90.9% (159813) 47.1% (80109) 46.6% (79283)

Table 1: Dataset metrics: total, stopped and cluster-bound (produced and assigned).
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Fig. 5: Throughput vs. distance per POI class.

4.2 Analysis per POI Class and Location
We evaluate the contribution of each POI class to the data transfers measured at each site. Table 2
indicates the number of POIs per site, the number of clusters associated to each POI class, and
the corresponding dataset size and data volume. Fig. 6 depicts the produced clusters and relevant
POIs, for a visual reference to support the values of Table 2. Site-specific analyses are now drawn.
Site A: most samples and clusters are associated with traffic lights (e.g., 1, 3, 4 and 5 of Fig. 6a),

and two clusters are associated with garbage bins (1 and 6). Despite being more numerous,
crosswalks account for comparatively few samples. There is a large cluster that cannot be
directly associated to any POI, as it is located at the center of the cross-roads.

Site B: the majority of the data volume in this site is recorded at clusters associated with two
traffic-light (1 and 2 in Fig. 6b). There is a garbage bin POI, but no nearby cluster had been
produced during the clustering stage.

Site C: the majority of samples are associated with garbage bin 1 of Fig. 6c. Trucks stop at
this bin for long periods; samples from nearby traffic light might have been incorporated.
In summary, we observe a clear relation between POIs and the areas where most throughput

samples of high value are recorded. Traffic lights always show associated samples, and cross-
walks account for few or no I2V samples. The identification of a cluster at the center of the
cross-roads, in site A, shows that other unaccounted factors may exist. Most samples at this
cluster were obtained during night, thus excluding traffic jams as a cause; additional work is
required to justify it. Finally, a single fleet-related POI may account of the majority of throughput
samples at a given site (e.g., site C), to an extent that is not observed in traffic-related POIs.

5 Conclusions and Future Work
Using real-world I2V link measurements, we observe that most measurements with fleet vehicles
occur with stopped vehicles, and areas of relevant throughput samples (many samples of high
value) are close to POI that affect the vehicles’ mobility. In detail, the contribution to I2V
transfers of traffic lights is always present, and that of crosswalks is residual; strategically-located
fleet-related POIs can contribute considerably. The end goal is to build a estimation model of
I2V data volumes based on qualitative features of a potential site.
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Site POI class # POIs # clusters # samples Conn. time at class POI (s) Volume at class POI (Mbit)

A
Traffic Lights 7 9 548 1412 17023
Crosswalks 7 2 60 152 1540
Garbage bins 6 7 118 316 2044

B
Traffic lights 4 11 464 1202 13631
Crosswalks 1 0 0 0 0
Garbage bins 1 0 0 0 0

C
Traffic Lights 5 7 30 377 5424
Crosswalks 2 0 0 0 0
Garbage bins 2 1 2310 6010 73858

Table 2: Contribution of different POI classes for site performance.

(a) Site A (b) Site B (c) Site C
Fig. 6: Clusters of I2V samples and POIs (traffic lights and bins are numbered).
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