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a b s t r a c t

Dynamic modeling of parallel manipulators presents an inherent complexity, mainly due
to system closed-loop structure and kinematic constraints.

In this paper, an approach based on the manipulator generalized momentum is explored
and applied to the dynamic modeling of a Stewart platform. The generalized momentum is
used to compute the kinetic component of the generalized force acting on each manipula-
tor rigid body. Analytic expressions for the rigid bodies inertia and Coriolis and centripetal
terms matrices are obtained, which can be added, as they are expressed in the same frame.
Gravitational part of the generalized force is obtained using the manipulator potential
energy. The computational load of the dynamic model is evaluated, measured by the num-
ber of arithmetic operations involved in the computation of the inertia and Coriolis and
centripetal terms matrices. It is shown the model obtained using the proposed approach
presents a low computational load. This could be an important advantage if fast simulation
or model-based real-time control are envisaged.

� 2009 Elsevier B.V. All rights reserved.
1. Introduction

The dynamic model of a parallel manipulator operated in free space can be mathematically represented, in the Cartesian
space, by a system of nonlinear differential equations that may be written in matrix form as:
IðxÞ � €xþ Vðx; _xÞ � _xþ GðxÞ ¼ f ð1Þ
I(x) being the inertia matrix, Vðx; _xÞ the Coriolis and centripetal terms matrix, G(x) a vector of gravitational generalized
forces, x the generalized position of the moving platform (end-effector) and f the controlled generalized force applied on
the end-effector. Thus,
f ¼ JTðxÞ � s ð2Þ
where s is the generalized force developed by the actuators and J(x) is a jacobian matrix.
Generally speaking, the dynamic model can play an important role in system simulation and control. In the first case, the

manipulator trajectory (position, velocity and acceleration) is to be computed for the given actuating forces or torques (di-
rect dynamics). In the second case, the actuators forces or torques required to generate a given manipulator trajectory should
be calculated (inverse dynamics). Mainly in this case, the efficiency of the computation for the manipulator dynamics is of
paramount importance, as manipulator real-time control is usually necessary [1].
. All rights reserved.
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Nomenclature

List of symbols
~a a skew-symmetric matrix representing operator [a�]
{B}, {P}, {Ci}, {Si} right-handed Cartesian frames attached to base, moving platform, cylinder i and piston i (origin located

at centre of mass)
bC distance from the cylinder centre of mass to point Bi

bi position of point Bi relative to frame {B}
Bi, Pi kinematic chains connecting points, to the base and moving platform
bS distance from the piston centre of mass to point Pi

f generalized force acting on the end-effector
fc(kin) kinetic component of the generalized force acting on a body
C

ifCiðkinÞðtraÞ jB ;
Si fSiðkinÞðtraÞ jB kinetic component of the generalized force applied to the cylinder, or piston, due to its trans-

lation, expressed in frame {B}
PfCiðkinÞðtraÞ jB ;

PfSiðkinÞðtraÞ jB kinetic component of the generalized force applied to {P}, due to cylinder, or piston, translation,
expressed in frame {B}

Ci fCiðkinÞðrotÞ jB ;
S

ifSiðkinÞðrotÞ jB kinetic component of the generalized force applied to cylinder, or piston, due to its rotation, ex-
pressed in frame {B}

PfCiðkinÞðrotÞ jB ;
PfSiðkinÞðrotÞ jB kinetic component of the generalized force applied to {P}, due to cylinder, or piston, rotation,

expressed in frame {B}
PfPðgraÞ jBjE ;

PfCiðgraÞ jBjE ;
PfSiðgraÞ jBjE gravitational component of the generalized force acting on {P}, due to moving platform,

cylinder and piston
PfPðkinÞ jB ¼

PFT
PðkinÞ jB

PMT
PðkinÞ jB

h iT
kinetic component of the generalized force acting on {P}, due to moving platform mo-

tion, expressed in frame {B}
PFPðkinÞ jB force vector acting on moving platform
G(x) vector of gravitational generalized forces
Hc angular momentum about the centre of mass of body c
HP jB ; HCi jB ; HSi jB angular momentum of the moving platform, cylinder and piston, about the centre of mass, written in

frame {B}
I(x) inertia matrix
Ic inertia matrix of a rigid body
Ic(rot) rotational inertia matrix
Ic(tra) translational inertia matrix
IP jB moving platform inertia matrix, written in frame {B}
IPðrotÞ jB ; ICiðrotÞ jB ; ISiðrotÞ jB inertia matrix of the rotating moving platform, cylinder, or piston, about frames {P}, {Ci}, {Si}, ex-

pressed in frame {B}
IP(tra) translational inertia matrix of the moving platform
J(x) jacobian matrix
JA jacobian matrix relating Euler angles derivatives and angular velocity
JBi

jacobian matrix relating cylinder linear velocity and moving platform generalized velocity
JC kinematic jacobian matrix relating active joints velocities and moving platform generalized velocity
JDi

jacobian matrix relating leg angular velocity and moving platform generalized velocity
JE Euler angles jacobian matrix, relating active joints velocities and moving platform generalized velocity (linear

velocity and Euler angles derivatives)
JGi

jacobian matrix relating piston linear velocity and moving platform generalized velocity
l ¼ l1 l2 . . . l6½ �T ; _l position and velocity of the active joints
li coordinate (length) of the prismatic joint i
l̂i versor of vector li

mP, mC, mS mass of the moving platform, cylinder and piston
PMPðkinÞ jB moment about the origin of {P} acting on the moving platform, expressed in frame {B}
Pc potential energy of a rigid body
BpCi jB ;

BpSi jB position of the cylinder, or piston, centre of mass, relative to frame {B}
Ppi jB position of point Pi relative to frame {B}
qc generalized momentum of a rigid body
Qc linear momentum
qP jB generalized momentum of the moving platform, expressed in frame {B}
Q P jB ; Q Ci jB ; Q Si jB linear momentum of the moving platform, cylinder and piston, written in frame {B}
rB, rP base and moving platform radius
BRP ;

BRCi
rotation matrix of frame {P}, or frame {Ci}, relative to frame {B}

T matrix transformation defined by T ¼ diag I JA½ �ð Þ
uc generalized velocity (linear and angular) of a rigid body
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Vðx; _xÞ Coriolis and centripetal terms matrix
vc, xc rigid body linear and angular velocities
x generalized position (position and orientation)
BxP jBjE ¼

BxT
PðposÞ jB

BxT
PðoÞ jE

h iT
generalized position of frame {P} relative to frame {B} (orientation is given by the Euler

angles system)
BxPðposÞ jB ¼ xP yP zP½ �T position of the origin of frame {P} relative to frame {B} (expressed in frame {B})
BxPðoÞ jE ¼ wP hP uP½ �T Euler angles system representing orientation of frame {P} relative to {B}

B _xP jBjE ¼
B _xT

PðposÞ jB
B _xT

PðoÞ jE

h iT
generalized velocity of the moving platform, expressed in the Euler angles system (linear

velocity and Euler angles derivatives)

B _xP jB ¼
B _xT

PðposÞ jB
BxT

P jB

h iT
generalized velocity of the moving platform, expressed in frame {B} (linear and angular velocities)

B _xPðposÞ jB �
BvP jB linear velocity of moving platform relative to frame {B}

B _xPðoÞ jE Euler angles time derivatives
/B, /P separation half-angles between kinematic chains connecting points, at base and moving platform
sP(kin) actuating forces corresponding to
s forces developed by the actuators
BxP jB ;

Bxli jB angular velocity of the moving platform, or leg (cylinder or piston), relative to frame {B}
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Dynamic modeling of parallel manipulators presents an inherent complexity, mainly due to system closed-loop structure
and kinematic constraints. Several approaches have been applied to the dynamic analysis of parallel manipulators, the New-
ton–Euler and the Lagrange methods being the most popular ones. The Newton–Euler approach uses the free body diagrams
of the rigid bodies. Do and Yang [2] and Reboulet and Berthomieu [3] use this method on the dynamic modeling of a Stewart
platform. Ji [4] presents a study on the influence of leg inertia on the dynamic model of a Stewart platform. Dasgupta and
Mruthyunjaya [5] used the Newton–Euler approach to develop a closed-form dynamic model of the Stewart platform. This
method was also used by Khalil and Ibrahim [6], Riebe and Ulbrich [7], and Guo and Li [8], among others.

The Lagrange method describes the dynamics of a mechanical system from the concepts of work and energy. Nguyen and
Pooran [9] use this method to model a Stewart platform, modeling the legs as point masses. Lebret et al. [10] follow an ap-
proach similar to the one used by Nguyen and Pooran [9]. Lagrange’s method was also used by Gregório and Parenti-Castelli
[11] and Caccavale et al. [12], for example.

These methods use classical mechanics principles, as is the case for all the approaches found in the literature, namely the
ones based on the principle of virtual work [13,14], screw theory [15], recursive matrix method [16], and Hamilton’s prin-
ciple [17]. Thus, all approaches are equivalent as they are describing the same physical system [18]. All methods lead to
equivalent dynamic equations, although these equations present different levels of complexity and associated computational
loads [1]. Minimize the number of operations involved in the computation of the manipulator dynamic model has been the
main goal of recent proposed techniques [1,16,19–21].

In this paper, the author presents a new approach to the dynamic modeling of a six degrees-of-freedom (dof) Stewart
platform: the use of the generalized momentum concept [22]. This method is used to compute the kinetic component of
the generalized force acting on each manipulator rigid body. Analytic expressions for the rigid bodies inertia and Coriolis
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Fig. 1. Stewart platform kinematic structure.
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and centripetal terms matrices are obtained, which can be added, as they can be expressed in the same frame. Gravitational
part of the generalized force is obtained using the manipulator potential energy. The computational load of the dynamic
model is evaluated, measured by the number of arithmetic operations involved in the computation of the inertia and Coriolis
and centripetal terms matrices. It is shown the model obtained using the proposed approach presents a low computational
load. This could be an important advantage if fast simulation or model-based real-time control are envisaged.

The paper is organized as follows. Section 2 introduces the Stewart platform parallel manipulator. Section 3 presents the
manipulator dynamic model using the generalized momentum approach. In Section 4, the computational effort of the dy-
namic model is evaluated. A numerical simulation of the manipulator inverse dynamics is presented in Section 5. Conclu-
sions are drawn in Section 6.

2. Stewart platform kinematic structure

A Stewart platform comprises a fixed platform (base) and a moving (payload) platform, linked together by six indepen-
dent, identical, open kinematic chains (Fig. 1). Each chain (leg) comprises a cylinder and a piston (or spindle) that are con-
nected together by a prismatic joint, li. The upper end of each leg is connected to the moving platform by a spherical joint
whereas the lower end is connected to the fixed base by a universal joint. Points Bi and Pi are the connecting points to the
base and moving platforms, respectively. They are located at the vertices of two semi-regular hexagons inscribed in circum-
ferences of radius rB and rP. The separation angles between points B1 and B6, B2 and B3, and B4 and B5 are denoted by 2/B. In a
similar way, the separation angles between points P1 and P2, P3 and P4, and P5 and P6 are denoted by 2/P.

For kinematic modeling purposes, two frames, {P} and {B}, are attached to the moving and base platforms, respectively. Its
origins are the platforms centres of mass. The generalized position of frame {P} relative to frame {B} may be represented by
the vector:
BxP jBjE ¼ xP yP zP wP hP uP½ �T ¼ BxT
PðposÞ jB

BxT
PðoÞ jE

h iT
ð3Þ
where BxPðposÞ jB ¼ xP yP zP½ �T is the position of the origin of frame {P} relative to frame {B}, and BxPðoÞ jE ¼ wP hP uP½ �T de-
fines an Euler angles system representing orientation of frame {P} relative to {B}. The used Euler angles system corresponds to the
basic rotations [23]: wP about zP; hP about the rotated axis yP0 ; and uP about the rotated axis xP00 . The rotation matrix is given by:
BRP ¼
CwPChP CwPShPSuP � SwPCuP CwPShPCuP þ SwPSuP

SwPChP SwPShPSuP þ CwPCuP SwPShPCuP � CwPSuP

�ShP ChPSuP ChPCuP

2
64

3
75 ð4Þ
S(�) and C(�) correspond to the sine and cosine functions, respectively.
The manipulator position and velocity kinematic models are known, being obtainable from the geometrical analysis of the

kinematics chains. The velocity kinematics is represented by the Euler angles jacobian matrix, JE, or the kinematic jacobian,
JC. These jacobians relate the velocities of the active joints (actuators) to the generalized velocity of the moving platform:
_l ¼ JE � B _xP jBjE ¼ JE �
B _xPðposÞ jB
B _xPðoÞ jE

" #
ð5Þ

_l ¼ JC � B _xP jB ¼ JC �
B _xPðposÞ jB

BxP jB

" #
ð6Þ
with
_l ¼ _l1 _l2 . . . _l6

h iT
ð7Þ

BxP jB ¼ JA � B _xPðoÞ jE ð8Þ
and [23]
JA ¼
0 �SwP ChPCwP

0 CwP ChPSwP

1 0 �ShP

2
64

3
75 ð9Þ
Vectors B _xPðposÞ jB � BvP jB and BxP jB represent the linear and angular velocity of the moving platform relative to {B}, and B _xPðoÞ jE
represents the Euler angles time derivative.

3. Dynamic modeling using the generalized momentum approach

The generalized momentum of a rigid body, qc, may be obtained using the following general expression:
qc ¼ Ic � uc ð10Þ
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Vector uc represents the generalized velocity (linear and angular) of the body and Ic is its inertia matrix. Vectors qc and uc,
and inertia matrix Ic must be expressed in the same referential.

Eq. (10) may also be written as:
qc ¼
Q c

Hc

� �
¼

IcðtraÞ 0
0 IcðrotÞ

� �
�

vc

xc

� �
ð11Þ
where Qc is the linear momentum vector due to rigid body translation, and Hc is the angular momentum vector due to body rotation.
Ic(tra) is the translational inertia matrix, and Ic(rot) the rotational inertia matrix. vc and xc are the body linear and angular velocities.

The kinetic component of the generalized force acting on the body can be computed from the time derivative of Eq. (10):
fcðkinÞ ¼ _qc ¼ _Ic � uc þ Ic � _uc ð12Þ
with force and momentum expressed in the same frame.

3.1. Moving platform modeling

The linear momentum of the moving platform, written in frame {B}, may be obtained from the following expression:
Q P jB ¼ mP � BvP jB ¼ IPðtraÞ � BvP jB ð13Þ
IP(tra) is the translational inertia matrix of the moving platform,
IPðtraÞ ¼ diag mP mP mP½ �ð Þ ð14Þ
mP being its mass.
The angular momentum about the mobile platform centre of mass, written in frame {B}, is:
HP jB ¼ IPðrotÞ jB �
BxP jB ð15Þ
IPðrotÞ jB represents the rotational inertia matrix of the moving platform, expressed in the base frame {B}.
The inertia matrix of a rigid body is constant when expressed in a frame that is fixed relative to that body. Furthermore if the

frame axes coincide with the principal directions of inertia of the body, then all inertia products are zero and the inertia matrix
is diagonal. Therefore, the rotational inertia matrix of the moving platform, when expressed in frame {P}, may be written as:
IPðrotÞ jP ¼ diag IPxx IPyy IPzz

� �� �
ð16Þ
This inertia matrix can be written in frame {B} using the following transformation [24]:
IPðrotÞ jB ¼
BRP � IPðrotÞ jP �

BRT
P ð17Þ
The generalized momentum of the moving platform about its centre of mass, expressed in frame {B}, can be obtained from
the simultaneous use of Eqs. (13) and (15):
qP jB ¼
IPðtraÞ 0

0 IPðrotÞ jB

� �
�

BvP jB
BxP jB

" #
ð18Þ
where
IP jB ¼
IPðtraÞ 0

0 IPðrotÞ jB

� �
ð19Þ
is the moving platform inertia matrix written in the base frame {B}.
Pi

Bi

B

PPpi

bi
xB

yB

zB

( )
B

P pos B
x

bC

BC
B

i
p

il

Fig. 2. Position of the centre of mass of the cylinder i.
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The combination of Eqs. (8) and (15) results into:
HP jB ¼ IPðrotÞ jB � JA � B _xPðoÞ jE ð20Þ
Accordingly, Eq. (18) may be rewritten as:
qP jB ¼
IPðtraÞ 0

0 IPðrotÞ jB

� �
�

I 0
0 JA

� �
�

BvP jB
B _xPðoÞ jE

" #
ð21Þ

qP jB ¼ IP jB � T �
B _xP jBjE ð22Þ
T being a matrix transformation defined by:
T ¼
I 0
0 JA

� �
ð23Þ
The time derivative of Eq. (22) results into:
PfPðkinÞ jB ¼ _qP jB ¼
d
dt

IP jB � T
� �

� B _xP jBjE þ IP jB � T �
B€xP jBjE ð24Þ
PfPðkinÞ jB is the kinetic component of the generalized force acting on {P} due to the moving platform motion, expressed in
frame {B}. The corresponding actuating forces, sP(kin), may be computed from the following relation:
sPðkinÞ ¼ J�T
C � PfPðkinÞ jB

ð25Þ
where
PfPðkinÞ jB ¼ PFT
PðkinÞ jB

PMT
PðkinÞ jB

h iT
ð26Þ
Vector PFPðkinÞ jB represents the force vector acting on the centre of mass of the moving platform, and PMPðkinÞ jB represents the
moment vector acting on the moving platform, expressed in the base frame, {B}.

From Eq. (24) it can be concluded that two matrices playing the roles of the inertia matrix and the Coriolis and centripetal
terms matrix are:
IP jB � T ð27Þ
d
dt

IP jB � T
� �

ð28Þ
It must be emphasized that these matrices do not have the properties of inertia or Coriolis and centripetal
terms matrices and therefore should not, strictly, be named as such. Nevertheless, throughout the paper
the names ‘‘inertia matrix” and ‘‘Coriolis and centripetal terms matrix” may be used if there is no risk of
misunderstanding.

3.2. Cylinder modeling

If the centre of mass of each cylinder is located at a constant distance, bC, from the cylinder to base platform connecting
point, Bi, (Fig. 2), then its position relative to frame {B} is:
BpCi jB ¼ bC � l̂i þ bi ð29Þ
where,
l̂i ¼
li

klik
¼ li

li
ð30Þ

li ¼ BxPðposÞ jB þ
Ppi jB � bi ð31Þ
The linear velocity of the cylinder centre of mass, B _pCi jB , relative to {B} and expressed in the same frame, may be computed
as:
B _pCi jB ¼
Bxli jB � bC � l̂i ð32Þ
where Bxli jB represents the leg angular velocity, which can be found from:
Bxli jB � li ¼ BvP jB þ
BxP jB �

Ppi jB ð33Þ
As the leg (both the cylinder and piston) cannot rotate along its own axis, the angular velocity along l̂i is always zero, and
vectors li and Bxli jB are always perpendicular. This enables Eq. (33) to be rewritten as:
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Bxli jB ¼
1

lT
i � li

� li � BvP jB þ
BxP jB �

Ppi jB

� 	h i
ð34Þ
or,
Bxli jB ¼ JDi
�

BvP jB
BxP jB

" #
ð35Þ
where jacobian JDi
is given by:
JDi
¼ ~�li

~�li � P ~pT
i jB

h i
ð36Þ

�li ¼
li

lT
i � li

ð37Þ
and, for a given vector a ¼ ax ay az½ �T ,
~a ¼
0 �az ay

az 0 �ax

�ay ax 0

2
64

3
75 ð38Þ
On the other hand, Eq. (32) can be rewritten as:
B _pCi jB ¼ JBi
�

BvP jB
BxP jB

" #
ð39Þ
where the jacobian JBi
is given by:
JBi
¼ bC �

~̂lT
i �

~�li bC �
~̂lT

i �
~�li � P ~pT

i jB

h i
ð40Þ
The linear momentum of each cylinder, Q Ci jB , can be represented in frame {B} as:
Q Ci jB ¼ mC � B _pCi jB ð41Þ
where mC is the cylinder mass.
Introducing jacobian JBi

and matrix transformation T in the previous equation results into:
Q Ci jB ¼ mC � JBi
� T � B _xP jBjE ð42Þ
The kinetic component of the force applied to the cylinder due to its translation and expressed in {B} can be obtained from
the time derivative of Eq. (42):
Ci fCiðkinÞðtraÞ jB ¼ _Q Ci jB ¼ mC �
d
dt
ðJBi
� TÞ � B _xP jBjE þmC � JBi

� T � B€xP jBjE ð43Þ
When Eq. (43) is multiplied by JT
Bi

, the kinetic component of the force applied to {P} due to each cylinder translation is ob-
tained in frame {B}:
PfCiðkinÞðtraÞ jB ¼ JT
Bi
� Ci fCiðkinÞðtraÞ jB

¼ mC � JT
Bi
� d
dt
ðJBi
� TÞ � B _xP jBjE þmC � JT

Bi
� JBi
� T � B€xP jBjE

ð44Þ
Pi

Bi

B

PPpi

bi xB

yB

zB

( )
B
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x
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B

i
p

il

Fig. 3. Position of the centre of mass of the piston i.
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The inertia matrix and the Coriolis and centripetal terms matrix of the translating cylinder being:
mC � JT
Bi
� JBi
� T ð45Þ

mC � JT
Bi
� d
dt

JBi
� T

� 	
ð46Þ
These matrices represent the inertia matrix and the Coriolis and centripetal terms matrix of a virtual moving platform that is
equivalent to each translating cylinder.

On the other hand, the angular momentum of each cylinder about its centre of mass can be represented in frame
{B} by:
HCi jB ¼ ICiðrotÞ jB �
Bxli jB ð47Þ
It is convenient to express the inertia matrix of the rotating cylinder in a frame fixed to the cylinder itself,
{Ci}� {xCi

; yCi
; zCi

}. So,
ICiðrotÞ jB ¼
BRCi

� ICiðrotÞ jCi
� BRT

Ci
ð48Þ
where BRCi
is the orientation matrix of each cylinder frame, {Ci}, relative to base frame, {B}.

Cylinder frames were chosen in the following way: axis xCi
coincides with the leg axis and points towards Pi, axis yCi

is perpendicular to xCi
and always parallel to the base plane, this condition being possible given the existence of a uni-

versal joint at Bi, that negates any rotation along its own axis; axis zCi
completes the referential following the right hand

rule, and its projection along axis zB is always positive. Frame origin is located at the cylinder centre of mass. Thus, ma-
trix BRCi

becomes:
BRCi
¼ xCi

yCi
zCi

� �
ð49Þ
where
xCi
¼ l̂i ð50Þ

yCi
¼ � liyffiffiffiffiffiffiffiffiffi

l2ixþl2iy

p lixffiffiffiffiffiffiffiffiffi
l2ixþl2iy

p 0
� �T

ð51Þ

zCi
¼ xCi

� yCi
ð52Þ
So, the inertia matrices of the cylinders can be written as:
ICiðrotÞ jCi
¼ diag ICxx ICyy ICzz

� �� �
ð53Þ
where ICxx , ICyy and ICzz are the cylinders moments of inertia expressed in its own frame.
Introducing jacobian JDi

and matrix transformation T in Eq. (47) results into:
HCi jB ¼ ICiðrotÞ jB � JDi
� T � B _xP jBjE ð54Þ
The kinetic component of the generalized force applied to the cylinder, due to its rotation and expressed in {B} can be ob-
tained from the time derivative of Eq. (54):
Ci fCiðkinÞðrotÞ jB ¼ _HCi jB

¼ d
dt
ðICiðrotÞ jB � JDi

� TÞ � B _xP jBjE þ ICiðrotÞ jB � JDi
� T � B€xP jBjE

ð55Þ
When Eq. (55) is pre-multiplied by JT
Di

the kinetic component of the generalized force applied to {P} due to each cylinder rota-
tion is obtained in frame {B}:
PfCiðkinÞðrotÞ jB ¼ JT
Di
� Ci fCiðkinÞðrotÞ jB

¼ JT
Di
� d
dt
ðICiðrotÞ jB � JDi

� TÞ � B _xP jBjE

þ JT
Di
� ICiðrotÞ jB � JDi

� T � B€xP jBjE

ð56Þ
The inertia matrix and the Coriolis and centripetal terms matrix of the rotating cylinder may be written as:
JT
Di
� ICiðrotÞ jB � JDi

� T ð57Þ

JT
Di
� d
dt

ICiðrotÞ jB � JDi
� T

� 	
ð58Þ
These matrices represent the inertia matrix and the Coriolis and centripetal terms matrix of a virtual moving platform that is
equivalent to each rotating cylinder.



Table 1
Number of arithmetic operations involved in the computation of the Coriolis and centripetal terms matrices.

Lagrange Lagrange–Koditschek
representation

Generalized
momentum

Add. Mul. Div. Add. Mul. Div. Add. Mul. Div.

Coriolis and centripetal terms matrix of the mobile platform 485 719 – 474 735 – 182 326 –
Coriolis and centripetal terms matrix of each translating cylinder 2982 5483 7 2389 4283 7 238 533 4
Coriolis and centripetal terms matrix of each rotating cylinder 5433 9215 8 3908 6765 8 471 942 8
Coriolis and centripetal terms matrix of each translating piston 2985 5483 7 2392 4283 7 241 533 4
Coriolis and centripetal terms matrix of each rotating piston 5433 9215 8 3908 6765 8 471 942 8

Total operations 101,483 177,095 80 76,056 133,311 180 8708 18,026 144

Table 2
Manipulator parameters.

Para. Value Para. Value (kg m2) Para. Value

rB 1.500 m IPxx 0.2 ISxx 0.0 kg m2

rP 0.750 m IPyy 0.2 ISyy 0.1 kg m2

/B 15� IPzz 0.4 ISzz 0.1 kg m2

/P 0� ICxx 0.0 bC 0.5 m
mP 1.430 kg ICyy 0.1 bS 0.5 m
mC 0.39 kg ICzz 0.1
mS 0.39 kg
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3.3. Piston modeling

If the centre of mass of each piston is located at a constant distance, bS, from the piston to moving platform connecting
point, Pi, (Fig. 3), then its position relative to frame {B} is:
BpSi jB ¼ �bS � l̂i þ Bpi jB þ
BxPðposÞ jB ð59Þ
The linear velocity of the piston centre of mass, B _pSi jB , relative to {B} and expressed in the same frame, may be computed as:
B _pSi jB ¼ _li þ Bxli jB � ð�bS � l̂iÞ ð60Þ

B _pSi jB ¼ JGi
�

BvP jB
BxP jB

" #
ð61Þ
where the jacobian JGi
is given by:
JGi
¼ I� bS �

~̂lT
i �

~�li ðI� bS �
~̂lT

i �
~�liÞ � P ~pT

i jB

h i
ð62Þ
The linear momentum of each piston, Q Si jB , can be represented in frame {B} as:
Q Si jB ¼ mS � B _pSi jB ð63Þ
where mS is the piston mass.
Introducing jacobian JGi

and matrix transformation T in the previous equation results into:
Q Si jB ¼ mS � JGi
� T � B _xP jBjE ð64Þ
The kinetic component of the force applied to the piston due to its translation and expressed in {B} can be obtained from the
time derivative of Eq. (64):
Si fSiðkinÞðtraÞ jB ¼ _Q Si jB ¼ mS �
d
dt
ðJBi
� TÞ � B _xP jBjE þmS � JBi

� T � B€xP jBjE ð65Þ
When Eq. (65) is multiplied by JT
Gi

, the kinetic component of the force applied to {P} due to each piston translation is obtained
in frame {B}:
PfSiðkinÞðtraÞ jB ¼ JT
Gi
� Si fSiðkinÞðtraÞ jB

¼ mS � JT
Gi
� d
dt
ðJGi
� TÞ � B _xP jBjE þmS � JT

Gi
� JGi
� T � B€xP jBjE

ð66Þ
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The inertia matrix and the Coriolis and centripetal terms matrix of the translating piston are:
mS � JT
Gi
� JGi
� T ð67Þ

mS � JT
Gi
� d
dt
ðJGi
� TÞ ð68Þ
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Fig. 4. Actuators trajectories: (a) position; (b) velocity; (c) acceleration.
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which represent the inertia matrix and the Coriolis and centripetal terms matrix of a virtual moving platform that is equiv-
alent to each translating piston.

On the other hand, the angular momentum of each piston about its centre of mass can be represented in frame {B} by:
HSi jB ¼ ISiðrotÞ jB �
Bxli jB ð69Þ

ISiðrotÞ jB ¼
BRSi
� ISiðrotÞ jSi

� BRT
Si

ð70Þ
where BRSi
is the orientation matrix of each piston frame, {Si}, relative to the base frame, {B}.

As the relative motion between cylinder and piston is a pure translation, {Si} can be chosen parallel to {Ci}, and its origin
located at the piston centre of mass. Therefore, BRSi

¼ BRCi
.

So, the inertia matrices of the pistons can be written as:
ISiðrotÞ jSi
¼ diag ISxx ISyy ISzz

� �� �
ð71Þ
where ISxx , ISyy and ISzz are the pistons moments of inertia expressed in its own frame.
Introducing jacobian JDi

and matrix transformation T in Eq. (69) results into:
HSi jB ¼ ISiðrotÞ jB � JDi
� T � B _xP jBjE ð72Þ
The kinetic component of the generalized force applied to the piston, due to its rotation and expressed in {B} can be obtained
from the time derivative of Eq. (72):
Si fSiðkinÞðrotÞ jB ¼ _HSi jB

¼ d
dt

ISiðrotÞ jB � JDi
� T

� 	
� B _xP jBjE þ ISiðrotÞ jB � JDi

� T � B€xP jBjE

ð73Þ
Pre-multiplied by JT
Di

, the kinetic component of the generalized force applied to {P} due to each piston rotation is obtained in
frame {B}:
PfSiðkinÞðrotÞ jB ¼ JT
Di
� Si fSiðkinÞðrotÞ jB

¼ JT
Di
� d
dt
ðISiðrotÞ jB � JDi

� TÞ � B _xP jBjE

þ JT
Di
� ISiðrotÞ jB � JDi

� T � B€xP jBjE

ð74Þ
The inertia matrix and the Coriolis and centripetal terms matrix of the rotating piston will be:
JT
Di
� ISiðrotÞ jB � JDi

� T ð75Þ

JT
Di
� d
dt

ISiðrotÞ jB � JDi
� T

� 	
ð76Þ
These matrices represent the inertia matrix and the Coriolis and centripetal terms matrix of a virtual moving platform that is
equivalent to each rotating piston.
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Fig. 5. Developed actuators forces.
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It should be noted that rigid bodies inertia and Coriolis and centripetal terms matrices can be added, as they are expressed
in the same frame.

3.4. Dynamic model gravitational components

Given a general frame {x, y, z}, with z � �ĝ, the potential energy of a rigid body is given by:
Pc ¼ mc � g � zc ð77Þ
where mc is the body mass, g is the modulus of the gravitational acceleration and zc the distance, along z, from the frame
origin to the body centre of mass.

The gravitational components of the generalized forces acting on {P} can be easily obtained from the potential energy of
the different bodies that compose the system:
PfPðgraÞ jBjE ¼
@PP

BxP jBjE

� 	
@BxP jBjE

ð78Þ

PfCiðgraÞ jBjE ¼
@PCi

BxP jBjE

� 	
@BxP jBjE

ð79Þ

PfSiðgraÞ jBjE ¼
@PSi

BxP jBjE

� 	
@BxP jBjE

ð80Þ
The three vectors PfPðgraÞ jBjE ;
PfCiðgraÞ jBjE and PfSiðgraÞ jBjE represent the gravitational components of the generalized forces

acting on {P}, expressed using the Euler angles system, due to the moving platform, each cylinder and each piston.
Therefore, to be added to the kinetic force components, these vectors must be transformed, to be expressed in
frame {B}. This may be done pre-multiplying the gravitational components force vectors by the matrix transforma-
tion T�1.

3.5. Manipulator dynamic equations

In previous sections, analytic expressions for the rigid bodies inertia and Coriolis and centripetal terms matrices were ob-
tained. These matrices can be added, as they are expressed in the same frame, resulting in the system inertia matrix, I jE , and
system Coriolis and centripetal terms matrix, V jE . Therefore, the total kinetic component of the generalized force acting on
the moving platform, PfðkinÞ jB , may be easily computed using the following equation:
I jE �
B€xP jBjE þ V jE �

B _xP jBjE ¼
PfðkinÞ jB ð81Þ
In a similar way, PfðkinÞ jB , could also be obtained using Eqs. (24), (44), (56), (66) and (74):
PfPðkinÞ jB þ
PfCiðkinÞðtraÞ jB þ

PfCiðkinÞðrotÞ jB þ
PfSiðkinÞðtraÞ jB þ

PfSiðkinÞðrotÞ jB ¼
PfðkinÞ jB ð82Þ
This total kinetic component should be added to the total gravitational part of the generalized force acting on the moving
platform, PfðgraÞ jB , which can be obtained using the manipulator potential energy, as in Eqs. (78)–(80):
T�1 � PfPðgraÞ jBjE þ
PfCiðgraÞ jBjE þ

PfSiðgraÞ jBjE

� 	
¼ PfðgraÞ jB ð83Þ
The total generalized force acting on the moving platform, and the corresponding actuating forces, will be:
Pf jB ¼
PfðkinÞ jB þ

PfðgraÞ jB ð84Þ
sP ¼ J�T

C � Pf jB ð85Þ
4. Computational load of the proposed dynamic model

As a means of evaluating efficiency, the number of scalar operations (additions, multiplications and divisions) required for
the computation of the inertia and Coriolis and centripetal terms matrices is tabulated. Specification of the model compu-
tational load in this manner makes comparison with other models both easy and convenient [25]. Thus, the computational
efficiency of the proposed dynamic model is compared with the one resulting from applying the Lagrange method, both di-
rectly from Lagrangian equation and using the Koditschek representation [10].

As the largest difference between the methods rests on how the Coriolis and centripetal terms matrices are calculated, the
models are evaluated by the number of arithmetic operations involved in the computation of these matrices. The results
were obtained using the symbolic computational software Maple� and are presented in Table 1.
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The dynamic model obtained using the generalized momentum approach is computationally much more efficient and its
superiority manifests precisely in the computation of the matrices requiring the largest relative computational effort: the
Coriolis and centripetal terms matrices.

It should be noted, the proposed approach was used in the dynamic modeling of a 6-dof Stewart platform. Nevertheless, it
can be applied to any mechanism.

5. Numerical simulation

A 6-dof parallel manipulator presenting the kinematic and dynamic parameters shown in Table 2 was considered.
A trajectory was specified in task space. The moving platform initial position is P1 = [0,0,2000,0,0,0] (mm; �). The

moving platform is then displaced to point P2 = [ � 100,�200,2500,15,�15,15] (mm; �), and finally it returns to point
P1.

Third order trigonometric splines were interpolated between the specified points, in order to obtain continuous and
smooth trajectories. Fig. 4 shows the corresponding actuators trajectories.

Fig. 5 shows the developed actuators forces, necessary to follow the specified trajectories. Fig. 6 represents the contribu-
tion of the moving platform, the six cylinders, and the six pistons to the total forces developed by the actuators.
6. Conclusion

Dynamic modeling of parallel manipulators presents an inherent complexity. Despite the intensive study in this topic of
robotics, mostly conducted in the last two decades, additional research still has to be done in this area.

In this paper, an approach based on the manipulator generalized momentum was explored and applied to the dy-
namic modeling of a Stewart platform. The generalized momentum is used to compute the kinetic component of the
generalized force acting on the moving platform. Analytic expressions for the rigid bodies inertia and Coriolis and cen-
tripetal terms matrices are obtained, which can be added, as they are expressed in the same frame. Having these matri-
ces, the kinetic component of the generalized force acting on the moving platform may be easily computed. This
component can be added to the gravitational part of the generalized force, which is obtained through the manipulator
potential energy.
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