Apresentação da produção hidroelétrica:
Evolução histórica, atuais aproveitamentos e
enquadramento

2016/2017 – 1º Semestre

Grupo 11MC05_1

Monitor: Ana Machado
Supervisor: Francisco Piqueiro

Trabalho realizado pelos os alunos de MIEC:

Ana Cláudia Rocha up201608582@fe.up.pt
José Ribeiro up201604334@fe.up.pt
Luís Peixoto up201606468@fe.up.pt
Maria do Rosário Teixeira up201604352@fe.up.pt
Pedro Sousa up201603990@fe.up.pt
Rui Baldaia up201506587@fe.up.pt
Vítor Freitas up201608614@fe.up.pt
Resumo

No âmbito da Unidade Curricular Projeto FEUP foi proposta a elaboração de um trabalho de pesquisa sobre a produção hidroelétrica. Dentro deste tema, é explorado em diante diversas vertentes consigo relacionadas, nomeadamente:

- **Conceito da produção hidroelétrica**: definição e caracterização científica e tecnológica do processo de obtenção de energia;

- **A produção hidroelétrica em Portugal**: os primeiros passos e o progressivo desenvolvimento; os atuais aproveitamentos hidroelétricos.

É abordado também o enquadramento da produção hidroelétrica de energia em toda a produção elétrica concebida em território nacional, com o apoio de gráficos e valores relativos aos vários tipos de produção elétrica.
Índice

Resumo ... 2

Índice de Figuras ... 4

1. Introdução ... 5
 1.1 A Água .. 5

2. Hidroeletricidade ... 6
 2.1. Barragens ... 6
 2.2. Tipos de barragens .. 7
 • Gravidade .. 7
 • Arco ... 7
 • Terra ... 8
 • Enrocamento ... 8
 2.3) Turbinas hidráulicas .. 9
 • Pelton ... 9
 • Francis .. 9
 • Kaplan ... 10

3. Produção de Energia Elétrica e Hidroelétrica em Portugal 10

4. Evolução histórica em Portugal da energia hidroelétrica 12
 4.1. Finais do século XIX ... 12
 4.2. Ano de 1926 ... 12
 4.3. Décadas de 30 e 40 .. 12
 4.4. Década de 50: “Década de Ouro” .. 13
 4.5. Anos 60 ... 14

5. Atuais aproveitamentos hidroelétricos em Portugal 14
 5.1. Bacias hidrográficas em Portugal ... 14
 5.2. Tipos de aproveitamentos .. 15
 • Fio de Água .. 15
 • De Albufeira ... 15
 • De Albufeira com Bombagem .. 15
 5.3. Centro de Produção do Douro ... 16

6. Consumo Elétrico ... 19
 6.1. Energia Eólica .. 21
 6.2. Cogeração Renovável .. 21
 6.3. Energia Hídrica ... 21

7. Conclusão ... 22

8. Bibliografia e Netgrafia ... 23
Índice de Figuras

Figura 1) Principais constituintes de uma central hidroelétrica..........................6
Figura 2) Barragem do tipo de gravidade de Carrapatelo..................................7
Figura 3) Barragem do tipo de arco de Picote ..7
Figura 4) Barragem do tipo de terra de Serpa ..8
Figura 5) Barragem do tipo enrocamento de Odeleite8
Figura 6) Turbina Pelton..9
Figura 7) Turbina Francis..9
Figura 8) Turbina Kaplan...10
Figura 9) Barragem da Bemposta após a renovação11
Figura 10) Central do Lindoso..13
Figura 11) Barragem do Castelo de Bode ..13
Figura 12) Aproveitamento do tipo de água de Valeira15
Figura 13) Aproveitamento do tipo de albufeira de Alqueva15
Figura 14) Aproveitamento do tipo de albufeira com bombagem de Aguieira ...15
Figura 15) Produção hídrica de cada bacia hidrográfica entre 2004 e 201216
Figura 16) Bacia hidrográfica do Rio Douro ..16
Figura 17) Barragens no trecho nacional do Rio Douro17
Figura 18) Aproveitamentos hidroelétricos no Rio Douro18
Figura 19) Percentagem de consumo de energia elétrica em Portugal até junho de 2016 ...20
Figura 20) Tipo de energias renováveis utilizadas no consumo elétrico em Portugal ..20
Figura 21) Parque Eólico de Penedo Ruivo ..21
1. Introdução

Atualmente, vivemos num mundo completamente movido a energia. Sem esta, não seria possível evoluirmos a nível científico, tecnológico e social. Não seria sequer, paralelamente, garantir o bom funcionamento da sociedade.

O termo Energia remete-nos para o conceito de recursos energéticos que são todas as matérias inerentes e essenciais a produção de energia como motor da sociedade. Dentro deste termo, existe uma vasta panóplia dos mais diversos tipos de recursos, subdivididos e caracterizados por: energias renováveis e energias não renováveis.

As energias não-renováveis caracterizam-se pelo seu caráter poluente e exploração esgotável a curto, médio ou longo prazo consoante o recurso energético em causa. Tendo isto em consideração, cabe-nos, habitantes da Terra e estudantes de engenharia, procurar e explorar alternativas que, para além de satisfazerem as necessidades energéticas, garantam simultaneamente, um futuro próspero e uma boa qualidade de vida para as gerações futuras.

Estas alternativas englobam todas as fontes de energia renovável, tais como a energia solar, energia das marés, energia das ondas, energia eólica, energia do biogás, energia geotérmica e, por último, a energia hídrica, que será o tema abordado ao longo do relatório.

1.1 A Água

Como é do senso comum, a água é um bem indispensável à vida na Terra. Para além de satisfazer as necessidades fisiológicas da maior parte dos seres vivos, foi descoberta nela, ao longo dos anos e a par da evolução científica, a capacidade de ser um elemento preponderante na produção de energia. Um dos tipos de produção de energia mais relevante e diretamente relacionado com os recursos hídricos é a produção hidroelétrica.
2. Hidroeletricidade

A hidroeletricidade, sucintamente definida, é toda a energia elétrica transformada a partir da energia potencial gravítica da água. Efetivamente, para obter este potencial energético e poder usufruí-lo regradamente, são construídas barragens. Todo este complexo processo que resulta na obtenção de eletricidade, é realizado numa central hidroelétrica. A eficiência e rendimento das centrais hidroelétricas dependem, em grande parte, do volume de água que passa pela turbina e da distância vertical desde a turbina até à superfície da água presente na albufeira, pois a energia potencial gravítica da água é tanto maior quanto maior for o desnível.

Primeiramente, a água contida numa albufeira, é transportada por intermédio de condutas forçadas em direção às turbinas hidráulicas. Neste sentido, a energia potencial gravitacional da água é convertida em energia cinética à medida que percorre as condutas. Finalizado o percurso pelas condutas, a energia cinética é convertida em energia mecânica no momento em que encontra e faz girar as pás das turbinas hidráulicas. Dado o movimento giratório das turbinas, são acionados os geradores, que, por fim, convertem a energia mecânica em energia elétrica. Terminado o processo de produção, a energia gerada é levada por meio de cabos ou barras condutoras, dos terminais do gerador até ao transformador elevador, onde a sua tensão (voltagem) é elevada. A energia elétrica é então encaminhada para os consumidores por cabos transmissores.

![Figura 1) Principais constituintes de uma central hidroelétrica](image)

2.1. Barragens

As barragens são parte integrante e fulcral do processo de obtenção de energia hidroelétrica. São estas que permitem a acumulação e o armazenamento de água em albufeira, e, desse modo, é possível gerir da maneira mais rentável o seu potencial e usufruir do mesmo de forma regulada.
2.2. Tipos de barragens

As barragens existentes são muito diferentes em termos de morfologia e em termos dos cursos de água. Todas estas diferenças devem-se ao tipo de local onde estão construídas, pois o objetivo é obter o melhor aproveitamento possível.

Existem quatro tipo de barragens em Portugal:

• **Gravidade**
 Este tipo de barragem é constituído por betão que resiste pelo próprio peso à impulsão da água e transmite todas as forças sentidas pelo mesmo ao solo. A utilização de contrafortes a jusante permite aliviar o paredão da barragem.

Figura 2) Barragem do tipo de gravidade de Carrapatelo

• **Arco**
 A barragem em arco é construída em vales mais apertados, podendo desta forma a altura ser maior que a largura. A curvatura horizontal permite que a força de impulsão da água seja transmitida no sentido albufeira-margens.

Figura 3) Barragem do tipo de arco de Picote
• Terra
As barragens do tipo terra são formadas pela deposição de grandes quantidades de terra sobre os cursos de água, sendo posteriormente compactada por equipamentos mecânicos específicos. Porém, também podem ser o resultado de escavações junto aos cursos de água.

Figura 4) Barragem do tipo de terra de Serpa

• Enrocamento
Este tipo de barragem é formado pela deposição de blocos de rocha de tamanho variado, sendo a sua consolidação obtida por intermédio de um cimento impermeável. Este é constituído por uma camada de asfalto, chapa de aço ou outro material.

Figura 5) Barragem do tipo enrocamento de Odeleite
2.3) Turbinas hidráulicas

As turbinas hidráulicas têm como papel converter a energia cinética, adquirida pelo movimento descendente da água proveniente da albufeira, em energia mecânica.

A água, vinda de uma altura superior direciona-se para um canal de nível mais baixo. A água de entrada é levada através de uma conduta fechada até um conjunto de lâminas curvas, designadas palhetas, que transferem a energia da água para um rotor (*).

(*Rotor é tudo o que gira em torno de um eixo, produzindo movimentos de rotação. Todas as turbinas possuem eixos rotativos apoiados em mancais de diversos tipos.)

Existem 3 principais tipos de turbinas hidráulicas:

- **Pelton**

 As turbinas Pelton são projetadas para operar entre quedas de água entre os 350 e 1100 metros de desnível. São utilizadas em aproveitamentos hidroeletônicos caracterizados por pequenos caudais. Possuem um alto número de rotações (cerca de 600 a 3000 rotações por minuto), tendo, no entanto, um rendimento até 93%.

- **Francis**

 As turbinas Francis são usadas para aproveitamentos hidroelétricos cujas quedas de água distam de 10 até 650 metros. A sua potência varia entre 100 e 750 megawatts. O número de rotações varia entre 100 a 600 rotações por minuto. Possuem uma grande adaptabilidade a diferentes quedas e caudais. Relativamente às turbinas Pelton, estas têm um maior rendimento.
• Kaplan

Este tipo de turbinas é projetado para quedas de baixa altura (até 60m). Porém, são indicadas para grandes volumes de água. São caracterizadas por terem um baixo número de rotações (cerca de 75 a 120 rotações por minuto).

Figura 8) Turbina Kaplan

3. Produção de Energia Elétrica e Hidroelétrica em Portugal

Portugal tem uma grande vantagem relativamente aos outros países por ser repleto de rios e zonas montanhosas. Isso levou a que, com o passar do tempo e a necessidade do uso de mais energia, Portugal investisse bastante nos recursos renováveis, como por exemplo Energia Hídrica e Eólica, majoritariamente, mas também na Energia Solar.

A produção de energia por meio de combustíveis fósseis também tem o seu peso na produção de energia em Portugal. O uso do Carvão, Gás Natural e a Cogeração Fóssil (aproveitamento de cerca de 60% da energia sob a forma de calor libertada nos processos termodinâmicos da geração de energia) não pode ser dispensado.

Hoje em dia, mais de 60% da energia elétrica produzida em Portugal é renovável.

A quantidade de energia produzida com combustíveis fósseis em Portugal é a seguinte:

* epeP (energia produzida em Portugal)
• Carvão – representa cerca de 12.5% da epeP (aprox. 11TWh)
• Gás Natural – representa cerca de 10.5% da epeP (aprox. 1.5TWh)
• Cogeração Fóssil – representa cerca de 2.8% da epeP (aprox. 5TWh)
A quantidade de energia renovável produzida em Portugal é:

- Energia Eólica – representa cerca de 25% da epeP (aprox. 12TWh)
- Energia Hídrica – representa cerca de 30% da epeP (aprox. 15TWh)

Analisando os dados, a maior fonte de energia em Portugal é uma energia renovável, mais concretamente a Energia Hídrica. A forma de aproveitar a energia potencial da água dos rios com bom caudal seria por intermédio da construção de barragens, Portugal investiu nestas mesmas. Talvez também porque cerca de 18% da energia produzida mundialmente provém da hidroeletricidade.

Ora, visto que o custo da manutenção das barragens é baixo, e o custo da água é nulo, a construção das mesmas seria a melhor opção.

Portugal possui dezenas de barragens, situadas maioria doente a Norte e tem outras tantas por construir, tais como Baixo Sabor, Foz Tua, Fridão, Daivões, Gouveias e Alto Tâmega, entre outras. Também é notável a renovação de algumas barragens para obter maior potência de energia gerada, como por exemplo: a Barragem da Bemposta e a Barragem do Picote. [12]

Depois das mudanças feitas em cada uma, a Barragem da Bemposta produziu mais 80% da potência anteriormente gerada (191MW), passando a fornecer uma energia anual de mais de 134GWh (mais 15% que anteriormente). A Barragem do Picote produziu mais 130% da sua Potência anterior (246MW) e a energia Fornecida anualmente aumentou 30%, fornecendo 239GWh de energia.

Figura 9) Barragem da Bemposta após a renovação
4. Evolução histórica em Portugal da energia hidroelétrica

A partir do séc. XIX surgiu a nível mundial um processo de aproveitamento da água com a finalidade de produzir energia elétrica. Tal processo inicia-se em Portugal nos finais deste mesmo século, onde o nosso país começa a ter em mente a construção de centrais hidroelétricas para a produção de eletricidade, a fim de satisfazer os consumos locais.

4.1. Finais do século XIX

A primeira central hidroelétrica a surgir em Portugal, mais propriamente no Continente, foi no rio Corgo. Inicialmente, este projeto foi dirigido pela a Companhia Elétrica e Industrial de Vila Real, porém, mais tarde ficou encarregue ao alemão Emílio Bieil. Assim, em 1894, é concluída em Portugal a primeira central hidroelétrica, possuindo uma potência de 120 kW. Entretanto, em 1926 este aproveitamento foi substituído por uma barragem em Insua e uma central em Terrajido.

Por volta do ano de 1895 ou 1896, a Sociedade de Eletricidade do Norte fundou a central de Furada, no rio Cávado. Esta iniciou o aproveitamento das águas fluviais com a potência de cerca 125 HP (aprox. 15000 W). Surgia assim, a segunda central em território nacional.

Nesta mesma década, nos Açores iniciou-se também a produção de energia com base no aproveitamento das águas. A destacar, a Central da Vila, localizada na Ilha de S. Miguel onde possuía uma potência de 60 KVA.

4.2. Ano de 1926

No ano de 1926, entrou em vigor a Lei dos Aproveitamentos Hidráulicos, que “regulava a produção, designadamente por via das centrais hidráulicas, o transporte e a distribuição da energia elétrica.”

Tal lei contribuiu para que, no ano de 1944, com o contributo do Engenheiro Ferreira Dias, se publicasse a Lei nº 2002, onde diz: “A produção de energia elétrica será principalmente de origem hidráulica. As centrais térmicas desempenharão as funções de reserva e apoio, consumindo os combustíveis nacionais pobres na proporção mais económica e conveniente.” [1]

4.3. Décadas de 30 e 40

As décadas de 30 e 40 foram importantes para a construção da rede das centrais hidroelétricas em Portugal. O Ministério das Obras Públicas e Comunicações publicou alguns decretos com o objetivo de aumentar os aproveitamentos hidroelétricos. Um desses Decretos, publicado em 1937 (Decreto nº26 470) permitiu a criação da Junta de Eletrificação Nacional.
O ano de 1940 pode ser caracterizado pelo elevado aproveitamento de uma grande central: a central hidroelétrica do Lindoso.

Em 1945, são definidos novos projetos dos aproveitamentos hidroelétricos, que contribuíram para a fundação de duas novas empresas: Hidro-Eléctrica do Cávado e a Hidro-Eléctrica do Zêzere. Iniciou-se então a construção de novas centrais hidroelétricas, nomeadamente:

- Castelo de Bode (Rio Zêzere)
- Venda Nova (Rio Rabagão)
- Belver (Rio Tejo)

4.4. Década de 50: “Década de Ouro”

A década de 50 é caracterizada pelo substancial desenvolvimento das centrais hidroelétricas existentes em Portugal, tais como: do Rio Cávado e Zêzere. Assim, tais desenvolvimentos constituíram um aumento da potência das centrais, subindo de 152,8 MW para 1085,2 MW. É de salientar também que a energia produzida pelo aproveitamento das águas subiu radicalmente, de 46% para 95%, passando a ser o recurso mais importante para a produção de energia.

Esta década é conhecida como a “década de ouro” da hidroelétricidade pois não só houve uma melhoria dos aproveitamentos das águas, como também se deu início à exploração do Rio Douro.
4.5. Anos 60
Portugal chega aos anos 60 e aqui surgem mais três centrais:

- Bemposta (Rio Douro)
- Alto Rapagão (Rio Rabagão)
- Vilar-Tabuaço (Távora)

Verifica-se assim, uma redução da evolução dos aproveitamentos hidroelétricos, devido às descobertas e desenvolvimento, a nível mundial, de novas formas de produção elétrica.

É importante destacar que, nesta mesma década, se inicia a construção das centrais hidroelétricas do Carrapatelo, Régua e no Rio Douro (parte do troço nacional).

Concluindo, Portugal possui um passado de 119 anos onde a produção hidroelétrica sofreu várias modificações, tornando-se num recurso com elevada importância, atingindo o seu auge na década de 50.

5. Atuais aproveitamentos hidroelétricos em Portugal

5.1. Bacias hidrográficas em Portugal
Uma bacia hidrográfica é uma área abrangida por um sistema fluvial. Portugal é constituído por várias bacias hidrográficas, sendo as mais conhecidas:

- Bacia Hidrográfica do Rio Coura
- Bacia Hidrográfica do Rio Lima
- Bacia Hidrográfica do Rio Cávado
- Bacia Hidrográfica do Rio Ave
- Bacia Hidrográfica do Rio Douro
- Bacia Hidrográfica do Rio Vouga
- Bacia Hidrográfica do Rio Mondego
- Bacia Hidrográfica do Rio Tejo
- Bacia Hidrográfica do Rio Sado
- Bacia Hidrográfica do Rio Mira
- Bacia Hidrográfica do Rio Guadiana

Em todas estas bacias é explorada a produção hidroelétrica.
5.2. Tipos de aproveitamentos

• Fio de Água
Barragens com este tipo de aproveitamento localizam-se em cursos de água de declive pouco acentuado. Este tipo de aproveitamento é caracterizado pela reduzida capacidade de armazenamento sendo que as suas afluências são lançadas para jusante (em direção à foz) quase instantaneamente.

• De Albufeira
Neste tipo de aproveitamento, verifica-se a retenção de água sob a forma de albufeiras. Estes reservatórios de água são utilizados para a produção de energia e para a regularização do regime dos rios.

• De Albufeira com Bombagem
São, igualmente, barragens que retêm água em albufeiras. Porém, estão equipadas com turbinas-bombas que permitem o retorno da água a montante. Durante as horas de maior consumo, a água da albufeira a montante é turbinada para jusante, produzindo-se energia elétrica. Nas horas de baixo consumo, os excedentes de energia elétrica produzida são utilizados para elevar a água da albufeira a jusante para a albufeira a montante.

Figura 12) Aproveitamento do tipo de água de Valeira

Figura 13) Aproveitamento do tipo de albufeira de Alqueva

Figura 14) Aproveitamento do tipo de albufeira com bombagem de Aguieira
A diferença entre estes dois tipos de aproveitamentos a nível de energia hídrica em Portugal é deveras relevante, sendo a energia das barragens de fio de água muito superior à das de albufeira, como se pode constatar no gráfico que se segue:

Figura 15) Produção hídrica de cada bacia hidrográfica entre 2004 e 2012

5.3. Centro de Produção do Douro

A bacia nacional do Douro é a maior fonte de energia hídrica de que o país dispõe, representando 44% do potencial hídrico e cerca de 20% da potência instalada. A bacia hidrográfica do douro tem uma área superior a 97 500 Km² que corresponde a 17% da área total da península Ibérica, sendo que a parte portuguesa (19 500 km²) corresponde a 1/5 da superfície total da bacia.

Figura 16) Bacia hidrográfica do Rio Douro
Trecho nacional

Estes cinco aproveitamentos existentes no leito do rio Douro constituem o Douro Nacional, com uma potencia total de 921 MVA.

<table>
<thead>
<tr>
<th>Aproveitamento hidroelétrico</th>
<th>Ano de conclusão</th>
<th>Capacidade útil (hm3)</th>
<th>Potencia instalada (MVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Carrapatelo</td>
<td>1972</td>
<td>14</td>
<td>201</td>
</tr>
<tr>
<td>Régua</td>
<td>1973</td>
<td>12</td>
<td>174</td>
</tr>
<tr>
<td>Valeira</td>
<td>1975</td>
<td>12</td>
<td>240</td>
</tr>
<tr>
<td>Pocinho</td>
<td>1982</td>
<td>12</td>
<td>186</td>
</tr>
<tr>
<td>Crestuma-Lever</td>
<td>1985</td>
<td>19</td>
<td>120</td>
</tr>
</tbody>
</table>

Figura 17) Barragens no trecho nacional do Rio Douro

Primeiros aproveitamentos nos afluentes

<table>
<thead>
<tr>
<th>Aproveitamento hidroelétrico</th>
<th>Ano de conclusão</th>
<th>Capacidade útil (hm3)</th>
<th>Potencia instalada (MVA)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varosa</td>
<td>1934</td>
<td>14,5</td>
<td>28</td>
</tr>
<tr>
<td>Vilar</td>
<td>1965</td>
<td>95,3</td>
<td>80</td>
</tr>
<tr>
<td>Torrão</td>
<td>1988</td>
<td>58,5</td>
<td>160</td>
</tr>
</tbody>
</table>
Com isto, podemos concluir que há ainda recursos hídricos que podem ser rentavelmente aproveitados, tais como o rio Tua, Sabor, Paiva e o Côa. Um melhor aproveitamento destes afluentes ainda não explorados permitiria uma maior capacidade de regularização dos caudais.

Assim, isto resultaria (com as novas albufeiras criadas), numa essencial reserva estratégica que permitiria às populações poderem ter água grande parte do ano.

Segundo o esquema anterior verificamos que só três dos afluentes (Tâmega, Távora e Varosa) estão a ser aproveitados e tendo em conta que existem 110 afluentes e subafluentes, este é um número muito reduzido.

Assim, os aproveitamentos que existem para além dos enunciados são os que estão construídos no leito do rio, que são os seguintes:

![Figura 18) Aproveitamentos hidroelétricos no Rio Douro](image-url)
Desde o início da produção elétrica no mundo, a população mundial tornou-se altamente dependente da energia produzida, uma vez que nos proporciona um sentimento de bem-estar. Nos dias de hoje, é impensável viver sem eletricidade e com todas as preocupações ambientais que nos assombram todos os dias, foi necessário criar novas formas de produzir energia de uma forma sustentável. Portugal tem aderido ao uso de energias renováveis com o intuito de se tornar mais responsável, defendendo, assim, o ambiente e a sustentabilidade do planeta.

6. Consumo Elétrico

<table>
<thead>
<tr>
<th>Barragem</th>
<th>Tipo de barragem</th>
<th>Ano de conclusão</th>
<th>Capacidade útil (m³)</th>
<th>Produção anual média (GWh)</th>
<th>Caudal Máximo Turbinável (m³/s)</th>
<th>Altura (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Miranda</td>
<td>Fio de água</td>
<td>1960</td>
<td>6</td>
<td>897,8</td>
<td>738</td>
<td>80</td>
</tr>
<tr>
<td>Picote</td>
<td>Fio de água</td>
<td>1958</td>
<td>13</td>
<td>868,6</td>
<td>336</td>
<td>100</td>
</tr>
<tr>
<td>Bemposta</td>
<td>Fio de água</td>
<td>1964</td>
<td>87</td>
<td>924,1</td>
<td>457</td>
<td>87</td>
</tr>
<tr>
<td>Pocinho</td>
<td>Fio de água</td>
<td>1982</td>
<td>12</td>
<td>408,4</td>
<td>1142</td>
<td>49</td>
</tr>
<tr>
<td>Valeira</td>
<td>Fio de água</td>
<td>1975</td>
<td>12</td>
<td>610,7</td>
<td>1068</td>
<td>48</td>
</tr>
<tr>
<td>Vilar (Tabuão)</td>
<td>Albufeira</td>
<td>1965</td>
<td>58</td>
<td>137,6</td>
<td>16</td>
<td>58</td>
</tr>
<tr>
<td>Régua</td>
<td>Fio de água</td>
<td>1973</td>
<td>12</td>
<td>581,1</td>
<td>948</td>
<td>41</td>
</tr>
<tr>
<td>Varosa</td>
<td>Albufeira</td>
<td>1934</td>
<td>12,9</td>
<td>60</td>
<td>------</td>
<td>76</td>
</tr>
<tr>
<td>Carrapatelo</td>
<td>Fio de água</td>
<td>1972</td>
<td>14</td>
<td>806,1</td>
<td>792</td>
<td>57</td>
</tr>
<tr>
<td>Torrão</td>
<td>Albufeira</td>
<td>1988</td>
<td>58,5</td>
<td>222,3</td>
<td>320</td>
<td>70</td>
</tr>
<tr>
<td>Crestuma-Lever</td>
<td>Fio de água</td>
<td>1985</td>
<td>19</td>
<td>360</td>
<td>1320</td>
<td>65,5</td>
</tr>
</tbody>
</table>
“No seu conjunto, as renováveis geraram cerca de 70% da produção elétrica do país até Junho.” (Jornal “Expresso”, 2016)

Total fontes renováveis e não renováveis

![Pie chart showing renewable and non-renewable energy percentages](image)

Figura 19) Percentagem de consumo de energia elétrica em Portugal até junho de 2016

Existem, de facto, um vasto leque de energias renováveis que têm vindo a ganhar relevo e têm dado um grande contributo para o consumo elétrico sustentável em Portugal.

Figura 20) Tipo de energias renováveis utilizadas no consumo elétrico em Portugal
6.1. Energia Eólica

A energia proveniente dos ventos é a mais usada entre todas as formas sustentáveis (cerca de 46%) em Portugal, uma vez que é uma forma de obter energia limpa e renovável pois não emite qualquer tipo de poluentes.

![Figura 21) Parque Eólico de Penedo Ruivo](image)

6.2. Cogeração Renovável

Representando 3,7% da energia produzida por ação de fontes renováveis, a cogeração renovável visa o “aproveitamento local do calor residual, originado nos processos termodinâmicos de geração de energia elétrica que, de outra forma, seria desperdiçado.” (Galp, 31 de março de 2015)

Esta tecnologia, permite assim, “aumentar a eficiência de conversão dos recursos” e reduzir as emissões gasosas.

6.3. Energia Hídrica

Representa cerca de 13% da energia produzida por fontes renováveis e é principalmente produzida nas centrais hidroelétricas (barragens de média ou grande capacidade).

A produção de hidroeletricidade tem como características o armazenamento das águas dos rios num reservatório, interrompendo o fluxo normal da água.
7. Conclusão

Em Portugal, a produção hidroelétrica assume um papel preponderante em toda a produção elétrica nacional. Dado o potencial hídrico em território nacional, é notório o interesse na sua exploração a partir da década de 50. Aliado às características naturais, é de salientar as vantagens que este tipo de produção de eletricidade acarreta: o preço da fonte de energia (a água) é nulo; trata-se de uma fonte de energia inesgotável e não são emitidos poluentes, contribuindo assim na luta contra o aquecimento global. Mesmo tendo em conta os elevados custos respeitantes à instalação das centrais, é evidente que, para um país como Portugal, composto por imensos rios, a produção hidroelétrica é extremamente vantajosa e altamente sustentável.

No entanto, apesar da produção hidroelétrica não emitir qualquer tipo de poluentes, a construção de centrais hidroelétricas tem um grande impacto ambiental, espoletando vários problemas à fauna e flora envolventes, tais como a destruição da vegetação natural, o assoreamento do leito dos rios, o desmoronamento de barreiras e a contribuição para a extinção de certas espécies de peixes.

Concluindo, tendo em consideração tanto as vantagens como as desvantagens da produção hidroelétrica, no cômputo geral, a hidroeletricidade é indubitavelmente profícua. Contudo, antes da construção de qualquer central, são necessários estudos nos locais, de modo a percecionar os efeitos negativos que este tipo de investimento pode causar no ecossistema. Para além destes, são também importantes estudos relacionados com o tipo de barragem a construir e o possível rendimento energético.
8. Bibliografia e Netgrafía

crais/Hidroelectricidade%20em%20Portugal%20-
%20Memória%20e%20desafio.pdf. Data de acesso: 15 de outubro de 2016

Leitão-Em-nome-da-energia-hidroelectric.pdf

5) EDP. Disponível em: https://energia.edp.pt/particulares/apoio-
cliente/origem-
ergia/?sector=Residenciais%20e%20pequenos%20neg%C3%B3cios &year=-1&period=-1#renovaveis. Data de acesso: 13 de outubro de 2016

nossos-negocios/Gas-Power/Power/Cogeracao/Paginas/Definicao-de-
cogeracao.aspx. Data de acesso: 15 de outubro de 2016

