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Abstract

Recent results from statistical physics show that large classes of complex networks,

both man-made and of natural origin, are characterized by high clustering properties

yet strikingly short path lengths between pairs of nodes. This class of networks are

said to have a small-world topology. In the context of communication networks,

navigable small-world topologies, i.e. those which admit efficient distributed routing

algorithms, are deemed particularly effective, for example, in resource discovery tasks

and peer-to-peer applications. Breaking with the traditional approach to small-world

topologies that privileges graph parameters pertaining to connectivity, and intrigued

by the fundamental limits of communication in networks that exploit this type of

topology, in the first part of this thesis we investigate the capacity of these networks

from the perspective of network information flow. Our contribution includes upper

and lower bounds for the capacity of standard and navigable small-world models, and

the somewhat surprising result that, with high probability, random rewiring does not

alter the capacity of a small-world network.

Motivated by the proliferation of dual radio devices, we consider, in the second part

of this thesis, communication networks in which the devices have two radio interfaces.

With the goal of studying the performance gains in this networks when using the two

radio interfaces in a combined manner, we define a wireless network model in which

all devices have short-range transmission capability, but a subset of the nodes has

a secondary long-range wireless interface. For the resulting class of random graph

models, we present analytical bounds for both the connectivity and the max-flow min-

cut capacity. The most striking conclusion to be drawn from our results is that the

capacity of this class of networks grows quadratically with the fraction of dual radio

devices, thus indicating that a small percentage of such devices is sufficient to improve

significantly the capacity of the network.
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Resumo

Grafos aleatórios do tipo Small-World e Power-Law têm sido utilizados como modelos

para um número elevado de redes naturais e redes tecnológicas, porque capturam

algumas das suas propriedades fundamentais. Em redes de comunicação, pensa-se que

topologias Small-World navegáveis, i.e. aquelas que admitem algoritmos distribúıdos

de encaminhamento, sejam particularmente eficientes, por exemplo, em tarefas de

descoberta de recursos e aplicações peer-to-peer. Apesar do potencial evidenciado por

topologias deste tipo em redes de comunicação, a abordagem tradicional a redes Small-

World privilegia parâmetros relacionados com a conectividade. Assim, torna-se crucial

saber quais são os limites fundamentais de comunicação em redes que exploram este

tipo de topologia. Com o objectivo de estudar esses limites, na primeira parte desta

tese estudamos a capacidade destas redes do ponto de vista de fluxos de informação em

redes. As nossas contribuições incluem limites superiores e inferiores para a capacidade

de redes do tipo Small-World, incluindo um resultado surpreendente, que pode ter a

seguinte interpretação: alterar aleatoriamente os extremos de algumas ligações não

altera a capacidade da rede, com probabilidade convergente para 1.

Na segunda parte desta tese, motivados pela proliferação de aparelhos com duas

interfaces de rádio, consideramos redes de comunicação em que os aparelhos são deste

tipo. Com o objectivo de estudar os ganhos ao utilizar de uma forma combinada as

duas interfaces de rádio, definimos um modelo para redes sem fios em que todos os

aparelhos partilham uma tecnologia sem fios de curto alcance e alguns possuem uma

segunda tecnologia sem fios, esta de longo alcance. Para a classe de grafos definida

pelo modelo, apresentamos limites superiores e inferiores tanto para a probabilidade

de uma instância do modelo ser conexa, como para a sua capacidade. A conclusão

mais interessante a retirar dos nossos resultados é o facto de a capacidade desta classe

de grafos crescer quadraticamente com a proporção de aparelhos que possuem as duas

tecnologias sem fios, indicando assim que apenas uma pequena percentagem destes

aparelhos é suficiente para melhorar significativamente a capacidade da rede.
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Chapter 1

Introduction

Although the capacity of networks (described by general weighted graphs) support-

ing multiple communicating parties is largely unknown, progress has recently been

reported in several relevant instances of this problem. In the case where the network

has one or more independent sources of information but only one sink, it is known that

routing offers an optimal solution for transporting messages [LL04] — in this case the

transmitted information behaves like water in pipes and the capacity can be obtained

by classical network flow methods. Specifically, the capacity of the network follows

from the well-known Ford-Fulkerson max-flow min-cut theorem [FF62], which asserts

that the maximal amount of a flow (provided by the network) is equal to the capacity

of a minimal cut, i.e. a nontrivial partition of the graph node set V into two parts

such that the sum of the capacities of the edges connecting the two parts (the cut

capacity) is minimum. In [BS06] it was shown that network flow methods also yield

the capacity for networks with multiple correlated sources and one sink.

The case of general multicast networks, in which a single source broadcasts a number

of messages to a set of sinks, is considered in [ACLY00], where it is shown that applying

coding operations at intermediate nodes (i.e. network coding) is necessary to achieve

the max-flow/min-cut bound of the network. In other words, if k messages are to be

sent then the minimum cut between the source and each sink must be at least of size

k. A converse proof for this problem, known as the network information flow problem,

was provided by [Bor02], whereas linear network codes were proposed and discussed

in [LYC03] and [KM03]. Max-flow min-cut capacity bounds for Erdös-Rényi graphs

and random geometric graphs were presented in [RSW05].

Another problem in which network flow techniques have been found useful is that of

11



CHAPTER 1. INTRODUCTION 12

finding the maximum stable throughput in certain networks. In this problem, posed

by Gupta and Kumar in [GK00], it is sought to determine the maximum rate at which

nodes can inject bits into a network, while keeping the system stable. This problem

was reformulated in [PS05] as a multi-commodity flow problem, for which tight bounds

were obtained using elementary counting techniques.

1.1 Small-World Networks

The first class of graphs of interest in this thesis is the class of small-world graphs, i.e.

graphs with high clustering coefficients and small average path length. These graphs

have sparked a fair amount of interest from the scientific community, mainly due to

their ability to capture fundamental properties of relevant phenomena and structures

in sociology, biology, statistical physics and man-made networks. Beyond well-known

examples such as Milgram’s ”six degrees of separation” [Mil67] between any two

people in the United States (over which some doubt has recently been casted [Kle02])

and the Hollywood graph with links between actors, small-world structures appear

in such diverse networks as the U.S. electric power grid, the nervous system of the

nematode worm Caenorhabditis elegans [AY92], food webs [WM00], telephone call

graphs [ABW98], citation networks of scientists [New01], and, most strikingly, the

World Wide Web [Bro00].

The term small-world graph was coined by Watts and Strogatz, who in their seminal

paper [WS98] defined a class of models which interpolate between regular lattices

and random Erdös-Rényi graphs by adding shortcuts or rewiring edges with a certain

probability p. The most striking feature of these models is that for increasing values of

p the average shortest-path length diminishes sharply, whereas the clustering coefficient

remains practically constant during this transition.

Since the seminal work of [WS98], key properties of small-world networks, such as clus-

tering coefficient, characteristic path length, and node degree distribution, have been

studied by several authors (see e.g. [DM03] and references therein). The combination of

strong local connectivity and long-range shortcut links renders small-world topologies

potentially attractive in the context of communication networks, either to increase

their capacity or simplify certain tasks. Recent examples include resource discovery

in wireless networks [Hel03], design of heterogeneous networks [RKV04, DYT05], and

peer-to-peer communications [MNW04].

When applying small-world principles to communication networks, we would not only
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like that short paths exist between any pairs of nodes, but also that such paths can

easily be found using merely local information. In [Kle00] it was shown that this

navigability property, which is key to the existence of effective distributed routing al-

gorithms, is lacking in the small-world models of [WS98] and [NW99]. The alternative

navigable model presented in [Kle00] consists of a grid to which shortcuts are added not

uniformly but according to a harmonic distribution, such that the number of outgoing

links per node is fixed and the link probability depends on the distance between the

nodes. For this class of small-world networks a greedy routing algorithm, in which a

message is sent through the outgoing link that takes it closest to the destination, was

shown to be effective, thus opening the door towards a capacity-attaining solution.

Since small-world graphs were proposed as models for complex networks ([WS98],

[NW99]), most contributions in the area of complex networks focus essentially on

connectivity parameters such as the degree distribution, the clustering coefficient or

the shortest path length between two nodes (see e.g. [Str01]). In spite of its undoubted

relevance — particularly where communication networks are concerned — the capacity

of small-world networks has, to the best of our knowledge, not yet been studied in any

depth by the scientific community. One of the goals of this thesis is thus to provide

a preliminary characterization of the capacity of small-world networks from the point

of view of network information flow.

1.2 Dual Radio Networks

The second part of this thesis focuses on communication networks in which the devices

have two radio interfaces - dual radio networks. The interest in these networks arises

from the fact that wireless interfaces are standard commodities and communication

devices with multiple radio interfaces appear in various products, thus leading to the

natural question: can the aforementioned devices lead to substantial performance gains

in wireless communication networks? Promising examples include [BAPW04], where

multiple radios are used to provide better performance and greater functionality for

users, and [PRW05], where it is shown that using radio hierarchies can reduce power

consumption. In addition, [ABP+04] presents a link-layer protocol that works with

multiple IEEE 802.11 radios and improves TCP throughput and latency. This growing

interest in wireless systems with multiple radios (for example, a Bluetooth interface

and an IEEE 802.11 wi-fi card) motivates us to study the impact of dual radio devices

on the connectivity and capacity of wireless networks.
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For classical single-radio networks, random geometric graphs provide a widely accepted

model, whose connectivity is well understood. In [Pen99] Penrose shows a relationship

between connectivity and minimum degree in terms of the value of the radio range.

Gupta and Kumar derive in [GK98], the critical radio range for which the probability

that the network is connected goes to one as the number of nodes goes to infinity.

Ganesh and Xue [GX05] studied the connectivity and diameter of a class of networks

similar to random geometric graphs, with the new feature of adding random shortcuts

to the network, thus creating a small-world network.

1.3 Main Contributions

We provide a set of upper and lower bounds for the max-flow min-cut capacity of

several classes of small-world networks, including navigable topologies, for which highly

efficient distributed routing algorithms are known to exist and distributed network

coding strategies are likely to be found. Our main contributions related to small-

world networks, mainly from [CB06c] and [CB06a] (or [CB06b], for a complete set of

results), are as follows:

• Capacity Bounds on Small-World Networks with Added Shortcuts: We prove a

high concentration result which gives upper and lower bounds on the capacity

of a small-world with shortcuts of probability p, thus describing the capacity

growth due to the addition of random edges.

• Rewiring does not alter the Capacity: We construct assymptotically tight upper

and lower bounds for the capacity of small-worlds with rewiring and prove that,

with high probability, capacity will not change when the edges are altered in a

random fashion.

• Capacity Bounds for Kleinberg Networks: We construct upper and lower bounds

for the max-flow min-cut capacity of navigable small-world networks derived

from a square lattice and illustrate how the choice of connectivity parameters

affects communication.

• Capacity Bounds for Navigable Small-World Networks on Ring Lattices: Arguing

that the corners present in the aforementioned Kleinberg networks introduce

undesirable artefacts in the computation of the capacity, we define a navigable

small world network based on a ring lattice, prove its navigability and derive a

high-concentration result for the capacity of this instance.
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Related to Dual Radio Networks, our main contributions, mainly from [CB07], are as

follows:

• Network Model: We introduce a simple random graph model, the Dual Radio

Network (DRN), where nodes with low-range radios are represented by a primary

random geometric graph and the set of dual radio nodes with their additional

long-range wireless links form a secondary random geometric graph.

• Connectivity Bounds: For this class of networks, we provide upper and lower

bounds for the probability that an instance of a Dual Radio Network is connected;

• Capacity Bounds: Using a set of probabilistic tools, we derive upper and lower

bounds for the max-flow min-cut capacity of this class of random networks.

1.4 Outline of the Thesis

The outline of the thesis is the following. In Chapter 2 we define two simple models

for small-world networks and we present a set of tools (from random sampling in

graphs) that allows us to study the max-flow min-cut capacity of randomized graphs

in general. We use this set of tools to provide bounds on the max-flow min-cut capacity

of the two models of interest in the chapter. The notion of navigability is presented in

Chapter 3, where we define two navigable models for small-world networks and prove

that this models are, indeed, navigable. Next, we provide upper and lower bounds on

the max-flow min-cut capacity of these two classes of navigable small-world networks.

In Chapter 4, we study networks in which some of the nodes have a second wireless

technology, by defining a graph model for this networks, called Dual Radio Networks.

We then provide bounds on the probability that a Dual Radio Network is connected,

and we also provide bounds on their max-flow min-cut capacity. Chapter 5 concludes

the thesis.



Chapter 2

Small-World Networks

In this chapter, we provide the definitions for two simple classes of small-world net-

works, the Small-World Network with Shortcuts [NW99] and the Small-World Network

with Rewiring [WS98], and study these classes in terms of their max-flow min-cut

capacity.

2.1 Classes of Small-World Networks

In this section, we give rigorous definitions for the classes of small-world networks

under consideration in this chapter. First, we require a precise notion of distance in a

ring.

Definition 1. Consider a set of n nodes connected by edges that form a ring (see

Fig. 2.1, left plot). The ring distance between two nodes is defined as the minimum

number of hops from one node to the other. If we number the nodes in clockwise

direction, starting from any node, then the ring distance between nodes i and j is

given by d(i, j) = min{|i − j|, n + i − j, n − |i − j|}.

For simplicity, we refer to d(i, j) as the distance between i and j. Next, we define

a k-connected ring lattice, that serves as basis for some of the small-world models

described next, can be defined as follows.

Definition 2. A k-connected ring lattice (see Fig. 2.1) is a graph L = (VL, EL) with

nodes VL and edges EL, in which all nodes in VL are placed on a ring and are connected

to all the nodes within distance k
2
.

16



CHAPTER 2. SMALL-WORLD NETWORKS 17

Figure 2.1: Illustration of a k-connected ring lattice.

From left to right k = 2, 4, 12.

Notice that in a k-connected ring lattice, all the nodes have degree k. We are now

ready to define the small-world models of interest in this section.

Definition 3 (Small-World Network with Shortcuts [NW99], see Fig. 2.2). Consider a

k-connected ring lattice L = (VL, EL). To obtain a small-world network with shortcuts,

we add to the ring lattice L each edge e /∈ EL with probability p.

Definition 4 (Small-World Network with Rewiring [WS98], see Fig. 2.3). To obtain

a small-world network with rewiring, we use the following procedure. Consider a k-

connected ring lattice L = (VL, EL) and choose a node, say node u, and the edge

that connects it to its nearest neighbor in a clockwise sense. With probability p,

reconnect this edge to a node chosen uniformly at random over the set of nodes

{v ∈ VL : (u, v) /∈ EL}. Repeat this process by moving around the ring in clockwise

direction, considering each node in turn until one lap is completed. Next, consider

the edges that connect nodes to their second-nearest neighbors clockwise. As before,

randomly rewire each of these edges with probability p, and continue this process,

circulating around the ring and proceeding outward to more distant neighbors after

each lap, until each edge in the original lattice has been considered once.

2.2 Capacity Results for Small-World Networks

In Chapter 1, we argued that the max-flow min-cut capacity provides the fundamental

limit of communication for various relevant network scenarios. Motivated by this

observation, we will now use network flow methods and random sampling techniques

in graphs to derive a set of bounds for the capacity of the small-world network models

presented in the previous section.
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p=0 p=0.1 p=0.9

Figure 2.2: Small-world model with added shortcuts for different values of the adding

probability p.

p=0 p=0.1 p=0.9

Figure 2.3: Small-world model with rewiring for different values of the rewiring

probability p.

2.2.1 Preliminaries

We start by introducing some necessary mathematical tools. Let G be an undirected

graph, representing a communication network, with edges of unitary weight1.

In the spirit of the max-flow min-cut theorem of Ford and Fulkerson [FF62], we will

refer to the global minimum cut of G as the max-flow min-cut capacity (or simply the

capacity) of the graph.

Let Gs be the graph obtained by sampling on G, such that each edge e has sampling

probability pe. From G and Gs, we obtain Gw by assigning to each edge e the weight

pe, i.e. w(e) = pe, ∀e. We denote the capacity of Gs and Gw by cs and cw, respectively.

It is helpful to view a cut in Gs as a sum of Bernoulli distributed random variables,

whose outcome determines if an edge e connecting the two sides of the cut belongs to

Gs or not. Thus, it is not difficult to see that the value of a cut in Gw is the expected

1For simplicity, in the rest of the thesis, we will assume that all the edges of the communication

networks presented have unitary weight.



CHAPTER 2. SMALL-WORLD NETWORKS 19

value of the same cut in Gs. The following theorem provides a characterization of how

close a cut in Gs will be with respect to its expected value.

Theorem 1 (From [Kar94]). Let ǫ =
√

2(d + 2) ln(n)/cw. Then, with probability

1 − O(1/nd), every cut in Gs has value between (1 − ǫ) and (1 + ǫ) times its expected

value.

Notice that although d is a free parameter, there is a strict relationship between the

value of d and the value of ǫ. In other words, the proximity to the expected value of

the cut is intertwined with how close the probability is to one. Theorem 1 yields also

the following useful property.

Corollary 1. Let ǫ =
√

2(d + 2) ln(n)/cw. Then, with high probability, the value of

cs lies between (1 − ǫ)cw and (1 + ǫ)cw.

Before using the previous random sampling results to determine bounds for the ca-

pacities of small-world models, we prove another useful lemma.

Lemma 1. Let L = (VL, EL) be a k-connected ring lattice and let G = (VL, E) be a

fully connected graph (without self-loops), in which edges e ∈ EL have weight w1 ≥
0 and edges f /∈ EL have weight w2 ≥ 0. Then, the global minimum cut in G is

kw1 + (n − 1 − k)w2.

Proof. We start by splitting G into two subgraphs: a k-connected ring lattice L with

weights w1 and a graph F with nodes VL and all remaining edges of weight w2. Clearly,

the value of a cut in G is the sum of the values of the same cut in L and in F . Moreover,

both in L and in F , the global minimum cut is a cut in which one of the partitions

consists of one node (any other partition increases the number of outgoing edges).

Since each node in L has k edges of weight w1 and each node in F has the remaining

n − 1 − k edges of weight w2, the result follows.

2.2.2 Capacity Bounds for Small-World Networks with Added

Shortcuts

With the set of tools presented in the previous section, we are ready to state and prove

our first main result.

Theorem 2. With high probability, the value of the capacity of a small-world network

with shortcuts lies between (1 − ǫ)cw and (1 + ǫ)cw, with ǫ =
√

2(d + 2) ln(n)/cw and

cw = k + (n − 1 − k)p.
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Proof. Let Gw be a fully connected graph with n nodes and with the edge weights (or

equivalently, the sampling probabilities) defined as follows:

• The weight of the edges in the initial lattice of a small-world network with added

shortcuts is one (because they are not removed);

• The weight of the remaining edges is p, (i.e. the probability that an edge is

added).

Notice that Gw is a graph in the conditions of Lemma 1, with w1 = 1 and w2 = p.

Therefore, the global minimum cut in Gw is cw = k + (n − 1 − k)p, where k is the

initial number of neighbors in the lattice. Using Corollary 1, the result follows.

The obtained bounds are illustrated in Fig. 2.4. As one would expect, the capacity

increases with p, i.e. as the number of added links become larger.
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Figure 2.4: Bounds on the capacity of a small-world network with added shortcuts,

for n = 1000, k = 20, and d = 1. The dashed line represents the expected value of the

capacity, and the solid lines represent the bounds.

2.2.3 Capacity Bounds for Small-World Networks with Rewiring

In the previous class of small-world networks, edges were added to a k-connected ring

lattice (with minimum cut k) and clearly the capacity could only grow with p. The
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next natural step is to ask what happens when edges are not added but rewired with

probability p, as described in Section 2.1. Before presenting a theorem that answers

this question, we will prove the following lemma.

Lemma 2. Let Gw be a weighted fully connected graph whose weights correspond to

the edge probabilities of a small-world network with rewiring, and let cw be the global

minimum cut in Gw. Then, cw ≥ k.

Proof. We start with the initial lattice edges (l, m) ∈ EL, and assign the weight 1− p

to their counterparts in Gw. In order to determine the weight of the non-initial edges

that result from rewiring, consider the following events:

• R(i, j): “Choose the edge (i, j) ∈ EL to be rewired”;

• Ci(j, l): “Rewire (i, j) ∈ EL to (i, l) /∈ EL”.

Notice that P(R(i, j)) = p, ∀(i, j) ∈ EL.

Let i and j be two non-initially connected nodes. The notation i ↔ j denotes the

event that the nodes i and j are connected. We have that

P(i ↔ j) = P
(

[∪k/2
x=1(R(i, i + x) ∩ Ci(i + x, j))] ∪ [∪k/2

x=1(R(j, j + x) ∩ Cj(j + x, i))]
)

(a)
= P

(

∪k/2
x=1(R(i, i + x) ∩ Ci(i + x, j))

)

+ P
(

∪k/2
x=1(R(j, j + x) ∩ Cj(j + x, i))

)

−P
(

[∪k/2
x=1(R(i, i + x) ∩ Ci(i + x, j))] ∩ [∪k/2

x=1(R(j, j + x) ∩ Cj(j + x, i))]
)

where (a) follows from the fact that, for any two events A and B, P(A ∪ B) =

P(A) + P(B) − P(A ∩ B), and take A = ∪k/2
x=1(R(i, i + x) ∩ Ci(i + x, j)) and B =

∪k/2
x=1(R(j, j + x) ∩ Cj(j + x, i)).

Because we do not consider multiple edges, we have that the events R(i, i+x)∩Ci(i+

x, j) and R(j, j + y)∩Cj(j + y, i) are mutually exclusive, ∀x, y, and, for each i, j, the

same is true for the pair of events R(i, i+x)∩Ci(i+x, j) and R(i, i+ y)∩Ci(i+ y, j),

and for the pair R(j, j + x) ∩ Cj(j + x, i) and R(j, j + y) ∩ Cj(j + y, i). Therefore,

P
(

[∪k/2
x=1(R(i, i + x) ∩ Ci(i + x, j))] ∩ [∪k/2

x=1(R(j, j + x) ∩ Cj(j + x, i))]
)

= 0,

P
(

∪k/2
x=1(R(i, i + x) ∩ Ci(i + x, j))

)

=

k/2
∑

x=1

P(R(i, i + x) ∩ Ci(i + x, j))

and

P
(

∪k/2
x=1(R(j, j + x) ∩ Cj(j + x, i))

)

=

k/2
∑

x=1

P(R(j, j + x) ∩ Cj(j + x, i)).
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Thus

P(i ↔ j) =

k/2
∑

x=1

(P(R(i, i + x) ∩ Ci(i + x, j)) + P(R(j, j + x) ∩ Cj(j + x, i)))

(a)
=

k/2
∑

x=1

[P(Ci(i + x, j)|R(i, i + x))P(R(i, i + x))

+P(Cj(j + x, i)|R(j, j + x))P(R(j, j + x))]

(b)
= p ·





k/2
∑

x=1

(P(Ci(i + x, j)|R(i, i + x)) + P(Cj(j + x, i)|R(j, j + x)))





where (a) follows from the fact that, for any two events A and B, P(A ∩ B) =

P(B|A)P(A), and (b) follows from substituting P(R(i, i + x)) and P(R(j, j + x)) by

p.

We have P(Ci(i + x, j)|R(i, i + x)) = 1
m

, where m is the number of possible new

connections from node i when we rewire the edge (i, i+x). It is possible that, regardless

of whether or not some rewiring has previously occurred, none of the other nodes chose

to rewire to node i. In this case, m = n− k − 1. Notice that this is the highest it can

get, therefore m ≤ n − k − 1. Thus, we have

P(Ci(i + x, j)|R(i, i + x)) ≥ 1

n − k − 1
.

Analogously, P(Cj(j + x, i)|R(j, j + x))) ≥ 1
n−k−1

. Therefore,

P(i ↔ j) ≥ p ·





k/2
∑

x=1

2

n − k − 1



 =
pk

n − k − 1
.

Consider a fully connected weighted graph F with the weights defined as follows: all

the edges (i, j) /∈ EL have the weight pk
n−k−1

, and all the others edges (i, j) ∈ EL have

the weight 1− p. Notice that F is a graph satisfying the conditions of Lemma 1, with

w1 = 1− p and w2 = pk
n−k−1

. Therefore, because there are k initial edges and n− k− 1

non-initial edges in each node,

cF = k(1 − p) + (n − k − 1)
pk

n − k − 1
= k.

Notice that, in this situation, all the weights in F are a lower bound of the weights in

Gw. Therefore, a cut in F is a lower bound for the corresponding cut in Gw. Then,

the global minimum cut in F is a lower bound for all the cuts in Gw, in particular, for

cw: cw ≥ cF = k.
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With this lemma, we are now ready to state and prove our next result.

Theorem 3 (Rewiring does not alter capacity.). With high probability, the capacity

of a small-world network with rewiring has a value in the interval [(1 − ǫ)k, k] with

ǫ =
√

2(d + 2)ln(n)/k.

Proof. Based on Lemma 2 and Corollary 1, we have that, with high probability, cs ≥
(1 − ǫw)k, with ǫw =

√

2(d + 2)ln(n)/cw. Now, from the fact that cw ≥ k, we have

that ǫ =
√

2(d + 2)ln(n)/k ≥ ǫw. Then, (1− ǫw)k ≥ (1− ǫ)k, and the first part of the

result follows.

Next, we prove by contradiction that cs ≤ k. Suppose that the proposition cs > k is

true. Let ci be the cut in which one of the partitions consists of node i, i = 1, ..., n.

Because cs is the global minimum cut in Gs, we have that ci > k, ∀i = 1, ..., n. Notice

that ci is the degree of node i. Then, because in the k-connected ring lattice all nodes

have degree k and all nodes in Gs have degree greater than k (because ci > k, ∀i),

we have that the number of edges in Gs must be greater than the number of edges in

the k-connected ring lattice. But this is clearly absurd, because in the construction of

Gs, we do not add new edges to the k-connected ring lattice, we just rewire some of

the existent edges. The contradiction arises from the initial assumption cs > k, thus

cs ≤ k.

2.3 Summary

We studied the max-flow min-cut capacity of two classes of small-world networks. Us-

ing classical network flow arguments and concentration results from random sampling

in graphs, we provided bounds for the capacity of two standard models for small-world

networks. In particular, we presented a tight result for small-world networks with

rewiring, which permits the following interpretation: With high probability, rewiring

does not alter the capacity of the network. This observation is not obvious, because

we can easily find ways to rewire the ring lattice in order to obtain, for instance, a

bottleneck. But, according to the previous results, such instances occur with very low

probability.



Chapter 3

Navigable Small-World Networks

As we argue in Chapter 1, when considering small-world networks as communication

networks, an important aspect is the ability to find short paths between any pairs of

nodes, using only local information. This property guarantees that efficient distributed

routing algorithms exists. Kleinberg, in his seminal work [Kle00], proved that this

navigability property is lacking in the models of Watts and Strogatz, and introduced a

new model (Definition 5). Motivated by the relevance of the navigability property, in

this chapter, we study two small-world models that exhibit this navigability property,

stating the results that prove that they are, indeed, navigable, and presenting bounds

on their max-flow min-cut capacity.

3.1 Classes of Navigable Small-World Networks

In this section, we provide rigorous definitions for the two models of interest in the

rest of this chapter.

Definition 5 (Kleinberg Network [Kle00], see Fig. 3.1). We begin from a two-

dimensional grid and a set of nodes that are identified with the set of lattice points

in a n × n square, {(x, y) : x ∈ {1, 2, ..., n}, y ∈ {1, 2, ..., n}}, and we define the

lattice distance between two nodes (x1, x2) and (y1, y2) to be the number of lattice steps

(or hops) separating them: d(x, y) = |y1 − x1| + |y2 − x2|. For a constant h ≥ 1,

∀u1, u2 ∈ {1, ..., n}, the node (u1, u2) is connected to every other node within lattice

distance h (we denote the set of this initial edges as EL). For universal constants q ≥ 0

and r ≥ 0, we also construct edges between u and q other nodes using random trials;

the ith edge from u has endpoint v with probability proportional to d(u, v)−r. To ensure

24
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a valid probability distribution, consider the set of nodes that are not connected with u

in the initial lattice, Nu = {w : d(u, w) > h}, and divide d(u, v)−r by the appropriate

normalizing constant s(u) =
∑

w∈Nu
[d(u, w)]−r.

(i,j+1)

(i,j) (i+1,j)

(i,j−1)

(k,l)

(i−1,j)

Figure 3.1: Kleinberg network, for h = q = 1. Lightly shaded circles represent the

nodes that are directly connected to node (i, j), i.e. the four direct neighbors of (i, j)

and one additional node (k, l) connected by a shortcut.

In the next section, we will see that this model exhibits unexpected effects related to

the corners of the chosen base lattice. Motivated by this observation, we construct a

somewhat different model, which uses a ring lattice but still keeps the key relationship

between shortcut probability and node distance that assures the navigability of the

model.

Definition 6 (Navigable Small-World Ring). Consider a k-connected ring lattice. For

universal constants q ≥ 0 and r ≥ 0, ∀i, we add new edges from node i to q other

nodes randomly: each added edge has an endpoint j with probability proportional to

d(i, j)−r. To ensure a valid probability distribution, consider Ni =
{

j : d(i, j) > k
2

}

and divide d(i, j)−r by the appropriate normalizing constant si =
∑

j∈Ni
d(i, j)−r.

3.2 Results on Navigability

In this section, we give an insight on the notion of navigability and we state the results

of [Kle00] that prove that his model is navigable. Next, we use similar techniques to

those in [Kle00] to prove that a navigable small-world ring is, indeed, navigable.
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In his work, Kleinberg uses the notion of decentralized routing algorithms to study the

navigability of his model.

Definition 7 (From [Kle00]). Consider a graph G with an underlying metric δG. A

decentralized routing algorithm in G is an algorithm with the goal of sending a message

from a source to a destination, with the knowledge, at each step, of the underlying

metric, the position of the destination, and the contacts of the current message holder

and of all the nodes seen so far.

Definition 8 (From [Kle00]). A greedy decentralized routing algorithm is a decentral-

ized routing algorithm operating greedily: at each step, it sends the message to the

contact of the current message holder that is closest (in the sense of the underlying

metric) to destination.

The meaning of navigability is the following: we say that a network is navigable if it

admits an efficient decentralized routing algorithm.

In [Kle00], Kleinberg proved that the models presented by Watts and Strogatz do not

admit efficient decentralized routing algorithms, in constrast with his model:

Theorem 4 (From [Kle00]). For r = 2, there is a constant α2, independent of n,

such that the expected delivery time of a greedy decentralized routing algorithm in a

Kleinberg network is at most α2 · log2(n).

Theorem 5 (From [Kle00]).

1. Let 0 ≤ r < 2. There is a constant αr, depending on p, q, r, but independent of

n, such that the expected delivery time of any decentralized routing algorithm in

a Kleinberg network is at least αr · n(2−r)/3.

2. Let r > 2. There is a constant αr, depending on p, q, r, but independent of

n, so that the expected delivery time of any decentralized routing algorithm in a

Kleinberg network is at least αr · n(r−2)/(r−1).

Theorem 4 shows that, in fact, a Kleinberg network is navigable, while Theorem 5

shows that the models from Watts and Strogatz are not navigable, because this

corresponds to the case when we consider uniformly chosen shortcuts, therefore corre-

sponding to r = 0.

The next theorem shows that a navigable small-world ring is indeed navigable, in

the sense that the expected delivery time of a decentralized routing algorithm is
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logarithmic. The proof is essentially based on the proof of Theorem 4 presented by

Kleinberg.

Theorem 6. For r = 1, the expected delivery time of a greedy decentralized routing

algorithm in a navigable small-world ring is at most ln2(2n)
ln(2)

.

Proof. First, we need to show that
∑

u∈Nv
d(u, v)−1 is uniformly bounded. For even n,

it is not difficult to see that there is a single node that maximizes the distance to node

1; that node is node n
2

+ 1, and we have that d
(

1, n
2

+ 1
)

= n
2
. For distances d < n

2
,

there are two nodes at distance d to node 1. Therefore, if n is even, we have that

∑

u∈Nv

d(u, v)−1 =
(n

2

)−1

+ 2 ·
n
2
−1
∑

i= k
2
+1

i−1 ≤ 2 ·
n
2
∑

i= k
2
+1

i−1.

When n is odd, it is also easy to see that there are two nodes that maximize the distance

to node 1: nodes n+1
2

and n+3
2

, with the maximum distance being n−1
2

. Therefore, if n

is odd, we have that

∑

u∈Nv

d(u, v)−1 = 2 ·
n−1

2
∑

i= k
2
+1

i−1.

Therefore, we have that ∀n ∈ N,

∑

u∈Nv

d(u, v)−1 ≤ 2 ·
⌊n

2 ⌋
∑

i= k
2
+1

i−1

≤ 2 ·
⌊n

2 ⌋
∑

i=1

i−1

≤ 2 + 2 ln
(n

2

)

≤ 2 ln(2n)

For j > 0, we say that the decentralized routing algorithm is in phase j if the distance

between the current message holder and the destination is d such that 2j < d ≤ 2j+1.

We say that the algorithm is in phase 0 if the distance between the current message

holder and the destination is at most 2. Because the maximum distance in the ring-

lattice is at most n
2
, we have that j ≤ log

(

n
2

)

.

Now, suppose that we are in phase j and the current message holder is node u. The

task is to determine the probability of phase j ending in this step. Let Bj be the set of
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nodes within lattice distance 2j of the destination. Phase j ending in this step means

that u chooses a long-range contact v ∈ Bj. Each node v ∈ Bj has probability of being

chosen as long-range contact of u at least

(2j)
−1

∑

v∈Nu
d(u, v)−1

≥ 1

2j+1 · ln(2n)
.

We have that the number of nodes in Bj , denoted by |Bj|, satisfies

|Bj | = 1 + 2 ·
2j
∑

i=1

i ≥ 22j.

Therefore, with A denoting the event “Phase j ends in this step”, we have that

P(A) ≥ 22j

2j+1 · ln(2n)
=

2j−1

ln(2n)
≥ 1

ln(2n)
.

Let Nj be the number of steps spent in phase j. Now, we must compute the expected

value of Nj . Notice that the maximum number of steps spent in phase j is the number

of nodes at distance of the destination d such that 2j < d ≤ 2j+1, which is

m = 2 ·
2j+1−1
∑

i=2j

i

= 2 ·





2j+1−1
∑

i=1

i −
2j−1
∑

i=1

i





= 2j+1(2j+1 − 1) − 2j(2j − 1)

≤ 22j+2.

Therefore, the expected value of Nj satisfies the following:

E (Nj) =

m
∑

i=1

P(Nj ≥ i)

≤
22j+2
∑

i=1

P(Nj ≥ i)

≤
22j+2
∑

i=1

(

1 − 1

ln(2n)

)i−1

≤
∞
∑

i=1

(

1 − 1

ln(2n)

)i−1

= ln(2n)
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Now, denoting by N the total number of steps implemented by the algorithm, we have

that

N =

log(n
2 )

∑

i=0

Nj .

Therefore, by linearity of the expected value, we have that

E (N) =

log(n
2 )

∑

i=0

E (Nj)

≤
(

1 + log
(n

2

))

· ln(2n)

=
(

log(2) + log
(n

2

))

· ln(2n)

= log(n) · ln(2n)

=
ln(n) · ln(2n)

ln(2)

≤ ln2(2n)

ln(2)

3.3 Capacity Results for Navigable Small-World Net-

works

In this section, we study the max-flow min-cut capacity of the navigable models for

small-world networks defined in Section 3.1.

3.3.1 Capacity Bounds for Kleinberg Networks

Before proceeding with the bounds for the capacity of Kleinberg networks, we require

an algorithm to calculate the normalizing constants s(x, y) =
∑

(i,j)∈N(x,y)
[d((x, y), (i, j))]−r

for x, y ∈ {1, ...n}. For this purpose, notice that the previous sum can be written as

s(x, y) =
∑

(i,j)6=(x,y)

[d((i, j), (x, y))]−r −
∑

(i,j)/∈N(x,y)

[d((i, j), (x, y))]−r.

Clearly, the first term can be easily calculated. Thus, the challenging task is to present

an algorithm that deals with the calculation of
∑

(i,j)/∈N(x,y)
[d((i, j), (x, y))]−r. The
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Table 3.1: Algorithm for computing normalizing constants

Algorithm 1.

z = [0]n×n

for i = 0 : min{h, n − y}
for j = 0 : min{h − i, n − x}

z(x + j, y + i) = (i + j)−r

for j = 1 : min{h − i, x − 1}
z(x − j, y + i) = (i + j)−r

for i = 1 : min{h, y − 1}
for j = 0 : min{h − i, n − x}

z(x + j, y − i) = (i + j)−r

for j = 1 : min{h−i, h−(m1−i), x−1}
z(x − j, y − i) = (i + j)−r

z(x, y) = 0

z =
∑n

i=1

∑n
j=1 z(i, j)

s(x, y) =
∑

(i,j)6=(x,y)(|i− x|+ |j − y|)−r − z

nodes (i, j) /∈ N(x,y) are the nodes initially connected to node (x, y), i.e., the nodes at

a distance t ≤ h from node (x, y). It is not difficult to see that the nodes at a distance

t from node (x, y) are the nodes in the square line formed by the nodes (x − t, y),

(x + t, y), (x, y + t) and (x, y − t). Then, we could just look at nodes in the square

formed by the nodes (x − h, y), (x + h, y), (x, y + h) and (x, y − h) and sum all the

corresponding distances to node (x, y). A corner effect occurs when this square lies

outside the base lattice. Assume that we start by calculating the distances to the

nodes in line y + i, with i ≥ 0.

To avoid calculating extra distances (i.e., distances of nodes that are out of the grid),

we must make sure that this line verifies y + i ≤ n and also y + i ≤ h. For this

reason, i must vary according to i ∈ {0 . . .min{h, n − y}}. Now, in each line y + i,

we first look at the nodes in the right side of (x, y), i.e., we calculate the distances of

the nodes (x + j, y + i), with j ≥ 0. Now, notice that in the line y, we have h points

on the right side of (x, y) that are in the square (regardless of whether they are in

the grid). Because the distance is the minimum number of steps in the grid, we have

that in line y + i there are h − i points at the right side of (x, y) that are inside the

square. As a consequence, j must vary according to j ∈ {0 . . .min{h−i, n−x}}. Now,

when looking at the nodes on the left side (i.e., the nodes (x − j, y + i), with i ≥ 1),
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the idea is the same, the only difference is that, in this case, the variation for j is

j ∈ {1 . . .min{h− i, x− 1}}. Then, we proceed analogously for the lines below (x, y),

i.e., the lines y − i, with i ∈ {1 . . .min{h, y − 1}}. This algorithm is summarized in

Table 3.1. The matrix z is a buffer for the distances, i.e., z(u1, u2) = d((x, y), (u1, u2)).

We impose z(x, y) = 0, because d((x, y), (x, y))−r is also calculated in this procedure.

The following quantities will be instrumental towards characterizing the capacity:

M = max

{

h(h + 3)

2
+ q, (1 − ǫ)cw

}

ǫ =
√

2(d + 2) ln(n2)/cw

cw =
h(h + 3)

2
+

h+1
∑

x=1

n
∑

y=h+2−x

f(x, y) +
n
∑

x=h+2

n
∑

y=1

f(x, y) (3.1)

f(x, y) = q · (g(x,y)(1, 1) + g(1,1)(x, y))

g(x,y)(a, b) =

(

1 − (x + y − 2)−r

s(a, b)

)q−1

· (x + y − 2)−r

s(a, b)

s(1, 1) =
n−1
∑

i=h+1

(i + 1) · i−r +
n−2
∑

i=0

(n − 1 − i) · (n + i)−r.

Recall that s(x, y) can be calculated using Algorithm 1. The proof of the capacity will

rely heavily on the following lemma:

Lemma 3. Let Gw be the weighted graph associated with a Kleinberg network, and cw

be the global minimum cut in Gw. Then, for h < n − 1, cw is given by (3.1).

Proof. All the edges e ∈ EL have weight 1 (because they are never removed), all nodes

in Gw have degree n2 − 1, and the weights of these edges depend only on the distance

between the nodes they connect. Therefore, the global minimum cut in Gw must be a

cut in which one of the partitions consists of a single node. Because the weight of an

edge in Gw decreases with the distance between the nodes that it connects, the global

minimum cut in Gw must be a cut in which one of the partitions consists of a single

node that maximizes the distance to other nodes. Therefore, because a corner node has

more nodes at a greater distance than the other nodes and has also a smaller number

of nodes to which it is connected, cw must be a cut in which one of the partitions

consists of a corner node: (1, 1), (1, n), (n, 1) or (n, n).

Consider cw as the cut in which one of the partitions consists of node (1, 1). Let

w(u, v) be the weight of the edge connecting the nodes u and v. This way, cw =
∑

u 6=(1,1) w((1, 1), u). Now, we must count how many edges connecting node (1, 1) are
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in EL, therefore, having weight 1. For this, we define an auxiliary way to numerate

diagonals: {(1, 1)} is the diagonal 0, {(1, 2), (2, 1)} is diagonal 1, and so on (see Figure

3.2).

Figure 3.2: Numeration of the diagonals of a square lattice.

It is not difficult to see that the nodes in the ith diagonal have a distance i to node

(1, 1), i ∈ {1, ..., 2(n−1)}. Now, for i ≤ n−1, there are i+1 nodes in the ith diagonal.

Then, because we are considering h < n− 1, there are
∑h

i=1 i + 1 = h(h + 3)/2 nodes

initially connected to node (1, 1). Thus, there are h(h + 3)/2 edges with weight 1.

Therefore, we have that:

cw =
h(h + 3)

2
+

h+1
∑

x=1

n
∑

y=h+2−x

w((1, 1), (x, y)) +
n
∑

x=h+2

n
∑

y=1

w((1, 1), (x, y)).

Next, we determine the weights, w(u, v). Consider two nodes that are not initially

connected, u = (u1, u2) and v = (v1, v2), and the edge (u, v). This edge can be added

in two different trials: one for node u and another one for node v. Because we do

not consider multiple edges, these can be viewed as two mutually exclusive trials.

Therefore, the weight of this edge is the sum of the probabilities of adding this edge

when considering node u and when considering node v. Let us focus on node u. The

trial “add edge (u, v)” follows a Binomial distribution, with q Bernoulli distributed

random variables, with success probability

au(v) =
d(u, v)−r

s(u)
=

(|u1 − v1| + |u2 − v2|)−r

s(u)
.
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Therefore, the probability of adding the edge (u, v), when considering node u, is q ·
(1 − au(v))q−1 · au(v). Therefore, the weight of the edge ((u1, u2), (v1, v2)) is

w(u, v) = q · (1 − au(v))q−1 · au(v) + q · (1 − av(u))q−1 · av(u).

As we have seen, the global minimum cut in Gw is the cut in which one of the partitions

consists of node (1, 1). We have that, if (x, y) is a node of the grid, x ≥ 1 and y ≥ 1.

Then, d((1, 1), (x, y)) = |x − 1| + |y − 1| = x + y − 2. Therefore, a(1,1)(x, y) = x+y−2
s(1,1)

and a(x,y)(1, 1) = x+y−2
s(x,y)

. Now, observing that we can calculate s(1, 1) as

s(1, 1) =
n−1
∑

i=h+1

(i + 1) · i−r +
n−2
∑

i=0

(n − 1 − i) · (n + i)−r

and using expression (3.1) for cw, the result follows.

We are now ready to state our main result in this section.

Theorem 7. For h < n − 1 the capacity of a Kleinberg small-world network graph

lies, with high probability, in the interval [M, (1 + ǫ)cw].

Proof. Using Lemma 3 and Corollary 1, we have that, with high probability, cs ∈
[(1 − ǫ)cw, (1 + ǫ)cw] . A tighter lower bound can be obtained for cs as follows. Each

node has a number of initial edges, determined by h, and q additional shortcut edges.

The nodes with less initial edges are obviously the corner nodes, which exhibit h(h+3)
2

initial connections. Therefore, we have that cs ≥ h(h+3)
2

+ q, and the result follows.

The bounds of Theorem 7 are illustrated in Fig. 3.3.

3.3.2 Capacity Bounds for Navigable Small-World Rings

As we have seen, Kleinberg’s model exhibits corner’s effects in terms of capacity. With

the goal of overcoming this undesired feature, we defined a new class of small-world

networks, the navigable small-world ring (see Definition 6 in Section 3.1). Now we

study the capacity of this class of networks by proving the following result:

Theorem 8. With high probability, the capacity of the navigable small-world ring has

a value in the interval [max {k, (1 − ǫ)cw)} , (1 + ǫ)cw)], with ǫ =
√

2(d + 2) ln(n)/cw

and

cw = k+2rq+1s−qq(1+an)(n−an)−r
(

2−rs − (n − an)−r
)q−1

+4qs−q·
n−an

2
−1

∑

i= k
2
+1

i−r
(

s − i−r
)q−1
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Figure 3.3: Bounds for the capacity of Kleinberg small-world network for n = 80

(i.e. 1600 nodes), h = 2, r = 2 e d = 1, and different values of the shortcut parameter

q. The white circles represent the expected value of the capacity and the black circles

represent the bounds computed according to Theorem 7.

with s = (1 + an) ·
(

n−an

2

)−r
+ 2 ·

n−an
2

−1
∑

i= k
2
+1

i−r, where an = 1−(−1)n

2
.

Proof. Consider the fully connected graph Gw = (VL, E) associated to the navigable

small-world graph. The task is to determine the weights of the edges of Gw. The

edges e ∈ EL have weight 1, because we never remove them. Now, notice that the

ring distance between two nodes does not depend on which node is numbered first. It

is therefore correct to state that all the nodes have the same number of nodes at a

distance d. Therefore, we have that the normalizing constants are equal, for all nodes:

si = sj , ∀i, j. Let s = si. We also have that the weight of each edge only depends on

the distance between the nodes that it connects. Therefore, it is sufficient to determine

the weights of the edges of a single node, say node 1.

First, we must compute the normalizing constant s. We must distinguish between two

different situations: even n or odd n. If n is even, it is not difficult to see that there

is a single node that maximizes the distance to node 1. That node is node n
2

+ 1, and

we have that d
(

1, n
2

+ 1
)

= n
2
. For distances d < n

2
, there are two nodes at distance d

to node 1. Therefore, if n is even, we have that

s =
(n

2

)−r

+ 2 ·
n
2
−1
∑

i= k
2
+1

i−r.
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When n is odd, it is also easy to see that there are two nodes that maximize the distance

to node 1: nodes n+1
2

and n+3
2

, with the maximum distance being n−1
2

. Therefore, if n

is odd, we have that

s = 2 ·
n−1

2
∑

i= k
2
+1

i−r.

Now, notice that an = 1−(−1)n

2
is equal to 0 if n is even, and it is equal to 1 if n is odd.

Therefore, ∀n,

s = (1 + an) ·
(

n − an

2

)−r

+ 2 ·
n−an

2
−1

∑

i= k
2
+1

i−r.

Consider a node that is not initially connected to node 1, say node i. The edge (1, i)

can be added in two different trials: one for node 1 and another for node i. Because

we do not consider multiple edges, these two trials are mutually exclusive. Therefore,

the weight of the edge (1, i) is the sum of the probabilities of adding this edge when

looking at node 1 and when looking at node i. Because the normalizing constant is

the same for all nodes, these two probabilities are equal. Consequently, let us focus on

node 1. The trial “add edge (1, i)” follows a Binomial distribution, with q Bernoulli

distributed random variables and with success probability p = d(1,i)−r

s
. Therefore, the

probability of adding edge (1, i) when considering node 1 is qp · (1− p)q−1. Therefore,

the weight of the edge (1, i) is

w(1, i) = 2q · d(1, i)−r

s
·
(

1 − d(1, i)−r

s

)q−1

.

We have seen that all the nodes have the same number of nodes at a distance d. We

also have that all the edges in the ring lattice have unitary weight. Based on these

two observations and the fact that Gw is a fully connected graph, it is clear that the

global minimum cut in Gw, denoted cw, is a cut in which one of the partitions consists

of a single node, say node 1. Thus, we may write

cw = k +
∑

i∈N1

w(1, i)

= k + 2(1 + an)q

(

n−an

2

)−r

s

(

1 −
(

n−an

2

)−r

s

)q−1

+ 2 ·
n−an

2
−1

∑

i= k
2
+1

2q
i−r

s

(

1 − i−r

s

)q−1

= k + 2rq+1s−qq(1+an)(n−an)−r
(

2−rs − (n−an)−r
)q−1

+ 4qs−q ·
n−an

2
−1

∑

i= k
2
+1

i−r
(

s−i−r
)q−1
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Now, using Corollary 1 and noticing that, because we only add new edges to the

initial k-connected ring lattice and this lattice has capacity k, the capacity can only

be greater than k, we obtain the desired bounds.

The result is illustrated in Fig. 3.4.
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Figure 3.4: Bounds for the capacity of a navigable small-world ring for n = 1600,

k = 14, r = 1 e d = 1, and different values of the shortcut parameter q. The white

circles represent the expected value of the capacity and the black circles represent the

bounds computed according to Theorem 8.

3.4 Summary

We presented two navigable small-world network models and, using similar definitions

to those in [Kle00], we provide an insight on the notion of navigability. We state the

results that prove that the two classes of networks studied in this chapter are indeed

navigable.

Using the set of tools used in Section 2.2 in Chapter 2, we provide upper and lower

bounds on the max-flow min-cut capacity of Kleinberg Networks and of Navigable

Small-World Rings.



Chapter 4

Dual Radio Networks

As discussed in Section 1.2, there is a growing interest in communication networks in

which the devices have multiple radio interfaces, due to the fact that it is natural to ask

if there are significant performance gains when using these multiple wireless interfaces

in a combined manner. In this chapter, we will study communication networks with

two wireless technologies - dual radio networks.

To be able to study the aforementioned class of networks analytically, we provide a

rigorous definition of our model for dual radio networks. Next, we study this class of

networks in terms of the probability that a dual radio network is connected, and we

also provide upper and lower bounds on the min-cut max-flow capacity of a dual radio

network.

4.1 Problem Statement

In this section, we give a rigorous definition for the class of networks under consider-

ation in the rest of the chapter.

Definition 9. A Dual Radio Network (DRN) is a graph G (n, p, rs, rL) = (V, E)

constructed by the following procedure. Assign n nodes uniformly at random in the

set T , where T is the torus obtained by identifying the opposite sides of the box [0, 1]2,

and define V as the set of these n nodes. For a parameter rS, each pair of nodes

(a, b), with a, b ∈ V , is connected if their Euclidian distance verifies d (a, b) ≤ rS, and

let ES be the set of edges created in this step. Now, for a parameter p, define the set

VL by the following: for node i, i ∈ VL with probability p, and repeat this procedure

37
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∀i ∈ V . For a parameter rL, each pair of nodes (a, b), a, b ∈ VL is connected if their

Euclidian distance satisfies d (a, b) ≤ rL, and let EL be the set of edges created in this

step. Finally, the set of edges of a DRN is defined by E = ES ∪ EL.

Figure 4.1: Illustration of Dual Radio Networks.

The square nodes represent the devices with two wireless technologies, and the

circular nodes represent the nodes with only one wireless technology. The small and

large circumferences represent the coverage area of the short-range and long-range

wireless interfaces, respectively.

Fig. 4.1 provides an illustration of Dual Radio Networks. In the definition above,

notice that, for two nodes a, b ∈ V such that rS < d(a, b) ≤ rL, they are connected

only if both are elements of the set VL. In terms of the wireless systems that this class

of networks pretends to model, this is a realistic feature, since devices with the higher-

level wireless technology can only communicate using this technology with devices that

also have the higher-level wireless technology.

In the rest of the chapter, we study this class of networks in terms of connectivity and

capacity. We say that a network is connected if for each pair of nodes there exists a
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path connecting them. As in Chapter 2 and Chapter 3, we will refer to the global

minimum cut of a graph as the max-flow min-cut capacity (or simply the capacity) of

the graph.

4.2 Results on the connectivity of a Dual Radio

Network

In this section, we study the connectivity of the class of networks introduced in

Section 4.1, providing an upper and a lower bound on the probability of an instance

of a Dual Radio Network being connected.

Lemma 4. For rS ≤ 1/
√

π and rL ≤ 1/
√

π, the probability that there is no isolated

node in G (n, p, rS, rL) satisfies:

P{no isolated node} ≤ 1 −
(

1 − πr2
S − πp2(r2

L − r2
S)
)n−1

.

Proof. First, we calculate the probability that a node Y is connected to node X, given

the position of X. This probability is given by

P(X ↔ Y|X) = P ({d (X,Y) ≤ rS} ∪ ({X ∈ VL} ∩ {Y ∈ VL} ∩ {d (X,Y) ≤ rL})|X).

Using the notation P (A|X) = PX(A) and d(X,Y) = D, we have the following:

PX(X ↔ Y)
(a)
= PX (D ≤ rS) + PX ({X ∈ VL} ∩ {Y ∈ VL} ∩ {D ≤ rL})

−PX ({D ≤ rS} ∩ {X ∈ VL} ∩ {Y ∈ VL} ∩ {D ≤ rL})
(b)
= PX (D ≤ rS) + PX ({X ∈ VL} ∩ {Y ∈ VL} ∩ {D ≤ rL})

−PX ({D ≤ rS} ∩ {X ∈ VL} ∩ {Y ∈ VL})

where (a) follows from the fact that for any two events A and B, P(A∪B) = P(A) +

P(B) − P(A ∩ B), and (b) is justified by noticing that D ≤ rS ⇒ D ≤ rL, thus

{D ≤ rS} ∩ {D ≤ rL} = {D ≤ rS}.

The events {D ≤ rL} and {X ∈ VL} are independent, and the same is true for the

events {D ≤ rL} and {Y ∈ VL}. Because the set of nodes VL is formed by nodes

selected at random and in an independent fashion, we have that the events {X ∈ VL}
and {Y ∈ VL} are independent. Therefore:

PX({X ∈ VL} ∩ {Y ∈ VL} ∩ {D ≤ rL}) = PX(X ∈ VL) · PX(Y ∈ VL) · PX(D ≤ rL).
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Using analogous arguments, we have that

PX({X ∈ VL} ∩ {Y ∈ VL} ∩ {D ≤ rS}) = PX(X ∈ VL) · PX(Y ∈ VL) · PX(D ≤ rS).

Noticing that the events {X ∈ VL} and {Y ∈ VL} are independent of the position

of X, we have that PX(X ↔ Y) = PX(D ≤ rS) + P(X ∈ VL) · P(Y ∈ VL) ·
(PX(D ≤ rL) − PX(D ≤ rS)) .

Because the set where the nodes are placed is a torus, we have that PX(D ≤ ρ) = πρ2,

with ρ ≤ 1/
√

π. Noticing that P(X ∈ VL) = P(Y ∈ VL) = p, we have that:

PX(X ↔ Y) = πr2
S + πp2(r2

L − r2
S).

Now, to compute the probability that a node at a position X is isolated, we argue that

the events {X ↔ Y1}, {X ↔ Y2}, . . . , {X ↔ Yn−1}, conditioning on the fact that the

position of node X is given (say X = (x1, x2) = x), are mutually independent. Without

loss of generality, consider the case P(X ↔ Y1|X ↔ Y2, . . . ,X ↔ Yn−1,X = x). We

have that

P(X ↔ Y1|X ↔ Y2, . . . ,X ↔ Yn−1,X = x) = P(Y1 ↔ x|Y2 ↔ x, . . . ,Yn−1 ↔ x),

where we exploited the fact that the position of X is fixed. Now, notice that none of

the events {Y2 ↔ x}, . . . , {Yn−1 ↔ x} affects the event {Y1 ↔ x}, because we do

not have information about the existence of connection between Y1 and any of the

Yi. Therefore,

P(X ↔ Y1|X ↔ Y2, . . . ,X ↔ Yn−1,X = x) = P(X ↔ Y1|X = x).

Since we can use similar arguments for different subsets of the collection

{{X ↔ Y1}, {X ↔ Y2}, . . . , {X ↔ Yn−1}} ,

we have that the events {X ↔ Y1}, {X ↔ Y2}, . . . , {X ↔ Yn−1} are mutually

independent, conditioned on the fact that the position of node X is given.

The probability that a node at a position X is isolated is given by

PX({X is isolated}) = PX({X = Y1} ∩ {X = Y2} ∩ ... ∩ {X = Yn−1}).

Because the events {X ↔ Y1}, {X ↔ Y2}, ..., {X ↔ Yn−1} are mutually inde-

pendent, conditioned on the position of node X, the same is true for the events

{X = Y1}, {X = Y2}, ..., {X = Yn−1}.
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Thus,

PX({X is isolated}) =
(

1 − πr2
S − πp2(r2

L − r2
S)
)n−1

.

Therefore, the probability of a node being isolated is given by:

P({a node is isolated}) =

∫ 1

0

∫ 1

0

PX({X is isolated})dx

=
(

1 − πr2
S − πp2(r2

L − r2
S)
)n−1

. (4.1)

Now, let X1,X2, . . . ,Xn represent the nodes of the graph. We have that:

P({no isolated node}) = P({X1 is not isolated} ∩ · · · ∩ {Xn is not isolated})
= 1 − P({X1 is isolated} ∪ · · · ∪ {Xn is isolated}).

Now, notice that

P({X1 is isolated} ∪ · · · ∪ {Xn is isolated}) ≥ P(X1 is isolated).

Therefore, by (4.1), we have that

P({X1 is isolated} ∪ · · · ∪ {Xn is isolated}) ≥
(

1 − πr2
S − πp2(r2

L − r2
S)
)n−1

and the result follows.

After determining the probability of having an isolated node in a DRN, we calculate

a bound on the probability that a DRN is disconnected.

Lemma 5. For rS ≤ 1/
√

π and rL ≤ 1/
√

π, the probability that G(n, p, rS, rL) is

disconnected, Pd(n, p, rS, rL), satisfies:

Pd(n, p, rS, rL) ≤ 1 − (1 − πr2
S − πp2(r2

L − r2
S))

n

πr2
S + πp2(r2

L − r2
S)

− 1.

Proof. For k > 1, select a node from G(k, p, rS, rL), say node k. To G(k, p, rS, rL)

be disconnected, or node k is isolated, or the subgraph obtained by removing node k

and all its edges (which can be viewed as G(k − 1, p, rS, rL)) is disconnected. Thus,

we have that {G(k, p, rS, rL) is disconnected} = {G(k−1, p, rS, rL) is disconnected}∪
{node k is isolated}. Therefore:

Pd(k, p, rS, rL) ≤ P(node k is isolated in G(k, p, rS, rL)) + Pd(k − 1, p, rS, rL).



CHAPTER 4. DUAL RADIO NETWORKS 42

After recursion, we have that:

Pd(n, p, rS, rL) ≤ P(a node is isolated in G(2, p, rS, rL))

+

n
∑

k=3

P(node k is isolated in G(k, p, rS, rL))

(a)

≤ 1 − πr2
S − πp2(r2

L − r2
S) +

n
∑

k=3

(

1 − πr2
S − πp2(r2

L − r2
S)
)k−1

≤ 1 − πr2
S − πp2(r2

L − r2
S) +

n−1
∑

k=2

(

1 − πr2
S − πp2(r2

L − r2
S)
)k

≤
n−1
∑

k=1

(

1 − πr2
S − πp2(r2

L − r2
S)
)k

.

where (a) follows from (4.1).

Because
n
∑

k=1

ak = a−an+1

1−a
, we have that

Pd(n, p, rS, rL) ≤ 1 − πr2
S − πp2(r2

L − r2
S) − (1 − πr2

S − πp2(r2
L − r2

S))
n

πr2
S + πp2(r2

L − r2
S)

and the result follows.

Using the previous two lemmas, we are able to state our main result in terms of

connectivity.

Theorem 9. For rS ≤ 1/
√

π and rL ≤ 1/
√

π, the probability that G(n, p, rS, rL) is

connected, Pc(n, p, rS, rL), satisfies:

Pc(n, p, rS, rL) ≥ max{2 − 1 − (1 − πr2
S − πp2(r2

L − r2
S))

n

πr2
S + πp2(r2

L − r2
S)

, 0}

and

Pc(n, p, rS, rL) ≤ 1 −
(

1 − πr2
S − πp2(r2

L − r2
S)
)n−1

.

Proof. It is easy to see that:

Pc(n, p, rS, rL) ≤ P ({no isolated node in G(n, p, rS, rL)}) .

Thus, using Lemma 4, we have the upper bound for Pc(n, p, rS, rL). Noticing that

Pc(n, p, rS, rL) = 1−Pd(n, p, rS, rL), using Lemma 5 and taking the maximum between

the lower bound obtained and zero (because a probability is always lower bounded by

zero), the result follows.
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4.3 Capacity Results for Dual Radio Networks

In this section, we study the max-flow min-cut capacity of a Dual Radio Network.

It is important to notice that, for this goal, is not possible to use the set of tools

used in Chapter 2 and Chapter 3 to derive bounds on the capacity of the networks

of interest there. This happens due to the fact that, when considering a Dual Radio

Network, we do not have a base network (or metric) to start with, because the position

of the nodes is also random. Therefore, we need to use a different approach, which is

described next, to study the capacity of a Dual Radio Network.

We consider a multiple-source multiple-terminal transmission on a DRN with n nodes,

denoting by {s1, . . . , sα} the set of the α sources and by {t1, . . . , tβ} the set of the β

terminals. Let i and j be two nodes of a DRN. Cij is the capacity of the edge (i, j),

defined by Cij = 1 if nodes i and j are connected, and Cij = 0 otherwise. This means

that Cij = 1, if d(i, j) ≤ rS or i ∈ VL ∧ j ∈ VL ∧ d(i, j) ≤ rL, and Cij = 0 otherwise.

Notice that E{Cij} = P(i ↔ j) and, as we have seen in Section 4.2:

P(i ↔ j) = πr2
S + πp2(r2

L − r2
S),

with rS ≤ 1/
√

π and rL ≤ 1/
√

π, which we assume in the following. Let µ = πr2
S +

πp2(r2
L−r2

S). The techniques used for proving the following results are similar to those

used in [RSW05].

Before stating and proving the results on the capacity of Dual Radio Networks, we

present a useful inequality.

Lemma 6 (Hoeffding’s inequality, from [Hoe63]). For X1, X2, . . . , Xm independent

random variables with P(Xi ∈ [ai, bi]) = 1, ∀i ∈ {1, 2, . . . , m}, if we define S =

X1 + X2 + · · ·+ Xm, then:

P(S − E(S) ≥ mt) ≤ exp









− 2m2t2

m
∑

i=1

(bi − ai)2









.

First, we determine an upper bound on the probability that the capacity of a cut does

not take a value much greater than its expected value.

Lemma 7. Let G be a random instance of a DRN, and consider a single-source single-

terminal transmission (i.e. α = β = 1). Let N be the number of relay nodes, i.e.

N = n−2. Let Ck be the capacity of a cut in G in which one of the partitions consists
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of k nodes and the source. For ǫ > 0 and N ≥ 2,

P(Ck ≤ (1 − ǫ)E{Ck}) ≤ e−(N+1+k(N−k))µ2ǫ2/N2

.

Proof. We have that:

P(Ck ≤ (1 − ǫ)E(Ck)) = P(−Ck − E(−Ck) ≥ ǫE(Ck)). (4.2)

To compute the desired upper bound, we shall use the Hoeffding’s inequality (Lemma 6).

More precisely, we shall use this inequality for m = 1. First, notice that Ck is upper

bounded by the value of a similar cut in the complete graph, i.e.

Ck ≤ (k + 1)(N − k + 1) = N + 1 + k(N − k).

Therefore, we have that Ck ∈ [0, N + 1 + k(N − k)]. Thus, applying Hoeffding’s

inequality in (4.2), we have that

P(Ck ≤ (1 − ǫ)E(Ck)) ≤ exp

(

− 2ǫ2(E(Ck))
2

(N + 1 + k(N − k))2

)

. (4.3)

Now, notice that Ck is the sum of N +1+ k(N − k) random variables of the form Cij,

with Cij = 1, if i ↔ j and Cij = 0, if i = j, i.e. i is not connected to j. Therefore,

for each of these random variables, we have that E(Cij) = P(i ↔ j) = µ. Thus:

E(Ck) = (N + 1 + k(N − k))µ.

Now, notice that N + 1 + k(N − k) ≤ 2N2, for N ≥ 2, thus 1
N+1+k(N−k)

≥ 1
2N2 , for

N ≥ 2. Therefore

exp

(

− 2ǫ2(E(Ck))
2

(N + 1 + k(N − k))2

)

≤ exp

(

−(N + 1 + k(N − k))µ2ǫ2

N2

)

.

Thus, by (4.3), the result follows.

Using the previous result, we obtain an useful inequality.

Corollary 2. Let Ck and N be as defined in Lemma 7 and let Ak be the event {Ck <

(1 − ǫ)E{Ck}}. Then:

P(∪kAk) ≤ 2e−µ2ǫ2/N ·
[

1 + e−µ2ǫ2/2N
]N

.
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Proof. By Lemma 7, we have that P(Ak) ≤ e−(N+1+k(N−k)µ2)ǫ2/N2
, which also provides:

P(Ak) ≤ e−(N+k(N−k))µ2ǫ2/N2

.

Notice that, for each k ∈ {0, ..., N}, there are
(

N
k

)

cuts in which one of the partitions

consists on k nodes and the source. Therefore:

P(∪kAk) ≤
N
∑

k=0

(

N

k

)

P(Ak)

≤
N
∑

k=0

(

N

k

)

e−(N+k(N−k))µ2ǫ2/N2

Let β = e−µ2ǫ2/N . Then:

P(∪kAk) ≤ β

N
∑

k=0

(

N

k

)

βN k
N

(1− k
N

)

= β





⌊N/2⌋
∑

k=0

(

N

k

)

βN k
N

(1− k
N

) +

N
∑

k=⌊N/2⌋+1

(

N

k

)

βN k
N

(1− k
N

)



 .

Notice that, when k
N

∈ [0, 1/2],

k

N
(1 − k

N
) ≥ k

2N
,

and when k
N

∈ [1/2, 1],
k

N
(1 − k

N
) ≥ N − k

2N
.

Therefore:

P(∪kAk) ≤ β





⌊N/2⌋
∑

k=0

(

N

k

)

βN k
2N +

N
∑

k=⌊N/2⌋+1

(

N

k

)

βN 1
2
(1− k

N
)





≤ β

(

N
∑

k=0

(

N

k

)

(

β
1
2

)k

+

N
∑

k=0

(

N

k

)

(

β
1
2

)N−k
)

(a)

≤ 2β(1 +
√

β)N

(b)

≤ 2e−µ2ǫ2/N ·
[

1 + e−µ2ǫ2/2N
]N

where (a) follows from the fact that (x + y)m =
m
∑

k=0

(

m
k

)

xkym−k, thus

N
∑

k=0

(

√

β
)k

= (1 +
√

β)N =

N
∑

k=0

(

√

β
)N−k

,

and (b) follows from substituting β by e−µ2ǫ2/N .
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Now, using Corollary 2, we obtain the first result related to the capacity of a DRN,

which is valid for the single-source single-terminal transmission problem.

Corollary 3. Let Cmin(s1 → t1) be the global minimum cut in an instance of DRN.

Then:

P(Cmin(s1 → t1) ≤ (1 − ǫ)(N + 1)µ) ≤ 2e−µ2ǫ2/N ·
[

1 + e−µ2ǫ2/2N
]N

.

Proof. Let Ãk be the event {Ck < (1 − ǫ)E{C0}} and let Ak be the event {Ck <

(1 − ǫ)E{Ck}}. We have that E{Ck} = (N + 1 + k(N − k))µ. Therefore, E{Ck} ≥
E{C0}, ∀k ∈ 0, ..., N . Thus Ãk ⊆ Ak, which implies that ∪kÃk ⊆ ∪kAk. Therefore,

P(Cmin(s1 → t1) ≤ (1 − ǫ)E{C0}) = P(∪kÃk)

≤ P(∪kAk).

Using Corollary 2 and noticing that E{C0} = (N + 1)µ, the result follows.

Now, we are ready to state our main result in terms of capacity of a DRN:

Theorem 10. Let Cmin(α, β) be the global minimum cut for a transmission with α

sources and β terminals, in an instance of a DRN. Let ǫ =
√

2(n−2)d ln(n−2)
µ2 with d > 0,

and µ = πr2
S + πp2(r2

L − r2
S). Then:

Cmin(α, β) > (1 − ǫ)(n − 1)µ

with probability 1 − O
(

αβ
n2d

)

, and

Cmin(α, β) < (1 + ǫ)α(n − α)µ

with probability 1 − O
(

1
n4nd

)

.

Proof. Recall that, for a single-source single terminal transmission, N = n − 2.

Therefore, P(Cmin(s1 → t1) ≤ (1− ǫ)(n− 1)µ) = P(Cmin(s1 → t1) ≤ (1− ǫ)(N +1)µ).

Thus, replacing ǫ in Corollary 3 by the expression
√

2(n−2)d ln(n−2)
µ2 =

√

2Nd lnN
µ2 , we

have that:

P(Cmin(s1 → t1) ≤ (1 − ǫ)(n − 1)µ) ≤ 2e
−2dNµ2 ln N

Nµ2 · [1 + e
−2dNµ2 lnN

2Nµ2 ]N

≤ 2

N2d
·
[

1 +
1

Nd

]N

.
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We have that (x + y)N =
N
∑

k=0

(

N
k

)

xkyN−k, thus:

[

1 +
1

Nd

]N

=

N
∑

k=0

(

N

k

)(

1

Nd

)k

.

Therefore, we have that:

P(Cmin(s1 → t1) ≤ (1 − ǫ)(n − 1)µ) ≤ 2

N2d
·

N
∑

k=0

(

N

k

)(

1

Nd

)k

(a)

≤ 2

N2d
·

∞
∑

k=0

(

N

Nd

)k

(b)

≤ 2

N2d − Nd+1

≈ O

(

1

N2d

)

= O

(

1

n2d

)

where:

• (a) follows from the fact that
(

N
k

)

= N !
(N−k)!k!

= N×(N−1)×···×(N−k+1)
k!

, thus
(

N
k

)

≤
N × (N − 1) × · · · × (N − k + 1) ≤ Nk;

• (b) follows from the fact that
∞
∑

k=0

xk = 1
1−x

, for |x| < 1, therefore:

∞
∑

k=0

(

N

Nd

)k

=
1

1 − N1−d
,

which implies that 2
N2d ·

∞
∑

k=0

(

N
Nd

)k
= 2

N2d−Nd+1

Now, back to the multiple-source multiple-terminal transmission, we have that

P(Cmin(α, β) ≤ (1 − ǫ)(n − 1)µ) = P
(

∪α
i=1 ∪β

j=1 {Cmin(si → tj) ≤ (1 − ǫ)(n − 1)µ}
)

.

Therefore, by the union bound:

P(Cmin(α, β) ≤ (1 − ǫ)(n − 1)µ) ≤
α
∑

i=1

β
∑

j=1

P (Cmin(si → tj) ≤ (1 − ǫ)(n − 1)µ) .
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From the fact that, as we derive in Corollary 3, P (Cmin(si → tj) ≤ (1 − ǫ)(n − 1)µ)

does not depend on nodes i and j, we have that P(Cmin(α, β) ≤ (1 − ǫ)(n − 1)µ) ≤
αβP (Cmin(s1 → t1) ≤ (1 − ǫ)(n − 1)µ). Therefore, we have that:

P(Cmin(α, β) ≥ (1 − ǫ)(n − 1)µ) ≥ 1 − αβ · P (Cmin(s1 → t1) ≤ (1 − ǫ)(n − 1)µ)

and, because we already proved that P(Cmin(s1 → t1) ≤ (1 − ǫ)(n − 1)µ) = O
(

1
n2d

)

,

the first part of the theorem follows.

Now, to compute the upper bound on P(Cmin(α, β) ≥ (1 + ǫ)α(n − α)µ), notice that,

by definition, any cut (that contains in one partition the source nodes and in the other

partition the terminal nodes) is greater or equal to Cmin(α, β). Thus, the value of the

cut in which one of the partitions consists of source nodes only (denoted by C∗(α, β)) is

greater or equal to Cmin(α, β). This means that, if Cmin(α, β) ≥ (1+ ǫ)α(n−α)µ, then

C∗(α, β) ≥ (1+ ǫ)α(n−α)µ. Therefore, because P (Cmin(α, β) ≥ (1 + ǫ)α(n − α)µ) =

P (Cmin(α, β) ≥ (1 + ǫ)α(N + β)µ), we have that:

P(Cmin(α, β) ≥ (1 + ǫ)α(n − α)µ) ≤ P(C∗(α, β) ≥ (1 + ǫ)α(N + β)µ),

which is equivalent to

P(Cmin(α, β) ≥ (1 + ǫ)α(n − α)µ) ≤ P(C∗(α, β) − α(N + β)µ ≥ ǫα(N + β)µ).

Noticing that C∗(α, β) ∈ [0, α(N + β)], E(C∗(α, β)) = α(N + β)µ, and applying

Hoeffding’s inequality (Lemma 6), we have that

P(C∗(α, β) − α(N + β)µ ≥ ǫα(N + β)µ) ≤ exp

(

−2ǫ2α2(N + β)2µ2

α2(N + β)2

)

.

Therefore

P (Cmin(α, β) ≥ (1 + ǫ)α(n − α)µ) ≤ exp
(

−2ǫ2µ2
)

(a)

≤ 1

N4Nd

where (a) follows from the substitution of ǫ by
√

2(n−2)d ln(n−2)
µ2 . Thus, we have that

P (Cmin(α, β) ≥ (1 + ǫ)α(n − α)µ) = O

(

1

n4nd

)

and the result follows.

This result shows that the capacity grows linearly with µ = πr2
S +πp2(r2

L − r2
S). Thus,

the capacity for a multiple-source multiple-terminal transmission grows quadratically
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in function of the parameter p, which represents the percentage of nodes with two

wireless technologies. Thus, this result shows that there is a significant benefit (in

terms of capacity) by using dual-radio schemes in wireless systems.

Setting α = β = 1 in Theorem 10, we obtain the following bounds for the capacity of

a single-source single-terminal transmission:

Corollary 4. Let Cmin be the global minimum cut for a single-source single-terminal

transmission in an instance of a DRN. Let ǫ =
√

2(n−2)d ln(n−2)
µ2 , and µ = πr2

S+πp2(r2
L−

r2
S). Then:

Cmin > (1 − ǫ)(n − 1)µ

with probability 1 − O
(

1
n2d

)

, and

Cmin < (1 + ǫ)(n − 1)µ

with probability 1 − O
(

1
n4nd

)

.

4.4 Summary

We defined a class of random geometric graphs that models a wireless network in

which all devices share the same short-range radio capability, and some of them have

a secondary long-range wireless interface. For this class of networks, we provided upper

and lower bounds on the probability of its connectivity. We also provided bounds for

the capacity of this class of networks, showing that the use of dual radio technologies

can improve the capacity of the network. Specifically, we proved that the capacity of

our model grows quadratically with the fraction of devices with two wireless interfaces,

which shows that there is a significant benefit (in terms of capacity) by using dual-radio

schemes in wireless systems.
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Conclusions

We studied the max-flow min-cut capacity of different classes of networks. Regarding

small-world networks, we presented bounds on the capacity of four different models for

small-worlds: two simple models and two navigable ones. This notion of navigability,

which is important when considering communication networks, is defined and results

on the navigability of the models for small-world networks are presented. Regarding

capacity, we present a somehow surprising result. The bounds derived for small-world

networks with rewiring permit the following interpretation: With high probability,

rewiring does not alter the capacity of the network. This observation is not obvious,

because we can easily find ways to rewire the ring lattice in order to obtain, for

instance, a bottleneck. But, according to the previous results, such instances occur

with very low probability.

In the second part of the thesis, we defined a class of random geometric graphs

that models a wireless network in which all devices share the same short-range radio

capability, and some of them have a secondary long-range wireless interface. For

this class of networks, we provided upper and lower bounds on the probability of its

connectivity. We also provided bounds for the capacity of this class of networks,

showing that the use of dual radio technologies can improve the capacity of the

network. Specifically, we showed that the capacity of our model grows quadratically

with the fraction of devices with two wireless interfaces.

50
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5.1 Future Work

Possible directions for future work in small-world networks include tighter capacity

results, extensions to other classes of small-world networks (e.g. weighted models

and those used in peer-to-peer networks [MNW04]), and understanding if and how

small-world topologies can be exploited in the design of capacity-attaining network

codes and distributed network coding algorithms. At a more conceptual level, we are

intrigued by the possibility that the notion of capacity may help us answer a very

central question: why small-world topologies are ubiquitous in real-world networks.

As part of our ongoing work in dual radio networks, we are analyzing the diameter

and the clustering coefficient of dual radio networks and exploring their relationship

with small-world networks.
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