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Abstract

In this work an improved meshless method is proposed, based on the combination of the natural neighbour finite element method
with the radial point interpolation method, the natural neighbour radial point interpolation method – NNRPIM. The nodal connectivity
and the node dependent integration background mesh are constructed resorting to the Voronoı̈ tessellation and to the Delaunay trian-
gulation. Within NNRPIM the obtained shape functions pass through all nodes inside the influence-cell providing shape functions with
the delta Kronecker property. Optimization tests and examples of well-known, 2D and 3D problems are solved in order to prove the high
accuracy and convergence rate of the proposed method.
� 2006 Elsevier B.V. All rights reserved.
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1. Introduction

The finite element method (FEM) is a well-known
numerical method [1,2], which has been applied to different
engineering fields and to distinct applied sciences. The
domain of the problem is divided into small elements and
the field function is interpolated within each element by
simple interpolation functions, the so called shape func-
tions. However in the case of complex geometries the
generation of highly distorted elements is common. The
distortion of elements causes low quality shape functions
which can affect the performance of the method.

In the meshless methods [3,4] the nodes can be arbitrary
distributed, once the field functions are approximated
within an influence domain rather than an element. In
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opposition to the no-overlap rule between elements in the
FEM, in meshless methods the influence domains may
and must overlap each other.

The diffuse element method (DEM) [5] was the first
meshless method that uses the moving least square approx-
imants (MLS) in the construction of the approximation
function. The MLS was proposed by Lancaster and Salk-
auskas [6] for surface fitting. Belytschko evolved the
DEM and developed one of the most popular meshless
method, the element free Galerkin method (EFGM) [7–
9]. The smooth particle hydrodynamics method (SPH)
[10], which is one of the oldest, it is in the origin of the
reproducing kernel particle method (RKPM) [11]. Other
meshless methods such as the meshless local Petrov–Galer-
kin method (MLPG) [12], the finite point method (FPM)
[13] and the method of finite spheres (FSM) [14] were devel-
oped as well.

Although these meshless methods have been successfully
applied in computational mechanics there are several prob-
lems not completely solved. One of these problems, and
perhaps the most important unsolved issue, is the imposi-
tion of essential and natural boundary conditions, due to
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the lack of the delta Kronecker property, ui(xj) 5 dij. This
is the immediate consequence, in the referred meshless
methods, of using approximation functions instead of
interpolation functions.

To address the above problem several new meshless
methods were developed in the last few years, the point
interpolation method (PIM) [15,16], the point assembly
method [17], the natural neighbour finite elements method
(NNFEM) [18,19] or natural element method (NEM) [20–
23] and the meshless finite element method (MFEM) [24].

The PIM is a very attractive method. The approxi-
mation functions are in fact interpolation functions,
consequently generating shape functions with the delta
Kronecker property. The construction of the shape func-
tions is simple, compared with the EFGM, and its deriva-
tives are easily obtained. The PIM evolved, and instead of
using the original polynomial basis function, it was pro-
posed in [25] and successfully applied in [26], the use of
the radial basis function for solving partial differential
equations. This combination allows the generation of the
radial point interpolation method (RPIM). The radial basis
functions used in these early works were the Gaussian and
the multiquadric radial basis functions.

Initially the radial basis function was developed for data
surface fitting, and later, with the work developed by
Kansa [27], the radial basis function was used for solving
partial differential equations. However Kansa’s algorithm
uses the concept of ‘‘global domain’’ instead of ‘‘influence
domain’’, as the recently proposed LS-RPCM [28]. The
RPIM also uses the concept of ‘‘influence domain’’, as
the LS-RPCM, generating sparse and banded stiffness
matrices, more adequated to complex geometry problems.
The RPIM was also extended to the three-dimensional
analysis [29] and successfully applied to problems with
smart materials [30–32] and plate and shell structures
[33–37].

The NEM is currently one of the most popular and dis-
cussed meshless method. In the NEM the trial and test
functions are constructed using natural neighbour interpo-
lants [38]. The natural neighbour interpolants represent a
multivariate data interpolation scheme which has been ini-
tially used in data fitting. To construct the interpolation
function the natural neighbour interpolants rely on geo-
metrical and mathematical concepts such as the Voronoı̈
diagrams [39] and the Delaunay tessellation [40].

Another important issue is the need of a background
mesh for integration purposes. In fact a meshless method
is not a truly mesh free method, if it relies in a secondary
background integration mesh. Nevertheless the general
idea [41] is that truly meshless methods, methods that do
not require any mesh at all, are less stable and less accurate.

In this paper the analysis of 2D and 3D solid mechanics
problems is performed resorting to an improved meshless
method [42,43], the Natural neighbour radial point inter-
polation method – NNRPIM. Resorting to Voronoı̈ cells,
a set of influence cells are created departing from an
unstructured set of nodes. The Delaunay triangles, which
are the dual of the Voronoı̈ cells, are used to create a
node-depending background mesh used in the numerical
integration of the NNRPIM interpolation functions.
Unlike the FEM, where geometrical restrictions on ele-
ments are imposed for the convergence of the method, in
the NNRPIM there are no such restrictions, which permits
a total random node distribution for the discretized prob-
lem. The NNRPIM interpolation functions, used in the
Galerkin weak form, are constructed in a similar process
to the RPIM, with some differences that modify the
method performance.

In the NNRPIM a displacement-based Galerkin imple-
mentation is used, in order to obtain and solve the equilib-
rium equation of elastostatics. The solution of the discrete
linear system of equations is carried out to obtain the nodal
displacement vector, u = k�1f.

The outline of the paper is as follows: In Section 2 the
construction of the NNRPIM influence-cells is presented
and the new integration schemes that are used in this work
are proposed. In Section 3 the construction of the NNR-
PIM interpolation functions is presented. In Section 4 the
NNRPIM formulation for elastostatics is developed. In
Section 5 the NNRPIM is implemented, optimal shape
parameters are obtained and several well-known 2D and
3D problems are solved. This work ends with the conclu-
sions and remarks in Section 6.

2. Natural neighbours

The concept of natural neighbours was firstly intro-
duced by Sibson [44] for data fitting and smoothing. The
Voronoı̈ diagrams and the Delaunay triangulation are use-
ful mathematical tools in the determination of the natural
neighbours for each node belonging to the global nodal
set. This theory is applicable to a D-dimensional space,
however for simplicity in this work an example of a two-
dimensional Euclidian space R2 is presented. Consider a
set N of N distinct nodes,

N ¼ fn1; n2; . . . ; nNg 2 R2: ð1Þ
The Voronoı̈ diagram of N is the partition of the domain
defined by N in sub-regions VI, closed and convex. Each
sub-region VI is associated to the node I, nI, in a way that
any point in the interior of the VI is closer to nI than any
other node nJ, where nJ 2 N(J 5 I). In other words, VI is
the geometric place where all points are closer to nI than
to any other node. The sub-regions Vk are the ‘‘Voronoı̈
cells’’ which form the Voronoı̈ diagram, k = 1, . . . ,N. In
mathematical terms the Voronoı̈ cell is defined by,

V I ¼ fx 2 R2 : Enðx; xIÞ < Enðx; xJ Þ8J 6¼ Ig ð2Þ
being EnðxJ ; xIÞ, the Euclidian metric norm, i.e., the dis-
tance between points with coordinates defined by xJ and
xI. In Fig. 1(a)–(d) the construction of the sub-region VI

is represented, which starts with a nodal set of potential
neighbours represented in Fig. 1(a). As Fig. 1(b) indicates
the neighbour nodes are obtained by the intersection of



Fig. 1. (a) Initial nodal set of potential neighbour nodes, (b) final cell containing only neighbour nodes, (c) Voronoı̈ cell and (d) Voronoı̈ diagram.
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domains whose limits are defined by the line that intersects
node J (potential neighbour node) and is normal to the
dashed line 0J, where 0 is the interest or central node. By
definition, only the nodes in the perimeter of the obtained
final domain, V �0, are considered as neighbour nodes. The
Voronoı̈ cell, V0, obtained is determined as Fig. 1(c) indi-
cates. The cell V0 is the homothetic form of V �0. A similar
procedure is applied in order to obtain the remaining Vor-
onoı̈ cells, Fig. 1(d).

The Delaunay triangulation is the geometrical dual of
the Voronoı̈ diagram and it is constructed by connecting
the nodes whose Voronoı̈ cells have common boundaries.
The duality between the Voronoı̈ diagram and the Dela-
unay triangulation implies that a Delaunay edge exists
between two nodes in the plane if and only if their Voronoı̈
cells share a common edge.

An important property of the Delaunay triangles is the
‘‘empty circumcircle criterion’’ [45]. If a set of nodes
Nt ¼ nJ nK nLf g 2 N forms a Delaunay triangle then
the circumcircle formed by the triangle Nt contains no
other nodes of N. In the context of the natural neighbour
interpolation these circles are known as ‘‘natural neighbour
circumcircles’’ [46]. The centre of the natural neighbour cir-
Fig. 2. (a) Initial Voronoı̈ diagram, (b) Delaunay trian
cumcircle is the vertex of the respective Voronoı̈ cell. These
features are presented in Fig. 2.

In this work the Voronoı̈ diagram is used to create the
‘‘influence-cells’’, which enforces the connectivity between
the nodes in N. On the other hand the duality between
the Voronoı̈ cells and the Delaunay triangles is used in
order to construct a nodal dependent background integra-
tion mesh.

2.1. Influence-cells and nodal connectivity

In works related with the RPIM [25,26] the nodal con-
nectivity is obtained by the overlap of the influence domain
of each node. These influence domains are found by search-
ing enough nodes inside a fixed area or a fixed volume,
respectively for the 2D problem and for the 3D problem.
Because of its simplicity many other meshless methods
use this concept [7,11,12,15]. However the size or shape
variation of these influence domains along the problem
domain affects the performance and the final solution of
the meshless method. It is important that all the influence
domains in the problem contain approximately the same
number of nodes. In this work the nodal connectivity is
gulation and (c) natural neighbour circumcircles.



Fig. 3. (a) First degree influence-cell and (b) second degree influence-cell.
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imposed by the overlapping of the influence-cells [42,43],
which can be considered as a new concept, similar to the
influence domain, which is obtained from the Voronoı̈
cells. The cell formed by n nodes that contributes to the
interpolation of the interest point xI is called ‘‘influence-
cell’’. Since it is simpler to represent, only the determina-
tion of the 2D influence-cell is presented, however this con-
cept is applicable to a D-dimensional space. Two distinct
types of influence-cells are presented.

First degree influence-cell: A point of interest, xI,
searches for its neighbour nodes, Fig. 3(a), following the
Natural Neighbour Voronoı̈ construction presented early.
Thus the first degree influence-cell is composed by these first
natural neighbours.

Second degree influence-cell: A point of interest, xI,
searches for its neighbour nodes, in the same manner as
in the first degree influence-cell. Then, based on a previous
construction of the Voronoı̈ diagram for the node mesh,
the natural neighbours of the first natural neighbours of
xI are added to the influence-cell, Fig. 3(b).

In an initial phase, after the domain discretization in a
regular or an irregular nodal mesh, the Voronoı̈ cells of
each node are constructed. These cells can be considered
as a background mesh for integration purpose, being deter-
mined the influence-cell for each one of these integration
points.
2.2. Numerical integration in the NNRPIM

Recently the RPIM based on stabilized nodal integra-
tion [47] was successfully implemented and the obtained
results proved to be better than the RPIM based on Gauss
integration schemes. In this work another integration
scheme based on the Voronoı̈ tessellation and the Dela-
unay triangulation is proposed. Using the referred con-
structions small areas are established, which can be
quadrilaterals or triangles consistent with an irregular or
a regular mesh respectively. Then, with the construction
of the Voronoı̈ cells, VI, the intersection points, PIi, of
the neighbour edges of VI can be settled, Fig. 4(a). After-
wards the middle points, MIi, between node I and its neigh-
bour nodes are obtained. Thus the Voronoı̈ cells are
divided in n quadrilateral sub-cell, SIi, as Fig. 4(b) and
(c) indicate.

For the regular mesh, Fig. 4(d)–(f), the middle points
MIi are coincident with the edge intersection points PIi. It
is visible that this geometric coincidence leads to the forma-
tion of triangles instead of the quadrilateral sub-cells, as in
the irregular mesh.

Any Voronoı̈ cell, VI, with n neighbour nodes of the
central node I has n sub-cells, SIi, where

AV I ¼
Xn

i¼1

ASIi ; 8ASIi P 0 ð3Þ

being AV I the Voronoı̈ cell area and ASIi the sub-cell area. If
the set of Voronoı̈ cells are a partition, without gaps, of the
global domain then, the set of sub-cells are also a partition,
without gaps, of the global domain. It is clear now how the
construction of the sub-cells generates two types of basic
shapes – triangles or quadrilaterals. Starting with these
two shapes, numerous integrations schemes can be con-
structed. In this work it is proposed an ordered scheme,
based on the Gauss–Legendre numerical integration.
2.2.1. Integration scheme – order 0

The coordinates of each integration point are calculated
on each sub-cell, as indicated in Fig. 5(a) and (d), where
xi = {xi,yi}. The weight of each integration point is the
area of the respective sub-cell. Therefore, considering
Fig. 5(d), the area of the triangle shape sub-cell is defined
by

AIM ¼ abs
1

2

x2� x1 y2� y1

x3� x1 y3� y1

����
����

� �
ð4Þ

and for the quadrilateral shape, Fig. 5(a), the area is

AI� ¼ abs
1

2

x2� x1 y2� y1

x3� x1 y3� y1

����
����þ 1

2

x4� x1 y4� y1

x3� x1 y3� y1

����
����

� �
:

ð5Þ



Fig. 4. For the irregular mesh (a) Voronoı̈ cell and the respective PIi intersection points, (b) middle points MIi and the respective generated quadrilaterals,
(c) quadrilateral MI3P I4MI4nI . For the regular mesh, (d) Voronoı̈ cell and the respective PIi intersection points, (e) middle points MIi and the respective
generated triangles and (f) triangle P I8MI1nI .

Fig. 5. (a) Quadrilateral shape and (d) triangular shape and the respective integration points xI, (b) and (e) partition of the initial shape into quadrilaterals,
(c) and (f) respective integration points xI.
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The process is the same as the 1 · 1 integration point
Gauss–Legendre scheme for triangle and quadrilateral
shapes, respectively.
2.2.2. Integration scheme – order 1
In this integration scheme the basic geometric forms are

sub-divided again. However, in this case only in quadrilat-



Fig. 6. (a) Initial quadrilateral, (b) transformation of the initial quadrilateral into an isoparametric square shape and application of the 6 · 6 quadrature
point rule and (c) return to the initial quadrilateral shape.
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eral shapes, as Fig. 5(b) and (e) indicate. Firstly, the centre
of the geometric shape is determined, afterwards middle
points on the edges are determined and then new quadrilat-
erals are constructed.

For each new quadrilateral shape obtained the ‘‘Integra-
tion scheme of order 0’’ is applied, Fig. 5(c) and (f).

2.2.3. Integration scheme – order k

Considering the quadrilateral shapes constructed for the
‘‘Integration scheme of order 1’’ a Gauss–Legendre quad-
rature scheme of k · k integration points is applied, Fig. 6.

The integration weight is defined by

AI ¼ wgwf
A�
4

� �
; ð6Þ

where Ah is defined in Eq. (5), wg and wf are the Gauss
quadrature weights for an isoparametric quadrilateral
element.

The extension of the presented 2D integration scheme is
strait-forward for the 3D space. In the irregular mesh, the
Voronoı̈ cell is subdivided in hexahedrons and in the regu-
lar mesh in tetrahedrons. Then the distinct integration
scheme orders are obtained following the 2D procedure.

3. Shape function construction

In the meshless methods several techniques have been
developed in order to obtain the shape functions. Some
of these techniques construct approximation functions, as
for example the EFGM [7], the RKPM [11] and the MLPG
[12]. The great disadvantage of the approximation func-
tions is the lack of the delta Kronecker property, which
makes the imposition of the essential and natural boundary
conditions difficult.

This work uses the junction of two well known methods,
the moving least-square approximants (MLS) [6] and the
radial point interpolators (RPI) [25,26].

Consider a function u(x) defined in the domain X, which
is discretized by a set of N nodes. It is assumed that only
the nodes within the influence-cell of the point of interest
xI have effect on u(xI). The value of function u(xI) at the
point of interest xI is obtained by

uðxIÞ¼
Xn

i¼1

RiðxIÞaiðxIÞþ
Xm

j¼1

pjðxIÞbjðxIÞ¼ fRTðxIÞ;pTðxIÞg
a

b

� �
;

ð7Þ
where Ri(xI) is the radial basis function (RBF), n is the
number of nodes inside the influence-cell of xI. The coeffi-
cients ai(xI) and bj(xI) are non constant coefficients of Ri(xI)
and pj(xI), respectively. The monomials of the polynomial
basis are defined by pj(xI) and m is the basis monomial
number. The vectors in Eq. (7) are defined as

RTðxIÞ ¼ fR1ðxIÞ;R2ðxIÞ; . . . ;RnðxIÞg;
pTðxIÞ ¼ fp1ðxIÞ; p2ðxIÞ; . . . ; pmðxIÞg;
aTðxIÞ ¼ fa1ðxIÞ; a2ðxIÞ; . . . ; anðxIÞg;
bTðxIÞ ¼ fb1ðxIÞ; b2ðxIÞ; . . . ; bmðxIÞg:

ð8Þ

In the RBF the variable is the distance rIi between
the relevant node xI and the neighbour node xi.
For the three-dimensional space: rIi ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxI � xiÞ2 þ ðyI � yiÞ

2 þ ðzI � ziÞ2
q

. Several known RBFs
are well studied and developed in [25,26]. This work uses
the multiquadric (MQ) function proposed initially by
Hardy [48]. Other functions were also used in an initial
phase, however the best results were obtained with the
MQ. The form of the MQ-RBF is

RðrIiÞ ¼ ðr2
Ii þ c2Þp; ð9Þ

where c and p are two parameters that need to be opti-
mized. This is the major disadvantage of meshless methods
using RBFs. The variation of these parameters can affect
the performance of the RBFs.

In general, these two parameters can be obtained by
numerical tests. In this work a patch test is used to calibrate
the parameters. In order to ensure that the interpolation
matrix of RBF is invertible, the polynomial basis added
to the RBF cannot be arbitrary. It is common to add a
low degree polynomial basis. In this work some distinct
polynomial basis are experimented. In the 2D analysis

Null Basis – xT ¼ fx; yg; pTðxÞ ¼ f0g; m ¼ 0; ð10Þ
Constant Basis – xT ¼ fx; yg; pTðxÞ ¼ f1g; m ¼ 1; ð11Þ
Linear Basis – xT ¼ fx; yg; pTðxÞ ¼ f1; x; yg; m ¼ 3;

ð12Þ
Quadratic Basis – xT ¼ fx; yg;

pTðxÞ ¼ f1; x; y; x2; xy; y2g; m ¼ 6 ð13Þ

and for 3D analysis,
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Null Basis – xT¼fx;y;zg; pTðxÞ¼f0g; m¼0; ð14Þ
Constant Basis – xT¼fx;y;zg; pTðxÞ¼f1g; m¼1; ð15Þ
Linear Basis – xT¼fx;y;zg; pTðxÞ¼f1;x;y;zg; m¼4; ð16Þ
Quadratic Basis – xT¼fx;y;zg;

pTðxÞ¼f1;x;y;z;x2;xy;y2;yz;z2;zxg; m¼10: ð17Þ

The polynomial basis has to satisfy an extra requirement in
order to obtain an unique solution [49],

Xn

i¼1

pjðxiÞaiðxiÞ ¼ 0; j ¼ 1; 2; . . . ;m: ð18Þ

Therefore a new equation matrix can be written

us

0

� �
¼

RQ Pm

PT
m 0

� 	
a

b

� �
¼ G

a

b

� �
; ð19Þ

where

us ¼ fu1; u2; . . . ; ungT ð20Þ

RQ ¼

Rðr11Þ Rðr21Þ :: Rðr1nÞ
Rðr21Þ Rðr22Þ :: Rðr2nÞ
: : :

Rðrn1Þ Rðrn2Þ :: RðrnnÞ

2
6664

3
7775 ð21Þ

and the constant polynomial basis is defined as

Pm ¼ ½ 1 1 . . . 1 �T ð22Þ

being the linear polynomial basis for the 2D problem
represented as

Pm ¼
1 1 . . . 1

x1 x2 . . . xn

y1 y2 . . . yn

2
64

3
75

T

ð23Þ

and for the 3D problem as

Pm ¼

1 1 . . . 1

x1 x2 . . . xn

y1 y2 . . . yn

z1 z2 . . . zn

2
6664

3
7775

T

: ð24Þ

It must be noted that the geometric matrix G is a symmetric
matrix because the distance is directional independent, i.e.,
R(rij) = R(rji). By solving Eq. (19),

a

b

� �
¼ G�1 us

0

� �
ð25Þ

and by substituting on Eq. (7),

uðxIÞ ¼ fRTðxIÞ; pTðxIÞgG�1 us

0

� �
¼ uðxIÞus; ð26Þ

where u(x) is the shape function defined as

uðxIÞ ¼ fRTðxIÞ; pTðxIÞgG�1

¼ fu1ðxIÞ;u2ðxIÞ; . . . ;unðxIÞg: ð27Þ
The partial derivative of u(x) in order to a variable n is de-
fined as

u;nðxIÞ ¼ fRT
;nðxIÞ; pT

;nðxIÞgG�1: ð28Þ

The partial derivatives of the MQ-RBF in order to x, y and
z are

R;xðrijÞ ¼ 2pðr2
ij þ c2Þp�1ðxj � xiÞ; ð29Þ

R;yðrijÞ ¼ 2pðr2
ij þ c2Þp�1ðyj � yiÞ; ð30Þ

R;zðrijÞ ¼ 2pðr2
ij þ c2Þp�1ðzj � ziÞ: ð31Þ

Early works on the RPIM [25,26] sustain that these shapes
functions possess the delta Kronecker property

uiðxjÞ ¼ dij ¼
1ði ¼ jÞ
0ði 6¼ jÞ

�
i; j ¼ 1; . . . ; n ð32Þ

and also that the partition of unity is satisfied

Xn

i¼1

uiðxiÞ ¼ 1: ð33Þ

An inconvenient property of the RPIMs shape functions is
the lack of compatibility, which means that the shape func-
tions can not ensure the global continuity because the sup-
port domain is local. As a consequence the field function
approximation could be discontinuous when nodes enter
or leave the moving support domain. The compatibility
of the RPIMs shape functions is achieved using the con-
forming RPIM (CRPIM) [50]. Studies on CRPIM and
RPIM have concluded that CRPIM can exactly pass the
standard patch tests and the RPIM cannot [41,50]. How-
ever, for the problems considered in the studies, the RPIM
was also convergent and lead to satisfactory results. At the
same, the RPIM is simpler and much more efficient than
the CRPIM [4,50].

4. Galerkin weak form

In this work the two-dimensional plane stress problem
and the three-dimensional problem are studied. Consider
the solid with a domain X bounded by C. The equilibrium
equations are expressed by

rrþ b ¼ 0 in X ð34Þ

being $ the gradient, r the stress tensor and b the body
force vector. The boundary conditions are given by

rn ¼ �t on the natural boundary Ct;

u ¼ �u on the essential boundary Cu;
ð35Þ

where �u is the prescribed displacement on the essential
boundary Cu, �t is the traction on the natural boundary Ct

and n is the unit outward normal to the boundary of do-
main X. Considering the above equation, the Galerkin
weak form is presented by

L ¼
Z

X
deTrdX�

Z
X

duTbdX�
Z

Ct

duTtdC ¼ 0; ð36Þ



Table 1
Flow chart of the numerical implementation

1. Determine each node neighbours and construct the correspondent
Voronoı̈ cells

2. Construct the integration points based on the Voronoı̈ cells
3. Set the influence-cells (first or second degree)
4. Loop over the integration points in order to integrate the Galerkin

Weak form
a. Determine the nodes that directly influence the specified integra-

tion point, based on the previously defined integration-cells
b. Compute the shape functions and its derivatives for each

integration point
c. Evaluate stiffness and load at each integration point
d. Assemble the contribution of the specified integration point in

order to form the system of equations
5. Introduce essential and natural boundaries
6. Solve the algebraic system to obtain the nodal displacement
7. Evaluate strain and stress at each integration point
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where e is the strain vector, defined as

e ¼ Lu ð37Þ
and r is defined by

r ¼ ce ¼ cLu; ð38Þ
where L is the differential operator defined in Eq. (39) for
3D analysis and c is the material matrix, Eq. (40), for the
Hooke’s law, for instances

L ¼

o

ox
0 0

o

oy
0

o

oz

0
o

oy
0

o

ox
o

oz
0

0 0
o

oz
0

o

oy
o

ox

2
66666664

3
77777775

T

; ð39Þ

c ¼ E
1� m2

1 m m 0 0 0

m 1 m 0 0 0

m m 1 0 0 0

0 0 0 ð1� mÞ=2 0 0

0 0 0 0 ð1� mÞ=2 0

0 0 0 0 0 ð1� mÞ=2

2
666666664

3
777777775
:

ð40Þ
Substituting Eq. (37) in the first term of Eq. (36),Z

X
deTrdX ¼

Z
X

dðLuÞTcðLuÞdX: ð41Þ

And considering Eq. (26)

u ¼
Xn

I

uI uI ; ð42Þ

where n is the number of nodes inside the influence-cell, the
following expression can be written:

Lu ¼ L
Xn

I

uIuI ¼
Xn

I

LuI uI

¼
Xn

I

ouI

ox
0 0

ouI

oy
0

ouI

oz

0
ouI

oy
0

ouI

ox
ouI

oz
0

0 0
ouI

oz
0

ouI

oy
ouI

ox

2
66666664

3
77777775

T

uI ¼
Xn

I

BIuI :

ð43Þ
Eq. (36), can be developed

L ¼
Xn

I

Xn

J

duI

Z
X

BT
I cBJ dX|fflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflffl}
KIJ

uJ �
Xn

I

duT
I

Z
X

uT
I bdX|fflfflfflfflfflffl{zfflfflfflfflfflffl}
fI

�
Xn

I

duT
I

Z
Ct

uT
I
�tdC

|fflfflfflfflfflffl{zfflfflfflfflfflffl}
�f I

¼ 0 ð44Þ

and can be presented as

L ¼ dUT½KU� F� ¼ 0; ð45Þ
where U=u and F ¼ f þ �f. As so the linear system of equa-
tions can be represented in the following matrix form:

KU ¼ F: ð46Þ
The essential boundary conditions can be directly imposed
in the stiffness matrix K, as in the FEM, once the RPIM
shape function possesses the delta Kronecker property.
The numerical implementation is summarized in Table 1.

5. Numerical examples

Some numerical examples are presented in this section
with the purpose of demonstrating the good behaviour of
the NNRPIM concerning the accuracy and the conver-
gence of the method. For the convergence studies pre-
sented, the medium displacement error is defined as

E ¼ 1

n

Xn

i

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðui � uiexactÞ2 þ ðvi � viexactÞ2 þ ðwi � wiexactÞ2

q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
u2

iexact þ v2
iexact þ w2

iexact

p
ð47Þ

and the medium stress error, for example for the normal
stress rxx, is given by

Erxx ¼
1

nQ

XnQ

i

jrxxi � rxxexactj
jrxxexactj

; ð48Þ

where n is the number of nodes that discretize the domain
problem and nQ is the number of integration points. In this
section is presented a patch test, which is used to obtain the
optimal shape parameters c and p, and several well-known
problems from solid mechanics are solved [51]. Two dimen-
sional finite element analysis is used for comparison, which
is the nine node finite element with a 3 · 3 Gaussian quad-
rature integration scheme [1,2]. In this work the shape
parameter c is obtained with,

c ¼ cAG; ð49Þ

where c is a parameter that must be determined and AG is a
geometric parameter dependent on the mesh discretization.
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5.1. The patch test

The patch test [52] was originally designed to prove the
convergence in non-conforming finite element formulation.
Generally the test consists on the imposition of a known
displacement field in the boundary of the patch. If the pre-
scribed field is reproduced in the interior of the patch then
the test is verified.

Although being a benchmark for the evaluation and
validation of non-conforming elements, in the context of
the meshless methods the relevance of the patch test, from
the convergence point of view, is still an open issue.

In the present work it is reproduced the patch test of the
RPIM [25] in order to clearly explain the major differences
between the RPIM and the NNRPIM and to introduce the
NNRPIM procedure for the analysis considering the patch
test.

5.1.1. RPIM patch test

The RPIM uses influence domains as Fig. 7(a) indicates.
In this work, for the RPIM, influence domains of dimen-
sion dmI = CI · h are used, where CI = 2.5 and h is the qua-
dratic norm of the maximum distance between neighbour
nodes. These values are according with the ones used in
[25,26]. The background integration mesh is independent
of the node mesh and it is created with integration cells
each one with a quadrature scheme of 3 · 3 Gauss points,
as Fig. 7(b) and (c) indicate for irregular and regular node
meshes respectively.

In order to obtain the optimized parameters c and p,
firstly the parameter p is fixed, p = 1.0001, and the param-
eter c is varied between 10 and 10�4. The shape parameter c

is obtained with the expression c = h · c. Once c is mini-
mized the process is repeated, but now with the minimized
parameter c, c = h · cmin, and varying the parameter p,
until a minimum p is obtained.

In RPIM the linear polynomial basis is used, p(x) =
{1 x y}, and the RBF is the MQ. The displacement field
imposed on the boundary is defined by
Fig. 7. (a) Construction examples of the influence domain, (b) irregular m
‘‘+S’’ = Gauss points).
u ¼ 0:1þ 0:1x;

v ¼ 0:1þ 0:1y

�
ð50Þ

and the medium displacement error, E, defined in Eq. (47)
is calculated. The sum of the interior equivalent forces is
given by

ftot ¼
Xni

I

feq
I ; ð51Þ

where ni is the number of nodes that do not belong to the
essential boundary and feq is the equivalent force obtained
by the expression

feq ¼
Z

X
BTrdX: ð52Þ

Two mesh types are used in this case, an irregular and a
regular mesh, as Fig. 7(b) and (c) indicate. The patch has
the dimensions of 1.0 · 1.0 m2 and the material properties
are E = 1.0 GPa and m ¼ 0:3.

In Fig. 8(a) the medium displacement error is presented,
Eq. (47), together with the ftot as a function of the variation
of the value of the parameter c. It is visible that E stabilizes
for values c 6 1.6. The stabilization and the minimization
of ftot is obtained for lower values of c, c 6 0.5.

The parameter value suggested in Ref. [26] is c = 1.43,
which corresponds to c ffi 7.0, and p = 1.03. It is visible in
Fig. 8(a) that such values for the parameters conduct to a
medium displacement error E ffi 4� 10�4 and it produces
a high value for ftot, ftot ffi 1.5 · 102, which is unacceptable.

This anomaly is explained with the effective lack of the
delta Kronecker property on the RPIM shape functions
for high values of c. It is noted that the value of the shape
parameter c determines the fundamental shape of the basis
function, with small value of c the resulting multiquadric
radial basis function is cone-shaped and with increasing
values of c the peak of the multiquadric radial basis func-
tion becomes flat. As a consequence, the value of the shape
parameter c affects the precision and the accuracy of the
multiquadrics interpolation scheme. The increase of the
esh and (c) regular mesh used to discretize the problem (‘‘d’’ = nodes,



Fig. 8. (a) Shape parameter c effects on the accuracy and (b) parameter p effects on the accuracy for the regular and irregular mesh. Logarithmic scales.
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shape parameter implies a decrease of the approximation
error. Nevertheless to adjust the shape parameter in order
to improve the approximation accuracy, low values of c,
cause an ill-conditioned geometric G matrix or even the
singularity of G [27].

It is now understandable that for high values of c the
shape function does not pass exactly on the nodes and to
prove the statement, during previous analysis the shape
function vector for the node 15, u15, was saved. The u15

values on nodes 9, 14, 16 and 21 were used to calculate
umed,

umed ¼
uð15;9Þ þ uð15;14Þ þ uð15;16Þ þ uð15;21Þ

4
: ð53Þ
It must be noted that these nodes are the closest nodes
to node 15 and if u15 has the delta Kronecker property,
u(15,i) should be zero for all i 5 15, and consequently
umed = 0. However it is visible in Fig. 8(a) that umed only
stabilizes for c 6 0.25 and even for those values of c, umed

is different of zero, umed ffi 10�7, which indicates the effec-
tive lack of the delta Kronecker property.

As in early works [25,26] the essential boundary condi-
tions were directly imposed considering the existence of
the delta Kronecker property, as in FEM. This is the rea-
son why ftot is always different from zero and even for
c 6 0.25 is higher than the machine precision (10�16). How-
ever, it is acceptable to consider, for c 6 0.25, that the
RPIM shape functions possess the delta Kronecker
property.

Considering c = 0.0001 and the parameter p varying
between 10 and 10�4 an optimal p is searched. All other
considerations regarding material, geometric and boundary
conditions remain the same. The integration scheme and
the nodal discretization are also similar to the previous
analysis. The results are presented in Fig. 8(b).

It is visible in Fig. 8(b) that p ffi 1 is an optimal value
once E and ftot show a minimum for this value. However
it was observed that p cannot be exactly equal to 1, or
any other integer value, because it will generate a singular
G matrix. Others authors [25,26] suggest the value p = 1.03.
In this work the value used, in the RPIM, for parameter p

is p = 0.9999.

5.1.2. NNRPIM patch test

In the NNRPIM the procedure to obtain the optimal
shape parameters c and p is similar to the procedure used
for the RPIM. All considerations regarding the problem
discretization, the material used, the geometry and bound-
ary conditions remain the same as in previous example.

An optimization study was performed considering the
NNRPIM with first degree influence-cell and afterwards
considering the NNRPIM with the second degree influ-
ence-cell. In both formulations only the integration scheme
of order 0 was used. The polynomial basis used in both for-
mulations are the null basis, Eq. (10), the constant basis,
Eq. (11), the linear basis, Eq. (12), and the quadratic basis,
Eq. (13). Acronyms are used for a better understanding, the
first two characters identify the degree of the influence cell,
first degree = ‘‘v1’’ and second degree = ‘‘v2’’. The integra-
tion scheme order is identified by ‘‘ik’’, where k is the inte-
gration order. The polynomial basis is identified by ‘‘pm’’,
where m is the number of monomials in the polynomial
basis. For example, the formulation using a second degree
influence-cell, an integration scheme of order 1 and a null
polynomial basis is called: ‘‘v2i1p0’’.

In the NNRPIM the shape parameter c is obtained with
the expression c ¼ c�

ffiffiffiffiffiffiffi
AV I

p
, where AV I is defined in Eq.
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(3). The optimization procedure is equal to the previous
patch test.

It was observed that the use of the quadratic polynomial
basis on this formulation, v1i0p6, generates a G matrix sin-
gular, i.e. non invertible, and it was also observed that the
v1i0p0 formulation fails the aim of producing an accept-
able smooth stress field. Thus the study of these two formu-
lations is abandoned.

In Table 2 the resulting E and ftot for the obtained opti-
mal shape parameters in the different formulations are
presented.

As Table 2 shows the lowest medium displacement error
E, for irregular meshes, in the NNRPIM, is obtained with
the v1i0p0, v1i0p1, v2i0p0 and the v2i0p1 formulation. This
error is very close to the error obtained with the RPIM. It is
noted as well that, generally the error obtained for regular
meshes with NNRPIM is better than the error obtained
with RPIM and that, for the v1i0p1 and v1i0p3 formu-
lations, is very near the machine precision. It was also
observed that the stress field of the v1i0p3, v2i0p3 and
v2i0p6 formulation is highly irregular, therefore the NNR-
PIM study will continue only with the v1i0p0, v1i0p1,
v2i0p0 and v2i0p1 formulations once the lowest medium
displacement error is obtained with these formulations.

It is important to refer that the RPIM analysis is an
optimized analysis because adequate shape parameters
and proper integration schemes were applied. However in
the case of the NNRPIM it was applied only the integra-
Table 2
E and ftot obtained results for optimal shape parameters c and p

Shape parameters Regular m

c p E

RPIM 0.0001 0.9999 1.51E�03
v1i0p0 2 0.0001 8.00E�04
v1i0p1 0.0001 0.9999 4.45E�11
v1i0p3 0.0001 2.9999 1.09E�12
v2i0p0 0.0001 0.9999 6.51E�04
v2i0p1 0.0001 0.9999 4.59E�04
v2i0p3 0.0001 0.9999 1.02E�02
v2i0p6 0.0001 0.0001 6.50E�02

Fig. 9. Influence of the integration scheme on the
tion scheme of order 0. Using the optimal shape para-
meters a study to obtain the optimal integration scheme
is carried out.

The irregular mesh presented in Fig. 7(b) is used and the
optimal shape parameters presented in Table 2 are applied
to the RPIM and NNRPIM formulations. The problem is
studied for various integration schemes for each formul-
ation. The obtained medium displacement errors are pre-
sented in Fig. 9(a) and (b).

As Fig. 9 indicates, for the RPIM the integration
scheme, 2 · 2 integration points in each integration cell
seems to be sufficient, nevertheless in further problems
the integration scheme will continue to be the 3 · 3 as Refs.
[25,26] indicates.

In the NNRPIM with first degree influence-cell is visible
that the integration schemes which conduct to more accu-
rate results are the ones greater than order 1.

For the NNRPIM with second degree influence-cell for-
mulation it is visible that an integration scheme of order 1
is sufficient.

The NNRPIM v1i2p0 formulation is abandoned once
its computational cost is very high and it is less accurate
than the NNRPIM v1i2p1 formulation.

The three-dimensional patch test was also studied, an
unit cubic solid with a volume of 1.0 · 1.0 · 1.0 m3 and
with the material properties E = 1.0 GPa and m = 0.3 is
submitted to an enforce displacement in all essential
boundaries,
esh Irregular mesh

ftot E ftot

5.74E�12 1.67E�03 9.57E�12
9.87E�11 5.10E�03 1.17E�10
4.88E�12 4.03E�03 6.56E�12
5.79E�12 8.89E�03 9.41E�12
9.63E�12 3.04E�03 8.77E�12
7.26E�12 2.67E�03 8.40E�12
2.52E�11 3.15E�02 3.30E�11
3.38E�12 8.98E�02 2.27E�12

accuracy for (a) RPIM and for (b) NNRPIM.
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u ¼ 0:1þ 0:1x;

v ¼ 0:1þ 0:2y;

w ¼ 0:1þ 0:3z:

8><
>: ð54Þ

Once again the aim of the analysis is to obtain the optimal
shape parameters, c and p, for the 3D formulation. The so-
lid was discretized with two distinct meshes, a regular mesh
and an irregular mesh, both with 6� 6� 6 nodes (216
nodes). The procedure is similar with the previous 2D
patch-tests examples. The optimal shape parameters are
presented in Table 3.

In the 3D study it was observed that the v1i0p0, v1i0p3,
v2i0p3 and v2i0p6 NNRPIM formulations produce a stress
field very irregular, which should be constant. In the table
is also perceptible that the referred last three formulations
compared with the others NNRPIM formulations present
a higher medium displacement error. As so, in further
examples using a 3D analysis the used NNRPIM formula-
tions are the v1i0p1, v2i0p0 and the v2i0p1. Due to the sig-
nificant computational cost, in this work, for the three-
Table 3
E and ftot obtained results for optimal shape parameters c and p in the 3D an

Shape parameters Regular m

c p E

v1i0p0 0.0001 0.9999 7.66E�04
v1i0p1 0.0001 0.9999 1.75E�03
v1i0p3 0.0001 0.9999 1.60E�02
v2i0p0 0.0001 0.9999 3.32E�03
v2i0p1 0.0001 0.9999 3.20E�03
v2i0p3 0.0001 0.9999 3.31E�02
v2i0p6 0.0001 0.9999 5.31E�02

Table 4
Obtained optimal parameter for the RPIM and NNRPIM formulations

Parameters RPIM 2D v1p1 2D v2p0 2D

c 0.0001 0.0001 0.0001
p 0.9999 0.9999 0.9999
Integration scheme 3 · 3 Order 2 Order 1

Fig. 10. (a) Considered material and geometric conditions of the unit square p
Dimensional analysis the used integration scheme is the
order 0.

To conclude this section Table 4 is presented, where the
optimal parameters for the distinct formulation, used in
further examples, are displayed.
5.2. The unit square plate under uniaxial stress

An unit square plate is submitted to an uniform uniaxial
stress, r = 10 kPa, in the x direction. The material, loading,
geometry and boundary conditions are illustrated in
Fig. 10(a). The analytical solution to this problem is given
by

u ¼ r
E
� x
L
;

v ¼ � mr
E
� y
L
:

ð55Þ

The problem is discretized considering irregular and regu-
lar meshes. In Fig. 10(b) and (c) an irregular and a regular
alysis

esh Irregular mesh

ftot E ftot

2.26E�14 1.65E�02 1.36E�10
3.18E�14 1.37E�02 4.33E�10
2.60E�13 3.41E�02 4.02E�10
6.61E�14 8.00E�03 3.69E�10
7.16E�14 7.30E�03 2.89E�09
4.41E�13 4.61E�02 6.39E�08
9.20E�13 5.68E�02 4.06E�09

v2p1 2D v1p1 3D v2p0 3D v2p1 3D

0.0001 0.0001 0.0001 0.0001
0.9999 0.9999 0.9999 0.9999
Order 1 Order 0 Order 0 Order 0

late problem, (b) irregular 169 node mesh and (c) regular 169 node mesh.
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mesh of 169 nodes are presented, which will be used in the
problem analysis.

In Fig. 11 is presented the convergence study for the dis-
placement values of points A and B, represented in Fig. 10.
Fig. 11 shows that the NNRPIM formulation convergence
rate in comparison with the RPIM formulation is higher
and the converged result is very near the exact solution
(uA = 0.1, uB = 0.1 and vB = 0.025).

Fig. 12(a) and (b) show the results, for the irregular and
regular meshes respectively, of the convergence study for
the medium displacement error, Eq. (47). It is visible that
using an irregular mesh the NNRPIM v1i2p1 formulation
presents a high medium displacement error and when the
regular mesh is considered the error is very low (10�4).
Fig. 12 enforces the former statement, the NNRPIM for-
Fig. 11. Displacement value

Fig. 12. Medium displacement error in relation to the number of nodes obta
logarithmic scale. Medium stress error, in relation to the number of nodes, ob
mulations have a high convergence rate in comparison with
the RPIM formulation.

The present problem should generate a constant stress
field,

r ¼ rxx ryy rxyf g ¼ r 0 0f g; ð56Þ
where r = 10 kPa. Thus the medium stress error is calcu-
lated by using Eq. (48). In Fig. 12(c) and (d) the results
for the irregular and regular meshes are shown.

It is visible in Fig. 12(d) that the NNRPIM formula-
tions for regular meshes converge faster to the exact solu-
tion than the RPIM formulation. It is also visible in
Fig. 12(c) that when an irregular mesh is used the
v2i1p0 and the v2i1p1 are the only NNRPIM formula-
s for the interest points.

ined with the (a) irregular mesh and with the (b) regular mesh, yy-axis in
tained with the (c) irregular mesh and with the (d) regular mesh.
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tions that produce similar results with the RPIM
formulation.

Another interesting point is the computational effort of
the method. Fig. 13 presents the medium displacement
errors in relation to the time spent in the analysis.

As Fig. 13 shows, using a regular mesh, the NNRPIM,
with the lower integration scheme, presents a lower compu-
tational cost when compared with the RPIM and that the
time spent in the analysis is even lower when irregular
meshes are considered, which is explained with the lower
number of nodes in each influence-cell in the case of the
irregular meshes. It must be noted that, the computational
cost of the regular meshes is about the double of the irreg-
ular meshes. The NNRPIM with the v1i2p1 formulation
presents a very high computational cost, which is explained
by the number of integration nodes generated with the sec-
ond degree integration scheme.

In the second degree influence-cell NNRPIM formula-
tions no significant differences are observed using an inte-
gration scheme of order 0 or of order 1. As so, in further
examples only the v2i0p0 and the v2i0p1 are used once these
formulations present a much lower computational cost.
5.3. The cantilever beam

The cantilever beam problem is also used to study the
accuracy of the NNRPIM. The schematic illustration of
Fig. 13. Medium displacement error, in relation to the computational cost, in
irregular mesh.

Fig. 14. (a) Considered material and geometric conditions of the cantilever beam
(d) 3D Regular 637 node mesh and (e) 3D Irregular 637 node mesh.
the problem is presented in Fig. 14(a). The exact solution
for the displacement field of the 2D problem is given by,

u ¼ � Py
6EI

2L� xð Þ3xþ ð2þ mÞ y2 � D2

4

� �� 	
;

v ¼ P
6EI

x2ð3L� xÞ þ 3mðL� xÞy2 þ 4þ 5m
4

D2x
� 	

;

ð57Þ

where I is the moment of inertia, I = D3/12. The stress field
for the same dimensional problem is

rxx ¼ �
P ðL� xÞy

I
;

ryy ¼ 0;

rxy ¼
P
2I

D2

4
� y2

� �
:

ð58Þ

The problem is solved considering the 2D plane stress anal-
ysis and the three-dimensional analysis. The domain is dis-
cretized in irregular and regular meshes. In Fig. 14(b) and
(c) is given an example of a regular and an irregular and
mesh of 231 nodes used in the 2D problem analysis. In
Fig. 14(d) and (e) is given an example of a regular and
an irregular mesh of 637 nodes used in the 3D problem
analysis.

In order to compare the obtained results between the 3D
analysis and the 2D analysis, in the following diagrams
a logarithmic scale, obtained with the (a) regular mesh and with the (b)

problem, (b) 2D Regular 231 node mesh, (c) 2D Irregular 231 node mesh,
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only the number of nodes of the face Oxy of the 3D mesh
are represented.

In Fig. 15 are shown the medium displacement errors, E,
and the medium stress errors, Erxx and Erxy . These results
were obtained using irregular meshes and regular meshes.
In Fig. 16 are presented the displacement values of interest
points A and B, in relation to number of nodes used to dis-
cretize the problem, for the irregular and the regular meshes.

It is visible in Figs. 15 and 16 that once again, within the
NNRPIM formulation, when an irregular mesh is consid-
ered the v1i2p1 generates the worst result. It is also visible
Fig. 15. (a)Medium displacement error,E, (b) medium

Fig. 16. Displacement values obtained with irregular
in Fig. 15 that the NNRPIM formulation has a faster con-
vergence to the exact solution when compared with the
RPIM formulation. In general the medium errors are lower
when second degree influence-cells are used, in the 2D and
in the 3D analysis. The results for the 3D analysis seem to
be worse than the ones produced by the 2D analysis. This
discrepancy is manly due to the difficulty of comparing the
different discretization of the problem for the distinct ana-
lysis, 2D and 3D.

In Fig. 16, for the 2D analysis, it is visible that the
NNRPIM formulations converge with more accuracy
stress error, Erxx , (c) medium stress error, Erxy .

and regular meshes in interest points A and B.
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to the exact solution when compared with the RPIM
formulation.

It was observed that the horizontal component of the dis-
placement on interest point A on neutral axis, uA, for all the
NNRPIM formulations is equal to the machine precision,
10�16, and for the RPIM formulation is about 10�6.

In Fig. 17 the normal stress rxx of the interest point C
and the shear stress rxy of the interest point D, for the reg-
ular and the irregular mesh, are shown.

The results obtained for the shear stress rxy in the inter-
est point D show a good concordance between the two for-
mulations. However the results for the normal stress rxx in
the interest point C show that all NNRPIM formulation
are less accurate when compared with the RPIM formula-
tion. Such results can be explained by the fact that the inte-
gration point where the stress is obtained for the RPIM is
always much close to point C compared with the closest
integration point in the NNRPIM. It must be noted as
Fig. 17. Stress values on the interest points C and

Fig. 18. (a) Material and geometrical characteristics and boundary and load c
nodal discretization for the plate with a circular hole.
well, that for the stress result for the solution obtained with
the 3D analysis approaches the solution obtained with a
2D analysis.
5.4. The infinite plate with a circular hole

An infinite plate with a circular hole is considered, due
to the existing symmetry only the upper right quadrant
of the plate is analysed, as represented in Fig. 18(a). The
traction illustrated on the natural boundary conditions is
given by the exact solution,

rxx ¼ 1� a2

r2

3

2
cosð2hÞ þ cosð4hÞ

� �
þ 3a4

2r4
cosð4hÞ;

ryy ¼ �
a2

r2

1

2
cosð2hÞ � cosð4hÞ

� �
� 3a4

2r4
cosð4hÞ;

rxy ¼ �
a2

r2

1

2
sinð2hÞ þ sinð4hÞ

� �
þ 3a4

2r4
sinð4hÞ:

ð59Þ
D for irregular meshes and for regular meshes.

onditions of the plate with a circular hole and (b) examples of the regular
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In this problem only regular meshes are used, and examples
are presented in Fig. 18(b).

In Fig. 19(a) and (b) are presented the displacement val-
ues on interest points A and B, indicated in Fig. 18. It is
visible that the NNRPIM converges with a higher rate
when compared with the FEM and the RPIM. It is also
seen that the performance of the NNRPIM formulation
is not affected by the used integration scheme, once both
integration schemes produce similar results. It is visible
that the NNRPIM 3D analysis produces results very close
to the FEM 2D analysis.
Fig. 19. Displacement values in in

Fig. 20. Medium stress error (a) Erxx , (b) Eryy and (c) E
In Fig. 20(a)–(c) are presented the medium stress errors,
Erxx , Eryy and Erxy , and in Fig. 20(d) and (e) are presented
the obtained normal stress rxx and ryy, respectively for
interest points A and B.

In Fig. 20 it can be seen that the NNRPIM has, once
again, a convergence rate considerably higher than the
FEM or the RPIM. It is also observed that the stress field
produced by the NNRPIM is very smooth. Once again
the results obtained with the NNRPIM 3D analysis
approaches the FEM solution.
terest points (b) A and (c) B.

rxy . Stress values in interest points (d) A and (e) B.



Fig. 21. Displacement field and the stress distribution obtained with the NNRPIM and with the exact solution.
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In Fig. 21 is presented the displacement field and the
stress distribution obtained with the NNRPIM and with
the exact solution.

The results obtained show an almost perfect similarity
between the NNRPIM solution and the exact solution
and that the NNRPIM is capable of producing smooth
displacement and smooth stress fields.
6. Conclusions

In this work an improved radial point interpolation
method is presented, using the multiquadric radial basis
function, with the Voronoı̈ tessellation and the Delaunay
triangulation, in order to obtain the nodal connectivity
and the integration background mesh respectively. To form
NNRPIM the interpolation functions are applied to the
Galerkin weak form of solid mechanics. The capability of
reproducing a displacement field is tested for distinct
NNRPIM formulations and the optimal shape parameters
to 2D and 3D problems are obtained. Considering the opti-
mal shape parameters convergence and accuracy studies
are performed for some classic problems of the solid
mechanics. The most relevant conclusions of this work
can be summarized as follows:

1. It is reasonable to considerer that the radial point
interpolation methods shape functions respect the delta
Kronecker function but only for small values of the shape
parameter c, c 6 0.25. As so the shape functions obtained
have the delta Kronecker property, thus overcoming the
disadvantage on the imposition of the essential and natural
boundary conditions so well-known in element-free meth-
ods based on MLS approximation.

2. In the presented examples it is clear that the most effi-
cient NNRPIM formulation is the one that uses the second
degree influence-cell. In the patch tests presented is clear
that the appropriate integration scheme is the integration
scheme of order 1, however the examples solved show that
in fact there is no significant difference between the integra-
tion scheme of order 0 and of order 1. Thus the integration
scheme of order 0 is preferable once it has a lower compu-
tational cost. The results show that there is no significant
difference when no polynomial basis is used or when a con-
stant polynomial basis is used. However stress distributions
are more smooth and accurate in the case of the constant
polynomial basis.

3. The optimal shape parameters obtained in this initial
study for the NNRPIM formulations with second degree
influence-cell are c 6 0.0001 and p = 0.9999.

4. It was shown that the computational effort of the
NNRPIM is low, comparable with the RPIM. However
as the RPIMs use more nodes in the interpolation the
computational efficiency is lower when compared with
the FEM.

5. Comparing the NNRPIM with the nine node FEM in
a problem with convex boundaries it is clear that the NNR-
PIM has a higher accuracy and convergence rate.

6. In the 3D analysis the NNRPIM results show a good
behaviour, very close to the results obtained with FEM.
Although the NNRPIM is computationally less efficient
then the FEM.
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[22] E. Cueto, M. Doblaré, L. Gracia, Imposing essential boundary
conditions in the natural element method by means of density-scaled-
shapes, Int. J. Numer. Methods Engrg. 49 (4) (2000) 519–546.

[23] E. Cueto, N. Sukumar, B. Calvo, J. Cegoñino, M. Doblaré, Overview
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les parallélloèdres primitifs, J. Reine Angew. Math. 134 (1908) 198–
287.
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