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A meshless microscale bone tissue trabecular remodelling analysis considering a new anisotropic
bone tissue material law
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In this work, a novel anisotropic material law for the mechanical behaviour of the bone tissue is proposed. This new law,
based on experimental data, permits to correlate the bone apparent density with the obtained level of stress. Combined
with the proposed material law, a biomechanical model for predicting bone density distribution was developed, based on
the assumption that the bone structure is a gradually self-optimising anisotropic biological material that maximises its
own structural stiffness. The strain and the stress field required in the iterative remodelling process are obtained by
means of an accurate meshless method, the Natural Neighbour Radial Point Interpolation Method (NNRPIM).
Comparing with other numerical approaches, the inclusion of the NNRPIM presents numerous advantages such as the
high accuracy and the smoother stress and strain field distribution. The natural neighbour concept permits to impose
organically the nodal connectivity and facilitates the analysis of convex boundaries and extremely irregular meshes. The
viability and efficiency of the model were tested on several trabecular benchmark patch examples. The results show that
the pattern of the local bone apparent density distribution and the anisotropic bone behaviour predicted by the model for
the microscale analysis are in good agreement with the expected structural architecture and bone apparent density
distribution.

Keywords: bone tissue anisotropic material law; bone remodelling; meshless method; microscale analysis

1. Introduction

Bone tissue is a living material, constantly responding to

external and internal signals. The bone remodelling

process is induced by changes in bone stress and strain

fields, forcing the bone to adapt the shape and rebuild the

internal microstructure.

Wolff (1986) was the first to note the relationship

between the bone structure and the applied loads and to

describe the adaptive capacity of the bone tissue. Since

then, many theoretical and numerical models (Cowin and

Hegedus 1976; Carter et al. 1987) have been developed to

simulate mechanical bone mass regulation. These first

works seek the minimisation of an objective remodelling

function, the local strain-energy density (SED), to achieve

a close relationship between the maintenance of bone mass

and the local strain values in the tissues (Carter et al. 1989;

Beaupré et al. 1990a; Weinans et al. 1992). In these studies,

the most important variable affected by the remodelling

process was the bone apparent density and the trabecular

bone tissue was described as an isotropic material.

However, the bone clearly shows an anisotropic behaviour.

During the remodelling process, principal stress variable

values and directions change locally, leading to a global

anisotropic behaviour. Nonetheless, early bone models

were assumed isotropic. Besides the numerical problems of

anisotropic simulation of bone remodelling (Beaupré et al.

1990b; Jacobs et al. 1997), these early works had to deal

with the lack of a comprehensive data bank incorporating

the material properties of bone as a function of the

orthotropic load directions. Therefore, several anisotropic

bone material laws based on experimental studies were

proposed and developed (Wirtz et al. 2000). Like many

initial anisotropic bone material laws, Lotz et al. (1991)

suggest distinct mathematical laws to know the cortical and

trabecular bone behaviour. However, a recent experimentalQ1

study (Zioupos et al. 2008) proves that the law governing

the cortical and trabecular bone behaviour is in fact the

same. This idea is being corroborated by the analysis of

high-resolution three-dimensional images, from which

some authors were able to estimate the homogenised

anisotropic mechanical properties (Sansalone et al. 2010).

In this work, using experimental results (Zioupos et al.

2008), a new anisotropic bone tissue material law is

proposed – a new unified law to predict the cortical and

trabecular bone mechanical behaviour.

A numerical method is required to obtain the stress

field; in this work, a recently developed meshless method is

used. Meshless methods (Nguyen et al. 2008) were created

and developed to respond to some drawbacks and

limitations found in the finite element method (FEM).
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In meshless methods, the nodes can be randomly

distributed as the field function is approximated within a

flexible influence domain rather than an element. In

opposition to the no-overlap rule between elements in the

FEM, the influence domains may and must overlap each

other in meshless methods.

In this work, a truly interpolator meshless method is

used, i.e. the Natural Neighbour Radial Point Interpolation

Method (NNRPIM) (Dinis et al. 2007). The major

advantages of NNRPIM over the FEM and other meshless

methods are the remeshing flexibility, the variable field

higher accuracy (displacement, strain and stress fields) and

the competitive computational time (Dinis et al. 2007,

2008, 2009, 2010). As the NNRPIM produces smooth and

accurate stress and strain fields, high-quality SED fields are

expected from this mehsless approach. Using the natural

neighbour concept, the NNRPIM helps determine organi-

cally the influence domain, and therefore approaching the

natural behaviour of cell (Dinis et al. 2007). This innovationQ2

on the nodal connectivity enforcement permits the analysis

of convex boundaries and extremely irregular meshes,

which is an advantage in the biomechanical analysis, with

no extra computational effort associated. Regarding the

bone tissue remodelling analysis, there are not many works

on meshless methods available in the literature – the

most relevant work on the subject is probably the work of

Doblaré et al. (2005).

2. Bone tissue biomechanical model

The bone tissue is a connective tissue formed by cells, blood

vessels, fibbers and organic (collagen) and inorganic

substances (carbonated hydroxyapatite). However, in

opposition to other connective tissues, the extracellular

components suffer calcification, which confers hardness.

Because of the collagen fibbers, the bone present high values

for the elastic modulus and the ultimate strength in tension.

In compression, the high value for the ultimate strength is

given by the mineral components. At the end, the product is

a light material with a microscopic and macroscopic layout,

which maximises the resistance and minimises the weight.

The cortical bone tissue presents a higher apparent density,

and the trabecular bone tissue shows a considerably smaller

apparent density. Although both types show the same

molecular arrangement (microscale), the global mechanical

behaviour is different (macroscale). Many experimental

studies show that the bone mechanical properties depend on

the bone composition and bone apparent density (Carter and

Hayes 1977; Carter and Spengler 1978; Gibson 1985;

Goldstein 1987; Rice et al. 1988; Martin 1991). This work

proposes a new gradient remodelling approach combined

with a new bone tissue anisotropic mechanical law, which

only considers mechanical stimulus.

2.1. Material law

With the work of Lotz et al. (1991), one of the firsts to

consider the bone orthotropic behaviour, it is possible to

determine the elasticity modulus and the ultimate

compressive stress mathematical laws for both cortical

and trabecular bone in the axial and transversal directions

using as variable only the apparent density, rapp. The

macroscale bone mechanical properties are approximated

with the expression:

Ei ¼ a1� rapp

� �a2

sc
i ¼ a3� rapp

� �a4

8<
: ð1Þ

where Ei is the elasticity modulus and sc
i is the ultimate

compression stress in direction i, both are expressed

in MPa and the apparent density rapp in g/cm3. The

coefficients aj are presented in Table 1 in the axial and

transversal directions for both cortical and trabecular bone.

Zioupos et al.’s (2008) experimental study reinforces

the idea that the density is a salient property of bone and

plays a crucial role in determining the mechanical

properties of both its trabecular and cortical structural

forms. The study, using the measured apparent density

from cubic micropatches, was able to objectively isolate the

bone in trabecular and compact forms. The results from the

work of Zioupos et al. (2008) show that the relation

between Ei and the medium rapp is not an increasing

monotonic function, as it is in the case of Lotz et al.’ (1991)

law, but instead it is a ‘boomerang’-like pattern. TheQ3

experimental work of Zioupos et al. (2008) also shows that

the law governing the mechanical behaviour of the bone

tissue is the same for cortical and trabecular bone. The

experimental data shown in Zioupos et al.’s (2008) work

are illustrated in Figure 1(a). Thus, following the

conclusions of Zioupos et al. (2008) this work proposes a

unified law for cortical and trabecular bone. The bone

Table 1. Lotz law coefficients.

Bone tissue Direction a1 a2 a3 a4

Cortical Axial 2.065E þ 03 3.090E þ 00 7.240E þ 01 1.880E þ 00
Transversal 2.314E þ 03 1.570E þ 00 3.700E þ 01 1.510E þ 00

Trabecular Axial 1.904E þ 03 1.640E þ 00 4.080E þ 01 1.890E þ 00
Transversal 1.157E þ 03 1.780E þ 00 2.140E þ 01 1.370E þ 00
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elasticity modulus for the axial direction is obtained using

the approximation curve:

Eaxial ¼
P3

j¼0 aj�ðrappÞ
j if rapp # 1:3g=cm3

Eaxial ¼
P3

j¼0 bj�ðrappÞ
j if rapp . 1:3g=cm3

8<
: ð2Þ

where the coefficients aj and bj are presented in Table 2.

The proposed curve presents a 95% correlation with the

experimental data (Figure 1(a)). Since in Zioupos et al.’s

(2008) work only the bone elasticity modulus in the axial

direction is analysed, the other curves related with the

elasticity modulus in the transversal direction and the

ultimate compression stress in the axial and transversal

directions were obtained based on the values suggested by

Lotz et al. (1991). As in the curve for the elasticity modulus

in the axial direction, the other curves suggested in this

work unify the cortical and trabecular bone curves:

Etrans ¼
P3

j¼0 cj�ðrappÞ
j

s c
axial ¼

P3
j¼0 dj�ðrappÞ

j

s c
trans ¼

P3
j¼0 ej�ðrappÞ

j

8>>>><
>>>>:

ð3Þ

Q4

where the coefficients cj, dj and ej are presented in Table 2.

The elasticity modulus and the ultimate compression stress

approximated by the curves presented in Equations (2) and

(3) are expressed in MPa and the apparent density rapp in

Table 2. Coefficients of the propose bone model.

Coefficient j ¼ 0 j ¼ 1 j ¼ 2 j ¼ 3

aj 0.000E þ 00 7.216E þ 02 8.059E þ 02 0.000E þ 00
bj 21.770E þ 05 3.861E þ 05 22.798E þ 05 6.836E þ 04
cj 0.000E þ 00 0.000E þ 00 2.004E þ 03 21.442E þ 02
dj 0.000E þ 00 0.000E þ 00 2.680E þ 01 2.035E þ 01
ej 0.000E þ 00 0.000E þ 00 2.501E þ 01 1.247E þ 00
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Figure 1. (a) Elasticity modulus in the axial direction. Experimental data obtain in Zioupos work compared with Lotz law for cortical
and trabecular bone and with the mathematical model proposed in this work; (b) elasticity modulus in the transversal direction; (c)
compression stress in the axial direction; (d) compression stress in the transversal direction.

GCMB 654783—16/1/2012—MAHESH.R—407720——Style 4

Computer Methods in Biomechanics and Biomedical Engineering 3

225

230

235

240

245

250

255

260

265

270

275

280

285

290

295

300

305

310

315

320

325

330



g/cm3. The plot of the approximation curve for the

elasticity modulus in the transversal direction is presented

in Figure 1(b), and the approximation curves for the

compression stress in the axial and transversal directions

are presented in Figure 1(c) and (d), respectively. The

ultimate tension stress of the bone tissue is usually defined

as a proportion of the ultimate compression stress,

st
i ¼ a�sc

i . The value of a to be used is not consensual

(Reilly and Burstein 1975; Keyak and Rossi 2000), in the

various works available in the literature a varies between

0.33 and 1.00; therefore, in this work it will be considered

a ¼ 0.5, once it is a conservative value.

2.2. Anisotropic gradient remodelling algorithm

The remodelling algorithm considered in the architectural

optimisation analysis of bone tissue with the NNRPIM is

an adaptation of Carter et al.’s (1987) remodelling

algorithm. It is based on the assumption that the adaptation

of bony tissue responds mainly to mechanical stimulus,

acting as driving forces in the remodelling process, which

can be suitably described by stress and/or strain measures.

The local density and material orientation is dependent on

the stress/strain field caused by the mechanical load. A

forward Euler scheme is implemented, resulting in the

iterative remodelling process illustrated in Figure 2.

After the pre-processing phase, the iterative remodel-

ling algorithm is initiated. For each applied load case i,

the strain field 1 i and the stress field s i are obtained. The

principal stresses and directions can be obtained using the

stress field s i. Further, the SED field for the considered

load case is determined using the stress and the strain field:

U i ¼
1

2
sT 1 ð4Þ

With the obtained variable fields for each load cycle, the

final generic variable field j is calculated by an appropriate

superposition of a number of relevant discrete load cases l,

weighted according to the corresponding number of load

cycles m:

j ¼
Xl

i¼1

mij
i

Pl
j¼1mj

ð5Þ

Afterwards the domain regions with lower SED are subject

to a density remodelling process, all the other domain

regions maintain the previous density. Considering the

principal stress field weighted according to Equation (5), the

new apparent density of the domain regions with lower SED

is obtained by back substitution in Equations (2) and (3).

In the next iteration step, using the obtained new

apparent density, new material properties are determined

with Equations (2) and (3). Then, the material properties are

oriented using the weighted principal directions obtained in

the previous iteration step with Equation (5), orienting each

time the material with the actualised load path. The process

stops when the medium bone density reaches a controlled

value. The global domain medium bone density is

calculated by Equation (6):

rmed
app ¼

1

n

Xn
j¼1

r j
app ð6Þ

where n represents the total number of interest points and

rjapp is the infinitesimal apparent density on interest point j.

The used iterative process is the forward Euler scheme with

the particular adaptations to suit the bone internal

remodelling analysis.

The innovation of the bone tissue remodelling

algorithm proposed in this work lies on the use of a new

bone tissue anisotropic material law and on the smooth

gradient transition of the local medium apparent density,

respecting a gradient transition from the initial isotropic

cortical assumption to the final anisotropic trabecular

M
on
o
P
ri
n
t;

C
ol
ou
r
O
n
li
n
e

Figure 2. Proposed bone remodelling algorithm.
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arrangement. The inclusion of this particular meshless

method in the remodelling analysis is an asset and not just

another way to obtain the stress and the strain field, as the

accuracy of the remodelling algorithm depends on the

accuracy of the used numerical method.

3. Examples

In this section, the proposed bone remodelling algorithm,

using the NNRPIM, is applied to two- and three-dimen-

sional bone micropatches (Figure 3(a)). The purpose is to

validate the biomechanical numerical model, comparing

the obtain solutions with available solutions in literature.

Both Lotz et al.’s material law and the proposed material

law are studied and compared.

In all examples, the results regarding evolution of the

trabecular architecture are presented as grey tone isomaps.

The analysed patch domain is discretised by a nodal mesh,

and in the end of each iteration step the local apparent

density, for each node, is obtained. Therefore, in the grey

tone isomaps the white colour represents the considered

maximum apparent density rlocal
app ¼ 2:1g=cm3 and the dark

grey colour represents the minimum apparent density

rlocal
app ¼ 0:1g=cm3 allowed. All other grey tones in the

middle represent transitional apparent densities. Each

isomap presented also indicated the patch medium apparent

density, which is obtained by applying Equation (6).

3.1. Two-dimensional bone patch

In this section, the two-dimensional patch with dimensions

2 £ 2 mm2 presented in Figure 3(b) is studied. This

benchmark example (Xinghua et al. 2002; Mullender et al.

1994) is used to validate the bone trabecular remodelling

algorithms. The two-dimensional patch is subjected to a

compressive stress distribution, decreasing linearly over

the top edge. The node displacement is constrained for

y ¼ 0 only in the y direction and in the origin is

constrained in both x and y directions. The natural and

essential boundary conditions are presented in Figure 3(b).

The patch domain is discretised in the irregular nodal mesh

indicated in Figure 3(c). For all studied examples, a

uniformly initial density distribution rmax
app ¼ 2:1g=cm2 is

assumed, with a Poisson ration y ¼ 0.3, regardless of the

material direction. For comparison purposes, the patch was

analysed using the proposed bone tissue material law and

afterwards the Lotz et al.’s material law.

For decreasing patch medium apparent densities, it is

possible to observe the evolution of bone tissue remodel-

ling process for both the material laws considered (Figure

4). The results obtained with the proposed material law,

Figure 4(a), are in very good agreement with the ones

shown in Xinghua et al. (2002) and Mullender et al. (1994).

To validate the remodelling algorithm, when distinct

mechanical load cases are considered, the bone patch was

subjected to two individual loads: a load case L1 (Figure

3(b)) and a load case L2 (Figure 3(d)) – in both cases, the

sample load has the same magnitude. In the first approach,

load case L1 was applied with 1000 cycles and load case

L2 with also 1000 cycles. Only the new anisotropic

material law proposed was considered. The problem was

analysed with the same mesh as in previous analysis

(Figure 3(c)). The results are shown in Figure 5(a). As it

was expected the trabecular remodelling resembles in both

directions, x and y.

A final test regarding the square bone patch example

was conducted. The two load cases already referred were

now applied with the following condition: load case L1 was

applied with 1000 cycles and load case L2 with 5000 cycles.

All other variables remain the same as in the previous study.

The results are shown in Figure 5(b). It is clear in the

trabeculae structural design preference. The trabeculae

developed towards the higher load, in the y direction.

Combined with the proposed new material law and the

NNRPIM accuracy, the results on this benchmark example

have shown the capacity of the proposed remodelling

algorithm, for predicting the principal and secondary

trabecular structures for the two-dimensional analysis.

3.2. Three-dimensional bone patch

In Shefelbine et al.’s work (2005), the trabecular regene-

ration process and cubic bone patches are analysed to verify

the proposed fuzzy-logic algorithm. In the present work,Q5

similar hexahedron bone patches are studied. First, a three-

dimensional patch presented in Figure 6(a) isconsidered,

Figure 3. (a) 2D and 3D patches; (b) patch model geometry and essential and natural boundary conditions; (c) irregular nodal mesh
(1952 nodes); (d) second load case considered in the analysis.
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with a volume 2 £ 1 £ 2 mm3. A surface load

F ¼ 1:0N=mm2, with the direction indicated in the figure,

is applied in two square areas on the top of the hexahedron

patch. On the patch bottom, another two square areas locally

constrain the patch movement in all directions. The problem

is analysed considering the regular mesh, with 2681 nodes,

presented in Figure 6(c). To present the results, the cubic

patch is cut by the section presented in Figure 6(d).

In this example, only the new proposed material law is

considered in the bone remodelling algorithm. For all studied

examples, a uniformly initial density distribution rmax
app ¼

2:1g=cm3 is assumed for the three-dimensional patch, with a

Poisson ration y ¼ 0.3, regardless of the material direction.

The evolution of the trabecular bone remodelling

process is presented in Figure 7(a). As expected, the

applied loads lead the bone to build vertical trabeculae.

Figure 5. Evolution of the trabecular architecture in the square bone patch for the two load cases: L1 with 1000 cycles and L2 with 1000
cycles (a) and considering the two load cases: L1 with 1000 cycles and L2 with 5000 cycles (b).

Figure 4. Evolution of the trabecular architecture in the square bone patch considering the proposed anisotropic material law (a) and
Lotz anisotropic material law (b).
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To verify the influence of the nodal mesh discretisa-

tion, a single diagonal load is considered, as Figure 6(b)

illustrates. The same essential boundary conditions and

material properties are assumed. The results are presented

in Figure 7(b). It is visible that evolution of the trabecular

bone remodelling process leads to a single diagonal

trabecula. The three-dimensional section views for both

analyses are presented in Figure 7(c), when the apparent

medium density rapp ¼ 0:4g=cm3 is achieved. Note that,

as expected, the bone seams to form cylindrical trabeculae

in the direction of the applied load.

Another hexahedron example is studied. Consider the

cubic patch presented in Figure 8(a), with dimensions

2 £ 2 £ 2 mm3. A surface load F ¼ 1:0N=mm2, with the

direction indicated in the figure, is diagonally applied in a

square area on the top of the cubic patch. On the patch

bottom, four square areas locally constrain the patch

movement in all directions. The problem is analysed

considering a regular mesh with 2744 nodes (Figure 8(b)).

The same material properties are assumed as in the previous

example. To present the results, the cubic patch is cut by the

section presented in Figure 8(c). The results regarding the

evolution of the trabecular bone remodelling process are

presented in Figure 9. Further, despite the applied load

being not collinear with the mesh distribution, the formed

trabecula is perfectly oriented in the load direction. Note

that for apparent density rapp . 0:6g=cm3 a secondary

trabecula remains in the bone patch. The structural function

of this secondary trabecula is to stabilise the principal

diagonal trabecula, stopping a possible buckling phenom-

enon. The manifestation of the secondary trabecula proves

that the remodelling algorithm and the proposed material

law can predict also for the three-dimensional analysis

secondary structures in the trabecular bone medium.

To end this section dedicated to the three-dimensional

bone patch analysis, the same cubic bone patch with

2 £ 2 £ 2 mm3 is analysed; however, in this case surface

loads F ¼ 1:0N=mm2 are cross-diagonally applied in

Figure 6. (a) Hexahedron bone patch model submitted to vertical loads; (b) hexahedron bone patch model submitted to a diagonal load;
(c) regular nodal mesh (2681 nodes); (d) patch section cut.
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square areas on the top of the cubic patch (Figure 10(a)).

The essential boundary conditions are the same as in the

previous analysis; the bottom four square areas locally

constrain the cubic patch movement in all directions. The

problem is analysed considering the same regular mesh

presented in Figure 8(b). With this example, it is expected to

stimulate the torsion effects in the bone patch; in response

the bone must resist remodelling into suitable trabecular

structure. To observe the internal bone reorganisation, four

cut sections are made in the cubic patch (Figure 10(b)).

The present analysis was performed using three bone

tissue material laws. First, the cubic bone patch was

analysed considering the bone as an isotropic material. This

governing mathematical law was obtained from the new

anisotropic material law proposed in this work, considering

for the transverse direction the correspondent axial values

to respect the isotropic material assumption. The results on

the evolution of the medium apparent density in the bone

cubic patch for the cross-load are presented in Figure 11.

The results of Figure 11 show that the bone forms

standardised diagonal trabeculae to resist the torsion effect

produced by the applied load. Secondary trabeculae do not

appear as evident structures. Therefore, the study continues

and the cubic patch was analysed considering the bone as

Figure 7. Evolution of the trabecular architecture in the bone hexahedron patch (a) for vertical loads, (b) for diagonal load, and (c) three-
dimensional view.
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Figure 8. (a) Cubic patch model submitted to a diagonal load; (b) regular nodal mesh (2744 nodes); (c) patch section cut.

Figure 9. Evolution of the trabecular architecture in the bone cubic patch for diagonal load.
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an anisotropic material, fully using the material law

proposed in this work. The results are shown in Figure 12

and it is possible to observe the growth of secondary

trabecular structures in the vertical direction. These results

are corroborated with the solution obtained when the Lotz

et al.’s anisotropic material law is considered (Figure 13).

The same vertical secondary structures appear when the

Lotz et al.’s anisotropic material law is considered. This

example proved that in the bone trabecular remodelling

process it is important to consider the bone as an

anisotropic material. The secondary trabecular structures

confer to the trabecular bone mesh a higher stability and

resistance. The manifestation of such structures indicates

that the present study on bone remodelling is moving

forward in a right path.

3.3. Extention to the macroscale analysis

The femur bone is probably the most studied bone

example available in the literature (Beaupré et al. 1990a,b;

Jacobs et al. 1997, Doblaré and Garcı́a 2002; Jang and Kim

2010). Considering the meshless approach, the most

relevant work available in the literature regarding the

remodelling analysis is probably the work of Doblaré et al.

(2005). The femur bone loading history is approximated

by the three-load cases used by Beaupré et al. (1990a,b),Q6

each consisting of one parabolic distributed load over the

joint surface and another parabolic distributed load on the

trochanter, representing the abductor muscle attachment.

In this study, a two-dimensional model of the femur is

analysed. The femoral model is discretised with an

irregular mesh of 5991 nodes and the three-load cases

proposed by Beaupré et al. (1990a,b) are applied with theQ6

correspondent magnitude. The remodelling algorithm

proposed in this work is applied combined with the new

anisotropic material law proposed. The femoral macroscale

analysis results for a medium apparent density of rapp .

1:2g=cm2 are presented in Figure 14. Note that it is possible

to observe the internal trabecular structures indicated in the

X-ray plate shown in Figure 3(a) and the remaining internal

formations such as the Ward’s triangle and the greater

trochanteric group. Note that the secondary structures can

also be accurately predicted with the proposed remodelling

algorithm and bone anisotropic material law.

4. Conclusions and final remarks

In the present work, a novel anisotropic material law for

the mechanical behaviour of the bone tissue is proposed,

along with a new gradient remodelling algorithm that

considers an improved meshless method for the strain and

stress evaluation. The proposed bone tissue anisotropic

material law is based on experimental data available in the

literature and permits to correlate accurately the bone

density with the obtained level of stress by means of a

mechanical stimulus. The proposed bone tissue remodel-

ling algorithm imposes a gradient transition from the

initial isotropic cortical assumption to the final anisotropic

trabecular arrangement.

The proposed model is simple to apply and depends

mainly on the SED field, which is obtained multiplying the

stress field by the strain field for each interest point

(integration point). It was shown in the previous works

(Dinis et al. 2007, 2008, 2009, 2010) that the NNRPIM is

more accurate than other meshless methods and the FEM,

and produces smoother strain and stress fields. Therefore,

the inclusion of the NNRPIM in the remodelling analysis

is an asset and not just another way to obtain the SED field.

The accuracy of the remodelling algorithm depends on the

accuracy of the used numerical method.

It was verified that the introduction of the proposed new

bone tissue anisotropic material law reduces the number of

iterations and increases the quality of the results. The

reduction of the number of iterations is explained with the

Figure 10. (a) Cubic patch model submitted to cross-diagonal loads; (b) patch sections cuts.
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Figure 11. Evolution of the trabecular architecture in the bone cubic patch for the cross-diagonal loads (isotropic material considering
the proposed material law).
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Figure 12. Evolution of the trabecular architecture in the bone cubic patch for the cross-diagonal loads (anisotropic material considering
the proposed material law).
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Figure 13. Evolution of the trabecular architecture in the bone cubic patch for the cross-diagonal loads (anisotropic material considering
Lotz material law).
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difference between the material curve tangential slopes

in the bone cortical state and the bone trabecular state

(Figure 1). The quality of the results is explained with the

origin of the proposed material law: an exhaustive and

complete experimental work performed by Zioupos et al.

(2008) on various bone tissue micropatches.

It is visible that for the same medium patch density the

results obtained with the proposed material law (Figure 12)

are consistently more defined (the trabecular contour is

always more delineated) than the ones presented in

Figure 13, which is obtained considering Lotz et al.’s

material law. This indicates that the proposed anisotropic

bone tissue material law permits a more defined trabecular

arrangement.

Several examples well documented in the literature

were studied and solved, and the following conclusions

may be established. The proposed bone anisotropic

material law permits a smooth transition between the

cortical bone stage and the trabecular bone condition,

which can be observed in the totality of the presented

analysis. The level of the domain discretisation plays an

important role in the analysis. However, even for more

course meshes the remodelling algorithm is able to predict

accurately the major internal bone trabecular structures.

The proposed bone tissue remodelling algorithm combined

with the NNRPIM accuracy permits to predict correctly the

secondary trabecular structures, which are very important

in the stability of the principal structures.

For the time being, the great disadvantage of using the

NNRPIM in the bone tissue remodelling analysis is the

considerable computational cost for the three-dimensional

analysis combined with the need of a very large cloud of

nodes to obtain a good definition of the trabecular structure.

The developed work and the obtained results permit to

conclude that the presented gradient remodelling algor-

ithm, combined with the proposed anisotropic material law

and the meshless method, has the potential to improve

future numerical incursions on the bone regeneration

procedure after fracture and the osseointegration process.
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