
 

 

Abstract —This work deals with the fusion of the data-based 

and analytical submodels in the process engineering. In contrast 

to the traditional way of process reaction rates identification by 

an exhaustive and/or expensive search for the most appropriate 

parameterized structure, a neural network (NN) based 

procedure is developed here to identify the reaction rates in the 

framework of a first principles process model.  Since the 

reaction rates are not measured variables a particular network 

training structure and algorithm are developed to make possible 

the supervised NN learning. Our contribution is focused on the 

general modeling of a class of nonlinear systems representing 

several industrial processes including crystallization and 

precipitation, polymerization reactors, distillation columns, 

biochemical fermentation and biological systems. The proposed 

algorithm is further applied for estimation of the precipitation 

rate of calcium phosphate and compared with alternative 

solutions.  

 

I. INTRODUCTION 

This paper is focused on issues of efficient modelling for a 

class of nonlinear systems arising as models for biochemical 

reactions. It is a contribution to the general process 

modelling by introducing an alternative hybrid modelling 

strategy combining analytical and data-based approaches. 

The new algorithm is illustrated for the benchmark example 

of calcium phosphate precipitation.  

We consider a general reaction process modelled by 

ordinary differential equations of the following matrix form 

(Bastin and Dochain, 1990; Georgieva and Feyo de 

Azevedo, 2006) 

 

( ) outin FFTXK
dt

dX
−+= ,ϕ            (1.1) 
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where, for Ν∈mn, , the constants and variables denote 
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In reaction process systems, equations (1.1) and (1.2) 

usually represent the mass and energy balances, respectively. 

The first right-hand side terms describe the kinetics of 

chemical, biochemical or biological reactions i.e. the 

phenomena of transformation or conversion of one reaction 

component into another. The remaining right-hand side terms 

describe the transport dynamics of the components through 

the reactor.  The class of nonlinear systems represented by 

(1) has been used extensively as models in several industries 

including crystallization and precipitation processes, 

polymerization reactors, distillation columns, biochemical 

fermentation and biological systems.  

The reaction rate vector ϕ  is a key parameter for the 
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description of all concentrations (e.g. chemical species 

growth, substrate consumptions, product formation). The 

traditional way for identification of ϕ  is in the form of 

analytical deterministic expressions (Bastin and Dochain, 

1990, Oliveira et al, 2002, Lubenova et al, 2003). 

First, the parameterized structure of the reaction rate is 

determined based on data obtained by specially designed 

experiments. Then the respective parameters of this structure 

are estimated. This is a highly complex empirical procedure 

due to the strong nonlinear characteristics of the process 

reactions. Most of the parameter estimation techniques rely 

on the assumption that the proposed model structure is 

correct and theoretically identifiable (Walter and Pronzato, 

1997). It is further assumed that the initial values of the 

identified parameters are close to the real process parameters 

(Noykove et al., 2002).  The above assumptions are rather 

strong, they are usually valid for well known processes or 

after a great number of expensive laboratory investigations 

define the proper reaction rate model structure.  

In this paper we introduce an alternative approach, based on 

relaxed assumptions. Instead of exhaustive search for the 

most appropriate parameterised reaction rate structure, a 

data-driven technique is applied to identify the reaction rates. 

In the present work a neural network (NN) is the selected 

modelling technique but other alternatives can be also 

considered. The NN reaction rate submodel is incorporated 

in the general dynamical model (1) and this mixed structure 

is termed knowledge-based hybrid model (KBHM), see 

Fig.1. A systematic procedure for the reaction rates 

identification is discussed in the next section.  
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Fig. 1 Knowledge-based hybrid model (KBHM) 

 

III. PROCEDURE FOR NN BASED IDENTIFICATION OF REACTION 

RATES 

 

The process reaction rates are not measured variables and 

this turns out to be a basic obstacle for the application of any 

data-based modelling tools. Indeed, for the particular case of 

a NN, the supervised training requires an error signal 

between the network output and the corresponding target to 

update the network weights, but targets are not available. 

Therefore, we developed an alternative training procedure. 

The scenario is to propagate the network output through 

some part of the analytical (fixed) model until it arrives to an 

output for which data are available (see Fig.2). The proper 

choice of the partial analytical model and the formulation of 

the error signal for NN updating are discussed below.  

 

Step 1: Model transformation  

First, we make two principle assumptions for the general 

dynamical model (1): 

(A1) Not all of the states of (1) are measured.  

(A2) Only part of the states depend explicitly on a certain 

reaction rate jϕ .  

(A3) All kinetics coefficients are known, that is the matrix 

augK  is known.  
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Fig.2. NN reaction rates identification with known augK  

 

The intuition behind A1 and A2 is to formulate the task as 

general as possible and define a procedure suitable for a 

great number of particular situations.  

Based on (1), and for more convenience, an augmented 

state vector is defined  
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Then (1) is rewritten as  
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According to A2, we assume that only part of the states, 

the subvector aX , depends on a specific reaction rate  jϕ .  

Then  
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Using linear algebra, a new vector Z of dimension 

)1( ln −+  is defined as the following linear combination of 

the state variables  

 



 

 

 

 

 

ba XXAZ += 0 ,                  (6) 

 

where ( ) lX a =dim , ( ) lKrank aug = , and matrix 0A  of 

dimension lln ×−+ )1( , is the unique solution of the 

equation  

 

00 =+ ba KKA .                 (7) 

Thus, the general model (3) is equivalent to: 

 

( ) aoutainabaa
a FFDXXXK

dt

dX
__, −+−= ϕ     (8.1) 

 

)()( ____0 boutbinaoutain FFFFADZ
dt

dZ
−+−+−=   (8.2) 

 

The purpose of the model transformation (8) is twofold. 

On the one hand, we extract this part of the model that 

explicitly depends onϕ , which responds to the assumption 

A2. On the other hand, the dynamics of Z are independent of 

ϕ  and eq. (8.2) appears to be a convenient expression to 

recover the unmeasured states, which responds to the 

assumption A1. The procedure for state recovery, termed as 

state observer in the control theory, is discussed below.  

 

Step 2: State observer 

Let 21, XX  be the vectors of measured and unmeasured 

states, respectively. Then, we can rewrite vector Z as 

 

 2211 XAXAZ += .                                                           (9) 

 

with appropriate definitions of matrices 1A  and 2A . If 

matrix 2A  has a left inverse, the following observer follows 

from (8.2) and (9) (see Oliveira et al. 2002, for more details) 

 

)()(ˆ
ˆ

____0 boutbinaoutain FFFFAZD
dt

Zd
−+−+−=  (10.1) 
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22 XAZAX −= −               (10.2) 

 

where Ẑ and 2X̂  denote estimates of Z and 2X , 

respectively. The observer equation (10.1) can be interpreted 

as a copy of the model (8.2) with an extra term, proportional 

to the observation error of the measured part of the state 

( 1X - 1X̂ ). In case of perfect estimation this term is equal to 

zero. The matrix Ω  is the design parameter which is 

commonly selected as   

 

Nidiag ii ..1,},{ =ℜ∈−=Ω +ωω  (11) 

 

and several standard solutions like extended Luenberger 

observer or extended Kalman observer can be applied to 

design it (Basten and Dochain, 1990).  

 

Step 3: Error signal for NN updating 

At the fist step of the procedure, we transform the model 

(3) into the model (8), which is the basis for selection of the 

partial analytical model required in the hybrid structure of 

Fig. 2. At the second step, we determine a way how to get 

data for (how to estimate) all states Z. At this step we repeat 

the routine of step 2 only for the submodel (8.1). Hence, the 

following state observer is introduced as a partial analytical 

model in Fig. 2. 
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Eq. (12) is used not to estimate the states (they were already 

estimated at the previous step) but to provide on-line 

information for the updating of the estimated reaction rate. 

Definitions for the observation error xE and the error signal 

for NN updating ϕE  are the following expressions: 

 

)ˆ( aax XXE −=                (13) 

 

( ) NNba XXE ϕϕϕ −= ,              (14) 

 

Subtracting (8.1) from (12) we obtain 

 

xxa
x EDEEK

dt

dE
Ω+−= ϕ  .           (15) 

 

Rearranging (15) we get the following expression of the 

NN error signal that is suitable for on-line NN training and 

can be easily interpreted 
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The systematic procedure, presented in this section, is 

further tested for the estimation of the precipitation rate of 

calcium phosphate and is compared with alternative 

solutions.  

IV. CASE STUDY – ESTIMATION OF THE PRECIPITATION RATE OF 

CALCIUM PHOSPHATE 

The precipitation of calcium phosphate was studied by many 

authors under different conditions (Sorense et al., 2000, 

Ferreira et al., 2003). Depending on the temperature, the 

level of supersaturation, pH and initial concentration of 

reagents, one can obtain different calcium phosphate phases. 

One of them is the dicalcium phosphate dihydrate (DCPD) 

known also as brushite. DCPD is recognized as an important 

product in the application of fertilizers to soil and is studied 



 

 

 

 

 

mainly for its role in the physiological formation of calcium 

phosphates. 

For the present study, the precipitation of DCPD was 

performed in a batch laboratory crystallizer. The 

precipitation was carried out by mixing equimolar quantities 

of calcium hydroxide suspension and orthophosphoric acid 

solution. Five successive stages were identified during a 

number of experiments performed with different initial 

reagent concentrations (Ferreira et al., 2003): i) spontaneous 

precipitation of hydroxyapatite (HAP); ii) complete 

dissolution of calcium and HAP growth; iii) appearance of 

first nuclei of brushite; iv) coexistence of HAP and brushite 

and v) transformation of HAP into brushite and growth of 

brushite. The last stage represents the main challenge with 

respect to the precipitation rate modelling because it has to 

take simultaneously into account two kinetics phenomena: 

brushite grows first, due to direct consumption of calcium in 

the solution and second, due to the transformation of HAP 

into brushite. 

The dynamical model of this last stage, transformation of 

HAP into brushite and growth of brushite, according to the 

general formulation (3) is  

 

( )BHAPcm
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where cM  is the mass of calcium into solution, HAPM  is 

the mass of HAP and BM  is the mass of brushite. ( )⋅ϕ  is 

the precipitation rate, 21, mm qq  are molar weight ratios.  

Since HAPM  does not depend on ϕ  and only two states 

explicitly depend on the reaction rate, one of which is 

measured ( cM ), we can simplify the general algorithm 

presented in section  III and choose equal state partitions (6) 

and (9)  as follows  

 

ca MXX == 1 , Bb MXX == 2 ,           (20) 

 

with 

 

1ma qK −= , 1=bK                (21) 

 

110 /1 mqAA ==   12 =A .           (22)  

 

According to (10), the state observer required to recover 

BM  is the following 

 

( )2ˆ

HAPHAP
HAP MK

dt

Md
−=            (23.1) 

( )2

2
ˆ10

ˆ

HAPHAPm MKq
dt

Zd
= ,           (23.2) 

c

m

B M
q

ZM
1

1ˆˆ −= .              (23.3) 

 

The observation error is 
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with respective matrices 

 

 D=0, 








−

−
=Ω

2

1

0

0

ω

ω
.         (25) 

 

For the current study, the value of 21 ωω = = 0.5 was 

chosen after trial and error. Finally, the NN error is 
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For the numerical realization, the error at each iteration is 

determined as follows 
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(27) 

 

A feedforward NN with 2 inputs ( cM , BM ) , 1 output 

( NNϕ ), one hidden layer with 7 sigmoid nodes was trained 

to minimise the error (27).  The Marquardt backpropagation 

training algorithm was preferred since the authors have 

successful experience with this algorithm in a number of NN 

regression and control applications. 

V. RESULTS 

The KBHM model is evaluated for its ability to predict 

process behavior for various initial concentrations of 

reagents (0.05, 0.1, 0.2, 0.3, and 0.4 M). The results are 

summarized in Fig. 3 and Fig. 4.  Data for the main system 

states ( cM - measured, HAPM  and BM - estimated) are 

denoted by dashed line in all figures on subplots a), c) and 

d), respectively. Data for average particle size (AM) is 



 

 

 

 

 

denoted by stars in all subplots b). The model time 

trajectories of cM (subplots a)) and AM (subplots b)) are 

direct indicators of the model quality since measurements for 

them are available. The mass of HAP and brushite are not 

directly measured variables but they can be inferred by the 

available measurements. Thus, the plots of HAPM (subplots 

c) and BM (subplots d) are indirect indicators of the model 

reliability. Data from experiments with initial concentrations 

of reagents 0.2 and 0.3 M were used to train the NN, 

therefore it is not surprisingly that all model variables 

( cM , HAPM , BM , AM) closely match the data from  these 

two types of experiments (see Fig.3). However, more 

valuable are the results depicted in Fig. 4 where the model 

was tested on new ‘unseen’ validation data corresponding to 

experiments with different initial concentrations (0.05, 0.1 

and 0.4 M). Data and model trajectories match quite well 

which confirms the ability of the hybrid NN to estimate the 

precipitation rate of calcium phosphate.  

For the purpose of comparative analysis, three existing 

analytical models were also applied on the same task, see 

Table1. The parameters of the fixed models were tuned with 

the same data obtained by experiments with (0.2 and 0.3 M) 

initial concentrations of reagents Here, we take the 

nondimensional error index (NDEI), which is defined as the 

root mean square error (RMSE) divided by the standard 

deviation of the target series.  

VI. CONCLUSIONS AND DIRECTIONS FOR FURTHER RESEARCH  

This paper presents the principles of a new NN supervised 

training procedure when target outputs are not available. The 

main contribution is related with the way how the error 

signal for updating the network weights is determined. The 

NN is connected with a partial fixed dynamical model to 

identify the process reaction rates. The proper selection of 

the fixed submodel and the estimation of its unmeasured 

states are also discussed.  

Research, which is now going on, and will be reported 

soon as a continuation of this work, is to develop a strategy 

to estimate the reaction rates when the kinetics coefficients 

(the matrix augK ) are not known. Several scenarios are 

considered as for example assuming all or not all of the 

process states are measured. The most challenging case is 

when both reaction rates and kinetics coefficients are to be 

estimated by data-based submodels. A number of possible 

solutions for the data-based modules are studied: classical 

ANN or fuzzy models, modular ANN, ect.  

 

 
a) Initial concentration of reagents 0.2 M 

 

 
b) Initial concentration of reagents 0.3 M 

 

Fig.3 Results with the training data. Data points (doted lines or stars) and 

the model estimations (solid lines) along time for a) Mass of calcium in 

solution, b) the average (in mass) particle size AM  [µm]; c) Mass of HAP; 

d) Mass of brushite. 

 

 



 

 

 

 

 

 
a) Initial concentration of reagents 0.05 M 

 
b) Initial concentration of reagents 0.1 M 

 

 
c) Initial concentration of reagents 0.4 M 

 

Fig. 4 Results with the validation data. Data points (dashed line or stars) 

and the model estimations (solid lines) along time for a) Mass of calcium in 

solution, b) the average (in mass) particle size AM  [µm]; c) Mass of HAP; 

d) Mass of brushite. 

 

TABLE 1 ESTIMATION RESULTS FOR 3 ANALYTICAL MODELS AND THE KBHM  

 

Calcium phosphate precipitation rate 
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Monod type model (Lubenova et al., 2003) 
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Contois type model (Oliveira et al, 2002) 
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2222 ,,, cHAPcHAP ββλλ - tuning parameters 

 

 

 

0.096 

“Logistic” type model (Bastin and 

Dochain, 1990)  

 

)exp( 3 BMλϕ −= , 3λ - tuning parameter 

 

 

 

0.062 

KBHM (this paper) 

A feedforward NN with 2 inputs ( cM , 

BM ) , 1 output ( NNϕ ), one hidden layer 

with 7 sigmoid nodes 
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