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Abstract

In this paper a novel methodology for biosystems dynamic modelling is presented in which 
discrete time series, namely AutoRegressive (eXogenous) models are incorporated in the 
traditional  parametric/nonparametric  hybrid  modelling  framework.  This  results  in  a  set  of 
Delay  Differential  Equations  (DDE)  which  describe  the  material  balances of  a  bioreactor 
system in which dynamic kinetics are mimicked by a parametric/nonparametric submodel. 
The idea is to display better consistency with the nature of biological systems by associating 
the  dynamics  of  a  cellular  metabolism  to  a  parametric/nonparametric  subsystem.  The 
proposed  hybrid  structure  is  evaluated  with  fed-batch  experimental  data  taken  from  a 
process for antibody expression by recombinant Pichia pastoris in addition to two simulation 
case studies. The first of these assumes a discrete time delay and the second assumes a 
distributed delay between kinetics. In this paper, it is shown that the proposed hybrid model 
is capable of modelling discrete and distributed delays between kinetics and outperforms the 
standard hybrid modelling methods with static kinetic models.

1 Introduction

Time delays have been observed in many bioprocesses and, as is well known, they can be 
source of instabilities and oscillations.  In most cases, however,  only a certain time delay 
between the substrate uptake, biomass growth and product formation is observed such as 
the case of the growth phase of fed-batch Saccharomyces cerevisiae or the Pichia pastoris 
cultivations (Ren et al, 2003). Many phenomenological models that consider discrete delays 
(Wolkowicz et al, 1997), distributed delays (Daugulis et al, 1997, Wolkowicz and Xia, 1997), 
ordinary differential equations (ODE) of kinetic rates (Ren et al, 2003) or other time delay 
considering  techniques  have  been  reported.  They  are  usually  based  on  the  general 
mathematical concept of Retarded Functional Differential Equations (RFDE), Bocharov and 
Rihan  (2000).  On  the  one  hand,  these  models  are  capable  of  explaining  stability  of 
processes and are suitable for the estimation of process key variables.  However,  on the 
other hand, their application to other cell systems is limited and their development is cost 
expensive. In contrast, hybrid modelling has been reported to be a suitable, cost effective 
alternative capable of being applied to a number of cell  systems, Oliveira (2004).  Hybrid 
models  combine  mechanistic  knowledge  and  process  knowledge  in  form of  mechanistic 
models and data-base nonparametric models. Mechanistic and nonparametric models can 
be arranged in two possible manners: parallel or serial.  In the serial structure, which has 
been  applied  in  this  study,  the  process  dynamics  are  described  by  time  differentials  of 
process classifying variables and the cell system is mimicked by a parametric/nonparametric 
submodel. However, until now, cell system dynamics have not been taken into account by 
these submodels, but it is known that cell systems are sources of time delays. Thus, in this 
paper,  the dynamics  of  the cell  system will  be ascribed to the parametric/nonparametric 
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submodel. Similar techniques as in the case of phenomenological models could be used, for 
example discrete delays or distributed delays of state variables in the kinetics or differential 
equations of the kinetics. The latter is not appropriate, because both the kinetic function and 
the kinetic values remain unknown. Therefore, a solution or estimation of the kinetics is not a 
straightforward process. Distributed delays are also rather unlikely to be used, due to the fact 
that a mathematical postulation of arbitrarily large delays for unknown weighting functions of 
the delayed variable would have to be assumed and this mathematical convenience is in limit 
biologically unrealistic (Bocharov and Rihan, 2000). Instead, the use of discrete delays in the 
hybrid model estimated values and in additional measurements, when available, is proposed 
in this paper.  This is analogous to the application of  discrete time series,  namely AR(X) 
models. Whereas, in theory, an endless number of time lagged values of one variable can be 
used as inputs to the nonparametric function, in practice this would lead to long training times 
and  to  identification  problems of  the  network  structure  and  parameters  (Haykin  (1999)). 
Hence  an  optimal  number  of  time  lagged  values  exists  which  represent  the  proportion 
between redundancy and the additional  gain of  information in  the inputs.  This  has been 
neglected by this paper and instead it has been shown that a limited number of time lagged 
variable values significantly enhances the prediction capacity of the model and that time lags 
and the number of time lags have been chosen by trial, which was for example also the case 
of Parlos et al (2000). 

The remainder of the paper is organized as follows. Section 2 presents the embedding of 
discrete time series into the hybrid parametric/nonparametric structure proposed by Oliveira 
(2004) along with the changes to the sensitivity equations. The evaluation of the structure 
which  has  been  presented  through  the  analysis  of  two  simulation  cases  in  addition  to 
experimental fed-batch data of a Pichia pastoris process is carried out in section 3. Finally, 
conclusions are presented in section 4. 

2 Hybrid Model Structure

The serial parametric/nonparametric hybrid model structure presented in this paper is shown 
in  figure  1.  The structure  is  based on the originally  proposed model  by Oliveira  (2004). 
However, in this paper, discrete time series, namely AR(X), are incorporated into the hybrid 
framework, resulting in a set of DDE for the bioreactor system. Then, the identification of the 
parameters of the nonparametric function is carried out. 

Figure 1: Structure of the proposed serial parametric/nonparametric hybrid model structure

2.1 General hybrid parametric/nonparametric structure

A bioreactor model can be expressed through a set of material balance equations, which 
describe the dynamics of state variables such as biomass, substrate, product, etc.,

dc
dt

=r−D⋅cu . ( 1 )

Here  c  is a vector of state variables,  D  is the dilution rate,  u  is a  vector of volumetric 
control inputs, and r  is the kinetic rate vector. The vector of kinetic rates combines, when 
available, first principle knowledge with nonparametric functions and according to Oliveira 
(2004) is:

r c,w=K  j c ∗ j X ,w  , ( 2 )
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where K  is a n×m  yield coefficient matrix,   j  are m  kinetic functions from mechanistic 
knowledge and where  j  are m  unknown kinetic functions which have been modelled with 
nonparametric techniques, X  stands for the vector of inputs and w  represents the vector of 
parameters.  Nonparametric techniques have the ability of accounting for nonlinear mappings 
between inputs and outputs. Yet, this nonparametric modelling of the kinetic functions has 
barely  taken  the  dynamics  of  the  cell  system  into  account,  i.e.  the  input  vector  only 
contemplated the current concentration values  c t  and/or the current  exogenous inputs
st  . In this study, and in analogy to the AR(X) models, discrete past values of the model 
outputs  and  the  exogenous  input  are  also  contemplated  as  inputs  to  the  nonparametric 
function, resulting in the following equation

X=[ cit  ,ci t−i, cit−2⋅i , ... , cit−N i⋅i,
s j t , s j t− j , s j t−2⋅ j ,... , s jt−M j⋅ j]  . ( 3 )

In this equation ci  represents the ith value of vector c ,  i  is the associated time lag,  N i  
defines  the  number  of  time  lags  assumed for  each value  ci  of  vector  c ,  s j  is  the  jth 

exogenous input,  j  the associated time lag and its lag number is defined by M j . Note that 
the time lags and the numbers of time lags, i , i , N i , and M j  have been chosen by trial 
as was previously referred to in the introduction. The nonparametric model adopted here is a 
three layer back propagation ANN with hyperbolic tangent activation function formulated as 
 j :

 j  X ,w =w2⋅g w1⋅Xb1b2 , ( 4 )

where w  is the vector form of the weights and biases, w1 , w2 , and b1 , b2 , respectively. 
The hyperbolic tangent activation function g ⋅ is,

g x =
2

1exp −2⋅x
−1 . ( 5 )

By merging Equations (1) – (5) it becomes clear that these model equations which describe a 
bioreactor system with intracellular dynamics are DDEs as “retarded” or “lagged” phenomena 
are accounted by the nonparametric submodel. 

2. The identification of the parameters of the nonparametric submodel

In this study, a least squares criteria of residual concentrations has been adopted to identify 
the  nonparametric  model  parameters  vector  w  through  process  data.  This  criteria  is 
formulated by the following expression:

min{E=
1

P×n
∑l=1

P

∑i=1

n cm,i t −ci t ,w
2

cmax ,i
} , ( 6 )

where P  represents the number of measured patterns, n  is the number of state variables, 
cm, i  are measured state variables, ciw ,t   represent calculated state variables and cmax ,i  
are the scaling factors. The serial hybrid structure of ANN and material balances has been 
proven to be trained most effectively when using sensitivity approach along with analytical 
gradients, Oliveira (2004). The analytical gradients are obtained differentiating equation (1) 
with respect to w  while taking the time lagged differential variables into consideration which 
reads as follows,

d
dt
⋅
∂ c
∂w

=∑k=0

N i { ∂K⋅⋅∂ c t−k⋅
⋅
∂ ct−k⋅

∂w }∂K⋅⋅
∂w

D⋅I n . ( 7 )

This least square problem is solved by using the “lsqnonlin” Matlab function which uses a 
subspace trust region method and is based on the interior-reflective Newton method (Matlab 
Optimization toolbox) and which favours analytical gradients. The sensitivity equation (7) is 
integrated  along  with  the  delay  differential  model  equations  (1)–(5).  For  integration  the 
differential equations are linearly approximated which results in a time inexpensive algorithm. 
Unfortunately,  some error  has  been  introduced  due  to  this  simplification,  but  if  average 
kinetic  rates are estimated for  each time step,  the error  is  significantly  minimized.  Initial 



values  of  sensitivity  equations  are  ∂c /∂w t=0=0 ,  as  the  initial  state  variables  are 
independent of w  and as the gradients ∂c /∂w t0=0  for t0 . The residual gradients are 
then obtained by using the corresponding sensitivity values. It is important to stress that the 
lagged values of either state variables and exogenous inputs are assumed to be equal to the 
initial values for all t−⋅0 . 

3 Results and Discussion

The evaluation of the original and the proposed (DDE) Hybrid Model has been carried out 
through the analysis of two fed-batch simulation cases in addition to fed-batch experimental 
data of a Pichia pastoris fermentation.

3.1 Simulation cases

In both simulation cases the bioreactor system is modelled by material balances, resulting in 
a set of differential equations of biomass, substrate and product concentrations and also of 
the reactor volume, in which the kinetics are expressed as follows. The substrate uptake rate 
is  modelled  with  Monod  kinetics  and  depends  on  the  current  substrate  concentration. 
Specific  growth  is  composed  from some bias  which  accounts  for  maintenance  and  the 
Monod kinetics of a lag variable. Product formation depends linearly on the specific biomass 
growth.  For the lag variable two different  approaches have been adopted. The first,  was 
inspired by Wolkowicz and Xia (1997), and it considers a discrete time lag in the substrate 
concentration as the lag variable. The second, which was inspired by Daugulis et al (1997), 
Wolkowicz et al (1997), considers distributed delays in the substrate concentration to be the 
lag variable.  The substrate feeding in both cases is linearly controlled in regards to user 
desired set points of substrate concentrations. 

For the evaluation of the DDE hybrid structure, three sets of data, namely training, validation 
and  test  data,  have  been  used.  This  data  consist  of  simulated  fed-batches  in  which 
concentrations of biomass, substrate and product, the reactor volume and as well the feeding 
concentration are assumed to be the measured data.  

Figure 2: Plot of concentrations over time for data obtained with the DDE hybrid model (solid 
line, blue),  the hybrid model Oliveira (2004) (dashed line, green)  and the true simulation 
using the distributed delay model (ס, no line, red) 

3.1.1 Hybrid Model Structures

The standard hybrid model structure (Oliveira (2004)) and the DDE hybrid model structure 
describe three state variables: biomass, product and substrate concentration. The kinetics of 
each of them are estimated by training an Artificial Neural Network (ANN) with the training 
set. The estimated substrate concentration, in the standard hybrid model, is the only input to 
the Artificial Neural Network. In contrast, a series of time delays in the estimated substrate 
concentrations are considered as being inputs to the ANN for the DDE hybrid model. 

The training and identification of the best network structure is carried out according to the 
best value, namely the greatest value, for the Bayesian Information Criteria (BIC) (Burnham 
and Anderson (2004)), obtained for the validation set. The test set is used to explore the 
model generalization capabilities. 



3.1.2 Results of Simulation Cases

In  Table  1  a  selection  of  the  best  results  obtained  for  both  simulation  cases  with  the 
standard and the DDE hybrid  model  are presented.  The BIC values  for  the DDE hybrid 
model are found to be better than those of the standard hybrid model for both simulation 
cases.  The  consistency  of  all  the  BIC  values  obtained  for  different  model  structures  is 
elevated although it is not presented here. In fact, the enhancement in model prediction has 
also been reflected in plots of estimated concentrations and “true” concentrations over time, 
as being exemplary shown for predictions of a fed-batch considering distributed delays in 
Fig. 2. Therefore, it is possible to conclude that the proposed DDE hybrid model is capable of 
accounting for all kinds of time delays observed in process by allowing series of time lagged 
values  of  state  variables  as  inputs  to  the  nonparametric  model.  Thus,  a  significant 
enhancement is to be expected for the modelling of experimental data.

3.2 Experimental data of antibody expression of recombinant Pichia pastoris

Pichia pastoris fermentation finds application here, as time delays between substrate uptake, 
biomass growth  and product  formation  have been observed (Ren et  al  (2003)).  Data  of 
Temperature,  pH,  biomass  and  product  concentrations  and  the  accumulated  mass  of 
glycerol and methanol were measured as described in Cunha et al (2004). The bioreactor 
system is modelled by differential equations of biomass and product concentrations and of 
the reactor volume while other measurements are considered for the identification of kinetics.

3.2.1 Hybrid Model Structure

In total, four data sets of fed-batch fermentations have been recorded, three of which are 
used for the training of the hybrid model and the last which is used for its validation. Biomass 
and product concentrations and the reactor volume are used as state variables. Substrate 
concentrations,  ie  glycerol  and  methanol  concentrations  have  unfortunately  not  been 
measured,  but  instead  measurements  of  accumulated  mass  of  feeding  of  glycerol  and 
methanol were available. The estimated biomass concentration along with measurements of 
substrates, such as the sum of mass of glycerol and methanol, temperature and pH, at time 
t , are inputs for the standard hybrid model. It was assumed that the accumulated mass of 
feeds along  with  the  estimated biomass  concentration  could  compensate  for  the  lack  of 
substrate concentrations. However  measured glycerol  and methanol  concentrations might 
have lead to an even more accurate representation of the complexity of the system under 
analysis. For partial compensation of time delayed substrate concentrations, a time delay in 
the biomass concentration was taken into account. This is due to the assumption that the 
delay appearing in the cell metabolism is somewhat similar to a time delay of the cell. Such, 
in addition to the standard hybrid model, the influences of time lags in the estimated biomass 
concentration and the measuring of temperature, pH, the sum of mass of glycerol and of 
methanol on the DDE model estimates have been studied separately and subsequently, a 
joint  delay model for  the most  significant  variables and time delays was studied,  namely 
biomass concentration, temperature and the accumulated mass of glycerol and methanol. 
The identification of the best network structure was carried out as before. 

3.2.2 Results for experimental data

A selection of results is presented in Table 1, revealing the best BIC values for the standard 
hybrid model and the best BIC values of the DDE hybrid model for lagged inputs of biomass 
concentration, pH and temperature. The influence of time lags on the estimates, when each 
variable was studied separately, did not result in significant enhancements of the BIC values 
in comparison to the standard hybrid model and have therefore not been presented here. 
The BIC values for the combinations of delayed variables, namely biomass concentration, pH 
and temperature have been found to be significantly better than the ones of the standard 
hybrid  model,  see  Table  1.  The  enhancement  of  combinations  of  delayed  variables  in 
comparison to the separate delayed variables can be explained by the complexity of the 
system under study. The state of a system is generally characterized by a set of variables. 
The time delays in the kinetics are provoked by the cell metabolism which experiences a 



change of the state of the system with time. Therefore, combinations of time delays in state 
characterizing  variables lead to better  BIC values in contrast  to when they are analysed 
separately. In addition they are also biologically more realistic. However it has been clearly 
demonstrated that  the use of  some time lagged values of  concentration estimations and 
exogenous measurements significantly enhances the hybrid model's process predictions.

Simulation Case Model NN Time  lag (h) Ni BIC train BIC valid BIC test

Discrete Delays Standard hybrid model 2 - - -12332 -3256 -3399

Discrete Delays DDE hybrid model 3 5 1 -11115 -2883 -2882

Distributed Delays Standard hybrid model 2 - - -18942 -5127 -5149 

Distributed Delays DDE hybrid model 4 2 5 -17020 -4552 -4587 

Experimental Data Standard hybrid model 7 - - -43373 -13755 -

Experimental Data DDE hybrid model 3 2 2 -42549 -12890 -

Experimental Data DDE hybrid model 4 2 2 -42909 -13545 -

Table 1: Best BIC results of both simulation cases and experimental data for the standard 
and DDE hybrid model, where NN is the number of nodes in the hidden layer of the ANN

4 Conclusions

In order to account  for  dynamics  in  the cell  metabolism,  discrete time series have been 
incorporated into the hybrid model originally proposed by Oliveira (2004), leading to Delayed 
Differential Equations (DDE). More accurate prediction qualities of the DDE hybrid model 
than those obtained through the standard hybrid model have been achieved when applied to 
two simulation cases containing either discrete or distributed delays between the kinetics. 
Therefore, it has been concluded that the DDE hybrid model is capable of accounting for all 
the time delays observed in bioprocess systems. Expectations in regards to the application to 
the antibody expression of recombinant  Pichia pastoris  have been met, where a significant 
enhancement of process prediction has been achieved, in which a limited number of time 
lagged values of predicted concentration and exogenous measurements have been used.
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