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Abstract—The purpose of this paper is twofold. On the one 
hand, we propose a modification of the general Model 
Predictive Control (MPC) approach where a prespecified 
tracking error is tolerated. The introduction of error tolerance 
(ET) in the MPC optimization algorithm reduces considerably 
the average duration of each optimization step and makes the 
MPC computationally more efficient and attractive for 
industrial applications. On the other hand a challenging 
scheduled crystallization process serves as a case study to show 
the practical relevance of the new intelligent predictive control. 
Comparative tests with different control policies are 
performed: i) Classical MPC with analytical or Arti ficial 
Neural Network (ANN) process model; ii) ET MPC with 
analytical or ANN process model; iii) Proportional-Integral 
(PI) control. Besides the computational benefits of ET MPC, 
the integration of ANN into the ET MPC brings substantial 
improvements of the final process performance measures and 
further relaxes the computational demands. 

Keywords - model predictive control; artificial neural 
networks; error tolerant optimization; sugar crystallization 

I. INTRODUCTION  

 
The  model-based predictive control (MPC) introduced 

in late seventies, nowadays has evolved to a mature level and 
became an attractive control strategy implemented in a 
variety of process industries [2]. The main difference 
between the MPC configurations is the model (linear or 
nonlinear) used to predict the future behavior of the process 
or the implemented optimization procedure. 

The MPC controllers can cope with process constraints,    
nonlinear   or   unstable   processes and consider multiple 
process objectives. Despite these facts, the MPC (particularly 
the nonlinear case) still remains a challenging control system 
to design and maintain, so its industrial use is often limited to 
processes with severe nonlinearities or complicated 
dynamics. Even for such processes, where the standard 
control approach (e.g. PID) is not the best solution, the 
implementation of MPC is impeded due to high 
computational costs. These are normally related with a heavy 
optimization procedure or a complex process model that has 
to be recalled at each optimization step. 

How to relax the computational aspects of MPC and 
make   it   more   attractive   for   the   industry?   These 
academic questions became a real implementation issue 
when we faced the problem of improving the final product 

quality of a scheduled sugar crystallization process [6]. The 
batch or fed-batch mode of operation is a typical production 
scheme for a large group of pharmaceutical, 
biotechnological, food and chemical processes. The 
specificity of such type of processes is related with economic 
and performance objectives focused at the end of the process 
[4]. For example, the sugar quality is evaluated by the final 
average size of sugar   particles   (termed   AM)   and   the   
respective variation of this size (CV). The main challenge of 
the batch production is the large batch to batch variation of 
AM and CV [6]. This lack of process repeatability is caused 
mainly by improper control policy and results in product 
recycling and loss increase. 

MPC seems a promising alternative of the traditional 
proportional-integral-derivative (PID) control that has the 
potential to overcome the problem of the lack of 
repeatability. However, on-line execution of MPC with 
predictions running on a large number of empirical and 
analytical algebraic differential equations (the process 
model) make this alternative computationally more involved 
or even unfeasible for processes with fast nonlinear 
dynamics (as partially is the crystallization) . 

These problems constitute the main motivation for the 
present work. Our main contribution is the modification of 
the general MPC approach where a prespecified tracking 
error is tolerated. The introduction of error tolerance (ET) in 
the MPC optimization algorithm reduces considerably the 
average duration of each optimization step. Our second 
contribution is the integration of the MPC with a data-based 
process model that only represents the input-output behavior. 
This black box model is realized by an Artificial Neural 
Network (ANN). The intuition behind is to build an 
internally less transparent model but more suitable for fast 
process output predictions and rapid adaptation. This control 
paradigm is repeated in the four sequential stages of sugar 
production and compared with alternative solutions. 

The crystallization phenomenon is typical for a great 
number of industrial processes such as for example in the 
pharmaceutical and food engineering. Therefore, the ANN-
based ET MPC strategy tested successfully on the present 
industrial case can be further extended and easily applied to 
other scheduled crystallization based processes. 

The reminder of this paper proceeds as follows: In 
Section II the general MPC problem is stated and the error 
tolerant (ET) MPC is introduced. In section III the ANN 
models are discussed. In section IV short description of the 
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sugar crystallization is given. Control tests and results are 
discussed in section V. Some future work lines are addressed 
in section VI. 

II. NONLINEAR MODEL PREDICTIVE CONTROL 

(NLMPC) 

A. General MPC Framework 

NMPC is an optimization-based multivariable 
constrained control technique that uses a nonlinear dynamic 
model for the prediction of the process outputs [1]. At each 
sampling time the model is updated on the basis of new 
measurements and state variables estimates. Then the open-
loop optimal manipulated variable moves are computed over 
a finite (predefined) prediction horizon with respect to some 
performance index, and the manipulated variables for the 
subsequent prediction horizon are implemented. Then the 
prediction horizon is shifted or shrunk by usually one 
sampling time into the future, and the previous steps are 
repeated. The optimal control problem in the NMPC 
framework can be mathematically formulated as: 
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Where (1) is the performance index, (2) is the process 
model, function f  is the state-space description; function h  
is the relationship between the outputs and the states, P is 
the vector of possibly uncertain parameters and ft is the 

final time. YZX ∈∈∈ )( ,)( ,)( tytutx p are the state, the 

manipulated input and the measured output vectors, 
respectively. X , Z and Y are convex and closed 

subsets nR , mR and pR . jg and jv  are the equality and 

inequality constraints with p and l dimensions respectively. 
 

B. Error-Tolerance MPC - Main Contribution 

Considering the usually discrete nature of the online 
control, the continuous time optimization (1) involved in the 
MPC is solved by a discrete approximation where the time 

horizon [ ]fttt ,0= is divided into equally spaced time 

intervals: Nktkttk ,.....,1,0   ,0 =∆⋅+= . The process 
model (2) is discretised as follows: 

 [ ]Pkukxfkx ),(),()1( =+  (4.1) 

 [ ]Pkxhky p ),()( =  (4.2) 

We propose a modification of the general MPC 
formulation (1), where the discretized optimization is 
performed based on the following performance index 
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subject to the process input constraints  

 
maxmin

maxmin

)(

....2,1 ,)(

uktuu

Hkuktuu c

∆≤+∆≤∆
=≤+≤

 (7) 

and process output constraints  

 pp Hkyktyy ....2,1   ,)( maxmin =≤+≤  (8) 

(.)ref  is the desired response, py is the prediction 

model response. The prediction horizon pH  is the number 

of time steps over which the prediction errors are minimized 
and the control horizon cH  is the number of time steps over 
which the control increments are minimized. 

)(),.....1(),( cHtuktuktu ++++ are tentative values 
of the future limited control signal.  

Eq. (5) is a particular discrete form of the general 
performance index defined by (1). We denote it as an error 
tolerant (ET) MPC because the optimization is performed 
only when the error function ∑E is bigger than a predefined 



 

 162 

real positive value α. In order to reduce the computational 
burden when the error is smaller than α the control action is 

equal to *u which is the last value of u , computed before the 
error enters the α strip. Note that ∑E  in (5) is defined as the 

mean value of the future errors, between the predicted output 
and its reference along the next pH  steps. 

 
Remark: Before the present formulation of the error 

function, )()( tytrefE p−=∑ (i.e. the absolute value of 

the current error) was assumed [7]. The choice of ∑E  

according to (5) improved the tracking and the batch end 
point specifications; however, the price to be paid is 
computational time increase. Therefore, alternative 
formulations of the error function and the error tolerance can 
be considered, which we assume is a problem dependent 
issue and interesting topic for further study.  

α is a design parameter and its choice is decisive for 
achieving a reasonable compromise between lower 
computational costs and acceptable tracking error. While a 
formal procedure for its selection is still missing, the error 
tolerance is chosen based on common sense consideration of 
1-5 % error around the set point. 

 

III.  ANN PROCESS MODEL  

Over the last 20 years, the Artificial Neural Networks 
(ANNs) became a well-established methodology not only as 
a reliable classifier with countless applications but also as 
dynamical regressor mainly for time-series prediction and 
identification. In the context of the present work we are 
mainly interested in studying the ability to project an 
efficient ANN-based controller for a nonlinear system. This 
issue received an increasing attention [5,7] with ANNs being 
applied to design robust neural controllers with guaranteed 
stability and reference tracking. The neural control problem 
can be approached in direct or indirect control design 
framework. Direct ANN control means that the controller 
has an artificial neural network structure, while in the 
indirect ANN control scheme, first an ANN is used to model 
the process to be controlled, and this model is then employed 
in a more conventional controller design. The 
implementation of the first approach is simple but the design 
and the tuning are rather challenging. The indirect design is 
very flexible, the model is typically trained in advance and 
the controller is designed on-line, therefore it is the chosen 
scheme for the present work. The development of suitable 
ANN training algorithms, as for example the Levenberg-
Marquard (LM) algorithm, contributed for the increasing 
interest to the ANNs in the control community [3]. Though 
the LM algorithm requires a lot of memory, the trained ANN 
model is robust against noise and exhibits remarkable 
generalization properties. The problem with multiple local 
minima, typical for all derivative based optimization 
algorithms, is solved by repeating trainings starting with 
different initial weights. 

The most popular ANN structures for modeling reasons 
are Feedforward Networks (FFNN) and Recurrent (RNN) 
ones. Due to the memory introduced by delayed inputs the 
RNN appears to be more suitable for dynamical system 
modeling and that is why in the present work RNNs were 
chosen as process models. A linear activation function is 
located at the single output layer, while tangent sigmoid 
hyperbolic functions are chosen as processing units in the 
hidden layer. Though other alternatives can be considered for 
hidden node functions (for example log-sigmoid function), 
our choice was determined by the symmetry of the tansig 
output into the interval (-1, 1). 

The ANN model was trained with real industrial data. 
Different regression models were obtained based on data of 
two, four and six batches. The ANN trained with six batches 
exhibits the best performance; therefore only results with this 
model are reported in section 5. In order to extract the 
underlying nonlinear process dynamics a prepossessing of 
the initial industrial data was performed. From the complete 
time series corresponding to the input signal of one stage 
only the portion that really excites the process output of the 
same stage is extracted. Hence, long periods of constant 
(steady-state) behavior are discarded. Since, the steady-state 
periods for normal operation are usually preceded by 
transient intervals, the data base constructed consists (in 
average) of 60-70% of transient period data 

 

IV.  SCHEDULING PROCESS DESCRIPTION 

Sugar crystallization occurs through the mechanisms of 
nucleation, growth and agglomeration. The typical process 
operation is scheduled and divided into the following 
sequential phases [3]. 

Charging: During the first phase the pan is partially filled 
with a juice containing dissolved sucrose (termed liquor). 
The charge is usually performed by complete opening of the 
feeding valve. Therefore, no special control policy is 
required at this stage. 

Concentration: The next phase is the concentration. The 
liquor is concentrated by evaporation, under vacuum, until 
the supersaturation reaches a predefined value. At this value 
seed crystals are introduced into the pan to start the 
production of crystals. This is the beginning of the 
crystallization phase. 

Crystallization (main phase): At this phase as evaporation 
takes place further liquor is added to the pan in order to 
guarantee crystal growth at a controlled supersaturation level 
and to increase the sugar content of the pan. Near to the end 
of this phase and for economical reasons, the liquor is 
replaced by other juice of lower purity (termed syrup). 

Tightening: The fourth phase consists of tightening 
which is principally controlled by evaporation capacity. The 
pan is filled with a suspension of sugar crystals in heavy 
syrup, which is dropped into a storage mixer. At the end of 
the batch, the massecuite undergoes centrifugation, where 
final refined sugar is separated from (mother) liquor that is 
recycled to the process. 

Sugar production is still a very heuristically operated 
process, with classical PID controllers being the most typical 
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solution. However, the industrial partners (Sugar Refinery 
RAR, Portugal, Company 30 de Noviembre, Pinar del Río, 
Cuba) agreed that an optimized operation policy might result 
in reduction of the recycled batches and thus in reduction of 
energy and material loss. These problems motivated the 
selection of the sugar crystallization as the case study in 
order to test the computational efficiency of the new ANN-
ETMPC control.  

The different phases of the sugar production are 
comparatively independent, thus a single controller can 
hardly be effective for the complete process. Instead, 
individual controllers for each stage where active control is 
required, was the adopted framework. See Table I for more 
details on the operation strategy. 

V. EXPERIMENTAL RESULTS 

A. Special case of AM Reference in the 4th loop  

The traditional practice of sugar production is to build a 
sequence of control loops where a measurable variable has to 
be kept constant over a certain period. This intuitive strategy 
leads to simple error-correction based control system easy to 
implement and maintain. However, the controlled variable is 
often not the one that directly determines the process 
performance but is the one that is possible to measure. 
Meanwhile, recent advances in software sensor research 
demonstrated that it is more plausible to develop a strategy to 
estimate the unmeasurable variable that directly determine 
the process performance and take control corrections based 
on these estimations. Therefore we extend our study by 
formulating a reference for the mean crystal size AM over 
the last process stage. AM is the main sugar production 
performance measure and since it is not directly measurable 
we estimate it. Laboratory samples taken over the 4th control 
loop show that the crystal growth follows an exponential 
curve similar to the one depicted on Fig.1. 

At each sampling time k the AM reference is on-line 
recomputed according to the following empirical expression  

 )1()1( _ −⋅+−= kAMAMAM refrefendref γγ  (9) 

where refendAM _  is the reference for the crystal size at 

the batch end. γ  belongs to the interval [0,1] and determines 
how smooth is the curve on Fig. 1. For the present tests 

9.0=γ  was selected. 
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Figure 1.  Crystal growth over the last crystallization stage (4th control 

loop). 

B. Discussion of results 

The operation strategy, summarized in Table I and 
implemented by a sequence of ET MPC, classical MPC or PI 
controllers is tested. The output predictions are provided 
either by a simplified discrete model (with the main 
operation parameters kept constant) or by a trained ANN 
model. A process simulator was developed based on a 
detailed phenomenological model [3]. Realistic disturbances 
and noise are introduced substituting the analytical 
expressions for the vacuum pressure, brix and temperature of 
the feed flow, pressure and temperature of the steam with 
original industrial data (without any preprocessing). The 
choice of the MPC design parameters for each control loop 
are summarized in Table II. α-strip values were chosen as 
about 1% error around the specified set points. The set-points 
are chosen empirically based on the process operator 
experience. See [7] for more details on the choice of the 
MPC parameters. 

On Figs. 2-4 are summarized the results with respect to 
the CPU time required by the MPC optimization at each 
iteration. First the classical and the ET MPC are compared 
(Fig. 2) integrating a discredited analytical model (Georgieva 
et al., 2003). Next on Fig. 3 the classical and the ET MPC 
are compared with ANNs as predictive models. On Fig. 4 are 
depicted the CPU time results of ANN-ET-MPC and ANN-
MPC for the special case of variable reference (9) in the 4th 
loop. The results demonstrated that the ET MPC reduces 
significantly the optimization time, which is further relaxed 
if the controller integrates an ANN (inputo-utput) predictive 
model. Due to the small tracking error tolerated the ET MPC 
leads naturally to worse set point tracking compared with the 
classical MPC and PI control. However, the end point 
process characteristics, that really matter, are improved (see 
Table III). Particularly, when in the last loop the policy is not 
a set point tracking of the crystal fraction but a variable 
reference for AM, there is a tendency of getting final crystals 
with better distribution and size. 

VI. FUTURE WORK 

Research on the computational efforts-tracking tolerance 
compromise in the choice of parameter α is now in progress. 
An open question is also the implementation of ET MPC for 
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the most challenging (from computational point of view) 
MPC scheme, namely the batch MPC, where the 
performance index explicitly accounts for the final 
specifications and therefore the prediction horizon is equal to 
the batch duration or at least to the batch stage. Finally, the 
choice of the error tolerance function is also an interesting 
issue. 

 
Figure 2.  CPU time per iteration along the process duration. (a)-Error 

Tolerant (ET) MPC; (b) Classical MPC 

 
Figure 3.  CPU time per iteration along the process duration. (a) ANN-

MPC (b) ANN ET MPC 

 
Figure 4.  CPU time per iteration along the 4th control loop. (a) ANN-

MPC (b) ANN- ET MPC 
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TABLE I.  SUMMARY  OF THE SUGAR CRYSTALLIZATION OPERATION STRATEGY  

Stage Actions Control 

Charge 
The steam valve is closed. The stirrer is off. The vacuum pressure changes from 1 

to 0.23 bar. The vacuum pressure reaches 0.5 bar, feeding starts with max rate. 
Liquor covers 40 % of the vessel height. 

No control. The feed valve is 
completely open 

Concen tration 
The vacuum pressure stabilizes around 0.23 bar.The stirrer is on. The volume is 

kept constant. The steam flowrate increases to 2 kg/s . The supersaturation reaches 
1.06, the feeding is closed, the steam flowrate is reduced to 1.4 kg/s 

Control loop 1. Controlled variable: 
Volume. 

Manipulated variable: liquor 
feed flowrate 

Seeding and 
setting the grain 

The supersaturation reaches 1.11. Seed crystals are introduced. The steam flowrate 
is kept at the minimum for two minutes. 

No control. The feed valve is closed 

Crystallization 
with liquor 
(phase 1) 

The steam flowrate is kept around 1.4 kg/s. The supersaturation is controlled at the 
set point 1.15. 

Control loop 2 Controlled variable: 
supersaturation 

Manipulated variable: liquor feed 
flowrate 

Crystallization 
with liquor 
(phase 2) 

The volume of crystallizer reaches _ 22 m3. The feed valve is closed. The 
supersaturation is controlled at the set point 1.15. The stirrer power reaches 20.5 A 

Control loop 3 Controlled variable: 
supersaturation 

Manipulated variable: steam flowrate 

Crystallization 
with syrup 

The steam flowrate is kept around the maximum of 2.75 kg/s. (hard constraint). The 
volume fraction of crystals is kept at the set point 0.45. The volume reaches its 

maximum value (30 m3). Feed valve closed. 

Control loop 4 Controlled variable: 
volume fraction of crystals. 

Manipulated variable: syrup feed 
flowrate 

Tightening 
The stirrer power reaches the maximum value of 50 A (hard constraint). The steam 

valve is closed. The stirrer and the barometric condenser are stopped. 
No control 

 

TABLE II.  MPC DESING  PARAMETERS FOR THE CONTROL LOOPS DEFINED IN TABLE I  

Control 
loop (CL 

st (s) 

Settling 
time 

t∆ (s) 
Sampling 

period 

pH  

Prediction 
horizon 

cH  

Control 
horizon 

2λ  
Controlled 
variable Set-point 

α -strip 
(1%) 

CL1 40 4 10 2 1000 Volume 12.15 0.15 
CL2 40 4 10 2 0.1 Supersaturation 1.15 0.01 
CL3 60 4 15 2 0.01 Supersaturation 1.15 0.01 
CL4 80 4 20 2 10000 Fraction of crystals 0.43 0.004 

 

TABLE III.  BATCH END POINT PERFORMANCE MEASURES  

a) Batch 1 
Constant set point references in all control loops Variable reference in the 4th loop 

Performance measures Classical 
MPC 

ET-MPC ANN-MPC 
ET 

ANN-MPC 
PI ANN-MPC 

ET 
ANN-MPC 

PI 

AM (mm) 
(reference 0.56) 

0.586 0.588 0.584 0.583 0.590 0.559 0.550 0.589 

CV (%) 32.17 31.39 31.13 31.26 32.96 30.14 30.15 30.24 
Average CPU time (s) 0.166 0.074 0.091 0.061 ------- 0.203 0.151 ----- 

 
a) Batch 2 

Constant set point references in all control loops Variable reference in the 4th loop 
Performance measures Classical 

MPC 
ET-MPC ANN-MPC 

ET 
ANN-MPC 

PI ANN-MPC 
ET 

ANN-MPC 
PI 

AM (mm) 
(reference 0.56) 

0.615 0.603 0.609 0.605 0.613 0.573 0.550 0.611 

CV (%) 29.36 30.26 30.28 30.42 31.14 29.34 30.15 30.83 
Average CPU time (s) 0.166 0.088 0.102 0.078 ------- 0.214 0.144 ----- 

 
a) Batch 3 

Constant set point references in all control loops Variable reference in the 4th loop 
Performance measures Classical 

MPC 
ET-MPC ANN-MPC 

ET 
ANN-MPC 

PI ANN-MPC 
ET 

ANN-MPC 
PI 

AM (mm) 
(reference 0.56) 

0.636 0.625 0.631 0.625 0.626 0.581 0.578 0.622 

CV (%) 28.74 29.85 29.42 30.76 29.23 28.39 28.67 28.64 
Average CPU time (s) 0.167 0.103 0.096 0.067 ------- 0.209 0.140 ----- 

 


