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Abstract—The purpose of this paper is twofold. On the one
hand, we propose a modification of the general Mode
Predictive Control (MPC) approach where a prespeciéd
tracking error is tolerated. The introduction of error tolerance
(ET) in the MPC optimization algorithm reduces conglerably
the average duration of each optimization step andhakes the
MPC computationally more efficient and attractive for
industrial applications. On the other hand a challeging
scheduled crystallization process serves as a casedy to show
the practical relevance of the new intelligent preittive control.
Comparative tests with different control policies ae
performed: i) Classical MPC with analytical or Artificial
Neural Network (ANN) process model; i) ET MPC with
analytical or ANN process model; iii) Proportionalintegral
(P1) control. Besides the computational benefits oET MPC,
the integration of ANN into the ET MPC brings subsantial
improvements of the final process performance meases and
further relaxes the computational demands.

Keywords - model predictive control; artificial neal
networks; error tolerant optimization; sugar crydteation

l. INTRODUCTION

The model-based predictive control (MPC) introdlice
in late seventies, nowadays has evolved to a mituetand
became an attractive control strategy implementedai
variety of process industries [2]. The main differe
between the MPC configurations is the model (linear
nonlinear) used to predict the future behaviorhef process
or the implemented optimization procedure.

The MPC controllers can cope with process congtain
nonlinear or unstable processes and considitiple
process objectives. Despite these facts, the MB&i¢plarly
the nonlinear case) still remains a challengingrobisystem
to design and maintain, so its industrial use terofimited to
processes with severe nonlinearities or

control approach (e.g. PID) is not the best sohjtithe
implementation of MPC is impeded due
computational costs. These are normally relateld aviheavy
optimization procedure or a complex process mdusl lhas
to be recalled at each optimization step.

How to relax the computational aspects of MPC ands,

make it more attractive for the indy3tr These

academic questions became a real implementatiare iss

when we faced the problem of improving the finabdarct

978-0-7695-3827-3/09 $25.00 © 2009 IEEE
DOI 10.1109/ICAIS.2009.34

complicate
dynamics. Even for such processes, where the standa,,

to high
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quality of a scheduled sugar crystallization precés. The
batch or fed-batch mode of operation is a typicatipction
scheme for a large group of pharmaceutical,
biotechnological, food and chemical processes. The
specificity of such type of processes is relatetth wconomic
and performance objectives focused at the endeoptbcess
[4]. For example, the sugar quality is evaluatedHsy final
average size of sugar particles (termed AM)d the
respective variation of this size (CV). The maimltdnge of
the batch production is the large batch to batafatran of
AM and CV [6]. This lack of process repeatabilisydaused
mainly by improper control policy and results inoguct
recycling and loss increase.

MPC seems a promising alternative of the traditiona
proportional-integral-derivative (PID) control thaias the
potential to overcome the problem of the lack of
repeatability. However, on-line execution of MPCthwi
predictions running on a large number of empiriaad
analytical algebraic differential equations (theoqass
model) make this alternative computationally mareolved
or even unfeasible for processes with fast nontinea
dynamics (as partially is the crystallization) .

These problems constitute the main motivation far t
present work. Our main contribution is the modifica of
the general MPC approach where a prespecified itrgick
error is tolerated. The introduction of error talece (ET) in
the MPC optimization algorithm reduces considerathig
average duration of each optimization step. Ourorsgc
contribution is the integration of the MPC with atatbased
process model that only represents the input-oldplavior.
This black box model is realized by an Atrtificialetval
Network (ANN). The intuition behind is to build an
internally less transparent model but more suitdbiefast
process output predictions and rapid adaptatiors ddntrol
paradigm is repeated in the four sequential stafesigar
groduction and compared with alternative solutions.

The crystallization phenomenon is typical for aagre
mber of industrial processes such as for exanmpltbe
pharmaceutical and food engineering. Therefore AN&I-
based ET MPC strategy tested successfully on theept
industrial case can be further extended and eapijied to
other scheduled crystallization based processes.

The reminder of this paper proceeds as follows:
ction Il the general MPC problem is stated amdeiror
tolerant (ET) MPC is introduced. In section Il tANN

models are discussed. In section IV short desoriptif the
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sugar crystallization is given. Control tests ameduits are
discussed in section V. Some future work linesaaidressed
in section VI. intervals: t, =t, +k[At, k=01....,N . The process

model (2) is discretised as follows:

horizon t=|_t0,th is divided into equally spaced time

1. NONLINEAR MODEL PREDICTIVE CONTROL

(NLMPC) x(k+1) = F[x(k),u(k), P] (4.1)
A. General MPC Framework
NMPC is an optimization-based multivariable _
constrained control technique that uses a nonlidgaamic yp(k) - h[X(k), P] (4.2)
model. for t.he prediction of .the process outputs At].each
sampling time the model is updated on the basisie We propose a modification of the general MPC

measurements and state variables estimates. Thevptn-
loop optimal manipulated variable moves are congpoteer
a finite (predefined) prediction horizon with respto some
performance index, and the manipulated variablesttie

formulation (1), where the discretized optimizatias
performed based on the following performance index

subsequent prediction horizon are implemented. Tihen min J=
prediction horizon is shifted or shrunk by usuabye [tk urke)... e+
sampling time into the future, and the previougpstare Hy H,
repeated. The optimal control problem in the NMPC uid = t+K))° -4 (Autt +K))?
framework can be mathematically formulated as: ut+k)= /]1;(6( )) 2;( ( )) (5)
. if E. >a, a0R"
min 3 =¢(x®.u@®.P), ) -
Unin SU(t)SUppax U* if EZ <a
subject to:
where

= f(x®),u(t),P), 0st<t,, x(0)=x%, (21) )
1 P
Es :H_Z|e(t+k)|,e(t+k) =ref (t+k) =y, (t+K), ©

p k=L
Y, (t) =h(x(t). P) (22 Aut+k)=u(t+k-1) —u(t+k-2)
subject to the process input constraints
g;(x=0, j=12..p (3.2)
Upin SUt+K) U k=212...H, .
Au,, < Au(t +K) < Augay @
v, x)<0, j=22,...1 3.2
and process output constraints
Where (1) is the performance index, (2) is the essc
model, functionf is the state-space description; function Yiin € Yp(t +K) < Yoy, K=12..H (8)
is the relationship between the outputs and theestR is
the vector of possibly uncertain parameters &pis the ref (.) is the desired response, is the prediction

final time. x(t)OX,u(t)0Z,y,(t)0Y are the state, the model response. The prediction horizbh, is the number
manipulated input and the measured output vectorsftime steps over which the prediction errorsraigimized
respectively. X , Z and Y are convex and closed and the control horizot  is the number of time steps over
subsetR", R™and R”. g; and v, are the equality and which the control increments are minimized.

inequality constraints witph andl dimensions respectively. ut+k),u(t+k+1,..ut+H.)are tentative values
of the future limited control signal.
B. Error-Tolerance MPC - Main Contribution Eq. (5) is a particular discrete form of the gehera

o . _ performance index defined by (1). We denote it meor
Considering the usually discrete nature of thenenli tolerant (ET) MPC because the optimization is penfed

control, the continuous time optimization (1) imvedl in the v \when the error functiofE< is bigger than a predefined
MPC is solved by a discrete approximation wheretime yw unctioiy is bigg P !
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real positive valuer. In order to reduce the computational
burden when the error is smaller thathe control action is
equal tou” which is the last value dfi, computed before the
error enters the strip. Note thatEy. in (5) is defined as the
mean value of the future errors, between the predlicutput
and its reference along the ne!';dtp steps.

The most popular ANN structures for modeling reason
are Feedforward Networks (FFNN) and Recurrent (RNN)
ones. Due to the memory introduced by delayed st
RNN appears to be more suitable for dynamical syste
modeling and that is why in the present work RNNsrev
chosen as process models. A linear activation imdis
located at the single output layer, while tangegmsid
hyperbolic functions are chosen as processing unithe
hidden layer. Though other alternatives can beidered for

Remark: Before the present formulation of the error iqqen node functions (for example log-sigmoid tiom)

function, Ey =‘ref ® - yp(t)‘ (i.e. the absolute value of

the current error) was assumed [7]. The choiceEef

according to (5) improved the tracking and the hatad
point specifications; however, the price to be péasd
computational time increase. Therefore,
formulations of the error function and the errdetance can

our choice was determined by the symmetry of thrsig
output into the interval (-1, 1).

The ANN model was trained with real industrial data
Different regression models were obtained basedata of
two, four and six batches. The ANN trained with lsatches

alternativeexhibits the best performance; therefore only teswith this

model are reported in section 5. In order to extthe

be considered, which we assume is a problem dependeaunderlying nonlinear process dynamics a preposSspgHi

issue and interesting topic for further study.

the initial industrial data was performed. From toenplete

o is a design parameter and its choice is decisive fdime series corresponding to the input signal of stage

achieving a reasonable compromise between
computational costs and acceptable tracking ewdiile a
formal procedure for its selection is still missirthe error
tolerance is chosen based on common sense contigsidesh
1-5 % error around the set point.

I1I.  ANN PROCESSMODEL

Over the last 20 years, the Artificial Neural Neths
(ANNSs) became a well-established methodology ndy aes
a reliable classifier with countless applicationg blso as
dynamical regressor mainly for time-series predictand
identification. In the context of the present wokle are
mainly interested in studying the ability to prdjean
efficient ANN-based controller for a nonlinear ®rst This
issue received an increasing attention [5,7] witiN& being
applied to design robust neural controllers witlargnteed
stability and reference tracking. The neural cdnproblem
can be approached in direct or indirect controligfes
framework. Direct ANN control means that the coléro
has an artificial neural network structure, while ihe
indirect ANN control scheme, first an ANN is usednodel
the process to be controlled, and this model is #maployed
in a more conventional controller design.
implementation of the first approach is simple tha design
and the tuning are rather challenging. The indidagign is
very flexible, the model is typically trained in\ahce and
the controller is designed on-line, therefore ithie chosen
scheme for the present work. The development dalsiei
ANN training algorithms, as for example the Levemgpbe
Marquard (LM) algorithm, contributed for the incsé®g
interest to the ANNSs in the control community [$hough
the LM algorithm requires a lot of memory, the mied ANN
model is robust against noise and exhibits remdekab
generalization properties. The problem with mudipbcal
minima, typical for all derivative based optimizati
algorithms, is solved by repeating trainings startiwith
different initial weights.
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lowepnly the portion that really excites the procestgpouof the

same stage is extracted. Hence, long periods o$taon
(steady-state) behavior are discarded. Since,td@alg-state
periods for normal operation are usually precedsd
transient intervals, the data base constructedistenéin
average) of 60-70% of transient period data

IV. SCHEDULING PROCESSDESCRIPTION

Sugar crystallization occurs through the mechanisins
nucleation, growth and agglomeration. The typicacpss
operation is scheduled and divided into the follayvi
sequential phases [3].

Charging:During the first phase the pan is partially filled
with a juice containing dissolved sucrose (termigddr).
The charge is usually performed by complete opeaofrthe
feeding valve. Therefore, no special control polity
required at this stage.

ConcentrationThe next phase is the concentration. The
liquor is concentrated by evaporation, under vaguuntil
the supersaturation reaches a predefined valuthig\value
seed crystals are introduced into the pan to stast
production of crystals. This is the beginning ofe th

Thecrystallization phase.

Crystallization (main phaseht this phase as evaporation
takes place further liquor is added to the pan rakeo to
guarantee crystal growth at a controlled superatdur level
and to increase the sugar content of the pan. tdethe end
of this phase and for economical reasons, the Higso
replaced by other juice of lower purity (termedugp):

Tightening: The fourth phase consists of tightening
which is principally controlled by evaporation cajpg. The
pan is filled with a suspension of sugar crystalsheavy
syrup, which is dropped into a storage mixer. At &md of
the batch, the massecuite undergoes centrifugatitvere
final refined sugar is separated from (mother)digthat is
recycled to the process.

Sugar production is still a very heuristically ogted
process, with classical PID controllers being thestiypical




solution. However, the industrial partners (Sugafirfkery
RAR, Portugal, Company 30 de Noviembre, Pinar del, R
Cuba) agreed that an optimized operation policyhtigsult
in reduction of the recycled batches and thus dlugcton of
energy and material loss. These problems motivabed
selection of the sugar crystallization as the csisely in
order to test the computational efficiency of tlevnANN-
ETMPC control.

The different phases of the sugar production are

comparatively independent, thus a single controtten
hardly be effective for the complete process. kudte
individual controllers for each stage where actieatrol is
required, was the adopted framework. See Table infore
details on the operation strategy.

V. EXPERIMENTAL RESULTS

A. Special case of AM Referencein the 4™ loop

The traditional practice of sugar production istald a
sequence of control loops where a measurable Vates to
be kept constant over a certain period. This ineistrategy
leads to simple error-correction based controlesystasy to
implement and maintain. However, the controlledalde is
often not the one that directly determines the gsec
performance but is the one that is possible to oreas
Meanwhile, recent advances in software sensor masea
demonstrated that it is more plausible to develspategy to
estimate the unmeasurable variable that directteroéne
the process performance and take control correcti@sed
on these estimations. Therefore we extend our study
formulating a reference for the mean crystal sid@ éver
the last process stage. AM is the main sugar ptamuc
performance measure and since it is not directlgsueble
we estimate it. Laboratory samples taken over theostrol
loop show that the crystal growth follows an expuis
curve similar to the one depicted on Fig.1.

At each sampling time& the AM reference is on-line
recomputed according to the following empirical regsion

AM ¢ =1=))AM gy ¢ +VIAM 4 (k=1)  (9)
where AM oy« is the reference for the crystal size at

the batch endy belongs to the interval [0,1] and determines
how smooth is the curve on Fig. 1. For the predesis
y = 09 was selected.
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Mass Averaged Crystal size
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Figure 1. Crystal growth over the last crystallization st44®control
loop).

B. Discussion of results

The operation strategy, summarized in Table | and
implemented by a sequence of ET MPC, classical IdPEl
controllers is tested. The output predictions areviged
either by a simplified discrete model (with the mai
operation parameters kept constant) or by a tradwsdl
model. A process simulator was developed based on a
detailed phenomenological model [3]. Realistic utisances
and noise are introduced substituting the analytica
expressions for the vacuum pressure, brix and teahype of
the feed flow, pressure and temperature of thensteith
original industrial data (without any preproces$inghe
choice of the MPC design parameters for each colutop
are summarized in Table li-strip values were chosen as
about 1% error around the specified set points.SEtgoints
are chosen empirically based on the process operato
experience. See [7] for more details on the chafc¢he
MPC parameters.

On Figs. 2-4 are summarized the results with resjoec
the CPU time required by the MPC optimization athea
iteration. First the classical and the ET MPC asmgared
(Fig. 2) integrating a discredited analytical moff&eorgieva
et al., 2003). Next on Fig. 3 the classical and EieMPC
are compared with ANNs as predictive models. On igre
depicted the CPU time results of ANN-ET-MPC and ANN
MPC for the special case of variable referencen(@he 4"
loop. The results demonstrated that the ET MPC aeslu
significantly the optimization time, which is fughrelaxed
if the controller integrates an ANN (inputo-utpptedictive
model. Due to the small tracking error toleratesl HT MPC
leads naturally to worse set point tracking comgavéh the
classical MPC and Pl control. However, the end fpoin
process characteristics, that really matter, apgroned (see
Table Ill). Particularly, when in the last loop thelicy is not
a set point tracking of the crystal fraction butvaiable
reference for AM, there is a tendency of gettimgficrystals
with better distribution and size.

VI. FUTUREWORK

Research on the computational efforts-trackingrémlee
compromise in the choice of parametieis now in progress.
An open question is also the implementation of ERFQ/for



the most challenging (from computational point aéw)

MPC scheme, namely the batch MPC, where the
performance index explicity accounts for the final
specifications and therefore the prediction horimoequal to
the batch duration or at least to the batch stagelly, the
choice of the error tolerance function is also mteriesting
issue.
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TABLE I.

SUMMARY OF THE SUGAR CRYSTALLIZATION OPERATION STRAEGY

Stage Actions Control
The steam valve is closed. The stirrer is off. Vaeuum pressure changes from L No control. The feed valve is
Charge to 0.23 bar. The vacuum pressure reaches 0.5dgaling starts with max rate. '

Liquor covers 40 % of the vessel height.

completely open

Concen tration

The vacuum pressure stabilizes around 0.23 basfitner is on. The volume is
kept constant. The steam flowrate increases td<.Kbhe supersaturation reache
1.06, the feeding is closed, the steam flowratedsiced to 1.4 kg/s

Control loop 1. Controlled variable:
Volume.
Manipulated variable: liquor
feed flowrate

2]

Seeding and
setting the grain

is kept at the minimum for two minutes.

The supersaturation reaches 1.11. Seed crystailstavéuced. The steam flowrate

No control. The feed valve is close

i

Crystallization

The steam flowrate is kept around 1.4 kg/s. Themgturation is controlled at the

Control loop 2 Controlled variable:

with liquor supersaturation
set point 1.15. Manipulated variable: liquor feed
(phase 1)
flowrate
C%?;allihzua;'ron The volume of crystallizer reaches _ 22 m3. The fesve is closed. The Control Io:l’; i?S%T;rrc;i%dnvanable:
q supersaturation is controlled at the set point.ITh& stirrer power reaches 20.5 A . pers ;
(phase 2) Manipulated variable: steam flowrat

Crystallization

The steam flowrate is kept around the maximum 5 Xg/s. (hard constraint). Th
volume fraction of crystals is kept at the set p6id5. The volume reaches its

Control loop 4 Controlled variable:
volume fraction of crystals.

with syrup maximum value (30 m3). Feed valve closed. Manlpulatetfjl gﬁ:ggle: syrup feed
) . The stirrer power reaches the maximum value of §8akd constraint). The steam
Tightening valve is closed. The stirrer and the barometricdemser are stopped. No control
TABLE II. MPCDESING PARAMETERS FOR THE CONTROILOOPSDEFINED IN TABLE |
Control ts (_S) At (S) H p H P Controlled Set-point a -strip
loop (CL | Settling | Sampling | prediction | Control 2 variable P (1%)
time period horizon horizon
CL1 40 4 10 2 1000 Volume 12.15 0.15
CL2 40 4 10 2 0.1 Supersaturation 1.15 0.0
CL3 60 4 15 2 0.01 Supersaturation 1.15 0.0]]
CL4 80 4 20 2 10000 Fraction of crystals 0.43 0.004
TABLE IIl. BATCH END POINT PERFORMANCE MEASURES
a) Batch 1
Constant set point references in all control loops Variable reference in the &' loop
Performance measures | Classical ET ET
MPC ET-MPC ANN-MPC ANN-MPC PI ANN-MPC ANN-MPC PI
AM (mm) 0.586 0.588 0.584 0.583 0.59D 0.559 0550  0.589
(reference 0.56)
CV (%) 32.17 31.39 31.13 31.26 32.96 30.14 30.15  .280
Average CPU time (s) 0.166 0.074 0.091 0.061 ---4--  0.203 0.151 | - |
a) Batch 2
Constant set point references in all control loops Variable reference in the 4" loop
Performance measures | Classical ET ET
MPC ET-MPC ANN-MPC ANN-MPC PI ANN-MPC ANN-MPC PI
AM (mm) 0.615 0.603 0.609 0.605 0.618 0573 0550 0611
(reference 0.56)
CV (%) 29.36 30.26 30.28 30.42 31.14 29.34 30.15 .830
Average CPU time (s) 0.166 0.088 0.102 0.078 --4-  0.214 0144 | - |
a) Batch 3
Constant set point references in all control loops Variable reference in the 4" loop
Performance measures | Classical ET ET
MPC ET-MPC ANN-MPC ANN-MPC Pl ANN-MPC ANN-MPC Pl
AM (mm) X X
(reference 0.56) 0.636 0.625 0.631 0.625 0.62p 0.581 0.578 0.p22
CV (%) 28.74 29.85 29.42 30.76 29.23 28.39 28.67 .62
Average CPU time (s) 0.167 0.103 0.096 0.067 ---4-  0.209 0140 | -
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