Qualifications Frameworks and Quality Assurance - Keystones for the Success of the Bologna Process

Sebastião Feyo de Azevedo
Professor of Chemical Engineering, Faculty of Engineering, University of Porto, Portugal
National Vice-President, Ordem dos Engenheiros-Engineers Portugal
Portuguese Delegate to the BFUG

sfeyo@fe.up.pt http://www.fe.up.pt/~sfeyo

Meeting
Education and Profession of Italian Engineers
Quality and Accreditation in Comparison with European Partners
Florence, Italy
24 May 2008

To say what I am going to say...

1. The Bologna Process and the European Strategy for Development
   a. Key issues and documents
2. Qualifications Frameworks and Quality Assurance - what is equal, what is different
3. The Directive for Recognition of Professional Qualifications and Academic Degree Structures
4. Paradigm shifts in engineering education
5. Closing Notes
The Bologna Process
From Birth, till Today, 2008

**Genesis was...**
- The Magna Carta signed by Rectors in Bologna, 1988?
- The Sorbonne Declaration, signed by Ministers of 4 Countries, France, Germany, Italy and UK, in 1998?

**Original objectives were... never mind...**

**Something for sure very deep and sound led to and supports the development of a movement that Today**
- Counts with 46 signatory Countries
- Involves over 5600 Higher Educations Institutions
- Involves over 16 million students
- Is receiving most serious attention from other main blocks in the Planet

---

The Bologna Process
What needs to be understood?

**Understand the Bologna Process as one of the dimensions of the prevailing strategy for European development**

**Understand the Bologna Process as having two main groups of objectives, naturally interlinked**
- Objectives of political, social, and economical nature nature
- Objectives of a dominant academic nature

**Understand that indeed these objectives mean, in many countries, a major reform (... a small revolution...) in Higher Education and in Society**
European Strategy for Development
I - Driving forces for changes

- Last quarter of the 20th Century - Intense search of new routes for Europe and for the role of Europe in the World, driven by
  - Progress observed in Science and Technology, namely
    - in digital systems and communications
    - in health and life sciences
  - Political changes that took place in Europe
  - Expectations and demands of Society
    - Education for All
    - Quality requirements

European Strategy for Development
II - Life Today

- Economy and market forces - driving force of Today’s Societies
- The computer and communications era - dramatic changes of the concepts of time and space - globalisation
- The increase of Expectation of Life - Social sustainability
- Sharp increase in standards and competition - Worldwide and within the European Space
- Significant change in the concepts of individual career management
- Job market and opportunities - wider than ever
European Strategy for Development
III - A New Model...

Culminated with the European Council of Heads of State and Governments, March 2000, Lisbon

- The Lisbon Strategy for Growth and Jobs
- Competitive positioning relatively to the other blocks of the Planet
- Stating a strategic objective:

“By 2010, making Europe the most competitive and dynamic knowledge-based economy in the world, capable of sustainable economic growth with more and better jobs and greater social cohesion”.

Is being pursued with the Lisbon Treaty, 2007......

European Strategy for Development
IV - The three dimensions of the Strategy

A strategy based on Knowledge and Transnational Cooperation, where we can recognize -

- The Economy Dimension -
  > Including the movement that converged in the creation of the EURO

- The Social Dimension -
  > In line with the European culture of humanism, reasoning, freedom and democracy

- The Knowledge Society Dimension -
  > Identified with the Bologna Process and the creation of the European Higher Education Area
The Bologna Process Revisited
I - Building the European Area of Knowledge... till 2010 !!!

European Area of Knowledge

European R&D Area

European Area of Education

European Higher Education Area

European Area of life long learning

The Bologna Process Revisited
II - Objectives... From another point of view
(A) Social, economical and political objectives

☞ From a social and economical point of view - to guarantee
development and competitiveness through -
✓ The increment of transnational cooperation and mobility,
both in higher education and in R&D

☞ From a more political point of view - to contribute for
European cohesion
✓ Again, through mobility and cooperation, at all levels, of
both students and professional

☞ Still at political level
✓ To guarantee the Social Dimension
✓ To promote the External Dimension of the European model
The Bologna Process Revisited

III - Objectives... From another point of view

(B) Objectives of a more academic nature

- Political / academic
  - Restructuring the offer of higher education - more attractive and nearer to the needs and interests of Society

- Academic
  - An evolution of teaching/learning paradigms - adapted to the concepts and perspectives of the modern society and to the available technical tools, projecting education to more adult phases of life

From Bologna ... to London... and beyond...

I - Directions specifically expressed

in the London Communiqué, 2007

- Mobility - a central issue, far from a success...

- Curricular reform -
  - Degree System and Teaching / Learning Paradigms
    - Stabilising the closely related concepts of Learning Outcomes and Credit System
  - Quality Assurance - implementing the Register
  - Qualifications Frameworks - National Qualifications Frameworks
  - Recognition of degrees and study periods
  - Lifelong Learning

- Social issues - Employability, social dimension...

- Global dimension - Attractiveness
II - After all, where are we now?

- The Bologna Process is now accepted - and not only in Europe...
  - We do not discuss anymore if we should carry on... we discuss how far have we been able to get...
- We should recognize the mountain of work ahead
  - The design is there...
  - The construction is at its beginning
- Speaking of structures, objectives and methods - The changes of paradigm are extremely difficult to achieve
  - Promotion of employability for first cycles...
  - Developing student centred learning
  - Adopting Learning Outcomes, the ECTS System within NQF
  - Implementing the Quality Assurance System

---

III - The Global Dimension... A Recent Report

- Clifford Adelman, “Bologna is a process, not a processed meat” Institute for Higher Education Policy (IHEP), USA, Inside Higher Ed audio conference, February 26, 2008:

“Prediction

- By 2030, what started as European will be global, providing transfer without borders.
- The US will either join or be left behind.
- It is a challenge unlike any other issued to our system of higher education, and we’ve been soundly asleep to date.
- We had better get started---and in more positive ways than simply rejecting degree equivalencies! “

---
### From Bologna ... to London... and beyond...

**IV - Still the same keywords**

- **MOBILITY, COOPERATION, TRUST, ACCREDITATION**
  - MOBILITY AND COOPERATION require professional recognition
  - Professional recognition requires TRUST
  - TRUST requires transparency and readability of structures and professional qualifications

- All is achieved through:
  - COMPARABLE QUALIFICATIONS FRAMEWORKS
  - And
  - RECOGNISED QUALITY ASSURANCE PROCEDURES

---

### To say what I am going to say...

1. The Bologna Process and the European Strategy for Development
2. Key issues and documents
3. Qualifications Frameworks and Quality Assurance - what is equal, what is different
4. The Directive for Recognition of Professional Qualifications and Academic Degree Structures
5. Paradigm shifts in engineering education
6. Closing Notes

- Three major documents
  - The EQF-EHEA - European Qualifications Framework for the European Higher Education Area
    - Adopted in Bergen 2005, within the Bologna Process
  - The EQF-LLL - European Qualifications Framework for Lifelong Learning
    - Adopted by the EC - approved on April 23, 2008 by the Parliament and the Council of the European Union
  - The Directive for Recognition of Professional Qualifications, approved by the European Parliament and by the Council on September 7, 2005
    - National laws should have been passed in all EC Countries till the end of 2007

The EQF-EHEA - European Qualifications Framework for the European Higher Education Area

- A degree structure with three main cycles and a short cycle within or linked to the First Cycle (adopted in Bergen 2005)

- Adopts the Dublin Descriptors developed by the Joint Quality Initiative (2003) as the cycle descriptors, characterizing levels to be attained in
  - knowledge and understanding
  - applying knowledge and understanding
  - making judgements
  - communication
  - Learning skills

- These are high level broad descriptors that will have to lead to more specific descriptors in each area or specialty within a given area
The EQF-LLL
European Qualifications Framework for Lifelong Learning

- Approved by the Parliament and the Council of the European Union on April 23, 2008
- Adopts 8 levels of qualifications characterized in terms of
  - Knowledge
  - Skills
  - Competences
- Adopts common principles for Quality Assurance in Higher Education and Vocational Education and Training in the context of the European Qualifications Frameworks
- Establishes a link of compatibility with the Framework for Qualifications of the European Higher Education Area

Bringing Qualifications Frameworks into Practice
I - The different layers - from general to specific...

- EQF-EHEA or EQF-LLL - High Level Descriptors
  - Characterize high level groups of competences
  - Note the link with the Directive for Professional Recognition
- Sectoral Descriptors at the different levels of qualifications
  - Ideally, resulting from wide transnational agreements
  - The TUNING methodology - The E4 application to Engineering
  - EUR-ACE in Engineering...
- Specific Descriptors
  - For each discipline, thus depending on the sector
  - Including, the identification of professional activities for which the candidates are to be prepared
- Contents - core curricula
  - LEARNING OUTCOMES ARE THE REFERENCE, BUT
  - They must earn the trust of society through the specialists opinion
    - Contents and workload
Bringing Qualifications Frameworks into Practice
II - Methodologies and frameworks - from general to specific...

What we have...

- TUNING methodology
  - E4 proposals for Engineering
- TU3 proposals - Delft, Eindhoven e Twente
- EUR-ACE standards for professional quality assurance
- CDIO - Conceive-Design-Implement-Operate
- ABET standards for professional quality assurance
- European projects to identify core knowledge and competences at discipline level
- Initiatives leading to core curricula recommendations

---

European Working Parties on Education

SFA, Florence, Italy, 24 May 2008

Bringing Qualifications Frameworks into Practice
VI - The CDIO Syllabus (Chalmers, Linköping, KTH, MIT) (I)

- CDIO - Conceive - Design - Implement - Operate
- Building Blocks

1 TECHNICAL KNOWLEDGE AND REASONING
   1.1 KNOWLEDGE OF UNDERLYING SCIENCE [a]
   1.2 CORE ENGINEERING FUNDAMENTAL KNOWLEDGE [a]
   1.3 ADVANCED ENGINEERING FUNDAMENTAL KNOWLEDGE [k]

2 PERSONAL AND PROFESSIONAL SKILLS AND ATTRIBUTES
   2.1 ENGINEERING REASONING AND PROBLEM SOLVING [e]
   2.2 EXPERIMENTATION AND KNOWLEDGE DISCOVERY [b]
   2.3 SYSTEM THINKING
   2.4 PERSONAL SKILLS AND ATTITUDES
   2.5 PROFESSIONAL SKILLS AND ATTITUDE

---

SFA, Florence, Italy, 24 May 2008
Bringing Qualifications Frameworks into Practice
VI - The CDIO Syllabus (II)

Building Blocks (Cont.)

3 INTERPERSONAL SKILLS: TEAMWORK AND COMMUNICATION
   3.1 MULTI-DISCIPLINARY TEAMWORK [d]
   3.2 COMMUNICATIONS [g]
   3.3 COMMUNICATIONS IN FOREIGN LANGUAGES

4 CONCEIVING, DESIGNING, IMPLEMENTING, AND OPERATING SYSTEMS
   IN THE ENTERPRISE AND SOCIETAL CONTEXT [h]
   4.1 EXTERNAL AND SOCIETAL CONTEXT
   4.2 ENTERPRISE AND BUSINESS CONTEXT
   4.3 CONCEIVING AND ENGINEERING SYSTEMS [c]
   4.4 DESIGNING [c]
   4.5 IMPLEMENTING [c]
   4.6 OPERATING [c]

Qualifications Frameworks for Quality Assurance
I - EUR-ACE Accreditation (I) The Project

European Project that aimed at establishing an European System for Accreditation of Engineering Education programmes

✓ to ensure suitability of programme as entry route to the [engineering] profession

14 European Institutions, among them Engineers Portugal

✓ FEANI, SEFI, CESAER, EUROCADRES, ENQHEEI, ASIN, CTI, IEI, CoPI, UNIFI, OE, UAI, EC-UK

SEE FULL DETAILS IN www.enaee.eu
Qualifications Frameworks for Quality Assurance

I - EUR-ACE Accreditation  (III) Programme Outcomes

- Programme Outcomes that must be satisfied
  - 6 areas of competences are defined
    - Knowledge and Understanding
    - Engineering Analysis
    - Engineering Design
    - Investigations
    - Engineering Practice
    - Transferable (personal) Skills
  - For each category, the EUR-ACE Framework Standards list the expected Programme Outcomes of First Cycle and Second Cycle Studies

Qualifications Frameworks for Quality Assurance

II - The ABET System -
ABET 07-08 Criterion 3 - Outcomes and Assessment

a. An ability to apply knowledge of mathematics, science, and engineering.
b. An ability to design and conduct experiments, as well as to analyse and interpret data.
c. An ability to design a system, component, or process to meet desired needs.
d. An ability to function on multi-disciplinary teams.
e. An ability to identify, formulate, and solve engineering problems.
f. An understanding of professional and ethical responsibility.
g. An ability to communicate effectively.
h. The broad education necessary to understand the impact of engineering solutions in a global and societal context.
i. A recognition of the need for, and an ability to engage in life-long learning.
j. A knowledge of contemporary issues.
k. An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.
Example of Standards at Discipline Level
Contributions in Chemical Engineering Education

- Very many contributions addressing scientific, academic and political issues of the required reform or adapting of the degree structures and contents
- The proposals of E4 Thematic Network (2003)
- The CHEMEPASS Project (2007)
- The recommendations of WPE-EFCE - the Working Party on Education - European Federation of Chemical Engineers (2005)

Example of Standards at Discipline level
Contributions in Chemical Engineering Education
The CHEMEPASS Project (I)

- A consortium composed of 13 Higher Education Institutions of 9 European countries and 1 of South Africa:
  - CPE Lyon (France) (Coordinator), Institut Quimic de Sarrià (Spain), Universidade do Porto (Portugal), Politecnico di Torino (Italy), INPL-ENSIC Nancy (France), INPT-ENSIACET Toulouse (France), Technische Universiteit Delft (The Netherlands), University College Dublin (Ireland), Technische Universität München (Germany), UCTM Sofia (Bulgaria), Jagiellonian University (Poland), Lappeenranta University of Technology (Finland), Durban University of Technology (South Africa).
Example of Standards at Discipline level
Contributions in Chemical Engineering Education
The CHEMEPASS Project (II)

- Co-ordinated by Sebastien Gagneur, CPE Lyon

Milestones
- Identification of relevant general and specific Learning Outcomes for Chemical Engineering Programmes
- Identification of knowledge to be tested among Chemical Engineering core subjects
- Development of a database with test questions

Example of Standards at Discipline level
Contributions in Chemical Engineering Education
The WPE-EFCE Recommendations

- See WPE site on http://www.efce.info/wpe.html
- These recommendations cover
  - Learning outcomes
    - General chemical engineering skills and knowledge
    - Transferable skills
  - Achieving the learning outcomes
    - Core curriculum
    - Teaching and learning
    - Industrial experience
    - Review of the educational process
    - Student assessment
- The core curriculum proposed covers only approx. two thirds of a first and a second level degree study
**Qualifications Frameworks - What is equal, what is different:**

**I - CDIO-Dublin-EUR-ACE-ABET (I)**

<table>
<thead>
<tr>
<th>Dublin Descriptors - Master Level</th>
</tr>
</thead>
<tbody>
<tr>
<td>Have demonstrated knowledge and understanding that is founded upon and extends and/or enhances that typically associated with Bachelor’s level, and that provides a basis or opportunity for originality in developing and/or applying ideas, often within a research context;</td>
</tr>
<tr>
<td>Can apply their knowledge and understanding, and problem solving abilities in new or unfamiliar environments within broader (or multidisciplinary) contexts related to their field of study;</td>
</tr>
<tr>
<td>Have the ability to integrate knowledge and handle complexity, and formulate judgements with incomplete or limited information, but that include reflecting on social and ethical responsibilities linked to the application of their knowledge and judgements;</td>
</tr>
<tr>
<td>Can communicate their conclusions, and the knowledge and rationale underpinning these, to specialist and non-specialist audiences clearly and unambiguously;</td>
</tr>
<tr>
<td>Have the learning skills to allow them to continue to study in a manner that may be largely self-directed or autonomous.</td>
</tr>
</tbody>
</table>

---

**Qualifications Frameworks - What is equal, what is different:**

**II - CDIO-Dublin-EUR-ACE-ABET (II)**

<table>
<thead>
<tr>
<th>EUR-ACE - “Outcomes” for accreditation - Master level</th>
</tr>
</thead>
<tbody>
<tr>
<td><strong>Knowledge and Understanding</strong> - An in-depth knowledge and understanding of the principles of their branch of engineering; a critical awareness of the forefront of their branch.</td>
</tr>
<tr>
<td><strong>Engineering Analysis</strong> - The ability to solve problems that are unfamiliar, incompletely defined, and have competing specifications; the ability to formulate and solve problems in new and emerging areas of their specialisation; the ability to use their knowledge and understanding to conceptualise engineering models, systems and processes; the ability to apply innovative methods in problem solving.</td>
</tr>
<tr>
<td><strong>Engineering Design</strong> - An ability to use their knowledge and understanding to design solutions to unfamiliar problems, possibly involving other disciplines; an ability to use creativity to develop new and original ideas and methods; an ability to use their engineering judgement to work with complexity, technical uncertainty and incomplete information.</td>
</tr>
<tr>
<td><strong>Investigations</strong> - The ability to identify, locate and obtain required data; the ability to design and conduct analytic, modelling and experimental investigations; the ability to critically evaluate data and draw conclusions; the ability to investigate the application of new and emerging technologies in their branch of engineering.</td>
</tr>
<tr>
<td><strong>Engineering Practice</strong> - The ability to integrate knowledge from different branches, and handle complexity; a comprehensive understanding of applicable techniques and methods, and of their limitations; a knowledge of the non-technical implications of engineering practice.</td>
</tr>
<tr>
<td><strong>Transferable Skills</strong> - Fulfil all the Transferable Skill requirements of a First Cycle graduate at the more demanding level of Second Cycle; function effectively as leader of a team that may be composed of different disciplines and levels; work and communicate effectively in national and international contexts.</td>
</tr>
</tbody>
</table>
### Qualifications Frameworks - What is equal, what is different: I - CDIO-Dublin-EUR-ACE-ABET (III)

**ABET (Accreditation Board for Engineering and Technology)/EC2000 accreditation requirements, Criterion 3**

- a) An ability to apply knowledge of mathematics, science, and engineering.
- b) An ability to design and conduct experiments, as well as to analyze and interpret data.
- c) An ability to design a system, component, or process to meet desired needs.
- d) An ability to function on multi-disciplinary teams.
- e) An ability to identify, formulate, and solve engineering problems.
- f) An understanding of professional and ethical responsibility.
- g) An ability to communicate effectively.
- h) The broad education necessary to understand the impact of engineering solutions in a global and societal context.
- i) A recognition of the need for, and an ability to engage in life-long learning.
- j) A knowledge of contemporary issues.
- k) An ability to use the techniques, skills, and modern engineering tools necessary for engineering practice.

### Qualifications Frameworks - What is equal, what is different: I - CDIO-Dublin-EUR-ACE-ABET (IV)

**Table 1 - Relation between CDIO - Dublin Descriptors - EUR-ACE Standards - ABET EC2000 accreditation requirements**

<table>
<thead>
<tr>
<th>CDIO</th>
<th>Dublin - Master</th>
<th>EUR-ACE</th>
<th>ABET</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>a</td>
<td>b</td>
<td>c</td>
</tr>
<tr>
<td>Technical knowledge and reasoning</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Personal and professional skills and attributes</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Interpersonal skills: Framework and communication</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concerning, Designing, Implementing and Operating systems in the enterprise and societal context</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Teamwork</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leadership</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

---

SFA, Florence, Italy, 24 May 2008
www.fe.up.pt/-sfeya
sfeya@fe.up.pt
Qualifications Frameworks...
After all ... Bringing Bologna into Practice...

» National Qualifications Frameworks will have to articulate with European Qualifications Framework

» For some countries, the most difficult bit of the Bologna Reform
  ✓ Defining NQF compatible with EQF
  ✓ Characterizing the programmes through ECTS - Workload plus Outcomes - at all levels
  ✓ Re-doing of all modules within this new framework
  ✓ Giving evidence that approved Learning Outcomes are achieved

» Or simply, bringing Bologna into practice...

Recognition of formal studies
I - EUR-ACE vs. other existing global ‘accords’ [W-S-D] (I)

» Different “accords”:
  ✓ Washington Accord
  ✓ Sydney Accord
  ✓ Dublin Accord

» Different “registers”:
  ✓ EMF International Register of Professional Engineers
  ✓ EMTF International Register of Engineering Technologists
  ✓ APEC Register of Professional Engineers
Recognition of formal studies
II - Agreements? Changes may well occur elsewhere... (I)


What Should Be the First Professional Degree in Engineering?

By Moshe Kam & Arnold Peskin

We'd like your opinion. Should the first professional degree in engineering be at the Bachelor or Master level? The IEEE is considering whether to follow the recommendations of several other professional bodies and declare that a Master of Science or Master of Engineering (rather than Bachelor level degree) should be an engineering is the Bachelor of Science or Bachelor of Engineering. In the last decade, some educational programs that required more schooling or practice and awarded a title such as Diploma-engineer have reduced their requirements to conform to the B.Sc./B.Eng./B.Tech. standard. Nevertheless, the increasing complexity of engineering tasks motivated educators to add new topics and subdisciplines to

Recognition of formal studies
II - Agreements? Changes may well occur elsewhere... (III)

In www.ieee.org/theinstitute

M. Kam & A. Peskin, “What Should be the First Professional Degree in Engineering?”, p.10-11, September 2007

We can read

“....In the United States the National Academy of Engineering and the American Society of Civil Engineers have advocated that the Master of Science be declared the first professional degree in Engineering”.

SFA, Florence, Italy, 24 May 2008 www.fe.up.pt/~sfeya sfeya@fe.up.pt
To say what I am going to say...

1. The Bologna Process and the European Strategy for Development
2. Key issues and documents
3. Qualifications Frameworks and Quality Assurance - what is equal, what is different
4. The Directive for Recognition of Professional Qualifications and Academic Degree Structures
5. Paradigm shifts in engineering education
6. Closing Notes

The Directive for Recognition of Professional Qualifications (I)

- Reaffirms previous Directive, accepting 7 professional areas with recognized specifications
  - Medical training: Minimum education - 6 anos IT
  - Training of veterinary surgeons: Minimum education - 5 anos IT
  - Basic dental training: Minimum education - 5 anos IT
  - Training as pharmacists: Minimum education - 5 anos IT
  - Training of nurses: Minimum education - 3 anos IT
  - Training of midwives: Minimum education - 3 anos IT
  - Training of architects: Minimum education - 4 anos IT

- Engineering (as Law) is out of this group
The Directive for Recognition of Professional Qualifications (II)

**Article 11** - Five levels of qualification particularly relevant for professions that are out of the Annex

- 2 levels requiring secondary education, general or vocational
- 1 level, requiring short post-secondary education, not necessarily at higher education level, plus professional training
- 2 levels of post-secondary education at higher education level, plus adequate professional training

The Directive for Recognition of Professional Qualifications (III)

**Art. 11, e)**
...completed a post-secondary course of at least four years’ duration...at a university or establishment of higher education...and where appropriate completed professional training...

**Art. 11, d)**
...training at post-secondary level of at least three and not more than four years’ duration...at a university or establishment of higher education...as well as the professional training that may be required...

**Art. 11, c)**
...training at post-secondary level other than that referred in d) and e) of a duration of at least one year...as well as the professional training which may be required in addition to that post-secondary course...
The EQF-EHEA and the Directive
A striking coincidence or concerted action?

- The EQF-EHEA and the Directive point out in the same direction
  - Recognition of different qualification levels and profiles
  - Recognition that qualifications can be attained through routes in two different subsystems
- They fit remarkably well in the world of engineering and the offer of engineering education in Europe
- They should obviously be translated into our professional accreditation systems

Academic Degree Structures
I - Concerning level of qualification - (I) - Art. 11, c)

- Level of Qualification: Art. 11, c)
  - 1 year of post-secondary course work + Professional Training >= Z, with Z=1

- At least for the time being, in most countries, not leading to a recognised competence group of Engineering, though they are vital for the ‘Engineering Act’...

- Let’s identify them as Technicians
Academic Degree Structures
I - Concerning levels of qualification - (II) - Art. 11, d) and e)

- Two levels of qualifications associated to those levels approved in the Directive

- LEVEL 1 - Art. 11, d): (3-4)U + Professional Training >= Y, with Y=?
  - First Cycle Degrees are the basis for achieving the qualification of Technical (or Associate) Engineers, whatever the European designation

- LEVEL 2 - Art. 11, e): >= 4U + Professional Training >= X, with X=?
  - Second Cycle Degrees are the basis for achieving the qualification of Engineers, or equivalent European designation

Academic Degree Structures
II - Concerning Profiles

- Two main engineering profiles

  - More Theoretically oriented
    - Programmes with a stronger emphasis on basic and engineering sciences in the first years
    - Generally linked to Second Cycle degrees

  - More Applications oriented
    - Designed to qualify after First Cycle, independently of pursuit of studies through Second Cycles, be it directly or through bridging programmes
III - Offer of Programmes

Three main offers of Programmes in Engineering Education

- The offer of First-cycle programmes, aiming at fulfilling the level of requirements for accreditation and professional recognition of LEVEL 1
- The offer of Second-cycle programmes, aiming at fulfilling the level of requirements for accreditation and professional recognition of LEVEL 2
- The offer of two-cycle programmes, within a philosophy of integrated studies, aiming mainly at fulfilling the requirements of accreditation and professional recognition at LEVEL 2

IV - Routes for the different qualification levels (II)

<table>
<thead>
<tr>
<th>Qualification Level</th>
<th>Professional Designation</th>
</tr>
</thead>
<tbody>
<tr>
<td>Level 1 Art. 11 d)</td>
<td>Engineer</td>
</tr>
<tr>
<td>Level 2 Art. 11 e)</td>
<td>Engineer + Engineering + Training</td>
</tr>
<tr>
<td>2nd cycle degree in</td>
<td>Engineer + Training</td>
</tr>
<tr>
<td>1st cycle degree in</td>
<td>? Associate Engineer</td>
</tr>
<tr>
<td>Engineering + Training</td>
<td></td>
</tr>
</tbody>
</table>

Route T

Route A
The Bologna Process has brought unprecedented pressure on the Higher Education Institutions for more dialogue with the Society to incorporate its more immediate interests

More flexible paths - MORE differentiation (competences) offered
- Either more research oriented, or more innovation oriented, or with a higher entrepreneurial spirit, etc....
- Bringing in the concept of “Communication Pipes” between different profiles of education - Bridging programs

More attractive offer in order to bring into the system students with different backgrounds and interests

Promotion of a true offer for lifelong learning through
- Complementary modules of (advanced) specialization courses
- Implementing the concept of ‘accumulated credits’ for recognition of studies
Recognizing the need for personal and inter-personal competences or skills

_Dublin... Making judgements, communication, Learning skills..._

_TU-3... Competence in co-operating, communicating and taking account of the temporal and the social contexts_

_E4... Personal requirements_

_CDIO - Multi-disciplinary teamwork, communications, understanding external, societal, enterprise and business contexts_

EUR-ACE Transferable (personal) skills

Or, employing terms more often heard at professional and industrial level:

Time-scales, market, costs, quality, management, leadership, communication, sustainable, ethical...
Academic Degree Structures, EQF and Quality Assurance
Difficult bits (I)

Still fuzzy the relation Workload -Outcomes

✓ New guidelines for ECTS are about to be proposed

There are still difficulties in interpreting EQF and in developing and applying related accreditation criteria, especially in the comparative distinction between FCD (Bachelor) and SCD (Master) programmes.

✓ The EQF and the Professional Directive 2005/36 are not always 100% clear in this respect.

Overcoming these difficulties will be also a fundamental test for the validity and applicability of the EQF

Academic Degree Structures, EQF and Quality Assurance
Difficult bits (II)

Programme Outcomes must be evaluated in relation with the level of intervention in the Engineering Activity

➢ Social responsibility (namely, signing projects)
➢ Capacity to tackle large, complex problems
➢ Capacity to adapt to new jobs of high complexity and responsibility
➢ Capacity for effective activity in the production line
➢ …..

For the different subsets of Programme Outcomes, and for the First and Second Cycle Degrees, the differences in requirements are mostly related with

➢ scope, depth and breath

For the Master degree, developing the right ATTITUDE to use knowledge or skills in a given situation is a major outcome
To say what I am going to say...

1. The Bologna Process and the European Strategy for Development
3. Qualifications Frameworks and Quality Assurance - what is equal, what is different
4. Paradigm shifts in engineering education
5. Closing Notes

A little bit of History
Paradigm shifts in Engineering Education

♫ Here, I do not speak so much of changes, but rather of adapting basic assumptions

♫ 1st Paradigm(s) ?
♫ In general terms - First quarter of the XX Century - Education close to industry and to industrial operations

♫ 2nd Paradigm(s) ?-
♫ In general terms - Third quarter of the XX Century - Education shift to Engineering Science

♫ 3rd paradigm ?
♫ We are at present on the process of developing a model and of conceptualizing the evolution for a new paradigm... which is not yet quite identified...
New Directions for Engineering Education

I - Methods and contents for ...

- Of course directed to technical knowledge (depending on the discipline)

BUT

- Should include developing of skills and competences valued by Industry and Society in general
  - Skills and competences for innovation and entrepreneurship
  - Job related skills
    - Teamwork, Communication, Leadership
  - Competencies (How tasks are done)
    - Holistic thinking, influencing, Self-management, achievement of objectives...

New Directions for Engineering Education

II - Methods - What to change and how to change?

- Which new methods and tools for teaching and how to induce self-learning?

- Change from
  - Teacher-Centred to Student-Centred methodologies
  - Teaching based on Teacher Inputs to Learning Centred in well defined objectives - Learning Outcomes
  - Teaching Times to Student Workloads

- How to induce holistic thinking and concepts of integrated development?

- Which mechanisms to promote changes?
New Directions for Engineering Education
III - Lifelong Learning

- Lifelong learning is the key for ensuring progress
  - It is the only way to avoid obsolescence
  - 1st degrees for sure do not cover all relevant technical topics
  - Complementary offer - formal courses, ‘hands-on’ and ‘on-the-job’ training, distance and interactive courses...obviously the Internet...
  - Paradox - employers, promoting short-term jobs and forced mobility, are reluctant to educate staff - SOMETHING TO FIGHT AGAINST
  - In a number of countries there is pro-active legislation with incentives for innovation

---

New Directions for Engineering Education
IV - Profiles - diversity required

- To what extent should EE approach (or combine with) immediate societal needs and concerns and industrial practice?
- Should EE rather be research oriented?
- Indeed, diversity is absolutely required
- We should not treat as equal what is different !!!
Directions for Engineering Education
IV - Questions... at social and political level

- What role and distinction of education at the tertiary stage (Higher Education)?
  - Education for all - where to draw the massification line?
- What should be the structure and the core content of engineering curricula for first degrees?
  - What, what depth, when, how, which teaching aids
- Is it feasible a two-year learning process?
  - The system should be ready to accommodate exceptions

New Directions for Engineering Education
VII - Third Paradigm? Is it so?

- If there is, it is of a different nature of the second paradigm
- Still fuzzy, can we see it?
  - Student centred learning methods
  - Skills and competencies
  - Cultural interchanges - base on transnational cooperation
  - Inducing pro-active attitude for lifelong learning as the key for individual career management
  - ......

SFA, Florence, Italy, 24 May 2008
FEUP
www.fe.up.pt/~sfeyo
sfeyo@fe.up.pt
Inspiring words from Chemical Engineering Education
We should not forget the Sine Wave of Life

The words of A.B. Newman, President AIChE, 1938
‘Theoretical descriptions should be limited to illustrate the engineering fundamentals, because a manager does not hire a young engineer just because he is able to describe how a product is produced’.

Words of Ralph Landau, Stanford University, 1997*:
‘I believe chemical engineering’s third paradigm, if there is one, is to return the discipline closer to the practices in industry’


The Bologna Process as part of the paradigm shift
Mechanisms for inducing changes (I)

Main concepts for promoting changes
✓ A Credit System based on Learning Outcomes and on the required Workload
  ➢ If well defined, they will have clear influence on learning methods

Transparent National Qualifications Frameworks
✓ Including descriptors at the required differentiated levels

Quality Assurance Systems with criteria that are taken from the NQF

We should understand the complementarity of concepts and mechanisms in discussion
The Bologna Process as part of the paradigm shift
Mechanisms for inducing changes (II)

Bologna Website
http://www.ond.vlaanderen.be/hogeronderwijs/bologna/

Bologna Seminars on ECTS, LO, EQF and QA issues:

- Bologna Seminar on “ECTS based on learning outcomes and student workload”, 17-18 April, Moscow, Russia
- Bologna Seminar on Development of a Common Understanding of Learning Outcomes and ECTS
  - Porto, Portugal, 19-20 June 2008
  - http://portobologna.up.pt

To say what I am going to say...

1. The Bologna Process and the European Strategy for Development
3. Qualifications Frameworks and Quality Assurance - what is equal, what is different
4. Paradigm shifts in engineering education
5. Closing Notes
Bologna and Routes for Professional Qualification and Transnational Cooperation (I)

- The Engineering Profession requires different qualification levels and education profiles that should be guaranteed and identified through transparent Quality Assurance Procedures.

- The framework being developed and put in practice within the Bologna agreements seem to serve adequately the needs of industry and society in general.
  - Short vocational studies, first cycle studies and second cycle studies (stand-alone or integrated) constitute the basis of such framework.

- The concept of Credit Accumulation, together with Lifelong Learning, is of utmost relevance in this new paradigm of building professional qualifications.

Bologna and Routes for Professional Qualification and Transnational Cooperation (II)

- Second Cycle Programmes should be evaluated in terms of integrated outcomes.
  - They should meet the requirements for professional recognition of the highest engineering level (Engineer or equivalent designation at European level).

- Professionally oriented First Cycle Degrees offer relevant competences to the Society in the engineering profession (those of qualified Associate Engineer or equivalent designation at European level).

- First Cycle Degrees offered within theoretically oriented profiles may not meet immediately the requirements for professional recognition of First Cycles.
Bologna and Routes for Professional Qualification and Transnational Cooperation (III)

- Transnational cooperation and professional mobility require TRUST

The mechanisms to build and consolidate such TRUST are indeed slowly, but steadily, being implemented in our Higher Education Institutions...

The Bologna Process is indeed a major dimension of the European Strategy for Development in the prevailing political, social and economical concepts of this beginning of the XXI Century