To say what I am going to say...

① The need for reform and change
 ① New paradigms to meet social, cultural, scientific and technological development

② Main concepts and issues at stake
 ② Qualifications Frameworks and Quality Assurance Systems

③ New directions in Engineering Education
Global World
A new Paradigm of Coexistence - COOPETITION

- A very fast changing World
- Progress observed in Science and Technology, namely
 - in digital systems and communications
 - in health and life sciences
- Political changes that took place in Europe in the eighties
- Expectations and demands of Society and of Today’s Life
 - Education for All
 - Quality requirements and increased competitiveness
 - Need for mobility
 - Need for Lifelong Learning
- A NEW PARADIGM of COOPERATION AND COMPETITION
- RECOGNITION OF QUALIFICATIONS - A COMMON NEED

The Bologna Process
Building the European Area of Knowledge... till 2010 !!!....
The Core of the Bologna Reforms
Structure and Substance

The Structure - basically done
- A Degree Structure - QUALIFICATIONS FRAMEWORKS
- A System to measure work and OUTCOMES - ECTS
- A System to document qualifications - DIPLOMA SUPPLEMENT
- A System to guarantee transparency - QUALITY ASSURANCE

The Substance - changes to a large extent still to occur
- New contents... closer to more immediate Societal concerns
- Teacher-Centred to Student-Centred methodologies
- Teaching based on Teacher Inputs to Learning Centred in well defined objectives - Learning Outcomes
- Teaching Times to Student Workloads required to achieve desired Learning Outcomes

The Bologna Process
Keywords

MOBILITY, COOPERATION, TRUST, ACCREDITATION

- MOBILITY AND COOPERATION require professional recognition
- Professional recognition requires TRUST
- TRUST requires transparency and readability of structures and professional qualifications

All is achieved through:
- COMPARABLE QUALIFICATIONS FRAMEWORKS
- And
- RECOGNISED QUALITY ASSURANCE PROCEDURES
To say what I am going to say...

1. The need for reform and change
 - New paradigms to meet social, cultural, scientific and technological development

2. Main concepts and issues at stake
 - Qualifications Frameworks and Quality Assurance Systems
 -

3. New directions in Engineering Education

Qualifications Frameworks
The different layers - Who does what...

- High level descriptors - European Frameworks
 - Characterized at institutional level of governments and stakeholders
 - They represent the ‘legal crust’

- Sectoral and specific (sub-sectoral) descriptors
 - By area and specialty
 - In close cooperation with higher education institutions and professional associations
 - In transnational cooperation
 - They represent Bologna in practice

- Curriculum descriptors - core contents
 - Typically developed in Education Working parties and Academic Consortiums, at European Level, or within regulatory bodies at national level
 - They are the basis for credibility of the whole system
High Level Descriptors

Qualifications Frameworks and the Directive for Recognition of Professional Qualifications

Three major documents at High Level

- **The QF-EHEA - Qualifications Framework for the European Higher Education Area**
 - Adopted in Bergen 2005, within the Bologna Process

- **The EQF-LLL - European Qualifications Framework for Lifelong Learning**
 - Adopted by the EC - approved on April 23, 2008 by the Parliament and the Council of the European Union

 - National laws should have been passed in all EC Countries till the end of 2007

Relevance of Sectoral and/or Curriculum Frameworks

Taken from the Leuven/Louvain-la-Neuve Communique

29 April 2009

“...
Curricular reform will thus be an ongoing process leading to high quality, flexible and more individually tailored education paths.

Academics, in close cooperation with student and employer representatives, will continue to develop learning outcomes and international reference points for a growing number of subject areas

...”
Bringing Qualifications Frameworks into Practice
Sectoral or Subject Specific Frameworks

What we have...

- TUNING methodology
 - E4 proposals for Engineering
- TU3 proposals - Delft, Eindhoven e Twente
- EUR-ACE standards for professional quality assurance
- CDIO - Conceive-Design-Implement-Operate
- ABET standards for professional quality assurance
- European projects to identify core knowledge and competences at discipline level
- Initiatives leading to core curricula recommendations
- European Working Parties on Education

Qualifications Frameworks and Quality Assurance
I - Clustering of qualifications descriptors

Table 1 - Clustering of qualifications descriptors in different frameworks

<table>
<thead>
<tr>
<th>Bologna, QF-EHEA</th>
<th>EU, EQF-LLL</th>
<th>EUR-ACE</th>
</tr>
</thead>
<tbody>
<tr>
<td>A. Knowledge and understanding</td>
<td>1. Knowledge</td>
<td>I. Knowledge and understanding</td>
</tr>
<tr>
<td>B. Applying knowledge and understanding</td>
<td>2. Skills</td>
<td>II. Engineering analysis</td>
</tr>
<tr>
<td>C. Making Judgments</td>
<td>3. Competences</td>
<td>III. Engineering design</td>
</tr>
<tr>
<td>D. Communications skills</td>
<td></td>
<td>IV. Investigations</td>
</tr>
<tr>
<td>E. Learning skills</td>
<td></td>
<td>V. Engineering practice</td>
</tr>
<tr>
<td></td>
<td></td>
<td>VI. Transferable skills</td>
</tr>
</tbody>
</table>
Qualifications Frameworks and Quality Assurance

II - What is equal, what is different

QFs, the Directive and the EUR-ACE System

<table>
<thead>
<tr>
<th>Bologna QF-EHEA CYCLES</th>
<th>European Union EQF-LLL LEVELS</th>
<th>EUR-ACE</th>
<th>EU-Directive of Professional Recognition Art. 11 - LEVELS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Third Cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Second Cycles</td>
<td>Level 7</td>
<td>Second Cycles</td>
<td>Art 11º e)</td>
</tr>
<tr>
<td>First Cycles</td>
<td>Level 6</td>
<td>First Cycles</td>
<td>Art. 11º d)</td>
</tr>
<tr>
<td>Short Cycles</td>
<td>Level 5</td>
<td></td>
<td>Art. 11º c)</td>
</tr>
<tr>
<td>Linked to or Within</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>First Cycles</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Qualifications Frameworks and Quality Assurance

III - Comparing qualifications descriptors

(a) - First Cycles - Level 6

<table>
<thead>
<tr>
<th>EUR-ACE - First Cycles</th>
</tr>
</thead>
<tbody>
<tr>
<td>FCA</td>
</tr>
<tr>
<td>L.1</td>
</tr>
<tr>
<td>L.2</td>
</tr>
<tr>
<td>L.3</td>
</tr>
<tr>
<td>L.4</td>
</tr>
<tr>
<td>L.5</td>
</tr>
<tr>
<td>L.6</td>
</tr>
<tr>
<td>L.7</td>
</tr>
<tr>
<td>L.8</td>
</tr>
<tr>
<td>L.9</td>
</tr>
<tr>
<td>L.10</td>
</tr>
<tr>
<td>L.11</td>
</tr>
<tr>
<td>L.12</td>
</tr>
</tbody>
</table>

SFA, IFEES Summit, St. Petersburg, 19 May 2009

www.fe.up.pt/~sfeyo

sfeyo@fe.up.pt
Academic Degree Structures in Engineering
Routes for the different qualification levels

Quality Level
2nd Cycle - Level 7
Art. 11 e)

1st Cycle - Level 6
Art. 11 d)

2nd cycle degree in Engineering + Training

1st cycle degree in engineering science (not leading to professional recognition)

1st cycle in Engineering + Training

Route T

Route A

Quality Assurance in Engineering Education
Programme Outcomes for Accreditation (I)

- Quality assurance procedures rely on accepted qualifications frameworks
- Programme outcomes for accreditation should always be related to potential professional recognition of engineering qualifications

As such:

- There should be only one set of programme outcomes for accreditation of Second Cycle Degrees
 (Whatever the profile and programme)
- There should be only one set of programme outcomes for accreditation of First Cycle Degrees
Recognition of Qualifications - a Worldwide Issue

I - EUR-ACE vs. other existing global ‘accords’ [W-S-D] (I)

- Need to understand different levels of qualification

- Different “accords”:
 - Washington Accord
 - Sydney Accord
 - Dublin Accord

- Different “registers”:
 - EMF International Register of Professional Engineers
 - ETMF International Register of Engineering Technologists
 - APEC Register of Professional Engineers

III - OECD Initiative

AHELO - Assessment of HE Learning Outcomes

- Potentially the largest, most comprehensive assessment of universities yet devised
 - The aim is to measure various types of Learning Outcomes and to examine a wide range of possible criteria to assess their influence in those outcomes

- 10 Countries involved in the start-up, on May 2008
 - Australia, Belgium (Flanders), Finland, Italy, Japan, Korea, Mexico, The Netherlands, Norway, Sweden

- Composed of four strand of work
 - Assessment of generic skills
 - Assessment of discipline-specific skills in Engineering
 - Assessment of discipline-specific skills in Economics
 - Research-based value-added strand - assessing the “value-added” factors of Higher Education Institutions
To say what I am going to say...

1. The need for reform and change
 - New paradigms to meet social, cultural, scientific and technological development

2. Main concepts and issues at stake
 - Qualifications Frameworks and Quality Assurance Systems

3. New directions in Engineering Education

A little bit of History
Paradigm shifts in Engineering Education

Here, I do not speak so much of changes, but rather of adapting basic assumptions

1st Paradigm(s)?
- In general terms - First quarter of the XX Century - Education close to industry and to industrial operations

2nd Paradigm(s)?-
- In general terms - Third quarter of the XX Century - Education shift to Engineering Science

3rd paradigm?
- We are at present on the process of developing a model and of conceptualizing the evolution for a new paradigm... which is not yet quite identified...
New Directions for Engineering Education
I - Methods and contents for ...

- Of course directed to technical knowledge (depending on the discipline)

BUT

- Should include developing of skills and competences valued by Industry and Society in general
 - Skills and competences for innovation and entrepreneurship
 - Job related skills
 - Teamwork, Communication, Leadership
 - Competencies (How tasks are done)
 - Take risks, grab opportunities
 - Holistic thinking, influencing, Self-management, achievement of objectives..

New Directions for Engineering Education
III - Lifelong Learning

- Lifelong learning is the key for ensuring progress
 - It is the only way to avoid obsolescence
 - 1st degrees for sure do not cover all relevant technical topics
 - Complementary offer - formal courses, ‘hands-on’ and ‘on-the-job’ training, distance and interactive courses... obviously the Internet...

- Paradox - employers, promoting short-term jobs and forced mobility, are reluctant to educate staff - SOMETHING TO FIGHT AGAINST
 - In a number of countries there is pro-active legislation with incentives for innovation
New Directions for Engineering Education
IV - Profiles - diversity required

- To what extent should EE approach (or combine with) immediate societal needs and concerns and industrial practice?
- Should EE rather be research oriented?
- Indeed, diversity is absolutely required
 - We should not treat as equal what is different !!!

SFA, IFEES Summit, St. Petersburg, 19 May 2009
www.fe.up.pt/~sfeyo sfeyo@fe.up.pt

New Directions for Engineering Education
V - Third Paradigm? Is it so?

- If there is, it is of a different nature of the second paradigm
- Still fuzzy, can we see it?
 - Student centred learning methods
 - Skills and competencies
 - Cultural interchanges - base on transnational cooperation
 - Inducing pro-active attitude for lifelong learning as the key for individual career management
 -

SFA, IFEES Summit, St. Petersburg, 19 May 2009
Inspiring words from Chemical Engineering Education
We should not forget the Sine Wave of Life

- The words of A.B. Newman, President AIChE, 1938
 ‘Theoretical descriptions should be limited to illustrate the engineering fundamentals, because a manager does not hire a young engineer just because he is able to describe how a product is produced’.

- Words of Ralph Landau, Stanford University, 1997*:
 ‘I believe chemical engineering’s third paradigm, if there is one, is to return the discipline closer to the practices in industry’

New Directions for Engineering Education
What’s the role of the Bologna Process in this search for new directions?

- Promotes an open intercultural attitude
- Promotes European cooperation
- Promotes transparent, readable curricular changes
 ✓ Strengthening cooperation with Society - Industry, Business...
 ✓
 ✓ Fostering innovative work
 ✓
 ✓ Pushing academics to revisit, review and adapt contents and methods

- Full consequences are obviously yet to be evaluated !!!