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1. Introduction

Computation has become a central tool in economics. From the solution of dynamic equilibrium models in
macroeconomics or industrial organization, to the characterization of equilibria in game theory, or in estimation by
simulation, economists spend a considerable amount of their time in coding and running fairly sophisticated software. And
while some effort has been focused on the comparison of different algorithms for the solution of common problems in
economics (see, for instance, Aruoba et al., 2006), there has been little formal comparison of programming languages. This is
surprising because there is an ever-growing variety of programming languages and economists are often puzzled about
which language is best suited to their needs.1 Instead of a suite of benchmarks, researchers must rely on personal
experimentation or on “folk wisdom.”

In this paper, we take a first step at correcting this unfortunate situation. The target audience for our results is younger
economists (graduate students, junior faculty) or researchers who have used the computer less often in the past for
numerical analysis and who are looking for guideposts in their first incursions into computation. We focus on a
macroeconomic application but we hope that much of our conclusions and insights carry over to other fields such as
industrial organization or labor economics, among others.

We solve the stochastic neoclassical growth model, the workhorse of modern macroeconomics, using Cþþ , Fortran,
Java, Julia, Python, Matlab, Mathematica, and R. We implement the same algorithm, value function iteration, in each
of the languages, and measure the execution time of the codes in a Mac and in a Windows computer. The advantage of our
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algorithm, value function iteration, is that it is “representative” of many economic computations: expensive loops, large
matrices to store in memory, and so on. Thus, while our investigation does not entail a full suite of benchmarks, both our
model and our solution method are among the best available choices for our investigation. In addition, our two machines, a
Mac and a Windows computer, are perhaps the two most popular environments for software development for economists.

The key take-aways of our analysis are as follows:
1.
P
in
Cþþ and Fortran are considerably faster than any other alternative, although one needs to be careful with the choice
of compiler. The many other strengths of Cþþ in terms of capabilities (full object orientation, template meta-
programming, lambda functions, large user base) make it an attractive language for graduate students to learn. On the
other hand, Fortran is simple and compact – and, thus, relatively easy to learn – and it can take advantage of large
amounts of legacy code.
2.
 Julia delivers outstanding performance, taking only about 2.5 times longer to execute than Cþþ , while Matlab takes
about 10 times longer. Given how close Julia's syntax is to Matlab's and the fact that it is open-source and that the
language has been designed from the scratch for easy parallelization, many economists may want to learn more about it.
However, Julia's standard is still evolving (causing potential backward incompatibilities in the future) and there are
only a few libraries for it at the moment.
3.
 While Python and R are popular in economics, they do not performwell in our application, taking 44 to 491 times longer
to execute than Cþþ .
4.
 Hybrid programming and special approaches can deliver considerable speed-ups. For example, when combined with Mex

files, Matlab takes only about 1.5 times longer to execute than Cþþ and when combined with Rcpp, R takes about 4
times longer to execute. Similar numbers hold for Numba (a just-in-time compiler for Python that uses decorators) and
Cython (a static compiler for writing C extensions for Python) in the Python ecosystem. While Mex files were faster, we
found Rcpp to be elegant and easy to use. These numbers suggest that a researcher can use the friendly environment of
Matlab or R for everyday tasks (data handling, plots, etc.) and rely on Mex files or Rcpp for the heavy computations,
especially those involving loops.
5.
 The baseline version of our algorithm in Mathematica is very slow, unless we undertake a considerable rewriting of the
code to take advantage of the peculiarities of the language.

Some could argue that our results are not surprising as they coincide with the guesses of an experienced programmer.
But we regard this comment as a point of strength, not weakness. It is a validation that our exercise was conducted under
reasonably fair conditions. We do not seek to overturn the experience of knowledgeable programmers, but to formalize such
experience under well-described and explicitly controlled conditions and to report the information to others.

We also present some brief comments on the difficulty of implementation of the algorithm in each language and on the
additional tools (integrated development environments or IDEs, debuggers, etc.) existing for each language. While this is a
treacherous and inherently subjective exercise, perhaps our pointers may be informative for some readers. Since the codes
are posted at our github repository, the reader can gauge our results and remarks for himself.2

The rest of the paper is structured as follows. First, in Section 2, we introduce our application and algorithm. In Section 3
we motivate our selection of programming languages. In Section 4, we report our results. Section 5 concludes.

2. The stochastic neoclassical growth model

For our exercise, we pick the stochastic neoclassical growth model, the foundation of much work in macroeconomics. We
solve the model with value function iteration. In that way, we compare programming languages for their ability to handle a
task such as value function iteration that appears everywhere in economics and within a well-understood economic
environment.

In this model, a social planner picks a sequence of consumption ct and capital ktþ1 to solve

max
ct ;kt þ 1f g

E0
X1

t ¼ 0

1�βð Þβt logct ð1Þ

where E0 is the conditional expectation operation, β the discount factor, and the resource constraint is given by
ctþktþ1 ¼ ztk

α
t þð1�δÞkt , where productivity zt takes values in a set of discrete points z1;…; znf g that evolve according to

a Markov transition matrix Π. The initial conditions, k0 and z0, are given. While, in the interest of space, we have written the
model in terms of the problem of a social planner, this is not required and we could deal, instead, with a competitive
equilibrium.

For our calibration, we pick δ¼ 1, which implies that the model has a closed-form solution ktþ1 ¼ αβztk
α
t and

ct ¼ 1�αβð Þztkαt : This will allow us to assess the accuracy of the solution we compute. Then, we are only left with the
need to choose values for β, α, and the process for zt . But since δ¼ 1 is unrealistic, instead of targeting explicit moments of
the data, we just pick conventional values for these parameters and processes. For β we pick 0.95, 1/3 for α, and for zt we
2 https://github.com/jesusfv/Comparison-Programming-Languages-Economics
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have a 5-point Markov chain:

ztA 0:9792;0:9896;1:0000;1:0106;1:0212f g

with transition matrix

Π ¼

0:9727 0:0273 0 0 0
0:0041 0:9806 0:0153 0 0

0 0:0082 0:9837 0:0082 0
0 0 0:0153 0:9806 0:0041
0 0 0 0:0273 0:9727

0
BBBBBB@

1
CCCCCCA

The transition matrix is similar to the one that would come from a discretization of an AR(1) process for (log) productivity
following Tauchen's (1986) procedure, except that we move mass from the diagonal to the upper and lower bands to induce
more movements across states and to create a more challenging computation. Note that the algorithm leads to identical
results in all languages, taking the identical path. As such, the relative speed comparisons that we report below are robust to
different parameter values, including values of δo1.

The recursive formulation of this problem in terms of a value function V �; �ð Þ and a Bellman operator (where we have
already imposed that δ¼ 1) is

Vðk; zÞ ¼max
k0

1�βð Þβt log zkα�k0
� �þβE Vðk0; z0Þjz� �

We solve this Bellman operator using value function iteration and by searching for the optimal value of k0. We use a grid of
17,820 points for k uniformly distributed 750 percent of the steady-state value of capital. To make the algorithm as
transparent as possible, we force the choice of k0 to be within the capital grid. We take advantage of monotonicity in the
policy function and of an envelope condition to avoid unnecessary computations (see the online appendix for details). We
choose this grid size so that Cþþ or Fortran would solve the problem in about 1 s. Shorter run times would cause large
relative measurement errors (due to issues such as the situation of the cache at any given time). We impose a tolerance of
1:0e�07 for convergence. The value function takes 257 iterations to converge. All codes achieve convergence in 257
iterations, the computed value functions are the same (up to at least 14 decimal digits), and the policy functions found in
each code select the same level of capital in the grid for all combination of state variables in the grid.

In Fig. 1, we plot the value (top panel) and policy function for capital next period (middle panel) along the capital
dimension, with each color representing a different value of zt. The value and policy functions are, as expected, increasing
and concave. We also plot the difference between the exact and approximated policy function for capital in percentage
Fig. 1. Value function, policy function for capital, and relative difference between exact and approximated solution.
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terms (bottom panel). The maximum error is only �0.0059 percent, which illustrates the high accuracy achieved with
17,820 points for k.

3. Selection of programming languages

Since Fortran came around in 1957, hundreds of programming languages have been created. Even limiting ourselves to
languages that have acquired a solid user base circa 2014, we need to choose from among dozens of them.

Fortunately, the task is simpler than it seems. There is little point to picking languages such as Perl or PHP, neither of
which is particularly suited to, nor widely used for, scientific computing. Also, many languages are close relatives of each
other and one member of the family will suffice for our comparison. With our choices of languages, we cover a wide range of
possibilities, and, with the exception of the functional programming languages discussed below, we feel we have covered all
the obvious choices for numerical computation.

3.1. Compiled languages

Among compiled languages, we select Cþþ14, Fortran 2008, and Java. Cþþ is, perhaps, the most powerful language
among those widely used. Together with C and Objective-C, it constitutes the backbone of much of the modern
computing world. According to the well-cited TIOBE Index of programming language popularity (May 2014 edition), C is
ranked number 1, Objective-C is ranked number 3, and Cþþ number 4, with a total popularity of 34.7 percent.3 Our
Cþþ code does not use any specific Cþþ features such as objects. Thus, the C and Objective-C codes (which can be
found on the github page) are nearly equivalent. We checked, also, that the run time of the C and Objective-C codes was
nearly exactly the same. Thus, we will only report the Cþþ running time.4

Two other relatives of Cþþ are C# and D. C# is widely used in the industry (C# is ranked 6th in the TIOBE Index with
3.75 percent). However, design considerations that make C# attractive for commercial applications also render it slower for
numerical computation and, thus, it is rarely employed for the tasks we are concerned with in this paper.5 D, which
generates code usually roughly of the same speed as Cþþ , is less popular (ranked 26th with 0.60 percent). Including all five
languages, the C family accumulates a popularity of 39.04 percent. Swift, a replacement for Objective-C, is not designed,
at this moment, as a programming language for use outside OS X and iOS.

Fortran, the oldest language of all, still maintains a significant presence in high performance scientific computing and
among economists. Its latest incarnation, Fortran 2008, is updated with modern features and innovations such as coarrays.
Reflecting this niche nature of Fortran, the TIOBE ranks it 32nd, with a 0.42 percent popularity.

An important strength of both Cþþ and Fortran is that both languages have access to well-tested, state-of-the-art
open source libraries to implement a large number of standard algorithms that appear in computations in macroeconomics.
Beyond the more traditional LAPACK, Cþþ has, for example, Armadillo and Boost.6 Armadillo, with its syntax
deliberately based on Matlab's, is particularly easy to use for researchers with less experience.

Java is a common vehicle for undergraduate education and the availability of the Java Virtual Machine in practically
all computer environments makes it an attractive choice. In the TIOBE Index, it is ranked 2nd, with a popularity of 5.99
percent.

The performance of compiled languages also depends on the compiler used to generate the executable files.7 Thus, we
select a number of those. For Cþþ , in the Mac machine, we pick GCC, Intel Cþþ , and Clang (which shares the LLVM –

lower level virtual machine – with XCode and delivers nearly identical speed) and in the Windows machine, GCC, Intel
Cþþ , and Visual Cþþ . For Fortran, in both machines, we select GCC and Intel Fortran.8 For Java, we select the

standard Oracle JDK.

3.2. Scripting languages

We pick as our scripting languages Matlab, Mathematica, R, Python, and Julia. Matlab, Mathematica, and R are
sufficiently known among economists that it is not necessary to elaborate on our choice.9

Python is an elegant open-source language that has become popular in the scientific community (see Sargent and
Stachurski, 2014), in particular the 2.7 version. Since there are different implementations of Python, we select CPython, the
default Python interpreter that comes with Mac and Linux machines, and Pypy (http://pypy.org/), a speed-oriented
3 The TIOBE Index gathers information about the use of programming languages for a wide range of application development. Thus, it offers an
imperfect gauge of the use of programming languages within the scientific computing community. Unfortunately, we could not find an index focused on
the use of languages among scientists. See: http://www.tiobe.com/index.php/content/paperinfo/tpci/tpci_definition.htm.

4 For a comparison of syntaxes, see the Hyperpolyglot athttp://hyperpolyglot.org/cpp.
5 Anastasios Stamulis reported that a conversion of our Cþþ to C# is around 20 percent slower.
6 For Armadillo, see http://arma.sourceforge.net/, and for Boost, http://www.boost.org/.
7 See, for example, the comparison athttp://www.polyhedron.com/fortran-compiler-comparisons.
8 We could not find data on compilers’ market share, but our picks include the most popular compilers in user forums. Our experience with other

compilers, such as PGI, has been less satisfactory in terms of the speed of the generated executables.
9 Marco Lugo provided us also with a JavaScript version of the code, posted on github. It runs approximately at the same speed as Matlab.
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replacement virtual machine that uses a just-in-time compiler. Our Python code for CPython and Pypy was exactly the
same and it uses the Numpy library for matrix operations.

Julia (http://julialang.org/) is a new open-source high-performance programming language with a syntax very close to
Matlab's, Lisp-style macros, and many other modern features, and it also uses a just-in-time compiler for speed based on
the LLVM. Three particularly attractive features of Julia are as follows. First, Julia's default typing system is dynamic (to
facilitate fast coding), but it is possible to indicate the type of certain values to avoid type-instability problems that often
decrease speed in dynamically typed languages. Second, Julia can call C or Fortran functions without wrappers or APIs.
Third, Julia has a library that imports Python modules and provides wrappers for all of the functions on them.

We do not use Octave, an open source clone of Matlab, because it is well-known that it is noticeably slower than
Matlab. We also do not include Gauss (http://www.aptech.com/) because, in preliminary testing, we found that it took
roughly seven times longer to execute than Matlab.

3.3. Functional programming languages

The big missing items in our list of languages are those that belong to the functional programming family that inherits
the insights from Lisp. In a companion paper (Amador et al., 2014), we elaborate on the advantages of functional
programming for economics and explain how to extend our benchmark investigation to functional languages such as Ocaml
or Haskell. Since this comparison involves a number of issues of its own, we prefer to avoid them here to keep the paper
focused.10

3.4. Hybrid and special approaches

Most languages allow for the used of mixed programming. This is particularly useful in Matlab and R, where one can
send computation-intensive parts of the code to Cþþ and keep the rest of the code in an easier scripting language format.
Thus, in addition to “pure” Matlab and R, we also use Mex files, where part of the code is written in Cþþ and compiled
before the Matlab code runs, and Rcpp, a package in R that facilitates the integration of R and Cþþ (http://cran.r-project.
org/web/packages/Rcpp/index.html). In both cases, we sent to Cþþ the Bellman operator that updates the value function
and that consumes nearly all the computing time.

As with Matlab and R, we compile in Python the Bellman operator. We do so using two different approaches: first, with
Numba (http://numba.pydata.org/), a just-in-time compiler that uses decorators to compile Python to LLVM; second, with
Cython (http://cython.org/), a compiler that converts type-annotated Python into generated C code that can be
imported as a module.11

Finally, we have Mathematica. Although Mathematica allows for multiparadigm programming (including our
imperative algorithm), its kernel strongly prefers a more functionally oriented approach. Thus, we will also use its Compile
function plus a rewriting of the code to take advantage of the peculiarities of the language. While this would make the
results from this last computation hard to interpret, some readers may find them of interest.

4. Results

4.1. Speed comparisons

We start with a speed comparison. A straightforward execution time benchmark has three advantages. First, it is easier to
measure. Second, speed comparisons give us an indication of the potential benefits to researchers from mastering a new
programming language. Third, many real-life applications in macroeconomics are considerably more computationally
intensive than our simple exercise. As we increase, for example, the number of state variables or we nest a value function
iteration in an estimation loop, speed considerations become central for many research projects where the code may take
weeks to run.

We report the results of this speed comparison in Table 1, where we show the average run time and the performance of
each code relative to the best performer in each group (Cþþ with GCC in the Mac machine and Cþþ with Visual Cþþ in
the Windowsmachine). For those codes that run in less than 60 s, we average 10 runs (after a warm-up) to smooth out small
differences caused by the operating system. In the codes that run in more than 60 s, we report only one run, as any small
difference does not have a material effect on relative performance. Also, we report the processor time consumed by the
code, not the watch time, except for R, where we report user time (to avoid the problems of the overhead of the REPL

shell).12 At the bottom of the table, separated by a double line, we report the hybrid and special cases: Matlab with Mex

files, R with Rcpp, Numba, Cython, and the rewrite of Mathematica.
10 We run, though, an experiment with Scala, a “trendy” language that allows for multi-paradigm programming by integrating imperative, object-
orientation, and functional features. Our Scala code built with imperative features runs, not surprisingly, at roughly the same speed as the Java code
(Scala compiled Java bytecode runs in the Java Virtual Machine) and, thus, we decided not to include it in our results.

11 The Python ecosystem is incredibly rich and continuously expanding. Thus, it is well beyond our abilities to survey every single possibility. The
interested reader can check a list of compilers at http://compilers.pydata.org.
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Table 1
Average and relative run time (Seconds).

Mac Windows

Language Version/Compiler Time Rel. Time Version/Compiler Time Rel. Time

Cþþ GCC-4.9.0 0.73 1.00 Visual Cþþ 2010 0.76 1.00
Intel Cþþ 14.0.3 1.00 1.38 Intel Cþþ 14.0.2 0.90 1.19
Clang 5.1 1.00 1.38 GCC-4.8.2 1.73 2.29

Fortran GCC-4.9.0 0.76 1.05 GCC-4.8.1 1.73 2.29
Intel Fortran 14.0.3 0.95 1.30 Intel Fortran 14.0.2 0.81 1.07

Java JDK8u5 1.95 2.69 JDK8u5 1.59 2.10
Julia 0.3.7 1.91 2.62 0.3.7 1.80 2.37
Matlab 2014a 7.91 10.88 2014a 6.74 8.92
Python Pypy 2.2.1 31.90 43.86 Pypy 2.2.1 34.14 45.16

CPython 2.7.6 195.87 269.31 CPython 2.7.4 117.40 155.31
R 3.1.1, compiled 204.34 280.90 3.1.1, compiled 184.16 243.63

3.1.1, script 345.55 475.10 3.1.1, script 371.40 491.33
Mathematica 9.0, base 588.57 809.22 9.0, base 473.34 626.19

Matlab, Mex 2014a 1.19 1.64 2014a 0.98 1.29
Rcpp 3.1.1 2.66 3.66 3.1.1 4.09 5.41
Python Numba 0.13 1.18 1.62 Numba 0.13 1.19 1.57

Cython 1.03 1.41 Cython 1.88 2.49
Mathematica 9.0, idiomatic 1.67 2.29 9.0, idiomatic 2.22 2.93
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Our first result is that Cþþ and Fortran still have a considerable speed advantage with respect to all other alternatives.
Second, Cþþ and Fortran codes execute in roughly the same time. Third, even for our very simple code, there are
noticeable differences among compilers. We find speed improvements of more than 100 percent between different
executables of the same underlying code (and using equivalent compilation flags). While the open-source GCC compilers are
superior in a Mac environment relative to the Intel compilers, GCC compilers do less well in a Windows machine.13 The
deterioration in performance of the Clang compiler was expected given that the goal of the LLVM is to minimize
compilation time and executable file sizes, both important goals when developing general-use applications but often (but
not always!) less relevant for numerical computation.

Fourth, Java takes between 2.1 to 2.69 times longer to execute than Cþþ . This difference in speed plus Java's issues
with floating point arithmetic in high-performance scientific computation suggests that there is no obvious advantage for
choosing Java over Cþþ , unless portability across platforms or the wide availability of Java programmers is an important
factor.

Fifth, turning to scripting languages, Julia, with its just-in-time compiler, delivers an outstanding performance. The
Julia code takes only between 2.37 and 2.62 times longer to execute than the Cþþ code. Matlab takes between 9 to 11
times longer to execute than the best Cþþ executable. The difference in performance between compiled languages and this
widely used scripting language seems to have stabilized over the last decade. In the Pypy implementation, the Python code
takes around 44–45 times longer to execute than in Cþþ . In the “traditional” implementation of Python (often called
CPython), the code takes between 155 and 269 times longer to execute than in Cþþ .14

R takes between 475 to 491 times longer to execute than Cþþ , although the performance improves somewhat (to
between 244 and 281 times longer to execute) if the R code is compiled using the R compiler package. This poor
performance is well-understood in the R community and it is due, in part, to some choices in the original design of R back in
the 1990s, when nobody could have forecasted its future success. In fact, there are a number of initiatives to
increase R’s speed, such as pqR, Renjin, and Riposte.15 Mathematica, in its imperative version, takes up to 809
times longer to execute than Cþþ.

We move now to analyzing the hybrid and special cases. When we use a Mex file written in Cþþ , Matlab takes 1.29 and
1.64 times longer to execute than Cþþ . When we use Rcpp in R, the resulting code takes between 3.66 and 5.41 times
longer to execute than Cþþ .
12 REPL stands for read–eval–print loop, the interactive language shell that many users are familiar with. The details of each machine and the
compilation instructions are reported in the online appendix.

13 We thank an anonymous referee for pointing out to us that, in a Linux machine, Intel compilers also deliver better performance than the GCC

compiler.
14 Other benchmarks have also found similar results. For example, the Computer Languages Benchmark Game finds many examples where Python takes

over 100 times longer to execute than Cþþ . See also Lubin and Dunning, 2013, https://modelingguru.nasa.gov/docs/DOC-1762, or http://wiki.scipy.org/
PerformancePython.

15 See the discussions and speed tests in> http://www.pqr-project.org/>, http://www.renjin.org/, and https://github.com/jtalbot/riposte.
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In the Python world, Numba's decorated code takes between 1.57 and 1.62 times longer to execute than the best Cþþ
executable and Cython code takes between 1.41 and 2.49 times longer to execute than Cþþ . Both approaches demonstrate
a great performance.

Mathematica is a particular case. If we just use the function Compile to compile the Bellman operator, performance
improves, but not dramatically. If, instead, we both rewrite the code to have a more functionally oriented structure and use
the function Compile, Mathematica takes between 1.67 and 2.22 times longer to execute than Cþþ . As we mentioned
before, we do not emphasize this performance, as the code was tuned to Mathematica requirements, something we did not
do for other languages.
4.2. Coding comparison

Our previous results have focused on execution speed. However, in many cases, the real constraint is not execution time,
but how long it takes the economist to code the algorithm he is interested in. A researcher may want to code in a slower
language if the difference in coding productivity compensates for the difference in execution speed. One objective measure
of complexity, however incomplete, is the length of the code. Table 2 reports the lines of code required by each program (for
Mex and Rcpp we report the lines of code of the two programs, the main program in Matlab or R and the inner loop
program in Cþþ). The number of lines is very similar across languages, except for the compiled codes, which need to pay an
overhead in terms of type declarations.

Unfortunately, comparing coding complexity (except for the number of lines) is subjective and depends on the familiarity
of a researcher with a particular programming language or perhaps just with his predisposition toward a programming
paradigm. Nevertheless, and with all due caution, we find it of interest to highlight a few factors.

A first important difference, which we already pointed out in Section 3, is whether the language is compiled (such as
Cþþ or Fortran) or scripted (such as Matlab or Julia). Compiled programs pay for their superior speed with the
overhead of having to go through the edit-compile-run-debug cycle to test it and to identify potential problems. Scripted
languages allow for a more interactive coding process where the programmer can easily test small chunks of the code
through the REPL. Especially for less experienced programmers, this latter form of exploratory programming can be more
attractive.16

A second difference is the type system. Cþþ and Fortran impose static typing, i.e., the type of the variables, functions,
and other code components are verified and enforced at compile-time. This type needs to be manifest, as in Fortran, or it
can be deduced, as in Cþþ14. Type deduction makes the code more adaptable and less tedious to read and write (although
also more open to subtle mistakes). Other languages, such as Matlab and Julia, are dynamically typed, i.e., the type is
verified and enforced at run-time. Also, the type of the variable is inferred (although type annotations are possible). Static
compilation usually makes coding the first version of the program slower and less interactive, but also safer. Dynamic and/or
inferred typing is the source of numerous bugs. Finding and fixing those bugs may end up taking longer than being explicit
about typing from the start.

A third difference is the complexity of the language. Cþþ is an extremely complex language, with dozens and dozens of
features. Even the most experienced programmers sometimes are not familiar with all of them. Although the core or the
language is relatively simple, the daunting amount of information required to code advanced Cþþ can be challenging. On
the other hand, Fortran, as we mentioned above, is simple and compact, although also rather limited for implementing
advanced programming techniques. Matlab and R are somewhere in the middle. While their core is also relatively
straightforward, the presence of dozens of toolboxes for Matlab and of thousands of packages for R can overwhelm some
young researchers. Many observers have commented, also, on the steep learning curve of R. Python is extremely intuitive
and easy to learn, as proven by the fact that it is widely used as the language of choice in introductory classes in computer
science. Finally, Mathematica can be idiosyncratic and difficult to master for those programmers coming from backgrounds
in other languages, but it is also extremely elegant once one familiarizes oneself with its structure.

A fourth difference is the set of tools available for a programmer and how active the community of users in that language
is. For example, a good IDE or a powerful debugger is key for fast development. Given our choice of languages, the
programmer will find outstanding IDEs, debuggers, or profilers for most of the languages. For less experienced
programmers, for instance, the IDE of Matlab or RStudio for R are easy to use and intuitive and include both debuggers
and profilers of high quality. The only partial exception is Julia, which suffers from its early stage of development and the
absence of a good IDE. With respect to the user communities, Fortran has the important disadvantage of being a niche
language. Matlab, Python, and R have extremely active communities in scientific computation. Perhaps the main strength
of R is in statistics and econometrics where the extraordinary richness of existing packages (over 6560 at the CRAN
repository as of April 2015) makes it an outstanding alternative. Similarly, a key advantage of Python is the existence of
libraries such as Numpy, Scipy, SymPy, MatPlotLib, and pandas and of shells such as IPython (although some of these
libraries have only been partially ported to Python 3þ).
16 There are also REPLs for Cþþ , such as https://root.cern.ch/drupal/content/cling, although their use is less common and less powerful than the full-
fledged language.
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Table 2
Lines of code.

Language Lines

Cþþ 182
Fortran 149
Java 160
Julia 106
Matlab 114
Python 119
R 108
R compiled 118
Mathematica 114

Matlab, Mex 108þ127
Rcpp 86þ52
Python, Numba 0.13 135
Cython 104
Mathematica 130
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Finally, one must always remember that different programming languages can be used by one researcher to address
different problems (for example, a complicated value function iteration in Cþþ and a statistical analysis of some data in R)
or even mixed with care in the same project.
4.3. Some additional remarks

We close with several additional remarks about our exercise. First, to make the comparison as unbiased as possible, we
coded the same algorithm in each language without adapting it to the peculiarities of each language (which could reflect
more about our knowledge of each language than of its objective virtues).17 Therefore, the final code looks remarkably
similar among the languages, with the exception of one version of the code in Mathematica.

Second, we do not take advantage of the particular features of each language. For a simple algorithm such as ours, these
adaptations will not make much difference, but they would make the comparison extremely cumbersome.18

Third, our computational task (value function iteration, monotonicity in the decision rule, and an envelope condition) is
not well-suited to vectorization. The argument is explained in detail in the online appendix. In particular, the nesting of a
while loop with three for loops and an if control statement, far from being a poor programming choice, saves
considerable time in execution. We have vectorized versions of our code in Matlab or R (languages that often profit from
vectorization) that take longer to execute than the baseline codes. Furthermore, the deterioration in performance becomes
worse as the number of grid points increases.

Fourth, and also beyond the scope of this paper, we do not compare how easy it is to parallelize the code written in each
language. This may be an important factor with some languages, such as Julia, that are designed from scratch to be easy to
parallelize, and others that have more issues with it (for example, Python due to its Global Interpreter Lock that
synchronizes the execution of threads).

Finally, and somewhat speculatively, how would our results change in other, more involved projects in macroeconomics,
such as models with heterogeneous agents or in estimation? While we cannot offer anything more than educated guesses,
our experience over the years is that the relative magnitudes of speed and coding comparisons survive surprisingly well
across many applications. For example, in a typical estimation by simulation (using a particle filter or Markov Chain Monte
Carlo), Cþþ still has a small speed advantage over Fortran, Julia takes around 2–3 times longer to run than Cþþ or
Fortran code, while Matlab takes around 10 times longer, and Python and R take even much longer (these two languages
have a wide variance in the degree of their speed deterioration from application to application). All of these results are very
much in line with our findings in this paper. We emphasize simulation-based estimation methods because their algorithmic
structure is sufficiently far away from value function iteration as to be an informative alternative. However, many of the
tasks highlighted in our benchmark (loops, large vector and matrices, etc.) are the same when we estimate by simulation or
even when we solve problems with heterogeneous agents. Interestingly enough, these simulation-based estimation
methods are also not very well-suited for vectorization and, therefore, loop speed is still key. For these more complex
tasks, Matlab, Python, or R become just too slow and the researcher definitively needs to move to Cþþ or Fortran or at
17 It also means that proposals to improve the coding should be made for all languages (unless there is an obvious problemwith one of the languages).
The game is not to write the best possible Cþþ code, but to write Cþþ code that is comparable to, for example, Matlab code in computational
complexity. We are not interested in speed itself, but on relative speed.

18 For example, we do not change the order or the iteration of the loops (which is row-major) to suit the column-major structure of Cþþ (the other
languages are either row-major or the code is not affected by this change). In additional testing, we documented that rearranging the loops leads to an
improvement of time of 9–10% in Cþþ . We do not emphasize this difference because Cþþ was already the fastest language. Also, improving the speed for
the Cþþ code only changes the unit that we are using to measure all the other languages, with all the other relative comparisons left unchanged.
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least to some of the hybrid approaches we discussed. Similar statements in terms of relative speed hold for non-linear
solution methods for DSGE models such as projection methods.

5. Concluding remarks

In this short paper we have taken a first step at a comparison of programming languages in macroeconomics. We have
offered results on execution speed and some, more subjective, comments on coding complexity. Our simple exercise leaves
many questions unanswered. For example: How do our results extend to other problems, such as those in econometrics?
Are there improvements in our algorithm that would benefit one programming language much more than others? Can we
re-arrange loops in ways that change relative speeds? However, our results in and of themselves should be of interest to a
wide audience of researchers. We hope to see more comparisons of programming languages in economics in the future and
a discussion of our coding choices through our github repository, where readers can fork their own versions of our
programs.
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