Calibration of bi-planar radiography with minimal phantoms

Daniel Moura, Jorge Barbosa, João Tavares, Ana Reis

INEB – Instituto de Engenharia Biomédica, Laboratório de Sinal e Imagem
FEUP – Faculdade de Engenharia da Universidade do Porto
SMIC – Serviço Médico de Imagem Computorizada, S. A

daniel.moura@fe.up.pt

DSIE 2008
Introduction

- Computer Tomography (CT) is the gold standard for 3D reconstructions and accurate measurements of bone structures.
- However, not adequate for large bone structures (high radiation)
- Alternative: using Plain Radiography (2D)
 - Requires 2+ radiographs from different views.
 - Accomplished for: spine, pelvis, distal and proximal femur.
Introduction: Calibration

- For mapping $2D \rightarrow 3D$ coordinates the imaging system must be **calibrated** on every examination.
- Calibration is usually performed using large calibration apparatus.
- Attempts have been made for using smaller calibration objects, but:
 - reconstruction errors are higher
 - a considerable number of undesirable objects is still visible in radiographs
Goal

Minimising the impact of calibration objects
Introduction: Goal

Goal
Minimising the impact of calibration objects

How?
Using a distance measuring device to estimate some of the calibration parameters
Radiography calibration

Projection of a 3D point into a radiograph:

\[
\begin{bmatrix}
 w \cdot u \\
 w \cdot v \\
 w
\end{bmatrix}
= M \cdot
\begin{bmatrix}
 X \\
 Y \\
 Z \\
 1
\end{bmatrix}
\]
Radiography calibration

Projection of a 3D point: bi-planar radiography

\[
\begin{bmatrix}
w_i \cdot u_i \\
w_i \cdot v_i \\
w_i
\end{bmatrix} = M_i \cdot \begin{bmatrix} X \\ Y \\ Z \\ 1 \end{bmatrix} \quad \text{for } i = 1, 2
\]
Calibration Matrix (for flat detectors)

\[M_i = \begin{bmatrix} f_i/s & 0 & u_{p_i} & 0 \\ 0 & f_i/s & v_{p_i} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} R_i \\ 0^T \\ 1 \end{bmatrix} \]

- \(f_i \) - focal length
- \((u_{p_i}, v_{p_i}) \) - principal point
- \(R_i \) - geometrical transformation
Radiography calibration

Calibration Matrix (for flat detectors)

\[M_i = \begin{bmatrix} f_i/s & 0 & u_{p_i} & 0 \\ 0 & f_i/s & v_{p_i} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} R_i \\ 0^T \\ 1 \end{bmatrix} \]

- \(f \) - focal length
Radiography calibration

Calibration Matrix (for flat detectors)

\[M_i = \begin{bmatrix} f_i/s & 0 & u_{p_i} & 0 \\ 0 & f_i/s & v_{p_i} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} \mathcal{R}_i \\ 0^T \\ 1 \end{bmatrix} \]

- \(f \) - focal length
- \((u_p, v_p) \) - principal point
Radiography calibration

Calibration Matrix (for flat detectors)

\[M_i = \begin{bmatrix}
 f_i/s & 0 & u_{p_i} & 0 \\
 0 & f_i/s & v_{p_i} & 0 \\
 0 & 0 & 1 & 0 \\
\end{bmatrix} \cdot \begin{bmatrix}
 \mathcal{R}_i \\
 t_i \\
 0^T \\
 1
\end{bmatrix} \]

- \(f \) - focal length
- \((u_p, v_p) \) - principal point
- \(\mathcal{R}, t \) - geometrical transformation
Radiography calibration

Calibration Matrix (for flat detectors)

\[M_i = \begin{bmatrix} f_i/s & 0 & u_{p_i} & 0 \\ 0 & f_i/s & v_{p_i} & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix} \cdot \begin{bmatrix} R_i & t_i \\ 0^T & 1 \end{bmatrix} \]

- \(f \) - focal length
- \((u_p, v_p)\) - principal point
- \(R, t \) - geometrical transformation

Calibration Goal
Finding the values for these parameters for both views.
Determining the parameters values

Inputs:
- Initial solution for the parameters
- A set of point matches
Determining the parameters values

1 Inputs:
 - Initial solution for the parameters
 - A set of point matches

2 Optimisation process (NLSQ):
 1. Triangulate point matches \rightarrow 3D points
 2. Project 3D points \rightarrow projected 2D points
 3. Minimise residuals between the original and the projected points

(INEB – FEUP – SMIC)
Determining the parameters values

1. Inputs:
 - Initial solution for the parameters
 - A set of point matches

2. Optimisation process (NLSQ):
 1. Triangulate point matches → 3D points
 2. Project 3D points → projected 2D points
 3. Minimise residuals between the original and the projected points

```
minimise difference
```

```
2D point on image 1
2D point on image 2
3D point
Projected 2D point
Projected 2D point
```
Determining the parameters values

1. Inputs:
 - Initial solution for the parameters
 - A set of point matches

2. Optimisation process (NLSQ):
 1. Triangulate point matches \rightarrow 3D points
 2. Project 3D points \rightarrow projected 2D points
 3. Minimise residuals between the original and the projected points

Problem

Optimisation gets easily trapped in local minima.
For narrowing the search space of solutions we propose using a **distance measuring device**.

X-Ray imaging system
Narrowing the search space of solutions

- For narrowing the search space of solutions we propose using a distance measuring device.

X-Ray imaging system representation

X-ray source

X-ray device

Table

Detector
For narrowing the search space of solutions we propose using a distance measuring device.

- **f** – Focal distance
 - Distance between the x-ray source and the detector
 - Can’t be measured directly
Narrowing the search space of solutions

- For narrowing the search space of solutions we propose using a **distance measuring device**.

![Diagram of X-ray device setup]

- t_z – Z translation
 - Distance between the x-ray source and the object
 - Can’t be measured directly

(INEB – FEUP – SMIC)
Narrowing the search space of solutions

For narrowing the search space of solutions we propose using a distance measuring device.

A distance measurer may only read d_m.
Narrowing the search space of solutions

For narrowing the search space of solutions we propose using a distance measuring device.

We proposed a procedure elsewhere to determine d_s and d_d, which are constant for a given system.
Narrowing the search space of solutions

For narrowing the search space of solutions we propose using a **distance measuring device**.

Knowing d_s and d_d enables to determine f accurately with a distance measurer...
Narrowing the search space of solutions

For narrowing the search space of solutions we propose using a distance measuring device.

... and to have an initial guess of t_z.
Correcting scale

- Even with this extension, this method is only able to calculate up to scale solutions.
- A reference distance (visible in both x-rays) is needed to determine the scaling factor.
- We propose using a small calibration object composed by 2 radiopaque parts.

\[
\text{scaling factor} = \frac{\text{known reference distance}}{\text{reconstructed distance}}
\]
Experiments

- The method was tested with a phantom object
 - Stainless steel grid (380x380x1mm)
 - Laser cut squares of 20.0 ± 0.1mm

- 8 radiographs at the same \(f \)
 - \(d_m = 909 \text{mm} \) measured with a laser distance measuring device (typical error ±1.5mm)

- Combined in a total of 17 pairs (out of 28 possible combinations)
Experiments: Inputs

Example points on image 1 Example points on image 2
Experiments: Inputs

(0, 0, 1183)
(0°, 0°, 0°)

(0, 0, 993)
(60°, 0°, 0°)
Experiments: Inputs

Example of a reference distance on image 1

Example of a reference distance on image 2
First Experiment

- **Conditions:**
 - Initial parameters: roughly estimated
 - Point matches: no noise
 - Reference distances: 1 (tested 50 different distances of 40mm)

- **Evaluation:**
 1. Phantom grid reconstructed with the optimised parameters;
 2. Scaled with the reference distance
 3. Automatically aligned with ground truth model
 4. Error (per point): euclidian distance between the reconstructed 3D coordinates and the known coordinates of the phantom.
First Experiment: Results

3D absolute error (mm)

- Error count
- Mean = 0.31mm
- RMS = 0.36mm
- Mean + SD = 0.49mm
- Mean + 2SD = 0.66mm

Number of observations

(INEB – FEUP – SMIC)
Second Experiment

- Goal: testing the sensibility of the algorithm to noise on point matches
- Uniformly distributed noise, up to ±15 pixels.
Second Experiment

- Goal: testing the sensibility of the algorithm to noise on point matches
- Uniformly distributed noise, up to ±15 pixels.
Conclusions

- The proposed calibration method achieved sub-millimetric accuracy, even when:
 - initial guess is rough
 - noise is added to point matches (up to ± 5 pixels)

- It requires:
 - a distance measurer,
 - a small calibration object for giving only one reference distance (if absolutes measurements are needed).

- These requirements are low when compared with other methods...
 - ... however, the method should be accessed with radiographs of anatomical parts.
Future work

Experiments with spine radiography

- Initial guess is easy to estimate
- Semi-automatic detection of point matches in vertebrae.
Thank You!

Daniel Moura, Jorge Barbosa, João Tavares, Ana Reis

INEB – Instituto de Engenharia Biomédica, Laboratório de Sinal e Imagem
FEUP – Faculdade de Engenharia da Universidade do Porto
SMIC – Serviço Médico de Imagem Computorizada, S. A

daniel.moura@fe.up.pt

DSIE 2008