Mestrado em Engenharia Biomédica

Análise Computacional de Imagens de Focos de Criptas Aberrantes

Monografia

Diana Catarina Martins Cidre

Julho 2011
Análise Computacional de Imagens de Focos de Criptas Aberrantes

Relatório realizado no âmbito da Unidade Curricular de Monografia
Curso de Mestrado em Engenharia Biomédica
Faculdade de Engenharia da Universidade do Porto

Diana Catarina Martins Cidre
Licenciada em Engenharia Biomédica no Instituto Politécnico de Bragança (2010)

Orientador:
João Manuel R. S. Tavares
Professor Auxiliar do Departamento de Engenharia Mecânica
Faculdade de Engenharia da Universidade do Porto
AGRADECIMENTOS

Ao Professor João Tavares, pela orientação, pela simpatia, pelo apoio e pela disponibilidade que sempre demonstrou.
Actualmente, o cancro é uma das doenças mais problemáticas, sendo responsável pela morte de muitas pessoas por ano. Este trabalho estuda, em particular, o cancro colorectal, uma doença que afecta igualmente homens e mulheres e que representa a segunda maior taxa de incidência de cancro em Portugal. No entanto, se for detectada cedo, a morte pode ser evitada.

Pensa-se que os focos de criptas aberrantes (ACF) podem ter um papel importante na sequência adenoma-carcinoma, sendo um precursor do cancro colorectal. Como tal, o seu reconhecimento através de imagens endoscópicas pode potenciar a detecção e diagnóstico deste tipo de cancro. A principal técnica utilizada para a exploração do cólon e recto é a colonoscopia ou, mais recentemente, a cápsula endoscópica. Contudo, o processo de observação das imagens obtidas é muito demorado. Assim, o processamento de imagem é uma ferramenta importante que pode ser usada para diminuir este tempo e aumentar a eficiência no diagnóstico.

A necessidade de segmentar imagens médicas surge na sequência da evolução tecnológica; isto é, da necessidade do computador realizar “aquilo” que para um médico é intuitivo – como isolar e/ou identificar uma estrutura numa imagem. Com esta evolução não se pretende substituir o médico, mas sim auxiliar-lo na realização de um diagnóstico mais correcto, diminuindo o erro humano, aumentando a rapidez dos processos de diagnosticar e seguimento de uma doença e diminuindo custos sem a necessidade de recorrer a exames auxiliares e complementares ao diagnóstico.

O objectivo final deset projecto é desenvolver metodologias computacionais que permitirão a detecção e quantificação de ACF em imagens capturadas in vivo através de endoscopia. Tal será muito útil para os médicos pois possibilitará a existência de métodos rápidos e fiáveis no processo de avaliação de padrões de ACF em imagens.

Palavras-chave: Cancro colorectal, Focos de criptas aberrantes, Processamento e análise de imagem, Melhoria e segmentação de imagem.
ÍNDICE

1. Introdução .. 1

2. Anatomia & Histologia .. 3
 2.1. Introdução ... 3

2.2. Sistema Digestivo ... 3

2.3. Intestino Grosso ... 6
 2.3.1. Anatomia ... 7
 2.3.2. Histologia ... 8

2.4. Efeito do Envelhecimento no Aparelho Digestivo .. 14

2.5. Conclusão ... 15

3. Cancro Colorectal ... 16
 3.1. Introdução .. 16

3.2. Carcinogénese ... 17

3.3. Prevalência ... 19

3.4. Manifestações Clínicas .. 19

3.5. Importância de um Diagnóstico Precoce .. 20

3.6. Rastreio ... 21

3.7. Conclusão ... 22

4. Focos de Criptas Aberrantes ... 23
 4.1. Introdução .. 23

4.2. Definição ... 23

4.3. Características Histológicas ... 26
 4.3.1. FCA Sem Displasia ... 26

4.3.2. FCA Com Displasia (Microadenomas) ... 27

4.3.3. FCA Mistos com Hiperplasia e Displasia ... 27

4.4. Alterações Genéticas .. 28

4.5. Conclusão ... 29

5. Colonoscopia & Cápsula Endoscópica .. 30
 5.1. Introdução .. 30

5.2. Colonoscopia .. 30
 5.2.1. Indicações ... 32

5.2.2. Preparação do Côlon ... 33

5.2.3. Sedação do Paciente ... 34

5.2.4. Técnica do Exame ... 35
ÍNDICE DE FIGURAS

Figura 1 – Focos de Criptas Aberrantes (de [1]). .. 2
Figura 2 – Sistema Digestivo (de [20]). .. 4
Figura 3 – Histologia do Tubo Digestivo (de [4]). ... 4
Figura 4 – Intestino Grosso (de [4]). .. 7
Figura 5 – Histologia do Intestino Grosso (de [4]). .. 9
Figura 6 – Peristalse (de [4]). .. 12
Figura 7 – Carcinogénese do CCR (de [8]). .. 19
Figura 8 – Cripta Aberrante (de [10]). .. 24
Figura 9 – Foco de Cripta Aberrante (de [10]). ... 25
Figura 10 – Cromoscopia e magnificação identificando-se uma cripta aberrante e a mucosa normal circundante (de [10]). ... 25
Figura 11 – FCA do tipo hiperplásico: criptas com lúmens alargados e tortuosos; a superfície tem aparência serrilhada e não se identificam atipias no epitélio que as reveste (de [11]). ... 26
Figura 12 – FCA com displasia (microadenoma): criptas com tamanho aumentado com estratificação do epitélio que as reveste, perda da produção de muco e presença de atipias nucleares (de [11]). ... 27
Figura 13 – FCA mistos: criptas com alterações hiperplásicas alternando com outras em que existe diminuição na produção de muco, estratificação do epitélio e atipias nucleares (de [11]). ... 28
Figura 14 – Colonoscópio da marca Pentax, modelo EC 3840L (de [21]). 31
Figura 15 – A. Corte do cólon e recto para visualizar exame de colonoscopia e visualização da ponta do colonoscópio, B. Imagem de colonoscopia (de [22]).... 32
Figura 16 – Biopsia através de colonoscopia (de [23])... 33
Figura 17 – Exame de colonoscopia (de [22]). .. 35
Figura 18 – Exemplos de imagens da cápsula endoscópica (de [13]). 37
Figura 19 – Interior da cápsula endoscópica PillCam SB: 1 - Cúpula Óptica; 2 - Suporte da Lente; 3 - Lente; 4 - LEDs de iluminação; 5 - Sensor de imagem CMOS; 6 - Baterias; 7 - Transmissor ASIC; 8- Antena (de [13]). 38
Figura 20 – Sistema de aquisição desenvolvido pela empresa Given Imaging: câpsula endoscópica PillCam, sistema de sensores com almofadas de sensoriamento, gravadora de dados/pack de bateria e estação de trabalho (de [13]).

Figura 21 – Localização das antenas e dispositivo de armazenamento (de [13]).

Figura 22 – Cápsula endoscópica PillCam C2 (de [14]).

Figura 23 – Imagem original, seguida da sua expansão e da sua equalização (de [24]).

Figura 24 – Técnica de técnicas de processamento orientadas à vizinhança (operadores locais) (de [24]).

Figura 25 – Operação de Dilatação (de [24]).

Figura 26 – Operação de Erosão (de [24]).

Figura 27 – Operações de Dilatação e Erosão e as suas combinações, Fecho e Abertura (de [24]).

Figura 28 – Aplicação de um threshold a uma imagem: a) imagem original, b) segmentação por threshold de valor adequado, c) de valor muito baixo, d) de valor muito alto (de [19]).

Figura 29 – Transformada de Hough na detecção de rectas: a) imagem original, b) detecção de contornos (observam-se vários pontos que não pertencem às rectas), c) espaço paramétrico das rectas, d) rectas detectadas (de [19]).

Figura 30 – Segmentação por Watershed: a) imagem original, b) vista topográfica, c) e d) duas etapas do enchimento, e) resultado do enchimento adicional, f) início do preenchimento completo de dois vales (foi construído entre vales, uma pequena barragem), g) barragens maiores, h) resultado final (de [19]).

Figura 31 – Detecção de contornos do ventrículo esquerdo numa imagem de Tomografia Axial Computadorizada (TAC): a) imagem com níveis de cinzento, b) imagem com arestas detectadas, c) contorno inicial, d) até f) evolução do contorno, ajustando-se ao ventrículo (de [19]).

Figura 32 – Segmentação de uma estrutura sanguínea usando o modelo level-set (de [19]).
1. INTRODUÇÃO

O cancro do cólon desenvolve-se no intestino grosso, sendo designado por cancro colorectal (CCR) e é um dos tumores malignos mais frequentes, sendo que em Portugal, em termos de mortalidade, está entre os cinco tipos de cancro mais importantes \[1\]. Ao contrário do que acontece com outras doenças malignas, é possível evitar o cancro colorectal devido ao longo período de tempo desde o aparecimento de um pólipo até ao aparecimento do carcinoma que possibilita detectar e remover a lesão benigna. Os pólipos mais usuais e clinicamente mais importantes são os pólipos adenomatosos e de acordo com indicações médicas internacionais, a detecção precoce e a remoção destes pólipos pode prevenir o cancro colorectal e aumentar significativamente as hipóteses de sobrevivência. No entanto, muitos aspectos de saúde pública relacionados com a prevenção dos pólipos adenomatosos estão ainda em discussão, não existindo acordo sobre os programas de prevenção. Neste contexto, os focos de criptas aberrantes (FCA) podem ter um papel crucial e determinante \[1\].

Os focos de criptas aberrantes são grupos de criptas (pequenos poços, no epitélio do cólon) aberrantes (não normais), que se supõem serem os precursores do cancro colorectal. A sua observação \textit{in vivo} é hoje possível graças às modernas técnicas endoscópicas de amplificação e de cromoscopia e definem-se como um conjunto de uma ou mais criptas, de maiores dimensões e discretamente elevadas relativamente às circundantes, apresentando uma camada de células epiteliais espessa que cora mais intensamente com o azul-de-metíleno que a das criptas adjacentes, existindo igualmente um aumento de espaço peri-criptico, Figura 1. De facto, de acordo com estudos endoscópicos e experiências com animais, os FCA precedem a eclosão dos adenomas. Assim, se tal for comprovado, isto significa que os focos de criptas aberrantes deverão ser considerados parte da sequência adenoma-carcinoma e poderão vir a ser utilizados não só na estratificação do risco, mas também na investigação de agentes activos na quimioprevenção do carcinoma colo-rectal \[1\].
Os métodos actuais utilizados para classificar os FCA e os pólipos são subjectivos pois baseiam-se em observações médicas directas, apenas, e não estão automatizados, nem estandardizados. É necessário ter soluções, fiáveis, capazes de identificar e detectar os focos de criptas aberrantes e reconhecer e classificar os diversos tipos de pólipos.

Os algoritmos de processamento e análise de imagem têm como objectivo serem usados como métodos auxiliares na leitura e análise clínica, como métodos auxiliares na estandardização dos padrões dos orifícios de criptas e classificação dos padrões dos pólipos, e ainda permitir reduzir significativamente o tempo de análise das imagens endoscópicas. Assim, tais algoritmos facilitariam e acelerariam os programas de vigilância e prevenção do cancro colorectal.

Figura 1 – Focos de Criptas Aberrantes (de [1]).
2. ANATOMIA & HISTOLOGIA

2.1. INTRODUÇÃO

Os mecanismos biológicos do cólon e do recto estão estritamente relacionados com a sua anatomia, fisiologia e histologia. Assim, ao descrever estes três tópicos detalhadamente, pretende-se caracterizar a funcionalidade do cólon e do recto no organismo humano ao fornecer informações sobre estas estruturas. Desta forma, será mais fácil para posteriormente entender os mecanismos envolvidos no cancro colorectal e as características dos focos de criptas aberrantes para serem mais facilmente detectadas por análise de imagem.

2.2. SISTEMA DIGESTIVO

O sistema digestivo compreende os órgãos relacionados com a ingestão, mastigação, deglutição, digestão dos alimentos, absorção dos nutrientes e a eliminação de alimentos não absorvíveis.

Anatomicamente o sistema digestivo é descrito como sendo constituído por um longo tubo que tem início na fissura oral (a fenda entre os lábios superior e inferior) e termina no ânus, sendo convencionalmente dividido pelas suas características anatômicas, histológicas e fisiológicas em: cavidade oral, faringe, esófago, estômago, intestino delgado com as três porções designadas duodeno, jejuno e íleo e intestino grosso com segmentos designados cego, cólon ascendente, cólon transverso, cólon descendente, cólon sigmóide, recto e canal anal, Figura 2.
Histologicamente, o tubo digestivo é constituído por quatro camadas ou túnica principais: a mucosa interna, a serosa externa; e, entre elas, a submucosa e a muscular, Figura 3. Estas quatro túnica estão presentes ao longo de todo o tubo, do esófago ao ânus. No tubo digestivo há três tipos principais de glândulas: 1) glândulas mucosas unicelulares, na mucosa; 2) glândulas multicelulares, na mucosa e submucosa; e 3) glândulas multicelulares (glândulas anexas) no exterior do tubo digestivo.
A túnica mais interna, a mucosa, é composta por três camadas: 1) o epitélio mucoso interno, estratificado pavimentoso na boca, orofaringe, esófago e canal anal, e aproximadamente cilíndrico no restante tubo digestivo; 2) a lámina própria, uma camada de tecido conjuntivo laxo; e a 3) muscularis mucosae (mucosa muscular), uma camada fina e externa de músculo liso (Figura 3).

A submucosa, imediatamente abaixo da mucosa (Figura 3), é formada por uma camada espessa de tecido conjuntivo que contém nervos, vasos sanguíneos e pequenas glândulas. Os nervos da submucosa formam o plexo submucoso (plexo de Meissner).

A túnica muscular é constituída por músculo liso que se dispõe em duas camadas, uma interna circular e uma externa longitudinal (Figura 3). Constituem exceção a parte superior do esófago, onde o músculo é estriado; e o estômago, no qual existem três camadas de músculo liso. Entre as duas camadas da túnica muscular encontra-se um outro plexo nervoso, o plexo mesentérico (plexo de Auerbach).

Os plexos submucoso e o mesentérico formam o plexo intramural (Figura 3) ou entérico (dentro das paredes), que desempenham um papel muito importante na regulação do movimento e da actividade secretora.

A quarta túnica do tubo digestivo é formada por uma camada de tecido conjuntivo, denominada serosa ou adventícia consoante a sua estrutura. As porções do tubo digestivo que protrudem para a cavidade peritoneal apresentam uma camada mais externa serosa que constitui o peritoneu visceral, uma fina camada de tecido conjuntivo e epitélio pavimentoso simples. Quando a camada mais externa do tubo digestivo tem origem no tecido conjuntivo adjacente, a túnica é denominada adventícia e consiste num revestimento de tecido conjuntivo que se funde com o tecido conjuntivo circundante (Figura 3). Estas áreas incluem o esófago e os órgãos retroperitoneais [4].

Na perspectiva fisiológica, o tubo digestivo assim constituído é capaz de fazer progredir os alimentos ingeridos ao longo dos seus segmentos onde esses alimentos encontram compartimentos com características fisiológicas distintas,
que dependem essencialmente das funções secretora e absorbiva das células epiteliais da mucosa.

A principal função do sistema digestivo é transformar os alimentos ingeridos em nutrientes assimiláveis pela mucosa intestinal para que entrem no sangue. O sistema digestivo cumpre este objectivo porque tem capacidade de motilidade, secreção, digestão e absorção. O movimento propulsivo básico do tubo digestivo é a peristalse ou reflexo peristáltico. A peristalse é uma propriedade inerente de estruturas tubulares com fibras musculares lisas nas suas paredes. A distensão de um determinado segmento do tubo digestivo devido à acumulação de alimentos nesse segmento é o principal estímulo que desencadeia a peristalse, caracterizada pela contracção de um anel de fibras musculares do lado oral e relaxamento das fibras musculares do lado anal ao local da distensão. Este movimento repete-se ao longo do tubo digestivo [2].

2.3. Intestino Grosso

O intestino grosso é a zona do tubo digestivo que se estende da parte final do íleo até ao ânus e circunda o intestino delgado. Tem maior diâmetro do que o intestino delgado e as fibras musculares longitudinais formam fitas ou faixas côlicas (teniae coli). Como estas fitas são mais curtas do que o estrato muscular circular, o intestino grosso tem aparência exterior pregueada com saliências designadas haustras. Ligados à face externa do cólon, em toda a sua extensão, existem os apêndices epiplóicos, que são constituídos por pequenas bolsas de tecido conjuntivo cheias de gordura [2][4].

O intestino grosso é composto pelo cego, cólon, recto e canal anal, Figura 4. O cólon ainda é subdividido com base na sua localização anatômica em cólon ascendente, cólon transverso, cólon descendente e cólon sigmóide. As quatro camadas características do tubo digestivo estão presentes em todo o intestino grosso [3]. Normalmente, o conteúdo do intestino grosso demora 18-24 horas a percorrer toda a sua extensão, em contraste com as 3-5 horas requeridas para a sua progressão no intestino delgado. Logo, os movimentos do cólon são mais lentos do que os do intestino delgado. A absorção de água e sais, a secreção de
muco, bem como a acção intensiva de microrganismos estão envolvidos na formação das fezes, que o cólon armazena até serem eliminadas pela defecação [4].

Figura 4 – Intestino Grosso (de [4]).

2.3.1. ANATOMIA

A) CÉGO

O cégo é a porção proximal do intestino grosso, sendo o local onde o intestino delgado e o intestino grosso se unem na junção ileocecal. O cégo estende-se inferiormente cerca de 6 cm após a junção ileocecal, em fundo de saco. Ligado ao cégo existe um pequeno tubo cégo sacular com cerca de 9 cm, o apêndice vermiforme, cujas paredes apresentam muitos nódulos linfáticos [4].

B) CÓLON

O cólon mede 1.5 a 1.8 m de comprimento e divide-se em quatro partes: cólon ascendente, transverso, descendente e sigmóide. O cólon ascendente estende-se superiormente do cégo ao ângulo hepático junto do bordo inferior direito do fígado. O cólon transverso estende-se do ângulo cólico direito até ao ângulo esplénico e o cólon descendente estende-se do ângulo cólico esquerdo até à abertura superior da pequena bacia, onde se torna cólon sigmóide. O cólon sigmóide é um tubo em forma de ‘S’ que se prolonga para o interior da bacia e termina no recto.
O revestimento mucoso do intestino grosso é constituído por epitélio cilíndrico simples que não forma pregas ou vilosidades como no intestino delgado, mas tem muitas glândulas tubulares rectas, as criptas. As criptas são, de certa forma, semelhantes às glândulas intestinais do intestino delgado, com três tipos de células: de absorção, caliciformes e granulares. A maior diferença reside no facto de no intestino grosso predominarem as células caliciformes \[^4\].

C) Recto

O recto é um tubo muscular que começa na terminação do cólon sigmóide e termina no canal anal. É revestido internamente por epitélio cilíndrico simples e a sua túnica muscular é relativamente espessa quando comparada com a do restante tubo digestivo \[^4\].

D) Canal Anal

O canal anal corresponde aos 2 a 3 cm finais do tubo digestivo, iniciando-se na terminação inferior do recto e terminando no ânus (abertura externa do tubo digestivo). A camada de músculo liso do canal anal é ainda mais espessa que a do recto, formando o esfínter anal interno na sua parte superior. O esfínter anal externo, na terminação inferior do canal anal, é constituído por músculo-esquelético. O epitélio da porção superior do canal anal é cilíndrico simples; o da porção inferior é pavimentoso estratificado \[^4\].

2.3.2. Histologia

As quatro camadas características do canal alimentar estão presentes em todo o intestino grosso, como podemos ver na Figura 5.
A mucosa do intestino grosso contém inúmeras glândulas intestinais tubulares rectas (designadas criptas de Lieberkühn), que se estendem por toda a espessura da mucosa. As glândulas consistem em epitélio simples colunar, assim como a superfície intestinal da qual elas invaginam.

A principal função das células absorvivas colunares é a reabsorção de água e electrólitos. A morfologia das células absorvivas é essencialmente idêntica à dos enterócitos do intestino delgado.

A eliminação de materiais como detritos semi-sólidos e sólidos é facilitada pelas grandes quantidades de muco segregadas pelas inúmeras células caliciformes das glândulas intestinais. As células caliciformes são mais numerosas no intestino grosso que no intestino delgado. Estas produzem mucina que é segregada continuamente para lubrificar o intestino, facilitando a passagem de conteúdos cada vez mais solidificados.

As células absorvivas colunares predominam (4:1) sobre as células caliciformes na maior parte do cólon, embora isso nem sempre seja aparente nos

Figura 5 – Histologia do Intestino Grosso (de [4]).
cortes histológicos. Contudo, a relação diminui aproximando-se de 1:1 próximo do recto, onde o número de células caliciformes aumenta. Embora as células absorativas segreguem glicocálce a uma velocidade rápida (tempo de renovação de 16 a 24 horas), essa camada não mostra conter enzimas digestivas no cólon [3].

B) LÂMINA PRÓPRIA

Embora contenha os mesmos componentes básicos do restante das vias digestivas, a lâmina própria do intestino grosso demonstra algumas características estruturais adicionais e um maior desenvolvimento de algumas outras. Estas incluem:

- A **camada de colagénio**, uma camada espessa de colagénio e proteoglicanas que se localiza entre a lâmina basal do epitélio e a dos capilares venosos absorativos fenestrados. Essa camada tem até 5 µm de espessura no cólon humano normal e pode ter uma espessura três vezes maior nos pólipos colónicos hiperplásicos humanos.

- O **gut-associated lymphoid tissue** (GALT) bem desenvolvido, que é contínuo com o do íleo terminal. No intestino grosso, o GALT é mais extensamente desenvolvido; grandes nódulos linfáticos distorcem o espaçamento regular das glândulas intestinais e estendem-se para dentro da submucosa. O extenso desenvolvimento do sistema imune no cólon provavelmente reflete o grande número e a variedade de microrganismos e de produtos finais nocivos do metabolismo normalmente presentes no lúmen.

- Uma **bainha de fibroblastos pericriptais**, que constitui a população de fibroblastos de células que se replicam regularmente. Elas dividem-se imediatamente sob a base da glândula intestinal, adjacente às células-tronco encontradas no epitélio (tanto no intestino grosso quanto no delgado). Os fibroblastos diferenciam-se então e migram superiormente em paralelo e com sincronismo com as células epiteliais. Embora o destino final do fibroblasto pericriptal seja desconhecido, a maioria dessas células, após alcançarem o nível da superfície luminal, assume as características morfológicas e histoquímicas dos macrófagos.
- Ausência de vasos linfáticos na lámina própria: Não há vasos linfáticos no núcleo central da lámina própria entre as glândulas intestinais. Os vasos linfáticos formam uma rede ao redor da muscular da mucosa, assim como no intestino delgado, porém nenhum vaso ou células musculares lisas associadas estendem-se na direção da superfície livre proveniente dessa camada. A ausência de vasos linfáticos provenientes da lámina própria é importante para compreender a baixa velocidade das metástases de certos cancros do cólon. Os cancros que se desenvolvem em grandes pólipos colónicos adenomatosos podem crescer extensamente dentro do epitélio e da lámina própria antes de terem acesso aos vasos linfáticos ao nível da muscular da mucosa. Os vasos linfáticos são encontrados na submucosa e como uma rede ao redor da muscular externa [3].

C) **Muscular Externa**

Como já mencionado, no ceco e no cólon (os cólons ascendente, transverso, descendente e sigmoíde), a camada externa da muscular externa está, em parte, condensada em faixas longitudinais proeminentes do músculo, denominadas faixas cólicas, que podem ser observadas ao nível macroscópico. Entre essas faixas, a camada longitudinal forma um folheto extremamente fino. No recto, canal anal e apêndice vermiforme, a camada longitudinal externa de músculo liso é uma camada uniformemente espessa, como no intestino delgado.

Feixes musculares das faixas cólicas penetram na camada circular interna do músculo em intervalos irregulares ao longo do comprimento e da circunferência do cólon. Essas descontinuidades aparentes na muscular externa permitem que os segmentos se contraiam independentemente, levando à formação de sáculos (haustras) na parede colônica.

A muscular externa do intestino grosso produz dois tipos principais de contracção: segmentação e peristalse. A segmentação é local e não resulta em propulsão de conteúdo. A peristalse, Figura 6, resulta no movimento distal de massa do conteúdo colônico. Os movimentos peristálticos de massa ocorrem de
modo frequente; em pessoas saudáveis, em geral eles ocorrem apenas uma vez ao dia para esvaziar a porção distal do cólon [3].

Figura 6 – Peristalse (de [4]).

D) **SUBMUCOSA E SEROSA**

A submucosa do intestino grosso corresponde à descrição geral já mencionada. Onde o intestino grosso está em contacto directo com outras estruturas (como na maior parte da sua superfície posterior), a sua camada externa é uma adventícia; em qualquer outro ponto, a camada externa é uma serosa típica [3].

E) **CEGO E APÊNDICE**

O cego forma uma bolsa cega logo distal à valva ileocecal; o apêndice é uma extensão digitiforme fina dessa bolsa. A histologia do cego assemelha-se fortemente à do restante do cólon; o apêndice difere dele por ter uma camada uniforme de músculo longitudinal na muscular externa. A característica mais evidente do apêndice é o grande número de nódulos linfáticos que se estende para dentro da submucosa. Em muitos adultos, a estrutura normal do apêndice é perdida, e é preenchida por tecido cicatricial fibroso [3].
F) Recto e Canal Anal

O recto é a porção distal dilatada do canal alimentar. A sua porção superior é distinguida do restante do intestino grosso pela presença de pregas denominadas pregas transversais do recto. A mucosa do recto é similar à do restante do cólon distal, tendo glândulas intestinais tubulares rectas com muitas células caliciformes.

A porção mais distal do tubo digestivo é o canal anal. Tem um comprimento médio de 4 cm e estende-se da face superior do diafragma pélvico até ao ânus. A porção superior do canal anal tem pregas longitudinais denominadas colunas anais. As depressões entre as colunas anais são denominadas seios anais. O canal anal é dividido em três zonas, de acordo com a natureza do revestimento epitelial:

- Zona colorrectal, que é encontrada no terço superior do canal anal e contém epitélio simples colunar com características idênticas às do recto.
- Zona de transição anal (ATZ), que ocupa o terço médio do canal anal, representando uma transição entre o epitélio simples colunar da mucosa rectal e o epitélio estratificado pavimentoso da pele perianal. A ATZ possui um epitélio estratificado colunar interposto entre o epitélio simples colunar e o epitélio estratificado pavimentoso, que se estende até à zona cutânea do canal anal.
- Zona escamosa, que é encontrada no terço inferior do canal anal e revestida por epitélio estratificado pavimentoso (escamoso) que é contínuo com o da pele perianal.

No canal anal, as glândulas anais estendem-se para dentro da submucosa e até mesmo para dentro da muscular externa. Essas glândulas tubulares rectas ramificadas segregam muco na superfície anal através de ductos revestidos por epitélio estratificado colunar. Algumas vezes, as glândulas anais são circundadas por tecido linfático difuso.

Grandes glândulas apócrinas, as glândulas circum-anais, são encontradas na pele que circunda o orifício anal. Folículos pilosos e glândulas sebáceas também são encontrados neste local.
A submucosa das colunas anais contém as ramificações terminais da artéria rectal superior e do plexo venoso rectal. Não há faixas cólicas ao nível do recto; a camada longitudinal da muscular externa forma um folheto uniforme. A muscular da mucosa desaparece aproximadamente ao nível da zona de transição anal, onde a camada circular da muscular externa se espessa para formar o esfíncter interno do ânus. O esfíncter externo do ânus é formado por musculo estriado do assoalho pélvico [3].

2.4. Efeito do Envelhecimento no Aparelho Digestivo

À medida que se envelhece vão ocorrendo alterações ao longo de todo o tubo digestivo. As camadas de tecido conjuntivo do tubo digestivo, a submucosa e a serosa vão-se tornando mais finas. O aporte sanguíneo também diminui. Existe ainda uma diminuição do número de células musculares lisas na camada muscular, determinando uma diminuição da motilidade. Para além destes aspectos, verifica-se que as células caliciformes da camada mucosa segregam menos muco e que glândulas como as fovéolas gástricas, o fígado e o pâncreas também tendem a diminuir a sua capacidade secretora. Por si só, estas alterações não interferem significativamente no funcionamento do aparelho digestivo.

Ao longo dos anos, o tubo digestivo, bem como a pele e os pulmões, estão particularmente expostos directamente a substâncias provenientes do ambiente externo. Algumas destas substâncias podem causar lesões mecânicas, enquanto outras podem ser tóxicas para os tecidos. Como a camada de tecido conjuntivo vai ficando cada vez menos espessa e a quantidade de muco protector está também reduzida, o tubo digestivo dos idosos fica cada vez menos protegido às agressões externas. Para além disso, a sua mucosa tende a recuperar mais lentamente das agressões. A capacidade do fígado de neutralizar certas substâncias químicas entra em declínio, bem como a sua capacidade para armazenar glicogénio, e a aptidão das células fagocitárias para remover alguns agressores diminui. Estes problemas exacerbam-se nos fumadores.
A diminuição global das defesas do tubo digestivo com o envelhecimento contribui para que os idosos sejam mais susceptíveis a infecções e aos efeitos tóxicos. Assim, os idosos têm uma maior susceptibilidade a úlceras e cancros do tubo digestivo. Os cancros colo-rectais constituem a segunda maior causa de morte por cancro nos EUA, estimando-se 135 000 novos casos e 57 000 mortes por ano [4].

2.5. CONCLUSÃO

O cólon e o recto constituem a porção terminal do tubo digestivo. A sua principal função é absorver água dos restos dos alimentos digeridos. A mucosa é caracterizada pela ausência de vilosidades e pela presença de criptas profundas. Quando o mecanismo de diferenciação celular muda, as criptas tornam-se aberrantes, e os focos de criptas aberrantes aparecem. Estas lesões são importantes pois podem ser precursores do cancro colorectal e, como tal, a sua detecção pode prevenir a evolução desta doença.
3. CANCRO COLORECTAL

3.1. INTRODUÇÃO

O cancro colorectal (CCR) é um tumor maligno que se desenvolve no cólon ou recto \[5\]. É uma das principais causas de morte a nível mundial. Nos EUA o CCR é o 3.º tipo de cancro mais comum e a 2ª causa de morte mais frequente. Na Europa, o CCR corresponde a 8% da prevalência total de cancro em ambos os sexos e é a 2ª causa de morte. É prevenível e curável num estádio inicial pelo que o rastreio regular mostrou diminuir o risco de morte \[6\].

O CCR inicia-se, em grande percentagem, através da mutação de uma única célula, a qual dá origem à formação de pólipos no interior do intestino. Se não se proceder atempadamente à sua remoção, dar-se-á a formação do tumor maligno e consequentemente a sua metastização para outros órgãos \[5\].

O cancro do cólon é uma das doenças hereditárias mais comuns, dado que uma em cada 200 indivíduos pode ter um dos genes que o determinam. Foram descobertos nove genes diferentes associados ao cancro do cólon. Esta instabilidade genética foi identificada em 13% de cancros do cólon esporádicos (não familiares). O despiste do cancro do cólon inclui a pesquisa de sangue nas fezes e a realização de uma colonoscopia, exame que permite a observação directa do cólon \[4\].

O crescimento tumoral no intestino é, geralmente, silencioso, não apresentando qualquer tipo de sintomatologia, pelo menos numa fase inicial. Esta característica do tumor colorectal reduz significativamente as hipóteses de diagnóstico precoce, facto que condiciona de alguma forma o seu tratamento e respectiva cura. Estes aspectos exigem, por parte da população em geral, uma sensibilização elevada para o despiste precoce desta patologia, assim como a adopção de hábitos de vida saudáveis, tendo em conta que o aparecimento do CCR está directamente relacionado com determinados estilos de vida, bem como soluções de diagnósticos mais eficientes \[5\].
3.2. CARCINOgéNESE

O cancro é definido como um crescimento incontrolável de células anormais que produzem tumores, as neoplasias, sendo que existem dois tipos de tumores, os benignos, que não se disseminam através do corpo, e os malignos, que podem apresentar metástases (processo de separação de células do tumor e deslocação para outro local). As células cancerígenas podem ser de três tipos: 1) carcinomas, que constituem 90% do total de células cancerígenas e têm origem na células dos tecidos; 2) sarcomas, que têm origem no tecido conjuntivo; e 3) as leucemias, que têm origem no sangue.

A carcinogénese é, então, o processo de transformação de uma célula normal em célula cancerosa, sendo que as substâncias responsáveis por esta transformação se designam agentes carcinogéneos. Estas alterações celulares produzem-se de forma comutativa e continuada durante um largo período de tempo, geralmente durante anos [7].

A colaboração entre cirurgiões, gastrenterologistas, oncologistas, patologistas, geneticistas e cientistas moleculares permitiu um grande avanço na compreensão das diferentes modificações moleculares e histopatológicas que ocorrem no CCR. A partir de uma mucosa do cólon normal desenvolve-se um precursor benigno – o pólipio, o qual pode evoluir em direcção a uma doença maligna.

A carcinogénese do CCR requer a ocorrência de múltiplas alterações genéticas numa célula previamente normal, tal como a formação de sucessivos clones, sendo necessário entre 6 a 10 eventos clonais para que seja alcançado o fenótipo maligno final, que também requer a aquisição de capacidade de metastizar. Além de um crescimento aumentado, um clone pré-maligno tem que desenvolver um ambiente permissivo a desenvolver rapidamente futuras mutações. Este processo, conhecido como instabilidade genómica, é indispensável para uma rápida aquisição de mutações que evoluíram para o CCR.

Existem duas categorias principais dentro da instabilidade genómica. A mais comum é a instabilidade cromossómica (IC), em que há acumulação de anormalidades cromossómicas estruturais e numéricas. O outro tipo é a
instabilidade de microsatélites, em que há uma falha no reconhecimento e reparação de bases durante a replicação do DNA. Esta disfunção reparadora é a responsável pela geração de eventos genéticos envolvidos no processo que conduz à formação do CCR.

Cerca de 70-85% dos CCRs desenvolvem-se através da chamada via tradicional, também conhecida por via da instabilidade cromossômica, ou, ainda, via “supressora”. A lesão desta via mais precocemente identificada é a cripta aberrante displásica, uma lesão microscópica da mucosa, que antecede o aparecimento da alteração macroscópica – o pólio. Esta via encontra-se associada à mutação do APC ou a perda do gene do APC, mutação do K-ras, perda do 18q e deleção do 17p, que contém o supressor tumoral p53. Todas estas alterações raramente estão presentes nos CCRs que se formam por esta via.

A via tradicional inicia-se com a formação de criptas aberrantes displásicas, que, na maioria das vezes, contêm mutações K-ras. A aquisição da mutação APC contribui para a transformação das criptas aberrantes em adenomas. A perda da função do DCC, SMAD2 e, sobretudo, do SMAD4, contribui para o avanço nesta via, ao interferirem na apoptose, permitindo uma acumulação de mutações. Por último, a aquisição da mutação do p53 acompanha a transição da lesão benigna em doença maligna invasiva.

A instabilidade de microsatélites (IMS), ou via mutadora, é outro dos mecanismos principais da instabilidade genómica no CCR. Aproximadamente 20% dos CCRs exibem este fenótipo, em que existe uma falha no sistema de reparação “mismatch” do DNA, não havendo uma revisão e correcção do DNA após a replicação.

Na Figura 7, está retratada, de forma resumida, as possíveis alterações que ocorrem durante a carcinogénese [8].

Página | 18
3.3. Prevalência

Nos países desenvolvidos do mundo ocidental o cancro colorectal (CCR) constitui a segunda causa mais importante de mortalidade por cancro. As manifestações clínicas dos tumores colorectais, são, geralmente, tardias, pois, aquando do diagnóstico, os tumores frequentemente ultrapassaram a fase terapêutica. Destes tumores, 60% são submetidos a uma cirurgia potencialmente curativa e, entre estes, apenas 40% estão ainda num estádio cujas possibilidades de cura ou de sobrevida prolongada são notáveis, sendo, portanto, importante fazer o diagnóstico o mais precocemente possível, para que o tumor apresente um crescimento lento e um melhor prognóstico [7].

3.4. Manifestações Clínicas

Graças à evolução a que se tem assistido, nos últimos anos, nos métodos de rastrear o CCR, cada vez mais esta patologia é detectada em formas mais precoces de evolução, mesmo antes de exibir qualquer sintoma/sinal que nos possa fazer suspeitar do diagnóstico.

Numa fase precoce, os CCRs raramente provocam sintomas, que aparecem mais usualmente, quando o cancro se encontra numa fase mais avançada. Os sintomas podem condicionar diferentes quadros clínicos. Um CCR pode conduzir
a uma situação de obstrução intestinal que pode atingir a oclusão completa. Neste contexto, ocorre dor e distensão abdominal, náuseas e vômitos que podem ser fejoloides. O quadro obstrutivo é mais frequente quando o tumor se localiza no cólon esquerdo, nomeadamente no transverso, descendente ou sigmóide, devido ao menor diâmetro do lúmen cólico nestes segmentos. Assim, quando nos deparamos com este tipo de manifestação, o tumor tem dimensões volumosas e encontra-se numa fase avançada do diagnóstico, constituindo um factor de mau prognóstico [8].

3.5. Importância de um Diagnóstico Precoce

Subjacente ao diagnóstico precoce, podem encontrar-se três importantes conceitos: 1) programas de rastreio, pelo que se entende a identificação de indivíduos assintomáticos em risco de desenvolver CCR; 2) diagnóstico, que permite a classificação de indivíduos em portadores ou não de CCR; 3) programas de vigilância, ou seja, a monitorização de indivíduos com antecedentes de patologia do cólon e recto.

Neste sentido, é de grande importância o investimento numa estratégia de diagnóstico precoce numa patologia como o CCR, pois: o CCR é uma patologia frequente, cujo tratamento, aquando da doença avançada, continua a ter resultados pouco satisfatórios; os métodos complementares de diagnóstico permitem diagnosticar a doença em fase precoce e curável; a remoção de lesões precursoras (pólips adenomatosos), diminui as probabilidades de aparecimento de CCR e aumenta a possibilidade de sobrevivência; estudos de custo-efectividade revelam que os benefícios de um programa de rastreio ultrapassam e compensam eventuais inconvenientes desses mesmos programas.

É de salientar que, do ponto de vista biológico, os factores de risco para CCF são:

- Idade superior a 50 anos;
- Dieta hipercalórica, rica em gorduras e pobre em fibras;
- Antecedentes pessoais de pólips de cólon ou CCR;
- Doença inflamatória crónica do cólon;
- História familiar de pólipos adenomatosos do cólon ou CCR;
- Síndromes hereditárias (Síndrome de Lynch; Polipose Adenomatosa Familiar; Síndrome de Peutz-Jeghers e Polipose Juvenil Familiar) \(^7\).

3.6. RASTREIO

Nas últimas duas décadas têm surgido avanços que permitiram uma detecção cada vez mais precoce do CCR. Assim, estes avanços consistem na implementação de programas de rastreio, na aplicação de exames complementares ao rastreio de CCR e no surgimento de novos exames. Estas mais-valias, juntamente com avanços no campo do estadiamento e tratamento, permitiram um ganho na sobrevida desta patologia e, em muitas situações, aquilo que é o objectivo de qualquer programa de rastreio, evitar a doença, nomeadamente através da remoção de lesões pré-malignas. Os principais exames complementares aplicados ao rastreio são a pesquisa de sangue oculto nas fezes, testes fecais de DNA para CCR, a sigmoidoscopia, o clister opaco com duplo contraste, a colonoscopia, a colonografia por TC e a cápsula endoscópica dirigida ao cólon Error! Reference source not found..

As estratégias de rastreio e de diagnóstico precoce de CCR para os vários grupos de risco são:

- População de risco \textit{standard}: a elevada incidência de CCR implicou um desenvolvimento de programas de rastreio generalizado à população, a partir dos 50 anos – idade em que o risco de CCR se torna significativo;
- Grupos de susceptibilidade hereditária aumentada: apesar de os factores ambientais em geral e nutricionais em particular, desempenharem um papel importantes na etiopatogenia do CCR, parece haver evidência de que os factores hereditários possam também contribuir para uma parte substancial de todos os casos de CCR;
- Indivíduos com história prévia de pólipos adenomatosos: estudos demonstraram que indivíduos com pólipos adenomatosos do cólon têm maior
risco de vir a desenvolver novos pólipos, os quais, de acordo com o modelo proposto da sequência adenoma-carcinoma, poderão evoluir para CCR;

- Indivíduos com história prévia de CCR: os indivíduos com CCR prévio têm maior risco, não só de recidiva do primeiro tumor, mas também de CCR metacrónicos;
- Indivíduos com doença inflamatória do intestino: estudos demonstraram que a prevalência de CCR se encontra aumentada nos doentes com colite ulcerosa extensa e de longa duração [7].

3.7. CONCLUSÃO

O CCR continua a ser um dos tumores com maior predomínio e com elevadas taxas de mortalidade nos países desenvolvidos. No entanto, há uma grande variabilidade no que diz respeito à distribuição de taxas de incidência a nível mundial, sendo mais incidente nos países ocidentais, devido ao estilo de vida, com um maior sedentarismo e com dietas desequilibradas.

A maneira mais eficaz de lutar contra esta patologia e actuar nos factores de risco, nomeadamente o sedentarismo, a alimentação, as doenças inflamatórias intestinais, os síndromes familiares e apostar na estruturação de um programa de rastreio a nível mundial, para uma detecção precoce. Ainda existem várias incertezas quanto a idade de início do rastreio e qual o melhor método a aplicar.
4. FOCOS DE CRIPTAS ABERRANTES

4.1. INTRODUÇÃO

Focos de criptas aberrantes (FCA) são lesões caracterizadas morfológicamente por criptas anormais na superfície da mucosa do cólon e desde a sua primeira descrição em ratos, houve diversas linhas de evidência que sugerem que poderiam ser precursores do câncer colorectal (CCR). A prevalência de FCA foi estimada em 53.6% em pessoas normais com mais de 50 anos, 90% em pacientes com adenomas e 100% em pacientes com CCR. São detectados mais comumente no cólon distal e recto, e essas lesões têm alterações histológicas variáveis. Há várias anormalidades genéticas identificadas nos FCA, e a mais antiga é a mutação do gene K-ras. Podem ser identificados in vivo com a endoscopia de magnificação, a coloração com azul-de-metileno e com a cromoendoscopia, que permitem a sua utilização como um marcador para a carcinogénese colorectal e até mesmo para prever os riscos para a população, os indivíduos que são susceptíveis a receber quimioprevenção e para estabelecer estratégias de vigilância no CCR.

4.2. DEFINIÇÃO

A primeira descrição de FCA foi em 1987 por Bird, que observou sob microscopia criptas aberrantes na mucosa do cólon (corada com azul de metileno) de ratos tratados com um agente carcinogénico.

Hoje em dia é amplamente aceite que os FCA são uma lesão precursora do CCR devido às suas características morfológicas, histológicas, biológicas e genéticas. Os FCA localizam-se com maior frequência no cólon distal e desde esse ponto de vista histológico, constituem um grupo heterogéneo de lesões que vão desde modificações hiperplásicas até modificações displásicas.

A densidade de FCA define-se como o número de focos por centímetro quadrado de mucosa. A densidade é maior no cólon distal e no recto e só um 35% estão no cólon proximal, o que coincide com a localização do carcinoma do cólon. Alem disso, aumenta em pacientes com alto risco de desenvolver
carcinoma de cólon, como na polipose familiar múltipla (PFM), comparada com aqueles com doenças benignas como a diverticulite.

Sabe-se muito pouco acerca dos factores de risco que iniciam ou promovem o desenvolvimento de FCA e desafortunadamente, não existem sintomas específicos que sugiram o diagnóstico de FCA [11].

![Figura 8 – Cripta Aberrante (de [10]).](image)

Os FCA são identificados e definidos pela sua aparência microscópica na mucosa do cólon, Figura 8, onde as criptas apresentam as seguintes características:

- Apresentam um tamanho maior do que o normal;
- Têm o espaço pericrítico aumentado o que as separa das criptas normais;
- Têm uma camada mais grossa de células epiteliais, que frequentemente se coram mais escuras (por exemplo com coloração de azul-de-metileno);
- Geralmente têm um lúmen oval em vez de circular;
- Frequentemente, podem ser vistas elevadas sobre a mucosa, mas também podem ser vistas deprimidas.

Consideram-se lesões FCA se, pelo menos, reúnem 4 destes 5 critérios. É importante enfatizar que só as lesões que são identificadas microscópicamente na mucosa intacta, Figura 9, e que reúnem os critérios anteriores são consideradas FCA.
Os FCA são variáveis em tamanho, desde uma única cripta a grandes áreas com centenas de criptas e ambos os tipos de alterações podem ser encontradas no mesmo paciente. Enquanto muitos FCA são microscopicamente evidentes e elevados, macroscopicamente aparecem planos, não podendo ser identificados como pólipos ou lesões sem magnificação e coloração [8].

Assim, o termo FCA refere-se a pequenos aglomerados de criptas anormais (< 110 criptas), que no geral não são visíveis por colonoscopia convencional e podem ser identificados com cromoscopia com azul-de-metileno a 0.05% ou índigo de carmim a 0.5%, Figura 10. Actualmente, a busca de FCA está limitada à investigação mais que ao cenário de diagnóstico [10].
4.3. Características Histológicas

Histologicamente, descreve-se como FCA as criptas alargadas e aumentadas de tamanho, com estratificação do epitélio que as reveste comparadas com as criptas normais. Não existe um número específico de criptas afectadas por foco, contudo, em média são de 5 a 35 criptas. Nos casos de FCA constituídos por uma só cripta, sugere-se utilizar o critério aplicado por McLellan, que menciona que o tamanho da cripta deve ser pelo menos o dobro do normal, com um lúmen elíptico e presença de estratificação do epitélio que a reveste.

A classificação histológica mais aceite de FCA considera três grupos: sem displasia, com displasia (microadenomas) e mistos com hiperplasia e displasia [11].

4.3.1. FCA Sem Displasia

Os FCA com mucosa normal não apresentam alterações no epitélio que reveste as criptas; o único dado morfológico é o aumento de tamanho das criptas (1.5 vezes maiores do que o normal) com alterações mínimas nos núcleos, sem estratificação, com lúmen redondo ou oval e não existe aumento no número [8][11].

Os FCA hiperplásicos têm um aspecto histológico similar aos pólipos hiperplásicos, com alongamento das criptas, bifurcações apicais, abertura do lúmen de aparência serrilhada e são discretamente mais elevados que a mucosa adjacente, Figura 11, [11].

Figura 11 – FCA do tipo hiperplásico: criptas com lúmens alargados e tortuosos; a superfície tem aparência serrilhada e não se identificam atipias no epitélio que as reveste (de [11]).
4.3.2. **FCA Com Displasia (Microadenomas)**

Tanto as criptas como as células que as constituem mostram alterações; as criptas observam-se alargadas e aumentadas em tamanho; o epitélio que as reveste apresenta estratificação com perda de polaridade, alargamento nuclear e hiperchromasia, assim como diminuição da produção de muco, Figura 12.

Podem ainda ser classificadas em displasias de baixo e alto grau. As de baixo grau são criptas com estratificação focal; quando a estratificação é acentuada e os núcleos se localizam na porção luminal são consideradas de alto grau \(^{[11]}\).

![Figura 12 – FCA com displasia (microadenoma): criptas com tamanho aumentado com estratificação do epitélio que as reveste, perda da produção de muco e presença de atipias nucleares (de [11]).](image)

4.3.3. **FCA Mistas com Hiperplasia e Displasia**

Histologicamente, os FCA mistos mostram a combinação em diferentes proporções de um componente adenomatoso com displasia e outro de tipo hiperplásico sem displasia, Figura 13. A Organização Mundial de Saúde classifica os FCA em hiperplásicos e displásicos \(^{[11]}\).
4.4. ALTERAÇÕES GENÉTICAS

O cancro de cólon é o resultado da acumulação de múltiplos defeitos genéticos na mesma célula. Se os FCA são lesões precursoras destes cancros, devem apresentar algumas destas alterações.

A primeira alteração genética identificada nos FCA em humanos foi o aparecimento de mutações no gene K-Ras, o que se observa em 73% [8] dos casos, e sabe-se que ocorre durante a formação dos FCA, sendo muito rara na polipose adenomatosa familiar.

A mutação do gene APC é frequente nos pólipos, mas em contraste à mutação K-Ras é muito mais difícil de identificar e produz-se no momento em que os FCA passam a ser adenomas. Em geral, encontrou-se uma baixa frequência (entre 4.6-6%) de mutações APC somáticas em FCA de pacientes sem polipose adenomatosa familiar.

No que diz respeito às mutações no gene p53, pensa-se que é um evento tardio no processo de carcinogénese, pelo que não foi detectado em lesões FCA.

Vários estudos histoquímicos adicionais em FCA humanos demonstraram que a expressão de oncogenes e genes supressores de tumores jogam um papel na tumorogénese. Neste sentido, a beta-catenina que normalmente é expressa nas membranas celulares, mostra, nos FCA com displasia, expressão citoplasmática.
em 54% [8] com aumento de expressão nuclear e diminuição da expressão na membrana.

Foi postulado que a instabilidade cromossómica, definida como anormalidade molecular, que se identifica em 30% [8] dos FCA de pacientes com cancro colorectal, poderia ser um marcador de risco para a progressão da lesão.

Segundo as considerações anteriores, há múltiplas razões para concluir que FCA são os primeiros precursores de cancro colorectal e muitos estão de acordo que os FCA com avançada ou severa displasia são precursores desta neoplasia [8].

4.5. Conclusão

Existe evidência de que os FCA, especialmente os FCA displásicos, representam uma mudança morfológica inicial na mucosa colorectal dentro do processo de carcinogénese e foi amplamente aceite como lesão precursora do cancro do cólon deste o ponto de vista morfológico, histológico, biológico e genético [8],[11].

A sequência adenoma-cancro foi documentada amplamente. Contudo, existem lesões precursoras que não seguem esta sequência de eventos; existem modificações histológicas ou moleculares que precedem o cancro, por isso é aceite o conceito cripta aberrante-adenoma-cancro [10].

O sistema FCA pode ser assim utilizado como um biomarcador inicial de susceptibilidade a CCR e desta forma identificar populações ou indivíduos em risco, aos que se pode aplicar tratamentos de quimioprevenção e incorporar em programas de vigilância com o fim de reduzir a incidência de adenomas e deste modo, de carcinoma colorectal [11].

Página | 29
5. COLONOSCOPIA & CÁPSULA ENDOSCÓPICA

5.1. INTRODUÇÃO

A colonoscopia é um procedimento já bem estabelecido nos dias de hoje para a investigação das doenças do cólon e recto, que revolucionou o diagnóstico e tratamento dessas doenças e com importante contribuição, principalmente em relação ao diagnóstico precoce do cancro colorectal, antes do seu reconhecimento por outros métodos de diagnóstico e antes do desenvolvimento de metástases. Além disso, permite a remoção de lesões polipóides pré-malignas, podendo, dessa forma, diminuir a incidência e prevenir o desenvolvimento de doenças malignas [12].

A cápsula endoscópica representa um avanço revolucionário nas imagens diagnósticas do tracto digestivo. A tecnologia deste dispositivo foi desenvolvida para apoiar a avaliação das doenças de todo a tracto digestivo, desde o esófago até ao cólon. A cápsula introduz o conceito de endoscopia fisiológica já que se move passivamente com a peristalse, explorando, na maioria dos casos, a totalidade do intestino sem insuflar-lo, o que permite que as imagens se obtenham num estado colapsado. A sua aplicação melhorou notavelmente o rendimento diagnóstico quando se compara com os exames anteriormente disponíveis; isto permitiu-nos ampliar o conhecimento das doenças do intestino e desenvolver novas modalidades terapêuticas [14].

5.2. COLONOSCOPIA

Os exames radiológicos contrastados do cólon inteiro não permitiam informações totalmente fidedignas por causa dos frequentes falso-positivos e falso-negativos. Com advento de aparelhos endoscópicos de fibra óptica para o exame do esófago, estômago e duodeno, no final da década de 1950, agora flexíveis, com ponta móvel e que permite ser controlada pelo examinador, foram desenvolvidos, tanto nos EUA como no Japão, aparelhos semelhantes, chamados colonoscópios, mais longos e com diâmetro maior, para análise de todo o cólon, recto e íleo terminal, Figura 14.
Figura 14 – Colonoscópio da marca Pentax, modelo EC 3840L (de [21]).

Os colonoscópios, ao longo dos anos, foram sofrendo alterações em relação ao seu comprimento, à sua espessura, maleabilidade, eficiência, capacidade visual, utilização de acessórios, cada vez mais sofisticados, evoluindo inicialmente desde o fibrocolonoscópio até ao vídeo-colonoscópio mais recentemente, sem a utilização de fibras ópticas, com um sistema de alta resolução de imagem e cor, transmitidos a um monitor de televisão através de um computador (Figura 14), sempre com o intuito de facilitar a acção do médico e permitir uma melhor actuação ante diferentes patologias, que antes só era possível tratar cirurgicamente. Outra vantagem dessa nova tecnologia foi em relação ao ensino, permitindo observação directa no monitor, diminuição do tempo de aprendizagem, documentação do exame por meio de imagens, além da possibilidade de gravação dos exames. Além disso, mais recentemente, apresenta uma excelente acuidade diagnostica, havendo até mesmo a possibilidade de o médico prever as características histológicas de uma lesão, pela magnificação de imagens, com possibilidade de ampliação da imagem.
Por esse motivo, é necessário um treino adequado não só para o manuseamento do instrumento, mas também para o adequado reconhecimento das lesões e conduta adequada ante cada uma delas.

A colonoscopia é um procedimento já bem estabelecido nos dias de hoje para a investigação das doenças do cólon e recto, que revolucionou o diagnóstico e tratamento dessas doenças e com importante contribuição, principalmente em relação ao diagnóstico precoce do cancro colorectal, antes do seu reconhecimento por outros métodos de diagnóstico e antes do desenvolvimento de metástases. Além disso, permitiu a remoção de lesões polipóides pré-malignas, podendo, dessa forma, diminuir a incidência e prevenir o desenvolvimento de doenças malignas [12].

5.2.1. Indicações

A colonoscopia é um exame de fácil execução, geralmente rápido, com baixa morbimortalidade, mas necessita de uma indicação precisa e adequada para a sua abrangência, podendo avaliar o recto, cólons e íleo terminal, Figura 15.

Figura 15 – A. Corte do cólon e recto para visualizar exame de colonoscopia e visualização da ponta do colonoscópio, B. Imagem de colonoscopia (de [22]).
Todas as doenças de cólon e recto que alterem a mucosa podem ser avaliadas pela colonoscopia, que se tornou um exame imprescindível não só para o diagnóstico, com a possibilidade de realização de biopsias, Figura 16, como também para a sua terapêutica, dependendo da doença identificada.

Figura 16 – Biopsia através de colonoscopia (de [23]).

Em lesões que acarretam estreitamento importante do lúmen do cólon, a colonoscopia restringe-se somente à avaliação até ao local de estreitamento, sendo possível a análise da lesão propriamente dita, o que possibilita a realização de biopsias, e a pesquisa de lesões associadas distalmente à lesão, mas pode não ser adequada para avaliação da extensão craniocaudal da lesão, assim como dos segmentos a montante. Sempre que se possa ultrapassar a lesão, essas informações poderão ser obtidas.

A colonoscopia pode ser indicada em varias situações ou doenças, com intuito diagnostic e, se possível, terapêutico [12].

5.2.2. PREPARAÇÃO DO CÓLON

Para a realização de uma colonoscopia adequada, mais rápida, fácil, segura e acurada, é imprescindível que o cólon esteja limpo, sem presença de resíduos fecais que possam dificultar o procedimento e impedir a visão adequada da mucosa do cólon, podendo passar despercebida uma lesão pequena.
Após o término da limpeza adequada do cólon, recomenda-se um período de jejum oral absoluto de no mínimo 2 a 3 horas, por causa da utilização de medicação sedativa durante o exame e do risco de vômitos e aspiração pulmonar.

5.2.3. Sedação do Paciente

O exame colonoscópico é um procedimento que causa intensa ansiedade ao paciente não só pelo medo de sentir dor, mas também pela possibilidade do encontro de uma doença grave, o que dificulta o relaxamento e a colaboração durante o exame. Esse exame é naturalmente desconfortável por causa da pressão exercida pelo aparelho no mesentério cólico, da presença de formação de alças no aparelho, que dificultam a progressão deste, da insuflação de ar e da distensão do cólon, além das diversas manobras necessárias para a progressão do aparelho nos diferentes segmentos e angulações naturais.

Um exame adequadamente realizado, com boa técnica, com manobras suaves, sem manobras rápidas e intempestivas, com insuflação não excessiva, com o doente sendo esclarecido e tranquilizado pelo examinador durante todo o procedimento quanto aos achados endoscópicos, pode ser perfeitamente tolerado sem o uso de nenhuma medicação sedativa. No entanto, a utilização de uma medicação sedativa e/ou analgésica, mesmo que em doses pequenas, pode ajudar no relaxamento, no bem-estar e na colaboração do doente durante o exame, facilitando assim o procedimento tanto para o doente quanto para o examinador, o que torna esse procedimento mais rápido, fácil e tranquilo.

É obrigatório a monitorização do doente rotineiramente, durante todo o procedimento, pela oximetria de pulso, além de suporte adicional de oxigénio através de um cateter nasal e venoclise, pois a colonoscopia, por si só, pode causar alterações do ritmo cardíaco, do pulso, da pressão arterial e da frequência respiratória, agravadas pela medicação sedativa e/ou analgésica utilizada.

O ideal é a realização desse exame em ambiente hospitalar com melhores condições de monitorização dos doentes e eventual reanimação, quando necessário.
5.2.4. TÉCNICA DO EXAME

O paciente é colocado em posição lateral esquerda, monitorizado, com oximetria de pulso, com aporte de oxigénio através de cateter nasal, com venóclise, submetido à sedação, Figura 17.

Figura 17 – Exame de colonoscopia (de [22]).

A inspecção minuciosa da região perianal e anal não deve ser esquecida, seguida do toque rectal com intuito de dilatação do esfíncter anal e de avaliação de massas tumorais. Segue-se a introdução do colonoscópio através do ânus, dando inicio ao exame propriamente dito.

A completa visualização da mucosa de todos os segmentos do cólon é importante, sendo necessária a aspiração de toda a secreção fecal fluida contida no cólon. A insuflação de ar durante o exame é necessária para a adequada avaliação da mucosa, mas deve ser a menor possível para não causar desconforto ao paciente.

A introdução do colonoscópio e a sua progressão nos diferentes segmentos do cólon devem ser realizadas sempre que possível sob visão directa do lúmen do cólon. O exame minucioso da mucosa deve ser realizado tanto na introdução quanto na retirada do aparelho. Como o objectivo principal do médico na introdução do colonoscópio é atingir o ceco e o íleo terminal, nem sempre isso é possível nessa fase do exame, e a avaliação mais minuciosa na retirada do
aparelho, quando o doente já não apresenta tanto desconforto, pode permitir a identificação de lesões que passaram despercebidas.

Durante o procedimento, geralmente ao nível do cólon sigmóide, pode ocorrer a formação de alça no aparelho, principalmente quando esse segmento é alongado e redundante, o que dificulta a progressão do exame. Sempre que possível deve-se rectificar o aparelho para minimizar o desconforto do paciente e permitir uma adequada e fácil progressão do aparelho.

A localização de uma lesão e a sua distância real da borda anal, por vezes, tornam-se bastante difíceis principalmente num exame mais prolongado. Isso leva a frequentes erros de avaliação pelo médico, quando ele não se baseia em pontos de referência anatômicos, com erros de distância tão grandes quanto mais proximal é a localização da lesão. Por esse motivo, não se deve referir a localização de uma lesão em distância da borda anal em centímetros.

Ao identificar com certeza o ceco, a papila ileal e o óstio apendicular, o examinador assegura um exame completo, devendo sempre ser tentada a introdução do aparelho através da papila ileal para análise do íleo terminal, na extensão de 10 a 20 cm, particularmente nas investigações de quadros diarréicos e na diferenciação das moléstias inflamatórias [12].

5.2.5. Complicações

As taxas de complicações descritas são baixas, considerando-se o grande número de procedimentos realizados a cada dia, e geralmente decorrentes dos procedimentos terapêuticos. Porem, podem ser ainda mais baixas com um exame realizado com técnica adequada por um médico treinado e correctamente capacitado não só na realização do diagnóstico e tratamento das lesões detectadas, mas também na identificação precoce de uma intercorrência durante e após o exame.

As complicações mais frequentes relacionadas ao exame propriamente dito são a hemorragia e a perfuração, ambas com índices que variam de 0.5 a 2% e associados à polipectomia endoscópica.
A realização de uma colonoscopia pode produzir outras diversas complicações mais raras, relacionadas ao preparo, à medicação sedativa ou ao exame propriamente dito, e que podem ser evitadas a partir do seu conhecimento [12].

5.3. CÁPSULA ENDOSCÓPICA

A cápsula endoscópica é uma mini-câmara de imagem que flui dentro do sistema digestivo do paciente com o objectivo de fotografar todo o caminho possibilitando uma posterior avaliação e diagnóstico por parte do médico/clínico, das doenças e anomalias que afectam o sistema endogástrico do paciente, Figura 18.

![Figura 18 – Exemplos de imagens da cápsula endoscópica (de [13]).](image)

Foi introduzida no mercado como uma nova ferramenta útil no estudo da patologia de cólon. Trata-se de uma técnica que nos permite uma visualização directa da mucosa, sem necessidade de sedação, intubação, radiação nem insuflação de ar, constituindo uma importante alternativa à colonoscopia habitual. Desde a sua aparição até ao momento actual foram muitos os estudos publicados sobre a sua capacidade diagnostica e a preparação intestinal necessária para uma melhor avaliação do cólon.
5.3.1. Características Técnicas

Existem vários tipos de cápsula endoscópica no mercado, sendo duas delas a PillCam SB e a PillCam C2 da Given, que são apresentadas neste trabalho.

A PillCam SB é um dispositivo que é envolvido por um invólucro resistente a ácidos e fluidos gástricos, lacrado e não reutilizável. A cápsula tem as seguintes dimensões 11 x 26 mm e um peso de 3.7 gramas.

Os elementos constituintes da cápsula são visíveis na Figura 19 onde estão presentes as duas baterias, uma antena UHF, leds brancos que servem de fonte de iluminação, lentes de focagem curta e um sensor CMOS (câmara). As lentes usadas conseguem ter uma abertura de 140°, ampliação de 1:8 e uma profundidade de 1:30 mm o que lhe permite discriminar objectos com resolução de 0.1 milímetros. A cápsula desloca-se ao longo do intestino devido aos movimentos peristálticos inerentes ao corpo humano. No decorrer do exame capta e transmite para o gravador imagens com uma cadência de duas imagens por segundo (ips) com uma resolução de 256x256 pixels. Toda a electrónica foi
desenhada e dimensionada com o propósito de possibilitar uma autonomia de 7 ± 1 horas, utilizando apenas as duas baterias existentes.

Figura 20 – Sistema de aquisição desenvolvido pela empresa Given Imaging: cápsula endoscópica PillCam, sistema de sensores com almofadas de sensoriamento, gravador de dados/pack de bateria e estação de trabalho (de [13]).

A Figura 20 apresenta o sistema de cápsula endoscópica completo, que é constituído não só pela cápsula mas também pelo sistema de gravação e o software de leitura do vídeo que é armazenado num formato proprietário. O gravador é fixo ao paciente normalmente na cintura, onde são conectados os sensores/antenas que recebem os dados emitidos pela cápsula, Figura 21, estes sensores possibilitam o cálculo da posição espacial da cápsula no interior do corpo do paciente, usando o método de triangulação de sinal recebido entre 3 ou mais antenas.
O gravador vai recolhendo os dados emitidos pela cápsula que após as 8 horas de exame são descarregados para o computador no qual são posteriormente analisados com ajuda de software de anotação de exames [13].

A nova geração de cápsula incorpora importantes novidades tanto no dispositivo e na gravadora como no software, com o objectivo de aumentar a sensibilidade na detecção de pólipos, Tabela 1.

Tabela 1 – Tabela de comparação das cápsulas.

<table>
<thead>
<tr>
<th></th>
<th>Pillcam SB</th>
<th>Pillcam C2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Número de câmaras</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Dimensões</td>
<td>11 x 26 mm</td>
<td>11.6 x 31.5 mm</td>
</tr>
<tr>
<td>Ângulo de visão</td>
<td>140°</td>
<td>172°</td>
</tr>
<tr>
<td>Captura de imagens</td>
<td>2 ips</td>
<td>Variável: 4-35 ips</td>
</tr>
<tr>
<td>Medida de Pólipos</td>
<td>Medida estimada</td>
<td>Ferramenta incorporada</td>
</tr>
</tbody>
</table>

A nova cápsula de cólon mede 31.5 x 11.6 milímetros, não é reutilizável e tem duas câmaras no seu interior que permitem adquirir imagens pelos seus dois extremos, proximal e distal. O ângulo de visão de cada câmara é maior na cápsula de segunda geração, passando de 156° a 172°, permitindo assim visualizar praticamente os 360° do cólon.

A técnica realiza-se sem sedação e em regime ambulatorio, o que permite que o paciente possa fazer uma vida normal durante o tempo que dura a
exploração. Aquando da sua chegada ao hospital pela manhã, colocam-se no paciente uns sensores aderidos ao abdómen, que serão encarregues, depois da ingestão da cápsula, de transmitir as imagens para a gravadora (DR3), colocada no cinto externo, que actua de receptor e reconhece toda a informação emitida pelas câmaras desde o interior do cólon, Figura 22.

Figura 22 – Cápsula endoscópica PillCam C2 (de [14]).

A cápsula adquire imagens com uma frequência automática variável alternando entre 4 imagens por segundo, quando está parada, e 35 imagens por segundo, quando está em movimento, o que permite optimizar o consumo de bateria e o tamanho do vídeo a visualizar posteriormente. Enquanto permanece na cavidade gástrica a cápsula utiliza uma frequência fixa de 14 imagens por minuto e, no momento que identifica de forma automática a passagem ao intestino delgado, põe-se em andamento o sistema de controlo automático de aquisição de imagens, que é executado em tempo real e é controlado pelo gravador.

Com a incorporação do novo gravador DR3 existe em todo o momento uma comunicação bidireccional com a cápsula, que emite sinais acústicos, vibratórios e instruções escritas no seu ecrã que guião o médico e o paciente ao longo do procedimento. Graças a esta comunicação entre cápsula e gravadora, o paciente é informado do momento da sua passagem ao intestino delgado e do regime de preparação a seguir, previamente estabelecido pelo médico. Ao mesmo tempo pode-se visualizar no gravador a localização da cápsula em cada momento graças à activação do real time que leva incorporado.
Uma vez finalizado o percurso da cápsula, depois de elimina-la por via rectal, ou depois de esgotar a bateria, o paciente vai de novo ao hospital onde se transfere as imagens recolhidas pelo gravador à estação de trabalho para a sua posterior avaliação\[14\].

5.3.2. PROCEDIMENTO CLÍNICO

O método de exame através da cápsula endoscópica é não invasivo mas continua a necessitar de alguma preparação específica semelhante à utilizada em outros tipos de endoscopia. É preciso que o paciente esteja em jejum nas 12 horas prévias ao exame e convém fazer uma preparação (limpeza) intestinal no dia anterior ao exame com o intuito de melhorar a qualidade do vídeo e aumentar a probabilidade de a cápsula chegar ao cólon antes da bateria se esgotar, aperfeiçoando desta forma a capacidade de diagnóstico por parte do médico.

Após a ingestão da cápsula o paciente pode deixar o hospital e fazer a sua rotina diária normal evitando apenas exercícios físicos ou esforços que possam fazer com que os sensores se descolem do peito do paciente. Duas horas após a ingestão é possível beber alguns líquidos e 4 horas depois é possível fazer uma refeição leve.

No final do dia, isto é, passado as 8 horas o paciente regressa ao hospital para que o médico retire os sensores e descarregue a informação da cápsula para o computador, informação essa que só é revista, usando software específico, à posteriori, devido à sua longa duração facto que impossibilita o médico de efectuar um diagnóstico no imediato\[13\].

5.3.3. INDICAÇÕES E CONTRA-INDICAÇÕES

A principal indicação da cápsula do cólon é o estudo do cólon em casos de colonoscopia incompleta ou contra-indicação, embora possa ser utilizada também nas seguintes situações:
• Rastreio de carcinoma colorectal em pacientes com ou sem história familiar de cancro ou polipose do cólon;
• Suspeita de doença do cólon de qualquer tipo.

Os casos de colonoscopia incompleta não são infrequentes (14% de todas as colonoscopias \[14\]) e não está claro qual é o papel da cápsula nesta situação.

As contra-indicações mais importantes são:

• Alto risco de retenção da cápsula como ocorre em pacientes com doença de Crohn, tumores de intestino delgado, consumo de anti-inflamatórios não esteróides (AINE) ou anastomose cirúrgica;
• Paciente com insuficiência renal grave e/ou insuficiência cardíaca congestiva;
• Alergia às soluções purgantes utilizadas na preparação intestinal;
• Todas as contra-indicações habituais (problemas de deglutição, gravidez e estenose intestinal) \[14\].

5.4. Conclusão

As principais técnicas utilizadas para diagnosticar doenças associadas ao tubo digestivo são a endoscopia e a cápsula endoscópica. Para o caso de detecção de doenças associadas ao cólon a endoscopia toma o nome de colonoscopia.

A colonoscopia é o exame endoscópico do intestino grosso e íleo. É realizado principalmente para a detecção de cancros em estado inicial e diagnostico de cancros em estado avançado, mas também para diagnóstico de outras patologias como doença inflamatória intestinal. Além de avaliar a mucosa intestinal e o calibre do órgão, permite a realização de recolha de material para exame histopatológico (biópsia) e a realização de procedimentos como a remoção de pólipos.

A introdução da cápsula endoscópica na prática clínica tem sido lenta e gradual, já que existem algumas limitações como a necessidade de pessoal
especialista na visualização dos vídeos adquiridos, a exaustiva preparação que se requer e não padronizado de momento, e o seu elevado custo que dificulta a sua utilização como ferramenta de rastreio.

A principal vantagem desta nova técnica de exploração do cólon é que permite uma visualização directa da mucosa, sem necessidade de sedação, intubação, radiação nem insuflação de ar, constituindo uma importante alternativa à colonoscopia habitual. Não obstante, no caso de que com a cápsula se detecta alguma lesão é necessário efectuar uma colonoscopia para a sua biopsia ou remoção [14].
6. MÉTODOS DE PROCESSAMENTO E ANÁLISE DE IMAGEM

6.1. INTRODUÇÃO

A detecção de patologias através de imagens endoscópica tem sido realizada por médicos, geralmente treinados para isso. No entanto, apesar de serem bons nas suas tarefas, eles também são lentos, podem ser afectados pelo cansaço, o tédio, factores ambientais e são susceptíveis a cometer erros. Por isso, existem várias técnicas computacionais de processamento e análise de imagens capazes de detectar padrões, contornos, etc., que podem ajudar os médicos no seu diagnóstico. No que diz respeito às imagens endoscópicas, adquirida pela cápsula endoscópica, existem aproximadamente 50.000-60.000 imagens por exame, o que leva a um médico experiente mais de uma hora para ver e analisar todos os dados de vídeo. Além disso, os médicos podem perder algumas anormalidades se estas estiverem presentes apenas em um ou dois frames da sequência de imagens, ou se não poderem ser detectadas pelo olho nu devido ao seu tamanho, cor, textura e distribuição. Além disso, médicos diferentes podem ter resultados diferentes quando observam os mesmos dados de imagem. Assim, técnicas de processamento e análise de imagens biomédicas podem ser ferramentas poderosas que podem ajudar a responder a estas questões.

6.2. PRÉ-PROCESSAMENTO

Antes de realizar a segmentação de uma imagem, ou outra técnica de análise de imagem, é normalmente necessário restaurar e/ou realçar as imagens originais de forma a obter resultados mais precisos. Para isso são regularmente realizadas operações de intensidade, operações locais e operações morfológicas, de maneira a melhorar a qualidade da imagem a ser analisada. Por exemplo, pode ser preciso retirar o ruído presente numa imagem suavizando a mesma, bem como melhorar o brilho e o contraste, normalizar a gama de valores de intensidade, realçar detalhes pondo em evidência características de interesse, preservar atributos essências da forma dos objectos e remover detalhes irrelevantes.
Dos operadores de intensidade fazem parte a equalização e a expansão do histograma, nas operações locais usou-se o filtro de média, de mediana, o Gaussiano, o de mínimo e o de máximo, o Laplaciano, o High-Boost e o Unsharp, e, por fim, nas operações morfológicas utiliza-se a erosão e a dilatação e algumas das suas combinações, como o open e o close.

6.2.1. Operadores de Intensidade

As técnicas de modificação de histograma (operações de intensidade) são conhecidas como técnicas ponto-a-ponto, uma vez que o valor de cinzento de um certo pixel após o processamento depende apenas do seu valor original.

A Equalização do Histograma (*histeq*) aumenta o contraste das imagens, transformando os valores numa imagem de intensidade de modo a que o histograma da imagem resultado corresponda aproximadamente a um histograma especificado.

Quando uma imagem apresenta uma distribuição não uniforme de níveis de cinzento o processo de equalização de histograma, Figura 23, que visa o aumento da uniformidade dessa distribuição, o que produz normalmente bons resultados, permitindo assim realçar diferenças de tonalidade e resultando no aumento do nível de detalhes perceptíveis.

Figura 23 – Imagem original, seguida da sua expansão e da sua equalização (de [24]).
A expansão do histograma (*imadjust*) ajusta os valores de intensidade da imagem aumentando o contraste da mesma, Figura 23. Nesta técnica, o histograma original de uma imagem é modificado de tal forma que parte dele é expandida para ocupar toda a faixa de cinzento da imagem resultante \[15\].

6.2.2. **Operadores Locais**

Nas técnicas de processamento orientadas à vizinhança (operadores locais), o valor resultante do processamento depende do valor original do *pixel* e, de alguma forma, dos *pixels* que circundam o elemento de imagem original, Figura 24.

![Figura 24 – Técnica de técnicas de processamento orientadas à vizinhança (operadores locais) (de [24]).](image)

Filtro Media – Neste filtro o valor de cinzento de cada *pixel* é substituído pela média local da sua vizinhança. Tem como efeitos o *blurring* (desfocagem) ou suavização da imagem. Quanto maior a máscara usada, maior a quantidade de filtragem e maior será a quantidade de ruído reduzido o que implica uma superior perda de detalhes. O efeito do filtro da média é eliminar conjuntos de *pixels* mais claros ou mais escuros em relação aos *pixels* vizinhos \[16\].

Filtro Gaussiano – Filtro de alisamento; é adequado para remover ruídos com distribuição normal. Actua na imagem trocando cada *pixel* por uma média ponderada dos *pixels* vizinhos, evitando o espalhamento de uma propriedade local da imagem \[16\].

Filtro Mediana – Este filtro procura eliminar o ruído sem sofrer os efeitos do filtro de média. Ao utilizar uma máscara de dimensões *m*\(*n*, o elemento central é substituído pelo elemento central do vector ordenado constituído pelos *m*\(*n*
elementos. Assim, retira ruído sem afectar gravemente a nitidez e preserva os contornos \[16\].

Filtro de Máximo e de Mínimo – Atribui ao pixel com coordenadas \((i,j)\) na imagem original, o valor máximo ou mínimo na vizinhança em torno desse pixel. O filtro de máximo realça os pixels de maior brilho na imagem, enquanto o filtro de mínimo realça os de menor brilho \[16\].

Filtro Laplaciano – Filtro do tipo passa-alto para detectar contornos que geralmente funciona adequadamente ao realçar as descontinuidades, ou seja, regiões de mudança rápida de intensidade. O seu resultado pode ser combinado com a imagem original para evidenciar as características realçadas. É sensível ao ruído, tendo que ser usado depois de um filtro que suavize a imagem para se obterem melhores resultados \[17\].

Filtro Unsharp – Este filtro é obtido a partir do inverso do filtro Laplaciano. É um filtro que mantém o contraste da imagem e preserva bem os limites, notando-se também uma degradação na qualidade da imagem. O filtro *Unsharp* é um simples operador de realce que recebe o seu nome pelo facto de realçar limites (e outras componentes de alta frequência numa imagem), através da subtração de uma imagem suavizada à imagem original \[17\].

Filtro High-Boost – Filtragem passa-alto pode ser vista como a subtração de uma imagem filtrada com um filtro passa-baixo à imagem original. No entanto, muitas vezes onde há a necessidade de obter uma imagem filtrada com um filtro passa-alto, é também necessário reter algumas das componentes de baixa-frequência para ajudar na interpretação da imagem. Então, ao multiplicar a imagem original por um factor de amplificação antes de subtrair a imagem filtrada com um filtro passa-baixo, obtém-se um filtro *high-boost* que enfatiza as altas frequências \[17\].

6.2.3. Operadores Morfológicos

A aplicação de operadores morfológicos é um passo importante para certas operações de processamento e análise de imagem, tais como, de realce de contraste, remoção de ruído e segmentação.
A dilatação e a erosão são duas operações morfológicas fundamentais. A dilatação acrescenta pixels aos limites dos objectos de uma imagem, Figura 25, enquanto a erosão remove tais elementos, (Figura 26). O número de pixels adicionados ou removidos dos objectos depende do tamanho e da forma do elemento estruturante utilizado para processar a imagem. O elemento estruturante é o elemento fundamental das operações de dilatação e de erosão.

Figura 25 – Operação de Dilatação (de [24]).

Figura 26 – Operação de Erosão (de [24]).

Frequentemente, para implementar certas operações de processamento e análise de imagem, as operações de erosão e de dilatação são usadas em conjunto, Figura 27. As duas combinações mais comuns destas duas operações são a abertura e o fecho. A definição de uma abertura morfológica de uma imagem é uma erosão seguida de uma dilatação, usando o mesmo elemento estruturante para ambas as operações. A operação relacionada, o fecho morfológico de uma imagem, é o inverso, ou seja, baseia-se numa dilatação seguida de uma erosão, com o mesmo elemento estruturante.
A operação morfológica de abertura pode ser usada para remover pequenos objectos de uma imagem preservando a forma e o tamanho dos objectos maiores, enquanto a operação de fecho elimina pequenas aberturas nos objectos da imagem, preenche falhas nos contornos e junta objectos que estejam relativamente próximos [18].

6.3. SEGMENTAÇÃO

A segmentação de imagem é uma das tarefas mais importantes para a análise de imagens. O seu principal objectivo consiste em identificar as regiões de uma imagem que possuam uma correlação forte com objectos ou regiões do mundo real. Para se conseguir uma segmentação completa, isto é, obter um conjunto de regiões disjuntas que correspondem a objectos representados na imagem, é frequentemente necessário um processamento de alto nível que contenha informação específica do problema; caso contrário poder-se-á obter uma segmentação parcial, em que as regiões não correspondam directamente a objectos na imagem.

As técnicas de processamento de imagem de baixo nível, que consideram somente informação local, poderão tomar decisões incorrectas durante o processo de integração e geração das fronteiras dos objectos. Como resultado, estas técnicas sem modelos de suporte, podem necessitar de uma considerável
intervenção humana. Para ultrapassar tais dificuldades, os modelos deformáveis têm sido exaustivamente desenvolvidos e aplicados na segmentação de imagens complexas, obtendo-se resultados promissores.

6.3.1. PROCESSAMENTO DE BAIXO NÍVEL

Existem várias situações de segmentação que podem ser resolvidas usando processamento de baixo nível, ou seja, técnicas elementares de segmentação. Nestes casos, as imagens frequentemente contêm objectos com contraste, localizados sob um fundo uniforme, como por exemplo, caracteres impressos, células, etc. Nesta situação, pode ser usado um critério global, como um *threshold*, obtendo-se uma segmentação completa da imagem em objectos e fundo da imagem.

Os métodos de segmentação de baixo nível podem ser divididos em três categorias, de acordo com as suas características principais. O primeiro grupo depende do conhecimento global das propriedades da imagem sendo, em regra, baseado no histograma da imagem. O segundo grupo corresponde à segmentação baseada em contornos determinados por mudanças bruscas de intensidade. A segmentação baseada em regiões corresponde ao terceiro grupo; usando uma metodologia de subdivisão da imagem em regiões de acordo com um critério pré-definido. Devido às diferentes características dos métodos de segmentação baseados em contornos e baseados em regiões, os resultados destes métodos podem ser combinados para melhorar a detecção da estrutura a segmentar [19].

6.3.1.1. SEGMENTAÇÃO POR THRESHOLD

O critério de segmentação mais simples consiste na aplicação de um *threshold* a uma imagem. Muitos objectos ou regiões em imagens são caracterizados pela sua capacidade de reflexão ou absorção de luz nas suas superfícies, correspondendo a cores ou a níveis de cinzento na imagem. Pode ser determinada uma constante associada a estes níveis, ou seja, um *threshold*, para segmentar objectos e o seu fundo. Aplicar um *threshold* é computacionalmente
simples e rápido; é um dos métodos de segmentação mais antigos e ainda globalmente mais usado em segmentações elementares.

A aplicação de um *threshold* corresponde à transformação de uma imagem f, numa imagem binária g (segmentada):

$$g(i, j) = \begin{cases} 1 & f(i, j) \geq T \\ 0 & f(i, j) < T \end{cases}$$

onde T é o valor de *threshold*, $g(i, j) = 1$ para elementos da imagem que correspondem a objectos ou estruturas, $g(i, j) = 0$ para elementos da imagem que pertencem ao fundo (ou vice-versa).

![Figura 28 – Aplicação de um threshold a uma imagem: a) imagem original, b) segmentação por threshold de valor adequado, c) de valor muito baixo, d) de valor muito alto (de [19]).](image)

O valor do *threshold* é crucial para o sucesso de uma segmentação por *threshold*, Figura 26. Este valor pode ser determinado interactivamente ou ser o resultado de um critério de detecção de *threshold*.

Somente em circunstâncias muito especiais, a aplicação de um único *threshold* produz uma segmentação correcta em toda a imagem (*threshold* global) uma vez que, mesmo as imagens mais simples podem conter variações na intensidade dos objectos e do fundo. Estas variações podem ser devidas a incidência (no objecto) de iluminação não uniforme, parâmetros do sistema de aquisição não uniformes, etc. A solução para este caso corresponde a efectuar a

Página | 52
segmentação usando um *threshold* local e adaptativo, no qual o valor do *threshold* depende de características locais da imagem.

A maioria dos métodos por *threshold* baseia-se na intensidade dos *pixels* da imagem. Mas esta característica da imagem é apenas uma das muitas possibilidades; o *threshold* pode ser aplicado mesmo que \(f(i, j) \) não represente valores da intensidade mas, por exemplo, o gradiente da imagem, ou um parâmetro associado à textura da imagem, ou ainda um valor de qualquer outro critério de decomposição da imagem\(^{19}\).

6.3.1.2. Segmentação Baseada em Contornos

A segmentação baseada em contornos foi um dos primeiros critérios usados em segmentação, utiliza os contornos extraídos de uma imagem, por um processo de detecção de contornos, que correspondam a descontinuidades em níveis de cinzento, cor, textura, etc. Pode ser usada uma grande variedade de operadores de detecção de contornos, como o gradiente, operador de Roberts, operador de Sobel, operador de Prewitt, operador de Canny, etc. O objectivo final é agrupar contornos locais numa imagem onde existe somente conjuntos de contornos que possuam uma correspondência para objectos ou partes de imagem.

O problema mais frequente da segmentação baseada em contornos, causado pelo ruído ou por regiões com fronteira difusa na imagem, é a presença de contornos (*pixels*) onde não existe fronteira do objecto (falsos contornos), ou a ausência de contornos onde existe uma fronteira real do objecto. Os *pixels* correspondentes a um objecto numa imagem não possuem valores uniformes, uma vez que são afectados por ruído, irregularidades da luz incidente, etc.. Assim, é necessário que o operador de detecção de contornos seja suficientemente flexível para não classificar como contornos as fronteiras das áreas de fundo, quando estas estão influenciadas pelo ruído. Assim, os algoritmos de detecção de contornos são tipicamente seguidos por procedimentos de ligação de contornos.
Considerando agora a relação global dos contornos, ao contrário da análise local referida anteriormente, os contornos podem ser ligados desde que correspondam a objectos com forma e dimensões conhecidas. A segmentação pode ser considerada como um problema de localizar estes objectos na imagem. Um método eficiente para resolver este problema é a transformada de Hough, capaz de detectar rectas e circunferências. Uma grande vantagem deste método é a sua robustez, ou seja, não é muito sensível ao ruído ou outros artefactos na imagem. A desvantagem é que nem sempre é possível saber as expressões analíticas que descrevem as fronteiras dos objectos a segmentar \[19\].

![Figura 29 – Transformada de Hough na detecção de rectas: a) imagem original, b) detecção de contornos (observam-se vários pontos que não pertencem às rectas), c) espaço paramétrico das rectas, d) rectas detectadas (de [19]).](image)

6.3.2. SEGMENTAÇÃO BASEADA EM REGIÕES

Enquanto o objectivo dos métodos de segmentação baseados em contornos consiste em encontrar as fronteiras entre regiões, os métodos baseados em regiões identificam directamente essas regiões. É fácil construir regiões a partir das fronteiras sendo igualmente fácil detectar fronteiras a partir das regiões. No entanto, o resultado da segmentação de métodos baseados em contornos e métodos baseados em regiões não é, em geral, o mesmo, sendo uma boa estratégia a combinação dos dois resultados. Os métodos de segmentação baseados em regiões podem usar técnicas de crescimento de regiões, anexação de regiões, separação de regiões ou ainda uma combinação de outras técnicas. Os critérios associados a cada uma destas técnicas são idênticos, pelo que se descreve apenas uma destas metodologias.

Em imagens com ruído, onde as fronteiras são difíceis de detectar, a técnica de crescimento de regiões geralmente produz melhores resultados do que as restantes técnicas.
A homogeneidade é uma propriedade importante das regiões, usada como o critério principal de segmentação no crescimento de regiões, na qual a ideia base consiste em dividir a imagem em zonas de máxima homogeneidade. O critério da homogeneidade pode ser baseado em níveis de cinzento, cor, textura, etc. Apesar do método de crescimento de regiões ser frequentemente aplicado em 2D, também é possível efectuar implementações em 3D.

As regiões resultantes da segmentação da imagem devem ser homogéneas e "máximas", onde "máximas" significa que o critério da homogeneidade deixa de ser verdadeiro depois de esta região anexar qualquer outra região adjacente; ou seja, já não existe qualquer outra região vizinha com a mesma homogeneidade que possa ser anexada à região resultante do crescimento.

O método natural de crescimento de regiões corresponde a iniciar o crescimento a partir de um dos pixels ou um grupo de pixels que define uma região de uma imagem. As regiões são anexadas desde que satisfaçam o critério de homogeneidade.

Um método alternativo, a segmentação por Watershed, baseia-se no conceito de Watershed da topografia, isto é, na representação da imagem usando as suas duas dimensões (coordenadas espaciais) e ainda a sua intensidade. Nesta interpretação topográfica, consideram-se 3 tipos de pontos: a) pontos pertencentes a um mínimo regional (local); b) pontos em que se for colocada uma "gota de água", esta irá de certeza deslocar-se para o mesmo mínimo; c) pontos (os "picos das montanhas") nos quais a “água” irá deslocar-se para mais de um destes mínimos. Os conjuntos de pontos que satisfazem a condição b) de um mínimo regional (local) específico são chamados mínimos desses Watershed. Os conjuntos de pontos que satisfazem a condição c), ou seja os picos ou vértices da “superfície topográfica”, são chamados linhas de divisão ou linhas de Watershed, Figura 28.
Figura 30 – Segmentação por Watershed: a) imagem original, b) vista topográfica, c) e d) duas etapas do enchimento, e) resultado de enchimento adicional, f) início do preenchimento completo de dois vales (foi construído entre vales, uma pequena barragem), g) barragens maiores, h) resultado final (de [19]).

O objectivo principal de este tipo de segmentação é encontrar as linhas de fronteira de Watershed. A ideia básica é simples e baseada na seguinte analogia: admitindo-se que é efectuado um orifício em cada mínimo regional (local) e toda a superfície topográfica é colocada sobre a água, permite-se que a água entre pelos orifícios e com velocidade constante. Quando a água que preenche vales distintos começa a transbordar, na margem desse vale é construída uma barragem com o objectivo de impedir que a água de um vale vá inundar outro vale. O enchimento dos vales irá eventualmente chegar a uma situação em que somente os topos (vértices) das barragens estão visíveis, acima da linha de água. Estas fronteiras das barragens correspondem às linhas de divisão de Watershed. Portanto, são as fronteiras contínuas extraídas por este método de segmentação [19].

6.3.3. Modelos Deformáveis

Os modelos deformáveis abrangem um grande conjunto de aplicações; são usados em reconhecimento de padrões, animação por computador, modelação geométrica, simulação cirúrgica, segmentação de imagem, etc. Para satisfazer as diferentes necessidades dos modelos 3D são usadas representações variadas, desde linhas 3D deformáveis até volumes deformáveis.
Os contornos activos paramétricos, também conhecidos por *snakes*, foram um dos primeiros modelos deformáveis utilizados na análise de imagens. O conceito principal associado ao contorno deformável é a sua energia. Semelhante a um processo físico, a energia do contorno é composta por dois termos: energia interna que depende da elasticidade e rigidez do modelo, e a energia externa associada às características da imagem a segmentar. O contorno final é obtido a partir de um critério de minimização da energia, correspondendo a uma situação de equilíbrio entre as forças internas intrínsecas ao modelo e as forças externas associadas à imagem a segmentar, com recurso à equação de Euler-Lagrange.

As *snakes* foram usadas na segmentação de estruturas em imagens médicas bidimensionais, como o cérebro e os ventrículos cardíacos, entre outras estruturas. No entanto, as *snakes* também possuem limitações. Em aplicações não-interactivas, elas devem ser inicializadas perto da estrutura de interesse para garantir um bom desempenho. Por outro lado, a forma da estrutura de interesse tem de ser conhecida de início, uma vez que os modelos de contornos deformáveis clássicos são paramétricos e incapazes de transformações topológicas sem algoritmos adicionais.

As *superfícies activas paramétricas* definidas em 3D seguem uma formulação semelhante às *snakes* em 2D, com a definição de uma superfície e respectiva energia interna. Associada à imagem do objecto tridimensional, é definida uma energia externa, também chamada potencial. O critério frequentemente usado para a determinação da superfície corresponde à minimização da energia total da superfície, com a utilização da equação de Euler-Lagrange. As superfícies activas paramétricas têm sido muito usadas em visão por computador e em segmentação de imagens médicas.

Os modelos geométricos deformáveis, também conhecidos por *level-set* e por superfícies activas geodésicas, são capazes de se adaptar automaticamente à topologia do objecto, permitindo modelar rapidamente a sua forma. Estes modelos baseiam-se numa evolução que depende somente de características geométricas (como o gradiente e a divergência, que são independentes da parametrização), em oposição aos modelos paramétricos em que a evolução depende somente de alguns pontos do objecto. As superfícies são representadas
implicitamente por uma função de curvas de nível \(\phi \) (level-set); consistindo a evolução em ajustar essa função \(\phi \) ao objecto. Vários autores aplicaram este método em imagens médicas para identificar regiões com densidade aproximadamente uniforme.

Os modelos deformáveis são caracterizados por uma representação que define os elementos da superfície (ou, para o caso bidimensional, os elementos do contorno) do modelo e por um critério de optimização responsável pela procura e identificação do objecto, e ainda adaptação do modelo ao objecto a segmentar \[19\].

A) CONTORNOS ACTIVOS OU SNAKES

Um contorno activo ou snake é uma curva \(\nu(s) = (x(s), y(s)) \), em que \(x(s) \) e \(y(s) \) são as coordenadas dos pontos da curva definidos em função do parâmetro \(s \). A energia da snake é definida por:

\[
E_{total} = E_{int} + E_{ext} = \int w_1 \left(\frac{\partial \nu}{\partial s} \right)^2 + w_2 \left(\frac{\partial^2 \nu}{\partial s^2} \right)^2 ds + E_{Ext},
\]

em que o primeiro termo da energia interna corresponde à elasticidade e o segundo termo da energia interna corresponde à rigidez, \(w_1 \) e \(w_2 \) são constantes positivas. A energia externa, em regra, é determinada por \(E_{ext} = -\|\nabla I\|^2 \), sendo \(I \) a imagem em estudo, podendo, no entanto, ser associada a outras propriedades da imagem.

A snake coincide com a fronteira do objecto quando a energia total for mínima. Como a energia externa é constante, numa primeira fase é calculado \(\nu(s) \) que minimize a energia interna. A solução correspondente à minimização da energia interna é obtida a partir da equação diferencial de Euler-Lagrange.

Como a equação anterior corresponde a um contorno estático e pretende-se um modelo que evolua no tempo para se ajustar ao objecto, é necessário adicionar à equação a evolução temporal, obtendo-se:

\[
\frac{\partial \nu}{\partial t} + \nabla E_{int} + \nabla E_{ext} = 0.
\]
Usando a aproximação das diferenças ascendentes para substituir as derivadas temporais e escrevendo o resultado na forma matricial, obtém-se:

\[V_{n+1} = (I - \tau A)V_n + \tau F, \]

em que \(V \) são as coordenadas dos pontos da snake, \(A \) é uma matriz onde estão representadas de forma implícita as forças internas da snake, \(I \) é a matriz identidade, \(F \) é o conjunto de forças externas associadas à imagem e \(\tau \) é uma constante que controla a evolução do modelo.

A equação final é resolvida iterativamente até ser atingida uma condição de paragem, que poderá ser a diferença das coordenadas entre dois instantes consecutivos inferior a um determinado erro, ou um número máximo de iterações.

As snakes têm como desvantagem a incapacidade de se adaptar a mais do que uma região em simultâneo, assim como a sua natureza iterativa que poderá ser sinónimo de maior tempo computacional, quando comparadas com outros métodos de segmentação não iterativos.

Figura 31 – Detecção de contornos do ventrículo esquerdo numa imagem de Tomografia Axial Computadorizada (TAC): a) imagem com níveis de cinzento, b) imagem com arestas detectadas, c) contorno inicial, d) até f) evolução do contorno, ajustando-se ao ventrículo (de [19]).

Com o objectivo de ultrapassar as limitações topológicas das snakes, alguns autores propuseram uma variante, as \(T-snakes \) (de topology adaptative snakes), que incluem a capacidade de reparametrização, permitindo modificar a sua topologia. À medida que uma \(T-snake \) se deforma de acordo com a influência das forças externas e internas, é periodicamente reparametrizada; quando colide com ela própria ou com outra, divide-se em duas ou mais partes, alterando assim a sua topologia [19].
B) SUPERFÍCIES ACTIVAS PARAMÉTRICAS

Generalizando o modelo bidimensional dos contornos activos para um modelo tridimensional, obtém-se as superfícies activas paramétricas. Uma superfície \(S \) definida por \(v(r,s) \) em que \(r,s \) são parâmetros do domínio da superfície.

A energia total da superfície \(S \) é composta pelas energias interna e externa:

\[
E(r,s) = E_{\text{int}}(r,s) + E_{\text{ext}}(r,s).
\]

Sendo a energia interna determinada por:

\[
E_{\text{int}}(v) = \int \left(w_{10} \frac{\partial^2 v}{\partial s^2} + w_{01} \frac{\partial^2 v}{\partial t^2} + 2w_{11} \left(\frac{\partial^2 v}{\partial s \partial t} \right)^2 + w_{20} \frac{\partial^2 v}{\partial s^2} + w_{02} \frac{\partial^2 v}{\partial t^2} \right) ds dt.
\]

A força externa associada à energia externa ou potencial, definida como \(F_{\text{ext}} = -\nabla P \) deverá atrair a superfície para determinadas características da imagem. Frequentemente o potencial é definido por \(P = -\| G_x * I \|^2 \) em que \(G_x \) é um filtro gaussiano para atenuar o ruído e \(I \) corresponde à imagem. Uma forma alternativa para definir o potencial corresponde a usar a distancia \(d \), em pixels, entre a superfície \(S \) e o objecto, \(P = -\exp(-d^2) \), que produz uma convergência lenta. Para uma convergência mais rápida, define-se \(P = -1/d \) se \(d \neq 0 \) e \(P=1 \) se \(d=0 \) em que a menor distancia entre dois pixels distintos é 1 (um).

A resolução da equação anterior corresponde a minimizar a energia interna, com recurso à equação de Euler-Lagrange e tendo presente as condições fronteira da superfície.

Usando o método das diferenças finitas, é frecuente substituir as derivadas em ordem a grandezas espaciais pela aproximação das diferenças centrais e as derivadas em ordem ao tempo pela aproximação das diferenças ascendentes ou descendentes.

Seguindo passos idênticos aos passos descritos nos contornos activos paramétricos, obtém-se a expressão final:

\[
V_{n+1} = (I - \tau A)V_n + \tau F,
\]
em que A é uma matriz esparsa, τ é uma constante que controla a evolução do modelo e I é a matriz identidade \cite{19}.

C) Modelos Geométricos ou Level-Set

Os modelos geométricos deformáveis, também conhecidos por \textit{level-sets}, são capazes de se adaptar à topologia do objeto a segmentar, permitindo modelar rapidamente a sua forma. Estes modelos baseiam-se numa evolução que depende de características geométricas (como a forma), em oposição aos modelos paramétricos em que a evolução está associada a determinados pontos para reconstruir a fronteira do objecto. O modelo é representado implicitamente como uma função de curvas de nível.

O modelo original é baseado na equação:

$$\frac{\partial \phi}{\partial t} = (K + k_0)P\|\nabla \phi\|,$$

em que ϕ é a função \textit{level-set}, k_0 é uma constante, K é a curvatura de ϕ definida por:

$$K = \nabla \cdot \frac{\nabla \phi}{|\nabla \phi|} = div\left(\frac{\nabla \phi}{|\nabla \phi|}\right),$$

e P é uma função de paragem, responsável pelo deslocamento do modelo na direcção da fronteira do objecto:

$$P = \frac{1}{1 + |\nabla(G_o*I)|},$$

sendo I a imagem e G_0 um filtro Gaussiano de suavização.

O termo de paragem P somente reduz, não pára a expansão, sendo possível que o \textit{level-set} não pare na fronteira e continue o seu movimento; para ultrapassar este problema, adiciona-se o termo:

$$\frac{\partial \phi}{\partial t} = (K + k_0)P\|\nabla \phi\| + \beta \nabla P \cdot \nabla \phi,$$

em que β é uma constante, geralmente igual a 1 (um).
Para melhorar o ajuste do modelo à imagem, um terceiro termo foi adicionado à expressão anterior:

\[\frac{\partial \phi}{\partial t} = (K + k_0)P\|\nabla \phi\| + \nabla P \cdot \nabla \phi + \frac{k_{0u}}{2} \nabla \phi \cdot \nabla \phi, \]

em que \(X \) é um contorno obtido por \(\phi(X) = 0 \). O terceiro termo adiciona uma força de atração adicional quando a frente (definida como \(\phi = 0 \)) está na vizinhança da fronteira. Com este termo, o modelo comporta-se melhor em imagens sintéticas, mas em imagens médicas o modelo com os três termos não é suficientemente robusto, pelo que nesta situação somente os dois primeiros termos devem ser usados.

Figura 32 – Segmentação de uma estrutura sanguínea usando o modelo level-set (de [19]).

Existem várias extensões para os modelos geométricos, que incluem: a dedução dos modelos geométricos a partir de modelos deformáveis paramétricos, usando energias/forças interna e externa, dois modelos geométricos acoplados, entre outras variantes. Contudo, os modelos geométricos podem necessitar de grandes recursos computacionais com o aumento da dimensão do level-set[19].
6.4. Conclusão

Qualquer solução de processamento e análise de imagem é baseada em duas etapas fundamentais: melhoria da imagem e segmentação da mesma. O primeiro é utilizado para reduzir o ruído, para melhorar a qualidade da imagem e melhorar o contraste. Como tal, a imagem de saída potencializa a detecção do objecto de interesse e simplifica o processo de segmentação da imagem. Poderia ser dividido em dois domínios: espacial e de frequência, processada na matriz da imagem de entrada ou depois da transformada de Fourier, respectivamente.

Os algoritmos de segmentação de imagem procuram separar os objectos do fundo da imagem usando diferentes abordagens que são, essencialmente, com base em limites e/ou regiões.

No que diz respeito às imagens endoscópicas, os problemas relacionados com a aquisição da imagem e o tempo gasto pelos médicos motiva a pesquisa e aplicação de algoritmos de processamento e análise de imagem que melhoram a qualidade de imagem e identificam patologias frequentes.

A detecção de ACF é raramente descrita na literatura, e uma vez que é indicado como um possível precursor de cancro colorectal, o desenvolvimento e implementação de métodos de processamento e análise de imagem para detectar essas lesões vão contribuir positivamente para o diagnóstico eficiente e rápido da doença.
7. CONCLUSÃO

O cancro, incluindo o cancro colorectal, é uma das doenças mais preocupantes do mundo moderno e este acto motiva a pesquisa de novas soluções mais rigorosas para a detecção, diagnóstico e tratamento.

Pensa-se que as criptas de focos aberrantes possam ter um papel crucial na sequência adenoma-carcinoma do cancro colorectal, embora este facto ainda não seja totalmente certo e estejam ainda em curso vários estudos na tentativa de confirmar tal facto.

A detecção pode ser realizada através de endoscopia/colonoscopia ou por endoscopia por cápsula; no entanto, o tempo gasto durante a análise pelo especialista das imagens resultantes dos exames pode ser substancialmente reduzido usando técnicas de processamento e análise computacional de imagem.

Para isso existem algoritmos que podem ser aplicados às imagens endoscópicas, como os métodos de pré-processamento e de segmentação descritos.

Contudo, as técnicas actuais ainda não sou totalmente eficientes e robustas. Assim, o trabalho futuro será centrado no desenvolvimento de algoritmos adequados para segmentar, detectar e quantificar com robustez e eficientemente as estruturas dos focos das criptas aberrantes existentes em imagens endoscópicas.

Trabalho Futuro:

- Desenvolvimento e implementação de metodologias computacionais para a detecção e quantificação de focos de criptas aberrantes a partir de imagens de endoscopia in vivo; ou seja, metodologias para segmentar e analisar imagens de endoscopia.
- Aplicação, ensaio e validação das metodologias desenvolvidas em casos experimentais e clínicos.

Página | 64
8. REFERÊNCIAS

