Phase Equilibria in the Nb-Si-B System

Carlos Angelo Nunes(1), Dário Moreira Pinto Júnior(1), Gilberto Carvalho Coelho(1,2), Paulo Atsushi Suzuki(1), Antonio Augusto Araújo Pinto da Silva(1), Rafael Bogado Tomasiello(1)

1 Universidade de São Paulo (USP), Escola de Engenharia de Lorena (EEL), Polo Urbo-Industrial Gleba Al-6, Caixa postal 116, 12602-810, Lorena, SP, Brazil

2 UniFoa – Centro Universitário de Volta Redonda, Núcleo de Pesquisa, Campus Três Poços, Avenida Paulo Erlei Alves Abrantes, 1325 – Bairro três Poços, 27240-560, Volta Redonda, Rio de Janeiro, Brazil.
Outline

- Introduction
- Objectives of the Nb-Si-B Project
- Literature
- Experimental Procedure
- Results and Discussion
- Summary
Need to develop materials to work under aggressive conditions (oxidant atmosphere; dynamic loading) at $T > 1200^\circ$C;

Ni-base superalloys limitation: $T_{\text{service}} \approx 0.85 \times T_{\text{melting}} \approx 1150^\circ$C;
✓ High melting point material;
✓ Microstructure: intermetallic phase(s) containing elements for good oxidation resistance in thermodynamic equilibrium with a ductile metallic phase (solid solution) => Me-Si-B systems;
✓ Possible solution should involve a multicomponent Me-Si-B system => need for phase stability information.

- Two-phase field Mo$_{ss}$+Mo$_5$SiB$_2$ (T_2)
 (T_2 - Cr$_5$B$_3$ prototype)

Mo-Si-B Isothermal Section at 1600°C.
Objectives of the Nb-Si-B Project

- Reevaluation of the Nb-B system;
- Determination of Liquidus projection (Nb-rich region);
- Determination of the isothermal section at 1700°C (Nb-NbSi_2-NbB_2) region;
- Thermodynamic modeling of the Nb-Si-B system.
Nb-B Phase Diagram [1990Mas].

Nb-B Phase Diagram [1969Rud].
Nb-Si System

Nb-Si Phase Diagram [1993Sch].

- **1765°C [1980Koc]**
- **1670°C [1991Men]**

Literature

1. [Koc, 1980]
2. [Men, 1991]
3. [Sch, 1993]
B-Si System

B-Si Phase Diagram [1990Mas]
Isothermal Section of the Nb-Si-B system at 1600°C [1960Now]

\textbf{Nb}_5\textbf{SiB}_2 crystal structure
Structural materials: metal–silicon–Boron. The Nb-rich corner of the Nb–Si–B system

S. Katrych,a,b A. Grytsiv,a,c A. Bondar,a P. Rogl,c T. Velikanova,a,* and M. Bohnd

aFranzovods Institute for Problems of Materials Science of NASU, Krylozhmansky Str. 3, 30600 Kyiv, Ukraine
bLaboratory of Crystallography, Federal Institute of Technology, CH-8092 Zurich, Switzerland
cInstitut für Physikalische Chemie, Universität Wien, Währingerstr. 42, A-1090 Vienna, Austria
dUMR CNRS 6538, IFREMER, F-29280 Plouzané, France

Sub-Solidus projection of the Nb-Si-B system in the Nb-Nb$_5$Si$_3$-NbB region

(1) single-phase; (2) two-phase; (3) three-phases.
 Nb-Si-B System

Structural materials: metal–silicon–Boron. The Nb-rich corner of the Nb–Si–B system

S. Katrych,¹,² A. Grytsiv,³,⁴ A. Bondar,¹ P. Rogl,⁵ T. Velikanova,⁶,* and M. Bohn⁷

¹Frantoniich Institute for Problems of Materials Science of NASU, Kryvyi Rih, Ukraine
²Laboratory of Crystallography, Federal Institute of Technology, CH-8092 Zurich, Switzerland
³Institut für Physikalische Chemie, Universität Wien, Währingerstr. 47, A-1090 Wien, Austria
⁴UMR CNRS 6588, IFREMER, F-29286 Plouzané, France

Vertical section connecting Nb₉₉Si₁ to Nb₅Si₂B
Experimental Procedure

Alloys processing:

Arc Melting
Heat-treatment (1500 – 1800°C)

* Some samples also processed via powder metallurgy
Microstructural Characterization

XRD: powder, room temperature, filtered Cu-Kα radiation; 40kV; 30 mA; (2θ) from 10° to 90°; 0.05° angular step; 2 s/point;

SEM: Back-scaterred electrons image.

Microanalysis via WDS – PET (Nb), TAP (Si), LSM200 (B)
Results: Nb-B System

New Data on Phase Equilibria in
the Nb-Rich Region of the Nb-B System

Luiz Antônio Borges Júnior, Gilberto Carvalho Coelho, Carlos Angelo Nunes, and Paulo Atsushi Suzuki

Journal of Phase Equilibria Vol. 24 No. 2 2003
Results: Nb-B System

SEM/BSE micrographs of as-cast Nb-B alloys:
(a) 48Nb-52B; (b) 45,45Nb-54,55B

L + Nb₃B₄ ⇌ Nb₅B₆
L ⇌ NbB + Nb₅B₆
Results: Nb-B System

The NbB$_2$-phase revisited: Homogeneity range, defect structure, superconductivity

Carlos Angelo Nunes,a,b,* Dariusz Kaczorowski,c Peter Rogla, Márcia Regina Baldisserab, Paulo Atsushi Suzukib, Gilberto Carvalho Coelhob, Andriy Grytsiva, Gilles Andréd, Francoise Bouréed, Shigeru Okadae

a Institut für Physikalische Chemie, Univ. Wien, Währingerstrasse, 42, A-1090 Wien, Austria
b FAE/QUIL, Departamento de Engenharia de Materiais (DEMAR), Polo Urbo-Industrial Gleba AI-6, Caixa Postal 116, 12606-970 Lorena, São Paulo, Brazil
c Institute of Low Temperature and Structure Research, Polish Academy of Science, P.O. Box 1410, 50-950 Wroclaw, Poland
d Laboratoire Leon Brillouin, CEA/Saclay, F-91191 Gif sur Yvette, France
$^*^e$ Department of Applied Chemistry, Kanagawa University, Kanagawa-ku, Yokohama 221, Japan

Received 10 February 2005; received in revised form 13 April 2005; accepted 14 April 2005
Available online 3 June 2005

Fig. 5. Lattice parameter data of the NbB$_2$-phase from the results of this investigation (AC + HT samples) and results from the literature.

Lattice parameters of NbB$_2$-phase as a function of B contents
Results: Nb-B System

Tridimensional view of the NbB₂ crystal structure
Thermodynamic modeling of the Nb–B system

Rockfeller Maciel Peçanha, Flávio Ferreira, Gilberto Carvalho Coelho, Carlos Angelo Nunes, Bo Sundman

Departamento de Engenharia de Materiais, DEMAR-EEL-USP, CP 116, 12600-970, Lorena, SP, Brazil
Escola de Engenharia Industrial Metallúrgica de Volta Redonda—USF—TMF, Av. dos Trabalhadores, 420, CEP 27255-125, Volta Redonda, RJ, Brazil
Division of Physical Metallurgy, Royal Institute of Technology, S-10044, Stockholm

Received 19 June 2006; received in revised form 2 October 2006; accepted 30
Available online 20 April 2007

Results: Nb-B System

Thermodynamic modeling of the Nb–Si system

P. B. Fernandes a, G. C. Coelho a, F. Ferreira a, b, C. A. Nunes a, B. Sundman c

a Departamento de Eng. de Materiais (DEMAR), Faculdade de Engenharia Química de Lorena (FAENQUL) CP 116, 12690-000, Lorena, São Paulo, Brazil.

b Escola de Engenharia Industrial Metálica de Vila Verde (EIP-IMV) Av. dos Trabalhadores 420-CEP 27590-740.

Vila Verde, Braga, Portugal.

c Division of Physical Metallurgy, Royal Institute of Technology, S-100 44 Stockholm 70, Sweden.

Accepted 30 July 2002

Intermetallics 10 (2002) 993–999

βNb₃Si₃ modeled as (Nb)₄(Nb, Si)(Si)₃

Temperature in Celsius

Mole fraction of Si
Results: Liquidus Projection

SEM/BSE micrograph of as-cast 84Nb-8Si-8B alloy
Results: Liquidus Projection

SEM/BSE micrograph of as-cast 70Nb-10Si-20B alloy

- **NbB primary**
- **Nb\textsubscript{ss} + T\textsubscript{2}**
- **T\textsubscript{2}**
Results: Liquidus Projection

T_2 primary

SEM/BSE micrograph of as-cast 70Nb-20Si-10B alloy
Results: Liquidus Projection

D$_8^8$ primary

SEM/BSE micrograph of as-cast 62Nb-25Si-13B alloy
Results: Experimental Isothermal sections

SEM/BSE micrograph of alloy # 34 (75Nb-21Si-4B) after HT at 1700°C for 16 h.

Isothermal Section of the Nb-Si-B at 1700°C from this investigation
Results: Experimental Isothermal sections

SEM/BSE micrograph of alloy #33 (80Nb-19Si-1B) after HT at 1700°C for 64 h.

Isothermal Section of the Nb-Si-B at 1700°C from this investigation
Results: Experimental Isothermal sections

$T = 1500^\circ C$

$T = 1600; 1700; 1800^\circ C$
Results: Experimental Isothermal sections

$T = 1600; 1700; 1800^\circ C$
Results: Calculated Liquidus Projection

- L ↔ D8₈ + NbB₂ + NbSi₂
- L ↔ D8₈ + Nb₃B₄ + NbSi₂
Results: Calculated Isothermal Section at 1600°C

Calculated Isothermal section at 1600°C

Isothermal Section of the Nb-Si-B system at 1600°C [1960Now]
Summary

- Experimental Part
 - Nb-B System: Confirmed results from Rudy et al. + insertion of the Nb$_5$B$_6$-phase forming from the liquid;
 - Liquidus Projection for the Nb-rich region was determined: Observation of primary solidification regions of T$_2$ and D$_8$$_8$ phases in addition to those expected from the binary systems;
 - Isothermal sections: Confirmed the general phase equilibria reported by Nowotny et al. (isothermal sections at 1600°C) and Katrych et al.; additional work needed for the Nb$_3$B$_4$-NbB$_2$-NbSi$_2$-D$_8$$_8$ region based on the experiments carried out at 1500, 1700 and 1800°C.

- Thermodynamic Modelling Part
 - Good description for the Nb-B; Nb-Si and Nb-Si-B system; additional work needed to correct the Nb$_3$B$_4$-NbB$_2$-NbSi$_2$-D$_8$$_8$ region.
THANK YOU FOR YOUR ATTENTION!!